JP2013147705A - Ferritic stainless steel wire rod and steel wire, and method for producing them - Google Patents

Ferritic stainless steel wire rod and steel wire, and method for producing them Download PDF

Info

Publication number
JP2013147705A
JP2013147705A JP2012009299A JP2012009299A JP2013147705A JP 2013147705 A JP2013147705 A JP 2013147705A JP 2012009299 A JP2012009299 A JP 2012009299A JP 2012009299 A JP2012009299 A JP 2012009299A JP 2013147705 A JP2013147705 A JP 2013147705A
Authority
JP
Japan
Prior art keywords
less
steel wire
stainless steel
ferritic stainless
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012009299A
Other languages
Japanese (ja)
Other versions
JP6004653B2 (en
Inventor
Yutaka Tadokoro
裕 田所
Koji Takano
光司 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2012009299A priority Critical patent/JP6004653B2/en
Publication of JP2013147705A publication Critical patent/JP2013147705A/en
Application granted granted Critical
Publication of JP6004653B2 publication Critical patent/JP6004653B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ferritic stainless steel wire that puts emphasis on economic efficiency, wherein all the necessary problems are solved to make a ferritic stainless steel wire rod and the steel wire into a product, such as a screw, while improving crevice corrosion resistance of the ferritic stainless steel wire rod and the steel wire.SOLUTION: A ferritic stainless steel wire rod contains, by mass, 0.05% or less of C, 0.01-2.0% of Si, 2.0% or less of Mn, 0.04% or less of P, 0.03% or less of S, 15.0-30.0% of Cr, and 0.025% or less of N, further one or two or more of 0.1-3.0% of Cu, 0.05-5.0% of Mo, and 0.05-5.0% of Ni, and further one or two of 0.1-0.8% of Nb and 0.05-0.5% of Ti, with the balance comprising Fe and unavoidable impurities, satisfies the following formulae (1) to (3), and has surface roughness of 15 μm or less and a drawing value of 60% or more. (1) Cr+3.3Mo≥19, (2) Ni+1.2Mo+1.8Cu≥3.0, (3) 28Ni+5Cr+24Mo+13Cu+350≥450.

Description

本発明は、フェライト系ステンレス鋼線材と鋼線、並びに、それらの製造方法に関するものである。   The present invention relates to a ferritic stainless steel wire and a steel wire, and methods for producing them.

従来、ステンレス鋼線材、鋼線においてはSUS304,SUSXM7等のオーステナイト系ステンレス鋼が使用されてきた。これらは耐食性や成形性に優れるもののNi含有量が多く、コストが高い。経済性の観点からはNi含有量の少ないフェライト系ステンレス鋼が有利である。しかしながら、フェライト系ステンレス鋼線は耐隙間腐食性が低い問題がある。特に隙間腐食の中でも、発生したさびが液の流れに沿って付着する流れさびの問題が大きく、用途が限定される場合があった。
また、鋼線の用途の中でも、ねじ用途においては、更に下記の課題が存在した。
1.捩りトルクに対する強度が低い。
2.頭部やねじ部の成形が容易でない(冷間鍛造性が低い)
3.成形後の表面が粗く、美麗さに欠ける。
Conventionally, austenitic stainless steels such as SUS304 and SUSXM7 have been used for stainless steel wires and steel wires. Although these are excellent in corrosion resistance and moldability, they have a large Ni content and are expensive. From the economical point of view, ferritic stainless steel with a low Ni content is advantageous. However, ferritic stainless steel wires have a problem of low crevice corrosion resistance. In particular, even in crevice corrosion, there is a problem of flow rust in which the generated rust adheres along the flow of the liquid, and there are cases where the application is limited.
In addition, among the uses of steel wires, the following problems further existed in screw applications.
1. Low strength against torsional torque.
2. It is not easy to form the head and screw part (low cold forgeability)
3. The surface after molding is rough and lacks beauty.

上記課題1〜3に関連する従来技術として、特許文献1〜5が開示されている。特許文献1にはオフライン焼鈍処理材と同等以上の冷間加工性を有するフェライト系ステンレス鋼線材のインライン熱処理法が開示されているが、表面美麗さの課題認識が無く、達成する手段については開示されていない。特許文献2には、表面の美麗さを損なうしわ疵(圧延方向に長く延びた深い疵)の少ない線材を製造するための方法として、傾斜圧延と孔型圧延の間に熱処理が施されるフェライト系ステンレス鋼線材の製造方法が開示されているが、しわ疵抑制が本件の課題では無い。特許文献3には、冷間鍛造品の形状不良を生じさせないために、フェライト系ステンレス鋼線、線材において熱間圧延された材料を720〜800℃にて熱間焼鈍し、減面率40%以上の伸線、引抜き作業を行うことを特徴とする、フェライト系ステンレス鋼線、線材における結晶方位の異方性を除去する製造方法が開示されているが、結晶粒微細化には焼鈍後の伸線、引抜き作業が必須となっており手間がかかる。特許文献4には、フェライト系ステンレス鋼線の熱間圧延において、熱間圧延速度を調整することによって、熱間圧延終止温度を800〜930℃とし、熱間圧延終了後の前記フェライトステンレス鋼線の結晶粒度を結晶粒度番号6以上の細粒とすることを特徴とする冷間塑性加工性に優れたフェライト系ステンレス鋼線およびその製造方法が開示されているが、熱間圧延速度を調整することによって熱間圧延終止温度を制御することは容易ではない。特許文献5には、熱間圧延とは別工程で焼鈍処理したものと同等の引張り強さや結晶粒度及び耐食性を保有するために、C:0.0030〜0.015%のC、19〜21%のCr、0.35〜0.65%のSi及び1.0〜1.5%のMnを含有するフェライト系ステンレス鋼材を、仕上げ温度800〜1000℃で熱間圧延し、引き続きその残熱を利用して700〜1000℃で2〜5分間保持した後、冷却してコイル状に巻取ることを特徴とするフェライト系ステンレス鋼熱間圧延線材の製造方法が開示されている。しかしながら表面の美麗さを達成する手段については開示されていない。
以上、挙げてきたように、全ての課題を解決し得る従来技術は存在していなかった。
Patent documents 1-5 are indicated as a prior art relevant to the above-mentioned problems 1-3. Patent Document 1 discloses an in-line heat treatment method for a ferritic stainless steel wire having a cold workability equivalent to or better than that of an off-line annealed material, but there is no recognition of the problem of surface beauty, and a means for achieving it is disclosed. It has not been. In Patent Document 2, as a method for producing a wire with less wrinkles (deep wrinkles extending in the rolling direction) that impairs the beauty of the surface, a ferrite that is subjected to heat treatment between inclined rolling and hole rolling Although a method for producing a stainless steel wire has been disclosed, wrinkle wrinkle suppression is not the subject of this case. In Patent Document 3, in order not to cause a shape defect of a cold forged product, a hot rolled material in a ferritic stainless steel wire or wire is hot-annealed at 720 to 800 ° C., and the area reduction rate is 40%. A manufacturing method for removing the anisotropy of the crystal orientation in a ferritic stainless steel wire and wire, which is characterized by performing the above wire drawing and drawing operations, has been disclosed. Drawing and drawing work is essential and takes time. In Patent Document 4, in hot rolling of ferritic stainless steel wire, the hot rolling end temperature is set to 800 to 930 ° C. by adjusting the hot rolling speed, and the ferritic stainless steel wire after hot rolling is finished. A ferritic stainless steel wire excellent in cold plastic workability and a method for producing the same are disclosed, characterized in that the grain size of the steel is a fine grain having a grain size number of 6 or more, but the hot rolling speed is adjusted. Therefore, it is not easy to control the hot rolling end temperature. In Patent Document 5, C: 0.0030 to 0.015% C, 19 to 21 in order to maintain tensile strength, crystal grain size, and corrosion resistance equivalent to those annealed in a separate process from hot rolling. % Ferritic stainless steel containing 0.1% Cr, 0.35 to 0.65% Si and 1.0 to 1.5% Mn is hot-rolled at a finishing temperature of 800 to 1000 ° C., and then the residual heat A method for producing a ferritic stainless steel hot-rolled wire rod is disclosed, which is held at 700 to 1000 ° C. for 2 to 5 minutes and then cooled and wound into a coil shape. However, no means for achieving surface aesthetics is disclosed.
As mentioned above, there is no prior art that can solve all the problems.

特公昭63−35690号公報Japanese Examined Patent Publication No. 63-35690 特許第3730762号公報Japanese Patent No. 3730762 特開2000-336429号公報JP 2000-336429 A 特開2002-167619号公報JP 2002-167619 A 特開2006-57144号公報JP 2006-57144 A

本発明は、フェライト系ステンレス鋼線材、鋼線の耐隙間腐食性を改善すると共に、ねじ等へ製品化するために必要な課題を全て解決し、経済性を重視したフェライト系ステンレス鋼線を提供することを目的とする。   The present invention provides a ferritic stainless steel wire that improves the crevice corrosion resistance of ferritic stainless steel wires and steel wires, solves all the problems necessary for commercialization into screws, etc., and emphasizes economy. The purpose is to do.

