JP5000281B2 - High-strength stainless steel sheet with excellent workability and method for producing the same - Google Patents

High-strength stainless steel sheet with excellent workability and method for producing the same Download PDF

Info

Publication number
JP5000281B2
JP5000281B2 JP2006327678A JP2006327678A JP5000281B2 JP 5000281 B2 JP5000281 B2 JP 5000281B2 JP 2006327678 A JP2006327678 A JP 2006327678A JP 2006327678 A JP2006327678 A JP 2006327678A JP 5000281 B2 JP5000281 B2 JP 5000281B2
Authority
JP
Japan
Prior art keywords
strength
stainless steel
martensite
crystal orientation
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006327678A
Other languages
Japanese (ja)
Other versions
JP2008138270A (en
Inventor
純一 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2006327678A priority Critical patent/JP5000281B2/en
Publication of JP2008138270A publication Critical patent/JP2008138270A/en
Application granted granted Critical
Publication of JP5000281B2 publication Critical patent/JP5000281B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、特に加工性と強度の両立が必要な構造用部材として使用されるステンレス鋼板に関するもので、特に自動車、バス、鉄道車両などの車体や足回り等の構造用冷延鋼板に関わるものである。   The present invention relates to a stainless steel sheet used as a structural member that requires both workability and strength, and particularly relates to structural cold-rolled steel sheets such as automobiles, buses, railway vehicles, etc. It is.

近年、環境問題の観点から、自動車、バス、鉄道車両などの輸送機器の燃費向上が必須課題になってきている。その解決手段の一つとして、車体の軽量化が積極的に推進されており、その中で高耐食鋼であるステンレス鋼の適用が検討されている。Crを含有するステンレス鋼を適用した場合、錆代低減による軽量化、塗装省略化が適用の着眼である。また、乗員の安全性確保という観点からは、衝突安全性向上が要求されるが、上記の車体軽量化との両立が必要である。衝突安全性向上の対策としては、部材を構成する鋼板の高強度化が有効であり、高強度ステンレス鋼板の適用により安全性と軽量化の両立が達成出来る可能性がある。高強度材を上記構造部材に適用する際の問題点は、加工性の確保である。高強度化により加工性が低下すると、複雑形状部品への成型が困難になるためである。特に、高強度ステンレス鋼板は、穴拡げ加工時に割れが発生する問題が多く、自動車、バス、鉄道車両の構造部材で穴拡げ加工を施される場合に問題を残していた。   In recent years, from the viewpoint of environmental problems, improvement in fuel efficiency of transportation equipment such as automobiles, buses, and railway vehicles has become an essential issue. As one of the solutions, weight reduction of the vehicle body is actively promoted, and application of stainless steel, which is a high corrosion resistance steel, is being studied. When stainless steel containing Cr is applied, weight reduction by reducing rust allowance and omission of painting are the focus of application. Further, from the viewpoint of ensuring the safety of passengers, it is required to improve the collision safety, but it is necessary to achieve both the above-mentioned weight reduction of the vehicle body. As a measure for improving the collision safety, it is effective to increase the strength of the steel plate constituting the member, and there is a possibility that both safety and light weight can be achieved by applying the high strength stainless steel plate. A problem in applying a high-strength material to the structural member is securing workability. This is because if the workability is reduced due to the increase in strength, it becomes difficult to mold into a complex shaped part. In particular, the high-strength stainless steel sheet has many problems that cause cracks during hole expansion processing, and has left a problem when it is subjected to hole expansion processing in structural members of automobiles, buses, and railway vehicles.

従来から上記構造部材用のステンレス鋼板としては、焼き入れにより高強度化するマルテンサイト系ステンレス鋼板が知られているが、延性が著しく低いため部材への加工性に問題がある。一方、オーステナイト系ステンレス鋼板としてはS304やS301が使用されている。これらは、延性に優れており、加工誘起変態を活用した高加工硬化特性が得られる。しかしながら、Niを多量に含有しコスト高であったり、環境によっては応力腐食割れが問題になり、構造材としての信頼性を落とす場合があった。   Conventionally, a martensitic stainless steel plate that is strengthened by quenching is known as the stainless steel plate for the structural member, but there is a problem in workability of the member because the ductility is extremely low. On the other hand, S304 and S301 are used as the austenitic stainless steel sheet. These are excellent in ductility, and high work hardening characteristics utilizing work-induced transformation can be obtained. However, it contains a large amount of Ni and is expensive, and depending on the environment, stress corrosion cracking becomes a problem, and the reliability as a structural material may be lowered.

この様な問題の中、下記特許文献1には、面内異方性が小さい高延性高強度の複相組織クロム系ステンレス鋼板の製造方法が開示されている。ここでは、Cr:10〜14%含有するす鋼帯に対して、熱処理条件を規定して仕上焼鈍加熱時の組織をフェライト+オーステナイト組織として冷却速度を調整することで、強度と延性の面内異方性を小さくすることが特徴である。しかしながら、上記の様に構造部品として加工する際、特に穴拡げ加工においては、延性以外に深絞り性が問題になり、深絞り性の指標であるr値が低いという問題点があった。   Among such problems, Patent Document 1 below discloses a method for producing a high-ductility, high-strength, chromium-based stainless steel sheet having small in-plane anisotropy. Here, for the steel strip containing 10% to 14% of Cr, the heat treatment conditions are defined, and the structure at the time of finish annealing is adjusted to the cooling rate with the ferrite + austenite structure, so that the strength and ductility are in-plane. It is characterized by reducing the anisotropy. However, when processing as a structural part as described above, particularly in hole expansion processing, deep drawability becomes a problem in addition to ductility, and there is a problem that the r value, which is an index of deep drawability, is low.

また、下記特許文献2には、Cr:11〜15%含有し、主相をフェライト相とし、2〜20%マルテンサイト相とする穴拡げ性に優れ、引張強さが600MPa超とする穴拡げ加工性に優れた構造用ステンレス鋼板が開示されている。ここでは、製品組織の2相化により、破断伸びが15%以上、穴拡げ率が70%以上となることが示されており、軟質なフェライト相中にマルテンサイト相を生成させることで穴拡げ加工時の割れ起点となる炭窒化物を低減することが特徴である。しかしながら、通常の製法で製品組織を2相化しただけでは、十分な穴拡げ性が得られない場合がある他、穴拡げ性以外の深絞り性が不十分であることもあった。これは、マルテンサイトの体積分率だけでなく、その分散状態やフェライト相の結晶方位に起因する塑性異方性が影響するためである。   Patent Document 2 listed below contains Cr: 11 to 15%, has a main phase of ferrite phase, is excellent in hole expansion property of 2 to 20% martensite phase, and has a tensile strength exceeding 600 MPa. A structural stainless steel plate excellent in workability is disclosed. Here, it is shown that the elongation at break is 15% or more and the hole expansion ratio is 70% or more due to the two-phase structure of the product structure. By expanding the martensite phase in the soft ferrite phase, the hole expansion is achieved. It is characterized by reducing the carbonitride that becomes the starting point of cracking during processing. However, there are cases where sufficient hole expansibility cannot be obtained only by making the product structure into two phases by a normal manufacturing method, and deep drawability other than the hole expansibility may be insufficient. This is because not only the volume fraction of martensite but also the plastic anisotropy due to the dispersion state and the crystal orientation of the ferrite phase are affected.