本発明者等は、合金成分の役割や下記式(1)、及び(2)の合金指標を見出し、これらを満足することで、フェライト系ステンレス鋼線材、鋼線の耐隙間腐食性を顕著に改善出来ることを見出した。
ステンレス鋼の耐隙間腐食性は鋼材の合金成分に依存することが知られている。そこで、各成分の鋼を真空溶解設備にて溶製し、熱間鍛造により板材に成形し、切削及び研磨によって板状試験片を作製した。その試験片を用い、隙間腐食の評価としてASTM G78に規定されるマルチクレビス隙間形成材を用いて塩水噴霧により隙間腐食試験を行った。マルチクレビス試験法(ASTM G78)によれば、隙間腐食の発生(隙間腐食発生率=全体の隙間部個数に対する腐食が発生した隙間部個数の割合)と隙間腐食の進展(隙間腐食部の最大深さ)について定量的に評価することができる。
試験の結果、隙間腐食の発生については、
Cr+3.3Mo≧19 ・・・(1)
隙間腐食の進展については、
Ni+1.2Mo+1.8Cu≧3.0 ・・・(2)
で両方の式を満足する成分であれば目標を達成することを見出した。
The present inventors have found the role of the alloy component and the alloy index of the following formulas (1) and (2), and by satisfying these, the crevice corrosion resistance of the ferritic stainless steel wire and the steel wire is remarkably increased. I found that it can be improved.
It is known that the crevice corrosion resistance of stainless steel depends on the alloy composition of the steel material. Therefore, each component steel was melted in a vacuum melting facility, formed into a plate material by hot forging, and a plate-shaped test piece was prepared by cutting and polishing. Using the test piece, a crevice corrosion test was performed by salt water spray using a multi-clevis gap forming material defined in ASTM G78 as an evaluation of crevice corrosion. According to the multi-clevis test method (ASTM G78), the occurrence of crevice corrosion (gap corrosion occurrence rate = the ratio of the number of crevice portions to the total number of crevice portions) and the progress of crevice corrosion (maximum depth of crevice corrosion portions) Can be quantitatively evaluated.
As a result of the test,
Cr + 3.3Mo ≧ 19 (1)
Regarding the progress of crevice corrosion,
Ni + 1.2Mo + 1.8Cu ≧ 3.0 (2)
It was found that the target can be achieved if the components satisfy both formulas.

本発明では更に、特定の合金成分で熱間圧延後のインライン熱処理を特徴とする工程で製造することにより、ねじ材として好適なフェライト系ステンレス鋼線を得ることができることを見出した。具体的には、以下の知見を得たことにより、ねじ用としても好適なフェライト系ステンレス鋼線材、鋼線とすることが出来ることが分かった。
知見(1):以下の式(3)の指標(Ts-cal)を満足する成分の鋼にすると共に、熱処理温度を制御することで、捩りトルクに対する強度を顕著に改善させることが出来る。
Ts-cal.=28Ni+5Cr+24Mo+13Cu+350≧450 ・・・(3)
知見(2):特定成分の線材について製造工程を改善することによって頭部やねじ部の成形のし易さ(冷間鍛造性)、及び成形後の表面の美麗さの目標を達成出来る。
即ち、図1に示すねじの代表的製造プロセスのうち、(1)線材圧延(熱間圧延)に引き続き、常温まで冷却することなく(2)熱処理(インライン熱処理)を施すことにより鋼線材断面の各部位において結晶粒径をNo.5〜No.9の範囲に微細化することが出来る。これにより鋼線材の絞りが60%以上となり、冷間鍛造性が向上する。また、意外なことに上記インライン熱処理によって結晶粒が整粒化され、表面の美麗さも改善出来ることを見出した。
また、この場合、伸線後の処理である(5)熱処理、(6)スキンパス伸線を省略しても、目標を達成できることも見出した。
In the present invention, it has further been found that a ferritic stainless steel wire suitable as a screw material can be obtained by producing in a process characterized by in-line heat treatment after hot rolling with a specific alloy component. Specifically, by obtaining the following knowledge, it was found that a ferritic stainless steel wire and steel wire suitable for screws can be obtained.
Knowledge (1): The strength against torsional torque can be remarkably improved by making the steel a component satisfying the index (Ts-cal) of the following formula (3) and controlling the heat treatment temperature.
Ts-cal. = 28Ni + 5Cr + 24Mo + 13Cu + 350 ≧ 450 (3)
Knowledge (2): By improving the manufacturing process for the wire of a specific component, it is possible to achieve the goal of ease of forming the head and the threaded portion (cold forgeability) and the beauty of the surface after forming.
That is, in the typical manufacturing process of the screw shown in FIG. 1, (1) wire rolling (hot rolling) is followed by (2) heat treatment (in-line heat treatment) without cooling to room temperature. The crystal grain size can be refined in the range of No. 5 to No. 9 in each part. Thereby, the drawing of the steel wire becomes 60% or more, and the cold forgeability is improved. Surprisingly, it has been found that the crystal grain size is adjusted by the in-line heat treatment, and the beauty of the surface can be improved.
Further, in this case, the present inventors have also found that the target can be achieved even if the processing after wire drawing (5) heat treatment and (6) skin pass wire drawing are omitted.

以上の知見からなる具体的な解決手段は、下記のとおりである。 Specific means for solving the problems described above are as follows.

(1)質量%で、C:0.05%以下、Si:0.01%以上2.0%以下、Mn:2.0%以下、 P:0.04%以下、S:0.03%以下、Cr:15.0%以上30.0%以下、N:0.025%以下を含有し、更に、Cu:0.1%以上3.0%以下、Mo:0.05%以上5.0%以下、Ni:0.05%以上5.0%以下の1種又は2種以上を含有し、更に、Nb:0.1以上0.8%以下、Ti:0.05以上0.5%以下の1種又は2種を含有し、残部がFe及び不可避的不純物からなり、下式(1)〜(3)を満たし、且つ、表面粗さが15μm以下、絞り値が60%以上であることを特徴とするフェライト系ステンレス鋼線材。
Cr+3.3Mo≧19 ・・・(1)
Ni+1.2Mo+1.8Cu≧3.0 ・・・(2)
28Ni+5Cr+24Mo+13Cu+350≧450 ・・・(3)
但し、式中の元素記号は、当該元素の含有量(質量%)を意味する。
(1) By mass%, C: 0.05% or less, Si: 0.01% or more and 2.0% or less, Mn: 2.0% or less, P: 0.04% or less, S: 0.03% Hereinafter, Cr: 15.0% to 30.0%, N: 0.025% or less, Cu: 0.1% to 3.0%, Mo: 0.05% to 5. 0% or less, Ni: 0.05% or more and 1% or more of 5.0% or less, Nb: 0.1 or more and 0.8% or less, Ti: 0.05 or more and 0.5 or less % Or less, the balance consists of Fe and inevitable impurities, satisfies the following formulas (1) to (3), the surface roughness is 15 μm or less, and the aperture value is 60% or more. A ferritic stainless steel wire characterized by being.
Cr + 3.3Mo ≧ 19 (1)
Ni + 1.2Mo + 1.8Cu ≧ 3.0 (2)
28Ni + 5Cr + 24Mo + 13Cu + 350 ≧ 450 (3)
However, the element symbol in a formula means content (mass%) of the said element.