また、下記特許文献3には、Cr:9〜13%を含み、フェライト相を70%以上、炭窒化物およびマルテンサイト相を30%未満含む金属組織を有し、引張強さが600〜900MPaで伸びフランジ性(穴拡げ性と同様)に優れたCr含有高強度冷延鋼板およびその製造方法が開示されている。この鋼はSiを固溶強化元素として0.5%以上添加しているが、延性が著しく低い課題があった。また、特許文献2と同様にマルテンサイト相を製品に残留させて伸びフランジ性の向上を図っているが(穴拡げ性が100%以上)、上記と同様に母相のフェライト相の結晶方位によっては、単純に2相化しただけでは十分な伸びフランジ性は得られなかった。   Patent Document 3 shown below has a metal structure containing Cr: 9 to 13%, a ferrite phase of 70% or more, a carbonitride and a martensite phase of less than 30%, and a tensile strength of 600 to 900 MPa. A Cr-containing high-strength cold-rolled steel sheet excellent in stretch flangeability (similar to hole expandability) and a method for producing the same are disclosed. In this steel, 0.5% or more of Si was added as a solid solution strengthening element, but there was a problem that ductility was extremely low. Further, as in Patent Document 2, the martensite phase is left in the product to improve the stretch flangeability (hole expansibility is 100% or more), but depending on the crystal orientation of the ferrite phase of the parent phase as described above. However, it was not possible to obtain sufficient stretch flangeability by simply making two phases.

また、下記特許文献4には、Cr:7〜15%を含み、耐粒界腐食性と穴拡げ性に優れた自動車用クロム含有鋼が開示されている。ここでは、穴拡げ性が90%以上とするために、種々の成分含有量を調整しているが、組織や結晶方位の影響について規定されておらず、成分だけでは穴拡げ性が著しくばらつく場合があった。   Patent Document 4 listed below discloses a chromium-containing steel for automobiles that contains Cr: 7 to 15% and has excellent intergranular corrosion resistance and hole expansibility. Here, the content of various components is adjusted so that the hole expandability is 90% or more, but the effect of the structure and crystal orientation is not specified, and the hole expandability varies significantly only with the components. was there.

また、下記特許文献5には、フェライト−オーステナイトの2相域を呈する組成を有するステンレス鋼板の製造工程において、第一熱処理工程においてマルテンサイト相を20〜80%生成させ、冷延後の熱処理をAc1変態点未満以下で熱処理しフェライト単相組織とする延性に優れた高強度ステンレス鋼板の製造方法が開示されている。この製造方法では、製品板のフェライト相の結晶方位発達が不十分で塑性異方性が十分に発達せず、穴拡げ性が劣ることがあった。
特開昭63−169334 特開2005−272938 特開2006−118018 特開2004−43964 特開2004−323960
Further, in Patent Document 5 below, in the manufacturing process of a stainless steel plate having a composition exhibiting a ferrite-austenite two-phase region, 20 to 80% of a martensite phase is generated in the first heat treatment step, and the heat treatment after cold rolling is performed. A method for producing a high-strength stainless steel sheet having excellent ductility by heat treatment below the Ac1 transformation point to a ferrite single phase structure is disclosed. In this manufacturing method, the crystal orientation of the ferrite phase of the product plate is not sufficiently developed, the plastic anisotropy is not sufficiently developed, and the hole expandability is sometimes inferior.
JP 63-169334 A JP 2005-272938 JP2006-1118018 JP2004-43964 JP 2004-323960 A

上記の様に、Cr含有ステンレス鋼板において、高強度化と穴拡げ性の向上に関する検討は種々成されているが、強度と加工性を安定的に両立させることが出来なかった。この様なことから、本発明は従来技術の問題点を解決し、高強度でかつ加工性に優れたCr含有ステンレス鋼板を提供することを課題とする。   As described above, in the Cr-containing stainless steel sheet, various studies have been made on increasing the strength and improving the hole expansibility, but it has been impossible to stably achieve both strength and workability. For these reasons, it is an object of the present invention to provide a Cr-containing stainless steel plate that solves the problems of the prior art and has high strength and excellent workability.

上記課題を解決するために、本発明者らは高温でフェライト相とオーステナイト相(冷却してマルテンサイト相)の2相となるCr含有ステンレス鋼の強度と加工性について金属組織的な観点から入念に研究した。そして、従来技術とは異なる観点で加工性を向上(特に穴拡げ性)させる技術を見出した。即ち上記文献の中で、特に特許文献2と特許文献3は金属組織を2相化して穴拡げ性を向上させる技術があるが、母相であるフェライト相の変形特性に大きく依存し、2相化だけでは十分な特性が得られないことを知見した。そして、フェライト相の集合組織を制御して、板厚方向の変形を押さえることで穴拡げ性を向上できることを見出した。具体的には、最終製品において、母相のフェライト相の特定結晶方位を発達させることで、r値と穴拡げ性を向上させることである。その際、各製造工程のフェライト相と第2相の結晶方位関係を精細し、冷延素材の組織を微細なラスマルテンサイト組織化することで、冷延・焼鈍後のフェライト相の結晶方位を制御し、加工性(深絞り性の指標となるr値)を向上させるものである。   In order to solve the above-mentioned problems, the present inventors carefully studied the strength and workability of Cr-containing stainless steel that becomes two phases of a ferrite phase and an austenite phase (cooled and martensite phase) at a high temperature from a metallographic viewpoint. Studied. And the technique which improves workability from the viewpoint different from a prior art (especially hole expansibility) was discovered. That is, among the above documents, Patent Document 2 and Patent Document 3 particularly have a technique for improving the hole expansibility by making the metal structure into two phases, but depends greatly on the deformation characteristics of the ferrite phase as the parent phase. It has been found that sufficient characteristics cannot be obtained only by the conversion. It was also found that the hole expandability can be improved by controlling the texture of the ferrite phase and suppressing deformation in the thickness direction. Specifically, in the final product, the r value and the hole expandability are improved by developing the specific crystal orientation of the ferrite phase of the parent phase. At that time, by refining the crystal orientation relationship between the ferrite phase and the second phase in each manufacturing process and forming the structure of the cold-rolled material into a fine lath martensite structure, the crystal orientation of the ferrite phase after cold-rolling and annealing can be changed. It is controlled to improve workability (r value that is an index of deep drawability).