(2)質量%で、更にB:0.0001〜0.01%、Ca:0.001〜0.02%、Al:0.001〜0.5%、REM:0.01〜0.5%、Mg:0.0001〜0.01%、V:0.01〜0.5%、Co:0.01〜0.5%、Zr:0.01〜0.5%、及びSn:0.05〜0.5%から1種以上を含有する前記(1)に記載のフェライト系ステンレス鋼線材。
(3)質量%で、Feの抽出残渣量が0.1%以下であることを特徴とする前記(1)又は(2)に記載のフェライト系ステンレス鋼線材。
(4)質量%で、C:0.05%以下、Si:0.01%以上2.0%以下、Mn:2.0%以下、P:0.04%以下、S:0.03%以下、Cr:15.0%以上30.0%以下、N:0.025%以下を含有し、更に、Cu:0.1%以上3.0%以下、Mo:0.05%以上5.0%以下、Ni:0.05%以上5.0%以下の1種又は2種以上を含有し、更に、Nb:0.1%以上0.8%以下、Ti:0.05%以上0.5%以下の1種又は2種を含有し、残部がFe及び不可避的不純物からなり、下式(1)〜(3)を満たし、且つ、表面粗さが15μm以下、強度が500N/m2以上であることを特徴とする冷間鍛造性に優れたフェライト系ステンレス鋼線。
Cr+3.3Mo≧19 ・・・(1)
Ni+1.2Mo+1.8Cu≧3.0 ・・・(2)
28Ni+5Cr+24Mo+13Cu+350≧450 ・・・(3)
但し、式中の元素記号は、当該元素の含有量(質量%)を意味する。
(5)質量%で、更に B:0.0001〜0.01%、Ca:0.001〜0.02%、Al:0.001〜0.5%、REM:0.01〜0.5%、Mg:0.0001〜0.01%、V:0.01〜0.5%、Co:0.01〜0.5%、Zr:0.01〜0.5%、及びSn:0.05〜0.5%から1種以上を含有する前記(4)に記載の冷間鍛造性に優れたフェライト系ステンレス鋼線。
(6)質量%で、Feの抽出残渣量が0.1%以下であることを特徴とする前記(4)又は(5)に記載の冷間鍛造性に優れたフェライト系ステンレス鋼線。
(7)900℃以上1100℃以下のインライン熱処理工程を有することを特徴とする前記(1)〜(3)の何れかに記載のフェライト系ステンレス鋼線材の製造方法。
(8)インライン熱処理後の冷却速度を5℃/秒以上とすることを特徴とする前記(7)に記載のフェライト系ステンレス鋼線材の製造方法。
(9)前記(1)〜(3)の何れかに記載の鋼線材を、減面率5〜55%の範囲で伸線加工することを特徴とする、前記(4)〜(6)の何れかに記載のフェライト系ステンレス鋼線の製造方法。
(10)前記伸線加工後に900〜1100℃で熱処理する工程を有することを特徴とする前記(9)に記載のフェライト系ステンレス鋼線の製造方法。
(11)熱処理後の冷却速度を5℃/秒以上とすることを特徴とする前記(10)に記載のフェライト系ステンレス鋼線の製造方法。
(2) By mass%, B: 0.0001 to 0.01%, Ca: 0.001 to 0.02%, Al: 0.001 to 0.5%, REM: 0.01 to 0.5 %, Mg: 0.0001 to 0.01%, V: 0.01 to 0.5%, Co: 0.01 to 0.5%, Zr: 0.01 to 0.5%, and Sn: 0 The ferritic stainless steel wire according to (1) above, containing 0.05 to 0.5%.
(3) The ferritic stainless steel wire according to (1) or (2) above, wherein the extraction residue amount of Fe is 0.1% or less by mass%.
(4) By mass%, C: 0.05% or less, Si: 0.01% or more and 2.0% or less, Mn: 2.0% or less, P: 0.04% or less, S: 0.03% Hereinafter, Cr: 15.0% to 30.0%, N: 0.025% or less, Cu: 0.1% to 3.0%, Mo: 0.05% to 5. 0% or less, Ni: 0.05% or more and 5.0% or less, or 2 or more types, Nb: 0.1% or more, 0.8% or less, Ti: 0.05% or more, 0 1 type or 2 types of 5% or less, the balance is composed of Fe and inevitable impurities, satisfies the following formulas (1) to (3), the surface roughness is 15 μm or less, and the strength is 500 N / m A ferritic stainless steel wire excellent in cold forgeability characterized by being 2 or more.
Cr + 3.3Mo ≧ 19 (1)
Ni + 1.2Mo + 1.8Cu ≧ 3.0 (2)
28Ni + 5Cr + 24Mo + 13Cu + 350 ≧ 450 (3)
However, the element symbol in a formula means content (mass%) of the said element.
(5) By mass%, B: 0.0001 to 0.01%, Ca: 0.001 to 0.02%, Al: 0.001 to 0.5%, REM: 0.01 to 0.5 %, Mg: 0.0001 to 0.01%, V: 0.01 to 0.5%, Co: 0.01 to 0.5%, Zr: 0.01 to 0.5%, and Sn: 0 The ferritic stainless steel wire excellent in cold forgeability as described in said (4) containing 0.05 to 0.5% of 1 or more types.
(6) The ferritic stainless steel wire having excellent cold forgeability as described in (4) or (5) above, wherein the amount of Fe extraction residue is 0.1% or less by mass.
(7) The method for producing a ferritic stainless steel wire according to any one of (1) to (3) above, comprising an in-line heat treatment step of 900 ° C. or higher and 1100 ° C. or lower.
(8) The method for producing a ferritic stainless steel wire according to (7), wherein the cooling rate after in-line heat treatment is 5 ° C./second or more.
(9) The steel wire according to any one of (1) to (3) is drawn in a range of an area reduction of 5 to 55%, according to (4) to (6) above The manufacturing method of the ferritic stainless steel wire in any one.
(10) The method for producing a ferritic stainless steel wire according to (9) above, further comprising a step of heat-treating at 900 to 1100 ° C. after the wire drawing.
(11) The method for producing a ferritic stainless steel wire according to (10), wherein a cooling rate after the heat treatment is set to 5 ° C./second or more.

本発明によれば、耐隙間腐食性に優れ、更に強度,冷間鍛造性、表面美麗さを向上させることができ、ねじのような多彩な特性が要求される用途に対しても十分適用可能なフェライト系ステンレス鋼線材、鋼線とすることが出来る。   According to the present invention, it has excellent crevice corrosion resistance, can further improve strength, cold forgeability, and surface beauty, and can be sufficiently applied to applications requiring various characteristics such as screws. Ferritic stainless steel wire and steel wire.

線材からねじに逐次加工する代表的な製造プロセスを示す図である。It is a figure which shows the typical manufacturing process processed sequentially from a wire to a screw | thread.

以下、本発明について具体的に説明する。まず、本発明において、ステンレス鋼線材、鋼線の成分組成を上記の範囲に限定した理由について説明する。なお、本発明における元素含有量の%は、特に注記しない限り質量%を意味する。   Hereinafter, the present invention will be specifically described. First, the reason why the component composition of the stainless steel wire and the steel wire is limited to the above range in the present invention will be described. In the present invention,% of element content means mass% unless otherwise noted.

C:0.05%以下
Cは、マトリックスのフェライト組織の強度を高め、更に、オーステナイト相および炭化物の生成元素である。オーステナイト相は、溶接後においてマルテンサイト組織を生じて強度を向上させ、また微細炭化物も強度の向上に寄与し、鋼線としての高温強度を確保する。しかしながら、0.05%超ではCr炭化物の粒界への析出によりその回りにCr欠乏層が生成するようになる。腐食環境では、粒界に沿ったCr欠乏層が溶解するので、いわゆる粒界腐食が発生する。また、延性が劣化して絞りが低下する。従って、C量を 0.05%以下の範囲に限定した。さらに粒界腐食を防止するには、C量は0.02%以下が好ましく、0.015%以下の範囲にすることが更に望ましい。
また、過度の低減は製造コストの増加を招くため、0.0005%を下限にすることが好ましい。強度を高くする観点から、0.001%以上が更に好ましい。
C: 0.05% or less C increases the strength of the ferrite structure of the matrix, and is an austenite phase and carbide forming element. The austenite phase generates a martensite structure after welding to improve the strength, and fine carbides also contribute to the improvement of strength, ensuring high-temperature strength as a steel wire. However, if it exceeds 0.05%, a Cr-deficient layer is generated around the grain boundary due to precipitation of Cr carbide. In a corrosive environment, so-called intergranular corrosion occurs because the Cr-depleted layer along the grain boundary dissolves. In addition, the ductility is deteriorated and the aperture is lowered. Therefore, the C content is limited to a range of 0.05% or less. Furthermore, in order to prevent intergranular corrosion, the C content is preferably 0.02% or less, and more preferably 0.015% or less.
Moreover, since excessive reduction causes an increase in manufacturing cost, it is preferable to set the lower limit to 0.0005%. From the viewpoint of increasing the strength, 0.001% or more is more preferable.

Si:0.01%以上2.0%以下
Siは、脱酸剤として、またSiO2の酸化皮膜を形成して酸化の進行を抑制するので耐高温酸化性に有用な元素であるが、含有量が2.0%超になると硬くなり延性等の機械的性質が劣化する。従って、Si量は2.0%以下とした。また、0.01%未満では脱酸効果が得られないため0.01%以上含有させる。好ましくは0.1〜1.0%の範囲である。
Si: 0.01% or more and 2.0% or less Si is an element useful for high-temperature oxidation resistance because it suppresses the progress of oxidation by forming an oxide film of SiO 2 as a deoxidizer. When the amount exceeds 2.0%, it becomes hard and mechanical properties such as ductility deteriorate. Therefore, the Si amount is set to 2.0% or less. Further, if less than 0.01%, the deoxidation effect cannot be obtained, so 0.01% or more is contained. Preferably it is 0.1 to 1.0% of range.

Mn:2.0%以下
MnもCと同様マトリックスのフェライト組織の強度を高め、更に、オーステナイト相生成元素であるが、Mn含有量が 2.0%を超えると鋼中に残存する介在物が多くなり耐食性が劣化する場合がある。また、延性が劣化して絞りが低下するため、Mn量は2.0%以下の範囲とした。好ましくは1.0%以下である。
また、含有量が0.1%より少ないと鋼線の強度が低く、また、溶接後も強度不足となる。したがって0.1%以上含有することが望ましい。
Mn: 2.0% or less Mn, like C, increases the strength of the ferrite structure of the matrix, and is an austenite phase-forming element. However, if the Mn content exceeds 2.0%, inclusions remaining in the steel are present. The corrosion resistance may deteriorate due to increase. In addition, since the ductility deteriorates and the aperture is reduced, the Mn content is set to a range of 2.0% or less. Preferably it is 1.0% or less.
On the other hand, if the content is less than 0.1%, the strength of the steel wire is low, and the strength is insufficient after welding. Therefore, it is desirable to contain 0.1% or more.