上記課題を解決する本発明の要旨は、
(1)質量%にて、C:0.001〜0.03%、N:0.001〜0.03%、Si:0.05〜0.5%、Mn:0.05〜5%、P:0.05%以下、Ni:0.3〜5%、Cu:0.01〜3%、Cr:10〜18%、Al:0.005〜0.50%を含有し、残部がFeおよび不可避的不純物からなり、X線回折による全板厚の結晶方位強度において、{111}<011>結晶方位強度が3以上、{211}<011>結晶方位強度が3以上、{100}<011>結晶方位強度が2未満で、穴拡げ率が100%以上であり、フェライト+マルテンサイト組織であることを特徴とする加工性に優れた高強度ステンレス鋼板。
(2) さらに、質量%にて、Ti:0.5%以下、Nb:0.5%以下、V:0.5%以下、B:0.0020%以下のうち1種または2種以上を含有することを特徴とする(1)に記載の加工性に優れた高強度ステンレス鋼板。
(3)さらに、質量%にて、Mo:2.0%以下を含有することを特徴とする(1)または(2)に記載の加工性に優れた高強度ステンレス鋼板。
(4)引張強度が500MPa以上、破断伸びが15%以上、平均r値が0.9以上であることを特徴とする(1)乃至(3)のいずれか一項に記載の加工性に優れた高強度ステンレス鋼板。
(5)(1)乃至(3)のいずれか一項に記載の熱延鋼板を900〜1100℃で熱処理してマルテンサイト組織とした後に冷延を施し、750〜900℃で熱処理してフェライト+マルテンサイト組織とすることを特徴とする記載の加工性に優れた高強度ステンレス鋼板の製造方法。
The gist of the present invention for solving the above problems is as follows.
(1) In mass%, C: 0.001 to 0.03%, N: 0.001 to 0.03%, Si: 0.05 to 0.5%, Mn: 0.05 to 5%, P: 0.05% or less, Ni: 0.3-5%, Cu: 0.01-3%, Cr: 10-18%, Al: 0.005-0.50%, the balance being Fe And {111} <011> with a crystal orientation strength of 3 or more, {211} <011> with a crystal orientation strength of 3 or more, and {100} <011> crystal orientation strength is less than 2 state, and are hole expansion ratio is 100% or more, ferrite + martensite der high strength stainless steel sheet excellent in workability characterized by Rukoto.
(2) Further, in mass%, Ti: 0.5% or less, Nb: 0.5% or less, V: 0.5% or less, B: 0.0020% or less, or one or more of them A high-strength stainless steel plate excellent in workability according to (1), characterized in that it contains.
(3) The high-strength stainless steel plate excellent in workability as described in (1) or (2), further containing Mo: 2.0% or less by mass%.
(4) Excellent in workability as described in any one of (1) to (3), wherein the tensile strength is 500 MPa or more, the elongation at break is 15% or more, and the average r value is 0.9 or more. High strength stainless steel sheet.
(5) (1) to the hot-rolled steel sheet according to any one of (3) was heat-treated at 900 to 1100 ° C. subjecting the cold rolled after martensite, the ferrite was heat-treated at 750 to 900 ° C. + A method for producing a high-strength stainless steel plate excellent in workability as described in the above, characterized by having a martensite structure .

以下に本発明の限定理由について説明する。   The reason for limiting the present invention will be described below.

Cは、成形性と耐食性を劣化させ、過度な添加は硬質なマルテンサイト相を形成し製造過程に板破断等の問題をもたらすため、その含有量は少ないほど良く、上限を0.03%とした。一方、過度な低減は変態点を消失させ、本発明のポイントとなるマルテンサイト相が生成しなくなる他、精錬コストの増加に繋がるため、下限を0.001%とした。更に望ましくは、0.005〜0.025%が良い。   C deteriorates formability and corrosion resistance, and excessive addition forms a hard martensite phase and causes problems such as plate breakage in the manufacturing process. Therefore, the lower the content, the better, and the upper limit is 0.03%. did. On the other hand, excessive reduction causes the transformation point to disappear, the martensite phase that is the point of the present invention is not generated, and the refining cost is increased, so the lower limit was made 0.001%. More preferably, 0.005 to 0.025% is good.

NはCと同様、成形性と耐食性を劣化させ、過度な添加は硬質なマルテンサイト相を形成し製造過程に板破断等の問題をもたらすため、その含有量は少ないほど良く、上限を0.03%とした。一方、過度な低減は変態点を消失させ、本発明のポイントとなるマルテンサイト相が生成しなくなる他、精錬コストの増加に繋がるため、下限を0.001%とした。更に望ましくは、0.005〜0.020%が良い。   N, like C, deteriorates formability and corrosion resistance, and excessive addition forms a hard martensite phase and causes problems such as plate breakage in the production process. Therefore, the lower the content, the better. 03%. On the other hand, excessive reduction causes the transformation point to disappear, the martensite phase that is the point of the present invention is not generated, and the refining cost is increased, so the lower limit was made 0.001%. More preferably, 0.005 to 0.020% is good.

Siは、固溶強化元素で高強度化に有効な元素であるが、0.5%超の添加は急激に延性を低下させるため、上限を0.5%とした。一方、脱酸元素として添加され、その効果は0.05%から発現するため、下限を0.05%とした。更に望ましくは、0.1〜0.3%が良い。   Si is a solid solution strengthening element and is an element effective for increasing the strength. However, the addition of more than 0.5% rapidly lowers the ductility, so the upper limit was made 0.5%. On the other hand, since it is added as a deoxidizing element and the effect is manifested from 0.05%, the lower limit was made 0.05%. More preferably, it is 0.1 to 0.3%.

Mnは、脱酸剤として添加される。また、オーステナイト生成元素であるため、熱処理によるマルテンサイト生成を容易にする。これらの効果は0.05%から発現するため、下限を0.05%とした。一方、固溶強化元素であるため加工性を低下させる他、MnSを形成して耐食性を低下させるため、上限を5%とした。更に望ましくは、0.5〜4.0%である。   Mn is added as a deoxidizer. Moreover, since it is an austenite generating element, it makes it easy to generate martensite by heat treatment. Since these effects are manifested from 0.05%, the lower limit was made 0.05%. On the other hand, since it is a solid solution strengthening element, the workability is lowered, and MnS is formed to lower the corrosion resistance. Therefore, the upper limit was made 5%. More desirably, it is 0.5 to 4.0%.