P:0.04%以下
Pは、延性、靱性等の機械的性質を劣化させるのみならず、耐食性に対しても有害な元素であり、特にP含有量が0.04%超になるとその悪影響が顕著になるので、P量は0.04%以下とした。
P: 0.04% or less P is an element not only deteriorating mechanical properties such as ductility and toughness, but also harmful to corrosion resistance. Particularly, when P content exceeds 0.04%, its adverse effect Therefore, the P content is set to 0.04% or less.

S:0.03%以下
Sは、Mnと結合してMnSを形成し、初期発銹の起点となる。またSは、結晶粒界に偏析して粒界脆化を促進する有害元素でもあるので、極力低減することが好ましい。また、延性を劣化させる悪影響もある。特にS含有量が0.03%を超えるとその悪影響が顕著になるので、S量は0.03%以下とした。
S: 0.03% or less S combines with Mn to form MnS, which is the starting point of initial firing. S is also a harmful element that segregates at the grain boundaries and promotes embrittlement of the grain boundaries, so it is preferably reduced as much as possible. There is also an adverse effect that deteriorates ductility. In particular, when the S content exceeds 0.03%, the adverse effect becomes remarkable, so the S content is set to 0.03% or less.

Cr:15.0%以上30.0%以下
Crは、本発明における耐食性発現成分として重要な元素である。本発明で対象にする鋼線材と鋼線は、耐食性に必要なCr量として、少なくとも15.0%が必要である。これは、15.0%未満になると強固な不動態皮膜が生成され難くなるためである。一方、Cr濃度が30.0%超になると、耐食性は良くなるものの、フェライト相の生成量が多くなり、靱性不足が生じることやコストアップに繋がる。また、延性が劣化して絞りが低下する。そのため、Cr濃度は30.0%以下とした。好ましくは15.0%以上25.0%以下、更に好ましくは、15.0%以上20.0%未満である。
Cr: 15.0% or more and 30.0% or less Cr is an important element as a corrosion resistance expression component in the present invention. The steel wire and steel wire to be used in the present invention require at least 15.0% as the Cr amount necessary for corrosion resistance. This is because when the content is less than 15.0%, it is difficult to form a strong passive film. On the other hand, if the Cr concentration exceeds 30.0%, the corrosion resistance is improved, but the amount of ferrite phase produced increases, leading to insufficient toughness and increased costs. In addition, the ductility is deteriorated and the aperture is lowered. Therefore, the Cr concentration is set to 30.0% or less. Preferably they are 15.0% or more and 25.0% or less, More preferably, they are 15.0% or more and less than 20.0%.

N:0.025%以下
Nは、マトリックスのフェライト組織の強度を高め、更に、オーステナイト相および窒化物の生成元素であり強度を高めるが、耐食性、冷間鍛造性を劣化させるため上限を0.025%とした。また、0.001%未満では鋼線の窒化物の生成が少なく強度向上の効果が得られないため0.001%以上とすることが望ましい。
N: 0.025% or less N increases the strength of the ferrite structure of the matrix and further increases the strength because it is an austenite and nitride-forming element. However, the upper limit is set to 0. 0 because it deteriorates corrosion resistance and cold forgeability. 025%. Further, if it is less than 0.001%, the production of steel wire nitride is small and the effect of improving the strength cannot be obtained, so 0.001% or more is desirable.

Cu、Mo、Niは何れも耐食性を向上させる元素であり、これら元素のうち1種、または2種以上を下記の範囲で含有させる。
Cu:0.1%以上3.0%以下
Cuは、耐食性および強度を向上させる有用な元素であるが、含有量が3.0%超になると靭性が劣化するばかりか冷間鍛造性が劣化する。従って、3.0%以下とした。好ましくは2.0%以下であり、更に好ましくは1.0%以下である。また、0.1%未満では耐食性向上効果が得られ難いため、添加する場合は下限を0.1%とする。好ましくは0.2%以上である。
Cu, Mo, and Ni are all elements that improve corrosion resistance, and one or more of these elements are contained in the following ranges.
Cu: 0.1% or more and 3.0% or less Cu is a useful element that improves corrosion resistance and strength. However, when the content exceeds 3.0%, not only the toughness but also the cold forgeability deteriorates. To do. Therefore, it was set to 3.0% or less. Preferably it is 2.0% or less, More preferably, it is 1.0% or less. Further, if it is less than 0.1%, it is difficult to obtain an effect of improving the corrosion resistance. Therefore, when added, the lower limit is made 0.1%. Preferably it is 0.2% or more.

Mo:0.05%以上5.0%以下、
Moは、耐食性を高めるが、0.05%より少ないと耐食性が発現されない。一方5.0%を超えるとσ相が析出しやすく脆化し、冷間鍛造性が劣化するので0.05〜5.0%とする。好ましくは、0.2〜3.0%であり、更に好ましくは0.2〜2.5%である。
Mo: 0.05% or more and 5.0% or less,
Mo increases corrosion resistance, but if it is less than 0.05%, corrosion resistance is not expressed. On the other hand, if it exceeds 5.0%, the σ phase tends to precipitate and becomes brittle, and the cold forgeability deteriorates, so the content is made 0.05 to 5.0%. Preferably, it is 0.2 to 3.0%, more preferably 0.2 to 2.5%.

Ni:0.05%以上5.0%以下
Niは、Cuと同様に耐食性および強度を向上させる有効な元素であるが、含有量が5.0%超になると冷間鍛造性が劣化する。従って、5.0%以下とした。
また、0.05%未満では耐食性および強度向上効果が得られ難いため、添加する場合は0.05%を下限とする。好ましくは0.2%以上である。
Ni: 0.05% or more and 5.0% or less Ni is an effective element for improving the corrosion resistance and the strength like Cu, but when the content exceeds 5.0%, the cold forgeability deteriorates. Therefore, it was made 5.0% or less.
Further, if it is less than 0.05%, it is difficult to obtain the effect of improving the corrosion resistance and the strength, so when added, the lower limit is made 0.05%. Preferably it is 0.2% or more.

TiとNbは、何れも粒界腐食を防止する元素であり、1種または2種を下記範囲で含有させる。
Nb:0.1%以上0.8%以下
固溶したNbは強度を高めるとともに、炭窒化物を形成するので、Cr炭化物の生成を抑制し、その結果Cr欠乏層の生成を抑制するので粒界腐食を防止することができる。Nbは、耐食性を向上させる有用な元素であるが、含有量が 0.8%超になると冷間鍛造性が劣化する。従って、0.8%以下とした。また、0.1%未満では耐食性向上効果が得られ難いため下限を0.1%とした。好ましくは0.3%以上である。
Ti and Nb are both elements that prevent intergranular corrosion, and one or two of them are contained in the following range.
Nb: 0.1% or more and 0.8% or less Solid solution Nb increases strength and forms carbonitrides, thereby suppressing the formation of Cr carbides and consequently suppressing the formation of Cr-deficient layers. It is possible to prevent field corrosion. Nb is a useful element that improves corrosion resistance, but when the content exceeds 0.8%, cold forgeability deteriorates. Therefore, it was set to 0.8% or less. Further, if it is less than 0.1%, it is difficult to obtain the effect of improving corrosion resistance, so the lower limit was made 0.1%. Preferably it is 0.3% or more.

Ti:0.05%以上0.5%以下
Tiは、Nbと同様、炭化物や窒化物を形成するので、Cr炭化物の生成を抑制し、その結果Cr欠乏層の生成を抑制するので粒界腐食を防止することができる。
Tiは、耐食性を向上させる有用な元素であるが、含有量が0.50%超になると冷間鍛造性が劣化する。従って、0.5%以下とした。また、0.05%未満であるとTiの効果を発現させることができないため、0.05%以上とした。
Ti: 0.05% or more and 0.5% or less Ti forms carbides and nitrides like Nb, and thus suppresses the formation of Cr carbides, and consequently suppresses the formation of Cr-deficient layers, thus intergranular corrosion. Can be prevented.
Ti is a useful element for improving corrosion resistance, but when the content exceeds 0.50%, cold forgeability deteriorates. Therefore, it was made 0.5% or less. Moreover, since the effect of Ti cannot be expressed if it is less than 0.05%, it was made 0.05% or more.

Sn:0.05%以上0.5%以下
Snは、酸中での活性溶解を抑制させる有用な元素であり、必要に応じて添加することが出来る。しかし、含有量が0.5%超になると熱間加工性が劣化する。また、延性が劣化して絞りが低下する。従って、0.5%以下とした。また、0.05%未満であるとSnの効果を発現させることができないため、添加する場合は0.05%以上とした。
Sn: 0.05% or more and 0.5% or less Sn is a useful element that suppresses active dissolution in an acid, and can be added as necessary. However, when the content exceeds 0.5%, the hot workability deteriorates. In addition, the ductility is deteriorated and the aperture is lowered. Therefore, it was made 0.5% or less. Moreover, since the effect of Sn cannot be expressed if it is less than 0.05%, when added, it was made 0.05% or more.

その他、熱間加工性向上元素として、B:0.0001%以上0.01%以下、REM:0.01%以上0.5%以下、Ca:0.001%以上0.02%以下を添加することが出来る。また、脱酸効果を向上させる元素としてAl:0.001%以上0.5%以下、Zr:0.01%以上0.5%以下を添加しても良い。また、耐食性向上のためにV:0.01%以上0.5%以下、耐食性及び強度向上のためにCo:0.01%以上0.5%以下、脱酸及び組織微細化のためにMg:0.0001%以上0.01%以下をそれぞれ添加することが出来る。   In addition, B: 0.0001% to 0.01%, REM: 0.01% to 0.5%, Ca: 0.001% to 0.02% as hot workability improving elements I can do it. Moreover, you may add Al: 0.001% or more and 0.5% or less, and Zr: 0.01% or more and 0.5% or less as an element which improves the deoxidation effect. Further, V: 0.01% to 0.5% for improving corrosion resistance, Co: 0.01% to 0.5% for improving corrosion resistance and strength, Mg for deoxidation and refining of the structure : 0.0001% or more and 0.01% or less can be added respectively.

次に、本発明のフェライト系ステンレス鋼線材が有する特性について説明する。まず、耐隙間腐食性について説明する。(1)式のCr+3.3Moは隙間腐食の発生に関する合金指標である。また、(2)式のNi+1.2Mo+1.8Cuは隙間腐食の進展に関する合金指標である。これらは実験により見出された指標であり、各種合金成分のマルチクレビス隙間形成材付隙間腐食試験片の塩水噴霧試験を行った結果、(1)式が19以上、且つ(2)式が3.0以上であれば隙間腐食による流れさびが発生し難いことが判明した。それぞれ、好ましい範囲は、20以上、3.5以上であり、更に好ましくは、21以上、4.0以上である。
Cr+3.3Mo≧19 ・・・(1)
Ni+1.2Mo+1.8Cu≧3.0 ・・・(2)
Next, the characteristics of the ferritic stainless steel wire of the present invention will be described. First, crevice corrosion resistance will be described. Cr + 3.3Mo in the formula (1) is an alloy index relating to the occurrence of crevice corrosion. Further, Ni + 1.2Mo + 1.8Cu in the formula (2) is an alloy index relating to the progress of crevice corrosion. These are indices found by experiments. As a result of conducting a salt spray test on crevice corrosion test pieces with multi-clevis gap forming materials of various alloy components, formula (1) is 19 or more and formula (2) is 3 It was found that flow rust due to crevice corrosion is less likely to occur when the value is greater than or equal to 0.0. The preferable ranges are 20 or more and 3.5 or more, respectively, and more preferably 21 or more and 4.0 or more.
Cr + 3.3Mo ≧ 19 (1)
Ni + 1.2Mo + 1.8Cu ≧ 3.0 (2)

次に、捩りトルクに対する強度について説明する。本発明者らの検討によれば、捩りトルクに対する強度と引張強度は相関関係にあり、鋼線の引張強度が500N/mm2以上であれば、捩りトルクに対する強度が十分な値(後述する実施例における3.5N・m以上)になることが分かった。そこで、鋼線の引張強度を500N/mm2以上にするための条件を調査したところ、鋼線材や鋼線を製造する際の熱処理温度と、成分組成が影響することを見出した。成分組成に関しては以下の指標(Ts-cal)と相関があることを見出し、ねじとして十分な500N/mm2以上の強度を有するためには、Ts-cal.が450以上の必要があることが分かった。Ts-cal.が450未満では捩りトルクに対する強度不足を生じる。また、熱処理温度については、最終の熱処理を1100℃以下で行うことが必要である。つまり、後述する鋼線の製造方法において、伸線加工後に熱処理を行わない場合は、鋼線材を製造する際のインライン熱処理温度、伸線加工後に熱処理を行う場合は当該熱処理の温度を1100℃以下で行う必要がある。
Ts-cal.=28Ni+5Cr+24Mo+13Cu+350≧450 ・・・(3)
Next, the strength against torsional torque will be described. According to the study by the present inventors, the strength against the torsional torque and the tensile strength are correlated, and if the tensile strength of the steel wire is 500 N / mm 2 or more, the strength against the torsional torque is a sufficient value (implementation to be described later). It was found to be 3.5 N · m or more in the example. Then, when the conditions for making the tensile strength of a steel wire 500 N / mm < 2 > or more were investigated, it discovered that the heat processing temperature at the time of manufacturing a steel wire and a steel wire, and a component composition influence. The component composition is found to correlate with the following index (Ts-cal), and in order to have a strength of 500 N / mm 2 or more sufficient as a screw, Ts-cal. Was found to be more than 450. Ts-cal. If it is less than 450, the strength against torsional torque is insufficient. As for the heat treatment temperature, it is necessary to perform the final heat treatment at 1100 ° C. or lower. That is, in the steel wire manufacturing method described later, when heat treatment is not performed after wire drawing, an in-line heat treatment temperature when producing the steel wire material, and when heat treatment is performed after wire drawing, the temperature of the heat treatment is 1100 ° C. or lower. It is necessary to do in.
Ts-cal. = 28Ni + 5Cr + 24Mo + 13Cu + 350 ≧ 450 (3)

次に表面粗さを15μm以下とした理由について説明する。表面粗さは、表面美麗さの指標である。一般的に表面美麗さは、鋼板においては光沢度として測定され、定量化できるものであるが、本発明が対象とする鋼線や鋼線材においては、測定表面が円弧状となっているため、正確な測定値を得ることが出来ない。そのため、視覚的に光沢度が異なる鋼線試料を対比したところ、表面粗さ15μmを光沢良悪の判断基準とすることで、表面美麗さの指標とすることが可能であることが判明した。表面粗さの好ましい範囲は、10μm以下である。また、表面粗さは後述の絞りを制御するとともに、後述する製造条件を制御して整粒にすることで15μm以下にすることが出来る。   Next, the reason why the surface roughness is set to 15 μm or less will be described. Surface roughness is an indicator of surface beauty. In general, the surface beauty is measured as glossiness in a steel sheet and can be quantified, but in the steel wire and the steel wire targeted by the present invention, the measurement surface has an arc shape, An accurate measurement cannot be obtained. Therefore, when steel wire samples having visually different gloss levels were compared, it was found that a surface roughness of 15 μm could be used as an index of surface beauty by using gloss criteria. A preferable range of the surface roughness is 10 μm or less. Further, the surface roughness can be reduced to 15 μm or less by controlling the diaphragm described later and controlling the manufacturing conditions described later to adjust the particle size.

次に、鋼線材の絞りを60%以上に限定した理由について説明する。鋼線材の絞り値が60%以上の場合、伸線加工後の鋼線においても加工性が高く、成形後の表面粗さも小さいので冷間鍛造性及び成形後の表面の美麗さの目標を達成できる。望ましくは65%以上である。60%未満の場合、伸線加工後の鋼線の加工性が低くなり、成形途中で大きな割れが生じるなど成形そのものが難しくなる。絞りは大きいほど加工性が高く、成形後の表面も美麗になるため絞りの上限は規定しない。また、絞りを60%以上とするためには、上述した成分組成制御と、後述する製造条件が重要となる。   Next, the reason why the drawing of the steel wire material is limited to 60% or more will be described. When the drawing value of the steel wire is 60% or more, the workability of the steel wire after wire drawing is high and the surface roughness after forming is small, so the goals of cold forgeability and surface beauty after forming are achieved. it can. Desirably, it is 65% or more. If it is less than 60%, the workability of the steel wire after the drawing process becomes low, and the forming itself becomes difficult, for example, a large crack is generated during the forming process. The larger the aperture, the higher the workability and the more beautiful the surface after molding, so there is no upper limit for the aperture. Moreover, in order to make a diaphragm 60% or more, the above-mentioned component composition control and manufacturing conditions described later are important.

次に本発明の鋼線について説明する。本発明の鋼線は、上述してきた鋼線材を伸線して製造されるものである。一般的に行われている範囲の条件で製造することで、鋼線材としての特性を損なうことなく、鋼線として使用することが可能である。   Next, the steel wire of the present invention will be described. The steel wire of the present invention is manufactured by drawing the steel wire material described above. It can be used as a steel wire without impairing the properties as a steel wire by producing it under the conditions in the range generally used.