Pは、MnやSi同様に固溶強化元素であるため、材質上その含有量は少ないほど良いため、上限は0.05%とした。但し、過度の低減は精錬コストの増加に繋がるため、下限は0.01%とすることが好ましい。更に望ましくは、0.02〜0.04%が良い。   Since P is a solid solution strengthening element like Mn and Si, the lower the content, the better. Therefore, the upper limit was made 0.05%. However, excessive reduction leads to an increase in refining costs, so the lower limit is preferably 0.01%. More preferably, 0.02 to 0.04% is good.

Niは、オーステナイト生成元素であり、マルテンサイト生成を容易にする他、靭性向上、耐高温塩害腐食性向上に有効である。これらの効果は0.3%から発現するため、下限を0.3%とした。一方、過度な添加はコスト増となる他、応力腐食割れの発生をもたらす可能性があるため、上限を5%とした。更に望ましくは、0.4〜3%が良い。   Ni is an austenite-forming element and is effective for improving martensite and improving toughness and high-temperature salt corrosion resistance. Since these effects are manifested from 0.3%, the lower limit was made 0.3%. On the other hand, excessive addition increases the cost and may cause the occurrence of stress corrosion cracking, so the upper limit was made 5%. More preferably, 0.4 to 3% is good.

Crは、耐食性の観点から10%を下限とした。一方、18%超の添加は加工性を低下させたり、靭性の劣化をもたらすため、10〜18%とした。更に望ましくは、11〜16%が良い。   For Cr, the lower limit is 10% from the viewpoint of corrosion resistance. On the other hand, addition of over 18% decreases workability and causes toughness deterioration, so it was made 10 to 18%. More preferably, 11 to 16% is good.

Cuは、オーステナイト生成元素であり、マルテンサイト生成を容易にする他、靭性向上、耐硫酸性向上に有効である。これらの効果は0.01%から発現するため、下限を0.01%とした。一方、過度な添加は硬質化やコスト増となる他、応力腐食割れの発生をもたらす可能性があるため、上限を3%とした。更に望ましくは、0.03〜2%が良い。   Cu is an austenite-forming element and is effective for improving toughness and sulfuric acid resistance in addition to facilitating the formation of martensite. Since these effects are manifested from 0.01%, the lower limit was made 0.01%. On the other hand, excessive addition increases hardness and costs and may cause the occurrence of stress corrosion cracking, so the upper limit was made 3%. More preferably, 0.03 to 2% is good.

Alは脱酸元素として添加される他、窒化物を形成するため、加工性向上に有効な元素である。この効果は、0.005%から発現するため、下限を0.005%とした。一方、過度な添加は、表面疵の発生や溶接性の劣化をもたらすために上限を0.5%とした。更に望ましくは、0.01〜0.10%が良い。   In addition to being added as a deoxidizing element, Al forms an nitride and is therefore an effective element for improving workability. Since this effect is manifested from 0.005%, the lower limit was made 0.005%. On the other hand, excessive addition causes generation of surface flaws and deterioration of weldability, so the upper limit was made 0.5%. More preferably, 0.01 to 0.10% is good.

Ti,Nb,VはCやNと結合し、耐食性を向上させたり、固溶強化並びに析出強化をもたらす元素であるため、強度レベル、耐食性レベルに併せて適宜添加すれば良い。これらの効果は0.05%から発現するため下限を0.05%とすることが好ましい。一方過度な添加は、コスト増や製造性の劣化、表面品質の劣化などをもたらすために上限を0.5%とした。更に望ましくは、0.1〜0.3%が良い。   Ti, Nb, and V are elements that combine with C and N to improve the corrosion resistance, or to bring about solid solution strengthening and precipitation strengthening. Therefore, Ti, Nb, and V may be appropriately added in accordance with the strength level and the corrosion resistance level. Since these effects are manifested from 0.05%, the lower limit is preferably 0.05%. On the other hand, excessive addition causes cost increase, manufacturability deterioration, surface quality deterioration and the like, so the upper limit was made 0.5%. More preferably, it is 0.1 to 0.3%.

Bは、高強度化に有効な元素であるため、強度レベルに応じて添加すれば良い。この効果は、0.0002%から発現するため、下限を0.0002%とすることが好ましい。一方、過度な添加は、耐食性の劣化やコスト増につながるため、上限を0.0020%とした。更に望ましくは0.0003〜0.0010%が良い。   Since B is an element effective for increasing the strength, it may be added according to the strength level. Since this effect is manifested from 0.0002%, the lower limit is preferably made 0.0002%. On the other hand, excessive addition leads to deterioration of corrosion resistance and cost increase, so the upper limit was made 0.0020%. More desirably, the content is 0.0003 to 0.0010%.

Moは耐食性を向上させる元素であり、使用環境による耐食性レベルに応じて適宜添加すれば良い。その効果は、0.1%から発現するため、下限を0.1%とすることが好ましい。一方過度な添加は加工性の劣化やコスト増になるため、上限を2.0%とした。更に望ましくは、0.5〜1.8%が良い。   Mo is an element that improves the corrosion resistance, and may be appropriately added according to the corrosion resistance level depending on the use environment. Since the effect is manifested from 0.1%, the lower limit is preferably 0.1%. On the other hand, excessive addition causes deterioration of workability and cost increase, so the upper limit was made 2.0%. More preferably, 0.5 to 1.8% is good.

本発明においては、母相のフェライト相の結晶方位が加工性に極めて重要であり、かつ鋼板の板厚方向の平均的な結晶方位分布がr値向上に寄与し、構造材の基本的な成型性の一つである穴拡げ性向上に有益に作用することを見出した。図1に0.02%C−0.13%Si−0.86%Mn−0.03%P−0.0005%S−0.36%Ni−11%Cr−0.03%Cu−0.015%Al−0.017%N鋼の結晶方位分布とr値および穴拡げ率を示す。鋼Aと鋼Bは同一成分で、板厚は1mmである。鋼Aは熱延後の熱処理において1000℃×60secの熱処理を施してマルテンサイト組織化した後に冷延(板厚1mm)・焼鈍(700℃×60sec)したものである。一方、鋼Bは熱延後の熱処理において700℃×60secの熱処理を施してフェライト単相組織化した後に冷延(板厚1mm)・焼鈍(700℃×60sec)したものである。   In the present invention, the crystal orientation of the ferrite phase of the parent phase is extremely important for workability, and the average crystal orientation distribution in the thickness direction of the steel sheet contributes to the improvement of the r value, and the basic molding of the structural material It has been found that it has a beneficial effect on improving the hole expandability, which is one of the characteristics. FIG. 1 shows 0.02% C-0.13% Si-0.86% Mn-0.03% P-0.0005% S-0.36% Ni-11% Cr-0.03% Cu-0. The crystal orientation distribution, r value and hole expansion rate of .015% Al-0.017% N steel are shown. Steel A and steel B have the same components and a plate thickness of 1 mm. Steel A is heat-treated after hot rolling at a temperature of 1000 ° C. × 60 sec to form a martensite structure and then cold-rolled (plate thickness 1 mm) and annealed (700 ° C. × 60 sec). On the other hand, steel B is a steel single-phase structure formed by applying heat treatment at 700 ° C. × 60 sec in the heat treatment after hot rolling, and then cold-rolled (plate thickness 1 mm) and annealed (700 ° C. × 60 sec).