次に本発明の鋼線材の製造方法について説明する。本発明の鋼線材は、図1の工程で製造することが出来る。即ち、線材圧延工程、熱処理工程、酸洗工程とを含む。本発明においては、該熱処理工程をインライン熱処理で行う点に特徴を有する。即ち、本発明では線材圧延工程において熱間圧延を行った後,900℃以上1100℃以下の温度でインライン熱処理を行う。線材圧延工程では減面率((ビレットの断面積)−(熱間圧延後の断面積))/(ビレットの断面積)が大きいため、全断面にわたって歪が導入される。熱間圧延に引き続き常温まで冷却することなく900℃以上1100℃以下の温度でインライン熱処理を施すことにより、熱間圧延で導入された歪が余熱で回復する前に歪を核とした再結晶が表層から中心部全体にかけて進行し、熱処理後は線材断面のミクロ組織が混粒のない整粒組織となり、しかも所定の結晶粒度(粒度番号No.5〜No.9)とすることができる。また、所定のインライン熱処理を施した線材は結晶粒径の小さい整粒組織であるため、線材の表面粗さが小さく美麗な表面とすることができる。900℃未満では再結晶が不十分であり、また、絞り値を60%以上とするためにも下限は900℃以上、望ましくは950℃超である。また、1100℃を超えると結晶が粗大粒となり、粒度番号がNo.5より小さくなるため上限を1100℃としている。なお、インライン熱処理時間は2〜10分が望ましい。また、ここでいう混粒とは、JIS G 0551(2005)(鋼-結晶粒度の顕微鏡試験方法)で規定される方法にて5視野測定し、1視野内において、最大頻度をもつ粒度番号の粒から3以上異なった粒度番号の粒が20%以上の面積を占める状態にあるもの、又は、視野間において3以上異なった粒度番号の視野が存在するもの、とする。   Next, the manufacturing method of the steel wire material of this invention is demonstrated. The steel wire rod of the present invention can be manufactured by the process shown in FIG. That is, a wire rod rolling process, a heat treatment process, and a pickling process are included. The present invention is characterized in that the heat treatment step is performed by in-line heat treatment. That is, in the present invention, in-line heat treatment is performed at a temperature of 900 ° C. or higher and 1100 ° C. or lower after hot rolling in the wire rolling step. In the wire rolling process, since the area reduction ratio ((cross-sectional area of billet) − (cross-sectional area after hot rolling)) / (cross-sectional area of billet) is large, strain is introduced over the entire cross-section. By performing in-line heat treatment at a temperature of 900 ° C. or more and 1100 ° C. or less without cooling to room temperature following the hot rolling, the recrystallization with the strain as the nucleus is recovered before the strain introduced in the hot rolling is recovered by the residual heat. It progresses from the surface layer to the entire central part, and after the heat treatment, the microstructure of the cross section of the wire becomes a sized structure with no mixed grains, and can have a predetermined grain size (grain size number No. 5 to No. 9). Further, since the wire subjected to the predetermined in-line heat treatment has a sized structure with a small crystal grain size, the surface roughness of the wire can be small and a beautiful surface can be obtained. If the temperature is lower than 900 ° C., the recrystallization is insufficient, and the lower limit is 900 ° C. or higher, preferably higher than 950 ° C., in order to make the aperture value 60% or higher. Moreover, when it exceeds 1100 degreeC, a crystal | crystallization will become a coarse grain and a particle size number is No.2. Since it is smaller than 5, the upper limit is set to 1100 ° C. The in-line heat treatment time is desirably 2 to 10 minutes. In addition, the mixed grains referred to herein are those having a particle size number having the maximum frequency in one field of view, measured in five fields by the method defined in JIS G 0551 (2005) (steel-crystal grain size microscopic test method). It is assumed that grains having a particle size number different by 3 or more from the grains occupy an area of 20% or more, or fields having a grain size number different by 3 or more between the fields of view.

次に、本発明の鋼線の製造方法について説明する。本発明の鋼線は、前述してきた鋼線材を図1に示す伸線工程で伸線することにより、製造することが出来る。また、必要に応じて伸線工程後に熱処理工程やスキンパス伸線を導入することも出来る。これらの伸線条件、熱処理条件は、一般的に行われている条件範囲内で適宜設定すれば良い。前記条件範囲とは、伸線の減面率5%以上55%以下、熱処理900℃以上1100℃以下である。この範囲を外れた条件で処理すると、鋼線材として得られていた特性を損なう可能性がある。   Next, the manufacturing method of the steel wire of this invention is demonstrated. The steel wire of the present invention can be manufactured by drawing the above-described steel wire in the drawing step shown in FIG. Further, if necessary, a heat treatment step or a skin pass drawing can be introduced after the drawing step. These wire drawing conditions and heat treatment conditions may be set as appropriate within a generally used condition range. The condition range is a drawing area reduction of 5% to 55% and a heat treatment of 900 ° C. to 1100 ° C. If the treatment is performed under conditions outside this range, the properties obtained as a steel wire may be impaired.

また、本発明では、上述の製造方法において、延性に有害なラーフェス相の析出を抑制することで、絞りを更に向上させることが出来る。ラーフェス相の析出量は、後述する方法で測定できる鋼線材または鋼線のFe抽出残渣量に対応する。Fe残渣量が0.1%超であると延性が劣化し、絞りが低下する。そのため、Feの抽出残渣量を0.1%以下にすることが望ましい。更に好ましくは0.07%以下である。ラーフェス相は少ない程好ましく、焼鈍温度と冷却速度を調整することで、0%にすることが可能である。
焼鈍温度としては、850℃以上とすることが望ましい。つまり、鋼線材の段階で上記効果を得ようと思えば、上述したように鋼線材の製造にインライン熱処理が必要なため、900〜1100℃とすれば良い。また、鋼線の段階で上記効果を得るためには、伸線工程後の熱処理工程を省略する場合は鋼線材同様の条件にすれば良く、伸線工程後の熱処理工程を行う場合は、該熱処理を900〜1100℃の範囲で行えばよい。冷却速度は5℃/秒以上とすることが好ましい。更に好ましくは10℃/秒以上である。したがって、鋼線材の段階で上記効果を得るためには、インライン熱処理後の冷却速度を5℃/秒以上とすれば良い。また、鋼線の段階で上記効果を得るためには、伸線工程後の熱処理工程を省略する場合は鋼線材同様の条件にすれば良く、伸線工程後の熱処理工程を行う場合は、該熱処理後の冷却速度を5℃/秒以上とすれば良い。
Further, in the present invention, in the above-described production method, it is possible to further improve the drawing by suppressing the precipitation of the Lafest phase that is harmful to ductility. The amount of precipitation of the Lafes phase corresponds to the amount of Fe extraction residue of the steel wire or steel wire that can be measured by the method described later. If the amount of Fe residue is more than 0.1%, the ductility deteriorates and the drawing is reduced. Therefore, it is desirable that the amount of Fe extraction residue be 0.1% or less. More preferably, it is 0.07% or less. The smaller the surface phase, the better. The temperature can be reduced to 0% by adjusting the annealing temperature and the cooling rate.
The annealing temperature is desirably 850 ° C. or higher. In other words, if it is desired to obtain the above effect at the stage of the steel wire rod, the in-line heat treatment is necessary for the production of the steel wire rod as described above. Further, in order to obtain the above effect at the stage of steel wire, when the heat treatment step after the wire drawing step is omitted, the conditions may be the same as those of the steel wire. When the heat treatment step after the wire drawing step is performed, What is necessary is just to perform heat processing in the range of 900-1100 degreeC. The cooling rate is preferably 5 ° C./second or more. More preferably, it is 10 ° C./second or more. Accordingly, in order to obtain the above effect at the stage of the steel wire rod, the cooling rate after the in-line heat treatment may be set to 5 ° C./second or more. Further, in order to obtain the above effect at the stage of steel wire, when the heat treatment step after the wire drawing step is omitted, the conditions may be the same as those of the steel wire. When the heat treatment step after the wire drawing step is performed, The cooling rate after the heat treatment may be 5 ° C./second or more.

図1に示すように、ビレット(直径178mm丸断面)−(1)線材圧延−(2)インライン熱処理−(3)酸洗−線材(直径5.5mm)の工程により線材を製造し、各線材について
線材(直径5.5mm)−(4)伸線−鋼線(直径4mm)の工程により鋼線を製造し、鋼線-(7)冷間鍛造−(8)転造(ねじ)−ねじ製品の工程でねじを製造した。ねじは、十字穴付きタッピントラスねじ(呼び径4mm)とした。
表1に、本発明と比較鋼のステンレス鋼線材、鋼線の化学成分を示す。
As shown in FIG. 1, a wire is manufactured by the process of billet (diameter 178 mm round section)-(1) wire rod rolling- (2) in-line heat treatment- (3) pickling-wire rod (diameter 5.5 mm). Steel wire is manufactured by the process of wire rod (diameter 5.5mm)-(4) wire drawing-steel wire (diameter 4mm), steel wire-(7) cold forging-(8) rolling (screw)-screw Screws were manufactured in the product process. The screw was a tapped pin truss screw with a cross hole (nominal diameter: 4 mm).
Table 1 shows the chemical components of the stainless steel wire and steel wire of the present invention and comparative steel.

Figure 2013147705
Figure 2013147705
結晶粒度番号は、王水にてエッチングを行い、JIS G 0551(2005)(鋼-結晶粒度の顕微鏡試験方法)で規定される方法にて測定した。
鋼線材、鋼線の引張強度及び絞りについてはJIS Z 2241(金属材料引張試験方法)に準拠して実施した。
捩りトルクの測定については、JIS B 1054(1985)(ステンレス鋼製耐食ねじ部品の機械的性質)のねじり強さ試験に準拠して実施した。
冷間鍛造性については、各サンプルのサイズを揃えて10個を同一ねじ形状に冷間鍛造を行い、10個全てをねじ形状に成形できたものを合格、10個中1個でも加工中に破損が生じ、ねじ形状に成形できなかったものを不合格とした。
表面粗さは、JIS B 0633(2001)に準拠し、基準長さ2.5mmの条件にて測定した。表面の美麗さは表面粗さで評価し、評価長さ4mmのPt(断面曲線の最大断面高さ)が15μm以下を合格とした。
表1No.1〜No.23に、本発明の線材を示す。また、表2No.1〜No.23に本発明の鋼線を示す。
Figure 2013147705
Figure 2013147705
The crystal grain size number was measured by a method prescribed in JIS G 0551 (2005) (steel-crystal grain size microscopic test method) after etching with aqua regia.
The tensile strength and drawing of the steel wire and the steel wire were performed in accordance with JIS Z 2241 (metal material tensile test method).
The torsion torque was measured according to the torsional strength test of JIS B 1054 (1985) (mechanical properties of stainless steel corrosion resistant screw parts).
For cold forgeability, 10 samples were made in the same screw shape with the same size of each sample, and all 10 pieces were passed into the screw shape. Those that were damaged and could not be formed into a screw shape were rejected.
The surface roughness was measured in accordance with JIS B 0633 (2001) under the condition of a reference length of 2.5 mm. The beauty of the surface was evaluated by surface roughness, and an evaluation length of 4 mm Pt (maximum cross-sectional height of the cross-sectional curve) was 15 μm or less.
Table 1 No. 1 to No. 23 show the wires of the present invention. Moreover, the steel wire of this invention is shown to Table 2 No.1-No.23.

Figure 2013147705
Figure 2013147705

Figure 2013147705
Figure 2013147705

表3に伸線における減面率((伸線前断面の面積-伸線後断面の面積)/伸線前断面の面積×100(%))及び図1(5)の伸線工程後の熱処理を行うに際し、熱処理温度を変化させた場合の鋼線を示し、表3No.44〜No.46に本発明の鋼線を示す。いずれの鋼線についても、冷間鍛造性、表面の美麗さ、塩水噴霧試験による流れさび発生の評価において良好である。
表1No.24〜No.43,表2No.24〜No.43,及び表3No.47〜No.49に比較例を示す。
表1・表2No.24〜No.37に規定された成分範囲を外れた場合の比較例を示す。
表1・表2No.38〜No.43に、強度指標、腐食発生指標、腐食進展指標、インライン熱処理温度、結晶粒径のばらつき状況(整粒/混粒)、結晶粒度番号、絞りの規定範囲を超えた場合の比較例を示す。これらのうち、線材においては、線材の強度、表面粗さ、Fe残渣量のいずれかあるいは複数の評価において劣っている。鋼線においては、鋼線の強度、表面粗さ、Fe残渣量、ねじりトルク、冷間鍛造性、塩水噴霧試験による流れさび発生のいずれかあるいは複数の評価において劣っている。
また、表3No.47〜No.49に伸線後の熱処理温度において規定範囲を外れた場合の鋼線の比較例を示す。これらの鋼線においてはFe残渣量、ねじりトルク、表面粗さ、冷間鍛造性のいずれかあるいは複数の評価において劣っている。
Table 3 shows the area reduction ratio in wire drawing ((area of cross section before drawing−area of cross section after drawing) / area of cross section before drawing × 100 (%)) and after the drawing process of FIG. 1 (5). The steel wire when the heat treatment temperature is changed during the heat treatment is shown in Table 3 No. 44-No. 46 shows the steel wire of the present invention. All the steel wires are good in evaluating cold forgeability, surface beauty, and flow rust generation by a salt spray test.
Table 1 No. 24 to No. 43, Table 2 No. 24 to No. 43, and Table 3 No. 4 47-No. 49 shows a comparative example.
The comparative example at the time of having remove | deviated from the component range prescribed | regulated to Table 1 and Table 2 No.24-No.37 is shown.
Table 1 and Table 2 No. 38 to No. 43 include strength index, corrosion occurrence index, corrosion progress index, in-line heat treatment temperature, variation in crystal grain size (size / mixed grain), crystal grain number, and specified range of squeezing A comparative example is shown when exceeding. Among these, the wire is inferior in the evaluation of one or more of the strength, surface roughness, Fe residue amount of the wire. In steel wires, the strength, surface roughness, Fe residue amount, torsional torque, cold forgeability, and flow rust generation by salt spray tests are inferior in the evaluation or a plurality of evaluations.
Table 3 No. 47-No. 49 shows a comparative example of the steel wire when the heat treatment temperature after drawing is out of the specified range. These steel wires are inferior in any one or more evaluations of the amount of Fe residue, torsion torque, surface roughness, cold forgeability.

以上の実施例から明らかなように、本発明により、高品質のねじが供給されるのみではなく,ワイヤー等の重なり部における緩い隙間においても優れた耐隙間腐食性を有しているので,ワイヤー等重なり部分を有する製品にも広く適用可能である。フェライト系ステンレス鋼線であるため合金量が節減でき、経済性の点で極めて有用である。   As is clear from the above embodiments, the present invention not only supplies high-quality screws, but also has excellent crevice corrosion resistance even in loose gaps in overlapping portions such as wires. The present invention can be widely applied to products having equal overlapping portions. Since it is a ferritic stainless steel wire, the amount of alloy can be reduced and it is extremely useful in terms of economy.

Claims (11)