ここで、集合組織については、X線回折装置(理学電機工業株式会社製)を使用し、Mo−Kα線を用いて、全板厚の情報得た。サンプルは、1mm厚のサンプルを22枚重ねて、板厚面に機械研磨と電解研磨を施し、X線回折によりフェライト相の(200)、(110)および(211)正極点図を得た。これらのデータをCAMP−ISIJ Vol.18(2005),438に従って、板面方向の3次元結晶方位密度関数を得た。フェライト相の結晶方位分布は板厚方向に分布を呈している事が多く、従来の様に板厚方向の特定面のみの結晶方位分布では十分把握出来なかったが、本手法により全厚の結晶方位分布が得られる。また、r値の評価は、冷間圧延焼鈍板からJIS13号B引張試験片を採取して圧延方向、圧延方向と45°方向、圧延方向と90°方向に7%歪みを付与した後に(1)式を用いて算出した。   Here, for the texture, an X-ray diffractometer (manufactured by Rigaku Denki Kogyo Co., Ltd.) was used, and information on the total plate thickness was obtained using Mo-Kα rays. As the samples, 22 1 mm-thick samples were stacked and subjected to mechanical polishing and electrolytic polishing on the plate thickness surface, and (200), (110), and (211) positive electrode dot diagrams of the ferrite phase were obtained by X-ray diffraction. These data were transferred to CAMP-ISIJ Vol. 18 (2005), 438, a three-dimensional crystal orientation density function in the plate surface direction was obtained. The crystal orientation distribution of the ferrite phase often exhibits a distribution in the thickness direction, and the crystal orientation distribution of only a specific plane in the thickness direction as in the past could not be sufficiently grasped. An orientation distribution is obtained. In addition, the r value was evaluated after collecting a JIS No. 13 B tensile specimen from a cold-rolled annealed plate and applying a strain of 7% in the rolling direction, the rolling direction and 45 ° direction, and the rolling direction and 90 ° direction (1 ).

r=ln(W/W)/ln(t/t) ・・・(1)
ここで、Wは引張前の板幅、Wは引張後の板幅、tは引張前の板厚、tは引張後の板厚であり、rは圧延方向のr値、r45は圧延方向と45°方向のr値、r90は圧延方向と直角方向のr値である。穴拡げ性の評価は、φ12mmの打ち抜き穴に60°の円錐ポンチを押し込んで少しずつ穴を拡げ、穴に亀裂が入った時点でポンチを停止し、穴径の変化から穴拡げ率λを次式から求めた。
r = ln (W 0 / W) / ln (t 0 / t) (1)
Here, W 0 is the sheet width before tension, W is the sheet width after tension, t 0 is the sheet thickness before tension, t is the sheet thickness after tension, r 0 is the r value in the rolling direction, and r 45. Is the r value in the rolling direction and the 45 ° direction, and r 90 is the r value in the direction perpendicular to the rolling direction. The evaluation of the hole expandability is performed by pushing a 60 ° conical punch into a φ12mm punch hole and expanding the hole little by little. When the hole cracks, the punch is stopped and the hole expansion rate λ is followed by the change in hole diameter. Obtained from the formula.

λ=100×(D−D)/D ・・・(2)
ここで、Dは穴拡げ試験後の穴径で、Dは穴拡げ前の穴径である。図1は鋼Aと鋼Bの結晶方位の強度分布を等高線で示したもので、鋼Aはr値を向上させる{111}<011>強度が3以上と強く、r値を低減させる{100}<011>が2未満と弱い。また、{211}<011>については、{111}<011>よりもr値は低い結晶方位であるが、45°方向のr値を増加させる方位であり、4以上と強い。この鋼Aは平均r値が1.0と高く、これにより穴拡げ率が110%と高い。一方、鋼Bの結晶方位強度は鋼Aと異なるため、r値が0.7と低く、穴拡げ率が80%と低位である。r値は0.9以上、穴拡げ率が100%以上であれば、構造部材として満足な加工性を有することから、X線回折による全板厚の結晶方位強度において、フェライト相の{111}<011>強度が3以上、{211}<011>強度が3以上、{100}<011>強度が2未満とした。尚、本発明では、従来技術であるフェライト+マルテンサイト相2相化による穴拡げ性向上技術とは全く異なる思想で、母相の結晶方位を制御することでr値を向上させ、穴拡げ性を向上させるものである。
λ = 100 × (D−D 0 ) / D 0 (2)
Here, D is the hole diameter after the hole expansion test, and D 0 is the hole diameter before the hole expansion. FIG. 1 shows the strength distribution of the crystal orientation of steel A and steel B with contour lines. Steel A improves the r value {111} <011> The strength is as strong as 3 or more, and the r value is reduced {100 } <011> is weak with less than 2. In addition, {211} <011> is a crystal orientation whose r value is lower than that of {111} <011>, but is an orientation that increases the r value in the 45 ° direction and is strong at 4 or more. This steel A has a high average r value of 1.0, and the hole expansion rate is as high as 110%. On the other hand, since the crystal orientation strength of steel B is different from that of steel A, the r value is as low as 0.7 and the hole expansion rate is as low as 80%. If the r value is 0.9 or more and the hole expansion ratio is 100% or more, it has satisfactory workability as a structural member. Therefore, in the crystal orientation strength of the entire plate thickness by X-ray diffraction, {111} of the ferrite phase The <011> strength was 3 or more, {211} <011> the strength was 3 or more, and the {100} <011> strength was less than 2. In this invention, the r value is improved by controlling the crystal orientation of the parent phase, and is different from the conventional technique for improving the hole expansion by the two phases of ferrite and martensite phase. Is to improve.

この際の組織形態については、フェライト単相でもフェライト+マルテンサイト組織でも構わず、強度レベルに応じてマルテンサイト相を生成すれば良い。即ち、高強度材が要求される場合は、マルテンサイトを生成させれば良く、後述する冷延板焼鈍温度を調整すれば良い。但し、高強度部材として一般的に要求される強度レベルは500MPa以上であり、下限を500MPaとした。また、引張破断伸びも穴拡げ性に対して重要であるが、15%以上の破断伸びで十分は穴拡げ性が得られ、高強度構造部材としての加工も可能であることから、破断伸びを15%以上とした。   The structure form at this time may be a ferrite single phase or a ferrite + martensite structure, and a martensite phase may be generated according to the strength level. That is, when a high-strength material is required, martensite may be generated, and a cold-rolled sheet annealing temperature described later may be adjusted. However, the strength level generally required for a high-strength member is 500 MPa or more, and the lower limit is 500 MPa. The tensile elongation at break is also important for hole expansibility. However, since the hole expansibility is sufficiently obtained at a break elongation of 15% or more, and processing as a high-strength structural member is possible, the elongation at break is reduced. 15% or more.

次に製造方法について説明する。本願発明の様に、製品板で集合組織を発達させ、高r値、高穴拡げ特性を得るためには、途中工程にてマルテンサイト相を生成させることが重要であることを見出した。通常の製造方法では、熱延後にフェライト単相域で熱処理し、冷延後焼鈍する工程が採用されるが、熱延後の熱処理においてマルテンサイト相を生成させることでr値が向上する。図2に熱延板熱処理条件と冷延焼鈍板のr値の関係を示す。冷延板焼鈍条件としては、組織がフェライト単相となる700℃、フェライト相とマルテンサイト相の2相になる800℃とした。また、図3に熱延板熱処理条件と冷延焼鈍板の穴拡げ率の関係を示す。これらより、熱延板を900℃以上で熱処理することにより、冷延焼鈍後の組織に寄らずr値が0.9以上、穴拡げ率が100%以上となる。これは、本願発明の鋼をオーステナイト域に加熱し冷却するとマルテンサイト変態を起こすが、ラス状の極めて微細な組織であるため、その後の冷延・焼鈍時に微細組織の結晶粒界近傍から{111}方位が発達し易いためと考えられる。{111}方位粒はBCC結晶構造を有するフェライト鋼のr値を向上させる結晶方位であるが、一般的には、硬質なマルテンサイトと軟質なフェライト相の2相組織を冷延すると、硬質なマルテンサイト相によりフェライト相に不均一変形が導入され、{111}方位結晶粒は生成し難い。しかしながら、本願発明の成分系においてはラスマルテンサイト組織の形態が極めて細かいことから冷延焼鈍時の変態・再結晶時に細かいラスマルテンサイトから{111}結晶方位を有するフェライトが発達する作用が発現すると考えられる。この集合組織の発現性は、マルテンサイト相とフェライト相の硬度差にも寄る可能性があり、本願発明の成分系では両相の硬度バランスが適正であるためと考えられる。図2に示す様に、本願発明によりr値が向上することで、穴拡げ時の材料の流入性が良くなり、図3に示す様に穴拡げ率が向上する。前述の特許文献5において、第一熱処理工程で20〜80%マルテンサイト相を生成させる技術が開示されているが、均質化という観点のみであり、本願発明の技術思想とは異なるものである。冷延・焼鈍板の集合組織発達の観点からは、ラスマルテンサイト量が多い程良く、生成量としては80%超が望ましく、熱処理温度は900〜1100℃とした。   Next, a manufacturing method will be described. As in the present invention, in order to develop a texture in a product plate and obtain a high r value and a high hole expansion characteristic, it has been found that it is important to generate a martensite phase in an intermediate process. In a normal manufacturing method, a process in which heat treatment is performed in a ferrite single phase region after hot rolling and annealing after cold rolling is adopted, but the r value is improved by generating a martensite phase in the heat treatment after hot rolling. FIG. 2 shows the relationship between the hot-rolled sheet heat treatment conditions and the r-value of the cold-rolled annealed sheet. The cold-rolled sheet annealing conditions were 700 ° C. at which the structure became a ferrite single phase and 800 ° C. at which two phases of a ferrite phase and a martensite phase were formed. FIG. 3 shows the relationship between the hot-rolled sheet heat treatment conditions and the hole expansion rate of the cold-rolled annealed sheet. From these, by heat-treating the hot-rolled sheet at 900 ° C. or higher, the r value is 0.9 or higher and the hole expansion ratio is 100% or higher regardless of the structure after cold rolling annealing. This is because when the steel of the present invention is heated and cooled in the austenite region, it causes martensitic transformation. However, since it is a lath-like extremely fine structure, it is from the vicinity of the grain boundary of the fine structure during cold rolling and annealing. } It is considered that the orientation is easy to develop. {111} orientation grains are crystal orientations that improve the r value of ferritic steel having a BCC crystal structure, but generally, when cold rolling a two-phase structure of hard martensite and soft ferrite phase, The martensite phase introduces non-uniform deformation in the ferrite phase, and {111} oriented grains are difficult to generate. However, in the component system of the present invention, since the morphology of the lath martensite structure is extremely fine, the effect of developing ferrite having {111} crystal orientation from fine lath martensite during transformation and recrystallization during cold rolling annealing appears. Conceivable. The expression of this texture may also depend on the hardness difference between the martensite phase and the ferrite phase, and it is considered that the hardness balance of both phases is appropriate in the component system of the present invention. As shown in FIG. 2, by improving the r value according to the present invention, the material inflow property at the time of hole expansion is improved, and the hole expansion ratio is improved as shown in FIG. In the above-mentioned Patent Document 5, a technique for generating a 20 to 80% martensite phase in the first heat treatment step is disclosed, but only from the viewpoint of homogenization, which is different from the technical idea of the present invention. From the viewpoint of the texture development of the cold-rolled / annealed plate, the larger the amount of lath martensite, the better, the production amount is preferably more than 80%, and the heat treatment temperature is 900 to 1100 ° C.

冷延板焼鈍後の組織は、先述した様にフェライト単相でもフェライト+マルテンサイト相のいずれでも良いが、過度にマルテンサイト相が生成すると、著しく延性が低下するため、熱処理温度を700〜900℃とした。   The structure after the cold-rolled sheet annealing may be either a ferrite single phase or a ferrite + martensite phase as described above. However, if the martensite phase is excessively generated, the ductility is remarkably reduced, so the heat treatment temperature is 700 to 900. C.

以上の説明から明らかなように、本発明によれば特に高価な合金元素を添加せずとも、高強度で加工性に優れたCr含有鋼板を提供することができ、特に自動車、バス、鉄道等の運輸に関わる構造部材に適用することにより、環境対策、安全性向上などの大きく寄与出来る。   As is clear from the above description, according to the present invention, it is possible to provide a Cr-containing steel sheet having high strength and excellent workability without adding particularly expensive alloy elements, particularly automobiles, buses, railways, etc. By applying it to structural members related to transportation, it can contribute greatly to environmental measures and safety improvements.

表1に示す成分組成の鋼を溶製してスラブに鋳造し、スラブを熱間圧延して3mm厚の熱延コイルとした。その後、熱延コイルを焼鈍・酸洗し、1mm厚まで冷間圧延し、焼鈍・酸洗を施して製品板とした。このようにして得られた製品板に対して、引張試験、r値測定、穴拡げ試験を行った。   Steel having the composition shown in Table 1 was melted and cast into a slab, and the slab was hot-rolled to form a hot rolled coil having a thickness of 3 mm. Thereafter, the hot rolled coil was annealed and pickled, cold-rolled to a thickness of 1 mm, and annealed and pickled to obtain a product plate. The product plate thus obtained was subjected to a tensile test, r value measurement, and hole expansion test.

表1から明らかなように、本発明で規定する成分組成を有する鋼を本方法にて製造した場合、比較例に比べて加工性に優れている。   As is apparent from Table 1, when steel having the component composition defined in the present invention is produced by this method, it is excellent in workability as compared with the comparative example.

なお、鋼板の製造方法について、本発明で規定した以外の条件については適宜選択すれば良い。例えば、熱延条件や熱延板厚、製品板厚、冷延板焼鈍雰囲気、冷延におけるパススケジュールや冷延率、ロール径についても特別な設備を必要とせず、既設設備を効率的に使用すれば良い。また、冷延・焼鈍後に調質圧延やテンションレベラーを付与しても構わない。   In addition, about the manufacturing method of a steel plate, what is necessary is just to select suitably about conditions other than prescribe | regulated by this invention. For example, no special equipment is required for hot rolling conditions, hot rolled sheet thickness, product sheet thickness, cold rolled sheet annealing atmosphere, pass schedule, cold rolled rate, roll diameter in cold rolling, and existing equipment is used efficiently Just do it. Further, temper rolling or tension leveler may be applied after cold rolling and annealing.

Figure 0005000281
Figure 0005000281

Figure 0005000281
Figure 0005000281

結晶方位分布とr値および穴拡げ性を示す図である。It is a figure which shows crystal orientation distribution, r value, and hole expansibility. 熱延板熱処理温度並びに組織(熱延板熱処理後)と製品板の平均r値の関係を示す図である。It is a figure which shows the relationship between the hot-rolled sheet heat processing temperature and structure | tissue (after hot-rolled sheet heat processing), and the average r value of a product board. 熱延板熱処理温度並びに組織(熱延板熱処理後)と製品板の穴拡げ率の関係を示す図である。It is a figure which shows the relationship between the hot-rolled sheet heat processing temperature and structure | tissue (after hot-rolled sheet heat processing), and the hole expansion rate of a product board.

Claims (5)

質量%にて、
C:0.001〜0.03%、
N:0.001〜0.03%、
Si:0.05〜0.5%、
Mn:0.05〜5%、
P:0.05%以下、
Ni:0.3〜5%、
Cu:0.01〜3%、
Cr:10〜18%、
Al:0.005〜0.50%を含有し、残部がFeおよび不可避的不純物からなり、
X線回折による全板厚の結晶方位強度において、{111}<011>結晶方位強度が3以上、{211}<011>結晶方位強度が3以上、{100}<011>結晶方位強度が2未満で、穴拡げ率が100%以上であり、フェライト+マルテンサイト組織であることを特徴とする加工性に優れた高強度ステ
ンレス鋼板。
In mass%
C: 0.001 to 0.03%,
N: 0.001 to 0.03%,
Si: 0.05 to 0.5%,
Mn: 0.05-5%
P: 0.05% or less,
Ni: 0.3 to 5%,
Cu: 0.01 to 3%,
Cr: 10 to 18%,
Al: 0.005 to 0.50% is contained, the balance consists of Fe and inevitable impurities,
In the crystal orientation strength of the total thickness by X-ray diffraction, {111} <011> crystal orientation strength is 3 or more, {211} <011> crystal orientation strength is 3 or more, and {100} <011> crystal orientation strength is 2 less than in state, and are hole expansion ratio is 100% or more, ferrite + martensite der high strength stainless steel sheet excellent in workability characterized by Rukoto.
さらに、質量%にて、
Ti:0.5%以下、
Nb:0.5%以下、
V:0.5%以下、B:0.0020%以下のうち1種または2種以上を含有することを特徴とする請求項1に記載の加工性に優れた高強度ステンレス鋼板。
Furthermore, in mass%,
Ti: 0.5% or less,
Nb: 0.5% or less,
The high-strength stainless steel plate with excellent workability according to claim 1, wherein one or more of V: 0.5% or less and B: 0.0020% or less are contained.
さらに、質量%にて、
Mo:2.0%以下を含有することを特徴とする請求項1または請求項2に記載の加工性に優れた高強度ステンレス鋼板。
Furthermore, in mass%,
The high-strength stainless steel plate with excellent workability according to claim 1 or 2, characterized by containing Mo: 2.0% or less.
引張強度が500MPa以上、破断伸びが15%以上、平均r値が0.9以上であることを特徴とする請求項1乃至請求項3のいずれか一項に記載の加工性に優れた高強度ステンレス鋼板。   The high strength excellent in workability according to any one of claims 1 to 3, wherein the tensile strength is 500 MPa or more, the elongation at break is 15% or more, and the average r value is 0.9 or more. Stainless steel sheet. 請求項1乃至請求項3のいずれか一項に記載の熱延鋼板を900〜1100℃で熱処理してマルテンサイト組織とした後に冷延を施し、750〜900℃で熱処理してフェライト+マルテンサイト組織とすることを特徴とする記載の加工性に優れた高強度ステンレス鋼板の製造方法。 The hot-rolled steel sheet according to any one of claims 1 to 3 is heat-treated at 900 to 1100 ° C to obtain a martensite structure, then cold-rolled, and heat-treated at 750 to 900 ° C to obtain ferrite + martensite. A method for producing a high-strength stainless steel sheet having excellent workability, which is characterized by having a structure .
JP2006327678A 2006-12-05 2006-12-05 High-strength stainless steel sheet with excellent workability and method for producing the same Active JP5000281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006327678A JP5000281B2 (en) 2006-12-05 2006-12-05 High-strength stainless steel sheet with excellent workability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006327678A JP5000281B2 (en) 2006-12-05 2006-12-05 High-strength stainless steel sheet with excellent workability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008138270A JP2008138270A (en) 2008-06-19
JP5000281B2 true JP5000281B2 (en) 2012-08-15

Family

ID=39600044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006327678A Active JP5000281B2 (en) 2006-12-05 2006-12-05 High-strength stainless steel sheet with excellent workability and method for producing the same

Country Status (1)

Country Link
JP (1) JP5000281B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5544197B2 (en) * 2010-03-17 2014-07-09 新日鐵住金ステンレス株式会社 Martensitic stainless steel and steel materials with excellent weld properties
JP5304935B2 (en) 2011-10-14 2013-10-02 Jfeスチール株式会社 Ferritic stainless steel
JP5234214B2 (en) 2011-10-14 2013-07-10 Jfeスチール株式会社 Ferritic stainless steel
JP6071608B2 (en) 2012-03-09 2017-02-01 新日鐵住金ステンレス株式会社 Ferritic stainless steel plate with excellent oxidation resistance
JP5793459B2 (en) 2012-03-30 2015-10-14 新日鐵住金ステンレス株式会社 Heat-resistant ferritic stainless steel cold-rolled steel sheet excellent in workability, ferritic stainless hot-rolled steel sheet for cold-rolled material, and production method thereof
JP5821861B2 (en) * 2013-01-23 2015-11-24 新日鐵住金株式会社 High-strength hot-rolled steel sheet with excellent appearance and excellent balance between elongation and hole expansibility and method for producing the same
CN105051234B (en) 2013-03-27 2017-05-10 新日铁住金不锈钢株式会社 Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip
MY160981A (en) * 2013-07-29 2017-03-31 Jfe Steel Corp Ferritic stainless steel having excellent corrosion resistance of weld zone
US20150275340A1 (en) * 2014-04-01 2015-10-01 Ati Properties, Inc. Dual-phase stainless steel
JP5900714B1 (en) 2014-05-14 2016-04-06 Jfeスチール株式会社 Ferritic stainless steel
JP6191769B2 (en) 2014-05-28 2017-09-06 新日鐵住金株式会社 Hot rolled steel sheet and manufacturing method thereof
JP6311633B2 (en) * 2015-03-24 2018-04-18 Jfeスチール株式会社 Stainless steel and manufacturing method thereof
JP6424865B2 (en) * 2015-09-29 2018-11-21 Jfeスチール株式会社 Stainless steel having a steel structure composed of two phases of a ferrite phase and a martensite phase and a method of manufacturing the same
JP6628561B2 (en) * 2015-11-09 2020-01-08 日鉄ステンレス株式会社 Stainless steel sheet for structural member excellent in workability and method for producing the same
JP6628682B2 (en) * 2016-05-06 2020-01-15 日鉄ステンレス株式会社 High-strength stainless steel sheet excellent in workability and method for producing the same
JP6811112B2 (en) * 2017-02-09 2021-01-13 日鉄ステンレス株式会社 Ferrite Duplex Stainless Steel Sheet and Its Manufacturing Method
WO2018198834A1 (en) * 2017-04-25 2018-11-01 Jfeスチール株式会社 Ferritic stainless steel sheet, and production method therefor
JP6432701B2 (en) * 2017-04-25 2018-12-05 Jfeスチール株式会社 Ferritic stainless steel sheet and manufacturing method thereof
KR102020514B1 (en) * 2017-12-20 2019-09-10 주식회사 포스코 Ferritic stainless steel with improved expanability and method of manufacturing the same
JP7216499B2 (en) * 2018-08-21 2023-02-01 日本車輌製造株式会社 Structure for railway vehicle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3422864B2 (en) * 1995-01-19 2003-06-30 新日本製鐵株式会社 Stainless steel with excellent workability and method for producing the same
JP2002194505A (en) * 2000-12-22 2002-07-10 Sumitomo Metal Ind Ltd Ferrite stainless steel and its production method of the same
JP2002332550A (en) * 2001-03-06 2002-11-22 Nippon Steel Corp High chromium steel sheet having excellent press formability and production method therefor
JP4545335B2 (en) * 2001-03-21 2010-09-15 日新製鋼株式会社 Fe-Cr steel sheet having excellent ridging resistance and method for producing the same
EP1413640B1 (en) * 2001-07-05 2005-05-25 Nisshin Steel Co., Ltd. Ferritic stainless steel for member of exhaust gas flow passage
JP4302370B2 (en) * 2002-07-16 2009-07-22 日新製鋼株式会社 Fe-Cr steel sheet with small plastic anisotropy and method for producing the same
JP4432725B2 (en) * 2004-10-25 2010-03-17 Jfeスチール株式会社 Cr-containing high-strength cold-rolled steel sheet excellent in stretch flangeability and manufacturing method thereof

Also Published As

Publication number Publication date
JP2008138270A (en) 2008-06-19

Similar Documents

Publication Publication Date Title
JP5000281B2 (en) High-strength stainless steel sheet with excellent workability and method for producing the same
KR101341731B1 (en) High-strength steel sheet and method for production thereof
US9464337B2 (en) High strength steel sheet having excellent hydrogen embrittlement resistance
KR101420035B1 (en) Pressed member and method for producing same
US8430975B2 (en) High strength galvanized steel sheet with excellent formability
KR101424859B1 (en) High-strength steel sheet and manufacturing method therefor
JP5251208B2 (en) High-strength steel sheet and its manufacturing method
JP6700398B2 (en) High yield ratio type high strength cold rolled steel sheet and method for producing the same
JP5487916B2 (en) High-strength galvanized steel sheet having a tensile maximum strength of 900 MPa or more excellent in impact absorption energy and a method for producing the same
KR20130083481A (en) High-strength hot-dip galvannealed steel shhet with excellent workability and fatigue characteristics and process for production thereof
WO2013103125A1 (en) Hot-rolled steel sheet and method for producing same
JP2011508085A (en) High strength thin steel sheet with excellent weldability and method for producing the same
JP6628682B2 (en) High-strength stainless steel sheet excellent in workability and method for producing the same
CN113811624B (en) Cold rolled martensitic steel and method for martensitic steel thereof
WO2021149676A1 (en) Steel sheet and method for producing same
JP6265108B2 (en) Hot-rolled steel sheet for cold-rolled steel sheet or hot-dip galvanized steel sheet and method for producing the same
JP5655475B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof
JP2017002333A (en) High strength steel sheet excellent in shape freezing property and manufacturing method therefor
JP6620431B2 (en) High-strength steel sheet with excellent workability and method for producing the same
JPH10130776A (en) High ductility type high tensile strength cold rolled steel sheet
CN110621794B (en) High-strength steel sheet having excellent ductility and stretch flangeability
JP3247908B2 (en) High strength hot rolled steel sheet excellent in ductility and delayed fracture resistance and method for producing the same
JP3247907B2 (en) High strength cold rolled steel sheet excellent in ductility and delayed fracture resistance and method for producing the same
US20060225820A1 (en) Ferritic stainless steel sheet excellent in formability and method for production thereof
KR20170095977A (en) High-strength steel sheet and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120516

R150 Certificate of patent or registration of utility model

Ref document number: 5000281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250