質量%で、
C :0.05%以下、
Si:0.01%以上2.0%以下、
Mn:2.0%以下、
P:0.04%以下、
S:0.03%以下、
Cr:15.0%以上30.0%以下、
N:0.025%以下を含有し、
更に、
Cu:0.1%以上3.0%以下
Mo:0.05%以上5.0%以下
Ni:0.05%以上5.0%以下
の1種又は2種以上を含有し、
更に、
Nb:0.1%以上0.8%以下
Ti:0.05%以上0.5%以下
の1種又は2種を含有し、残部がFe及び不可避的不純物からなり、
下式(1)〜(3)を満たし、且つ、表面粗さが15μm以下、絞り値が60%以上であることを特徴とするフェライト系ステンレス鋼線材。
Cr+3.3Mo≧19 ・・・(1)
Ni+1.2Mo+1.8Cu≧3.0 ・・・(2)
28Ni+5Cr+24Mo+13Cu+350≧450 ・・・(3)
但し、式中の元素記号は、当該元素の含有量(質量%)を意味する。
% By mass
C: 0.05% or less,
Si: 0.01% or more and 2.0% or less,
Mn: 2.0% or less,
P: 0.04% or less,
S: 0.03% or less,
Cr: 15.0% or more and 30.0% or less,
N: 0.025% or less,
Furthermore,
Cu: 0.1% or more and 3.0% or less Mo: 0.05% or more and 5.0% or less Ni: 0.05% or more and 5.0% or less
Furthermore,
Nb: 0.1% or more and 0.8% or less Ti: 0.05% or more and 0.5% or less containing one or two kinds, the balance is made of Fe and inevitable impurities,
A ferritic stainless steel wire material satisfying the following formulas (1) to (3), having a surface roughness of 15 μm or less and a drawing value of 60% or more.
Cr + 3.3Mo ≧ 19 (1)
Ni + 1.2Mo + 1.8Cu ≧ 3.0 (2)
28Ni + 5Cr + 24Mo + 13Cu + 350 ≧ 450 (3)
However, the element symbol in a formula means content (mass%) of the said element.
質量%で、更に
B:0.0001〜0.01%、Ca:0.001〜0.02%、Al:0.001〜0.5%、REM:0.01〜0.5%、Mg:0.0001〜0.01%、V:0.01〜0.5%、Co:0.01〜0.5%、Zr:0.01〜0.5%、及びSn:0.05〜0.5%から1種以上を含有する請求項1に記載のフェライト系ステンレス鋼線材。
Further, B: 0.0001 to 0.01%, Ca: 0.001 to 0.02%, Al: 0.001 to 0.5%, REM: 0.01 to 0.5%, Mg : 0.0001 to 0.01%, V: 0.01 to 0.5%, Co: 0.01 to 0.5%, Zr: 0.01 to 0.5%, and Sn: 0.05 to The ferritic stainless steel wire according to claim 1 containing 0.5% to 1 or more kinds.
質量%で、Feの抽出残渣量が0.1%以下であることを特徴とする請求項1又は2に記載のフェライト系ステンレス鋼線材。   The ferritic stainless steel wire according to claim 1 or 2, wherein the amount of Fe extraction residue is 0.1% or less in terms of mass%. 質量%で、
C :0.05%以下、
Si:0.01%以上2.0%以下、
Mn:2.0%以下、
P:0.04%以下、
S:0.03%以下、
Cr:15.0%以上30.0%以下、
N:0.025%以下を含有し、
更に、
Cu:0.1%以上3.0%以下
Mo:0.05%以上5.0%以下
Ni:0.05%以上5.0%以下
の1種又は2種以上を含有し、
更に、
Nb:0.1%以上0.8%以下
Ti:0.05%以上0.5%以下
の1種又は2種を含有し、残部がFe及び不可避的不純物からなり、
下式(1)〜(3)を満たし、且つ、表面粗さが15μm以下、強度が500N/m2以上であることを特徴とする冷間鍛造性に優れたフェライト系ステンレス鋼線。
Cr+3.3Mo≧19 ・・・(1)
Ni+1.2Mo+1.8Cu≧3.0 ・・・(2)
28Ni+5Cr+24Mo+13Cu+350≧450 ・・・(3)
但し、式中の元素記号は、当該元素の含有量(質量%)を意味する。
% By mass
C: 0.05% or less,
Si: 0.01% or more and 2.0% or less,
Mn: 2.0% or less,
P: 0.04% or less,
S: 0.03% or less,
Cr: 15.0% or more and 30.0% or less,
N: 0.025% or less,
Furthermore,
Cu: 0.1% or more and 3.0% or less Mo: 0.05% or more and 5.0% or less Ni: 0.05% or more and 5.0% or less
Furthermore,
Nb: 0.1% or more and 0.8% or less Ti: 0.05% or more and 0.5% or less containing one or two kinds, the balance is made of Fe and inevitable impurities,
A ferritic stainless steel wire excellent in cold forgeability satisfying the following formulas (1) to (3), having a surface roughness of 15 μm or less and a strength of 500 N / m 2 or more.
Cr + 3.3Mo ≧ 19 (1)
Ni + 1.2Mo + 1.8Cu ≧ 3.0 (2)
28Ni + 5Cr + 24Mo + 13Cu + 350 ≧ 450 (3)
However, the element symbol in a formula means content (mass%) of the said element.
質量%で、更に
B:0.0001〜0.01%、Ca:0.001〜0.02%、Al:0.001〜0.5%、REM:0.01〜0.5%、Mg:0.0001〜0.01%、V:0.01〜0.5%、Co:0.01〜0.5%、Zr:0.01〜0.5%、及びSn:0.05〜0.5%から1種以上を含有する請求項4に記載の冷間鍛造性に優れたフェライト系ステンレス鋼線。
Further, B: 0.0001 to 0.01%, Ca: 0.001 to 0.02%, Al: 0.001 to 0.5%, REM: 0.01 to 0.5%, Mg : 0.0001 to 0.01%, V: 0.01 to 0.5%, Co: 0.01 to 0.5%, Zr: 0.01 to 0.5%, and Sn: 0.05 to The ferritic stainless steel wire excellent in cold forgeability according to claim 4 containing 0.5% to 1 or more types.
質量%で、Feの抽出残渣量が0.1%以下であることを特徴とする請求項4又は5に記載の冷間鍛造性に優れたフェライト系ステンレス鋼線。   The ferritic stainless steel wire excellent in cold forgeability according to claim 4 or 5, wherein the extraction residue amount of Fe is 0.1% or less in terms of mass%. 900℃以上1100℃以下のインライン熱処理工程を有することを特徴とする請求項1〜3の何れか1項に記載のフェライト系ステンレス鋼線材の製造方法。   The method for producing a ferritic stainless steel wire according to any one of claims 1 to 3, further comprising an in-line heat treatment step of 900 ° C or higher and 1100 ° C or lower. インライン熱処理後の冷却速度を5℃/秒以上とすることを特徴とする請求項7に記載のフェライト系ステンレス鋼線材の製造方法。   The method for producing a ferritic stainless steel wire according to claim 7, wherein a cooling rate after in-line heat treatment is set to 5 ° C / second or more. 請求項1〜3の何れか1項に記載の鋼線材を、減面率5〜55%の範囲で伸線加工することを特徴とする、請求項4〜6の何れか1項に記載のフェライト系ステンレス鋼線の製造方法。   The steel wire rod according to any one of claims 1 to 3, wherein the steel wire rod is drawn in a range of a surface area reduction rate of 5 to 55%, according to any one of claims 4 to 6. Manufacturing method of ferritic stainless steel wire. 前記伸線加工後に900〜1100℃で熱処理する工程を有することを特徴とする請求項9に記載のフェライト系ステンレス鋼線の製造方法。   The method for producing a ferritic stainless steel wire according to claim 9, further comprising a step of heat-treating at 900 to 1100 ° C. after the wire drawing. 熱処理後の冷却速度を5℃/秒以上とすることを特徴とする請求項10に記載のフェライト系ステンレス鋼線の製造方法。   The method for producing a ferritic stainless steel wire according to claim 10, wherein a cooling rate after the heat treatment is set to 5 ° C / second or more.
JP2012009299A 2012-01-19 2012-01-19 Ferritic stainless steel wire, steel wire, and manufacturing method thereof Active JP6004653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012009299A JP6004653B2 (en) 2012-01-19 2012-01-19 Ferritic stainless steel wire, steel wire, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012009299A JP6004653B2 (en) 2012-01-19 2012-01-19 Ferritic stainless steel wire, steel wire, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013147705A true JP2013147705A (en) 2013-08-01
JP6004653B2 JP6004653B2 (en) 2016-10-12

Family

ID=49045501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012009299A Active JP6004653B2 (en) 2012-01-19 2012-01-19 Ferritic stainless steel wire, steel wire, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6004653B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015224358A (en) * 2014-05-27 2015-12-14 新日鐵住金ステンレス株式会社 Ferritic stainless steel wire excellent in formability and corrosion resistance and production method thereof
CN105803348A (en) * 2016-05-24 2016-07-27 江苏金基特钢有限公司 Wear-resistant stainless steel wire
CN105821344A (en) * 2016-05-25 2016-08-03 江苏金基特钢有限公司 Corrosion-resisting easily-formed stainless steel wire
CN105821342A (en) * 2016-05-24 2016-08-03 江苏金基特钢有限公司 Abrasion-resistant and easy-to-mould special steel and making method thereof
CN105821341A (en) * 2016-05-24 2016-08-03 江苏金基特钢有限公司 Abrasion-resistant and corrosion-resistant special steel and making method thereof
CN105951001A (en) * 2016-05-24 2016-09-21 江苏金基特钢有限公司 Low-self-noise special steel and machining method thereof
CN105951002A (en) * 2016-05-25 2016-09-21 江苏金基特钢有限公司 Preparation method of corrosion-resistance stainless steel wire easy to mold
CN105970113A (en) * 2016-05-25 2016-09-28 江苏金基特钢有限公司 Preparation method for low-self-noise stainless steel wire
CN105970114A (en) * 2016-05-25 2016-09-28 江苏金基特钢有限公司 Low self-noise stainless steel wire
JP2017066431A (en) * 2015-09-28 2017-04-06 新日鐵住金ステンレス株式会社 Ferritic stainless linear steel material for fastening component
CN107587042A (en) * 2016-07-08 2018-01-16 Posco公司 Middle low chrome ferritic stainless steel cold-rolled steel sheet and its acid washing method
JP2020084210A (en) * 2018-11-16 2020-06-04 日鉄ステンレス株式会社 Bar-shaped steel material
WO2020196595A1 (en) 2019-03-27 2020-10-01 日鉄ステンレス株式会社 Steel rod
JP2020158842A (en) * 2019-03-27 2020-10-01 日鉄ステンレス株式会社 Metal wire for welded and laminated shaping with metal 3d printer
CN112921163A (en) * 2021-02-03 2021-06-08 江阴法尔胜泓昇不锈钢制品有限公司 Production process of high-plasticity stainless steel wire for spectacle frame

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064419A (en) * 2001-08-24 2003-03-05 Sumitomo Electric Ind Ltd Stainless steel wire rod for fiber and production method therefor
JP2006016665A (en) * 2004-07-01 2006-01-19 Nippon Steel & Sumikin Stainless Steel Corp Inexpensive stainless steel wire rod or steel wire having excellent corrosion resistance, cold workability and toughness and having magnetism
JP2007077444A (en) * 2005-09-14 2007-03-29 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel wire having excellent rust resistance, and its production method
JP2011001592A (en) * 2009-06-18 2011-01-06 Daido Steel Co Ltd High-strength and high-corrosion resistance stainless steel, and steel material and steel product using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064419A (en) * 2001-08-24 2003-03-05 Sumitomo Electric Ind Ltd Stainless steel wire rod for fiber and production method therefor
JP2006016665A (en) * 2004-07-01 2006-01-19 Nippon Steel & Sumikin Stainless Steel Corp Inexpensive stainless steel wire rod or steel wire having excellent corrosion resistance, cold workability and toughness and having magnetism
JP2007077444A (en) * 2005-09-14 2007-03-29 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel wire having excellent rust resistance, and its production method
JP2011001592A (en) * 2009-06-18 2011-01-06 Daido Steel Co Ltd High-strength and high-corrosion resistance stainless steel, and steel material and steel product using the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015224358A (en) * 2014-05-27 2015-12-14 新日鐵住金ステンレス株式会社 Ferritic stainless steel wire excellent in formability and corrosion resistance and production method thereof
JP2017066431A (en) * 2015-09-28 2017-04-06 新日鐵住金ステンレス株式会社 Ferritic stainless linear steel material for fastening component
CN105803348A (en) * 2016-05-24 2016-07-27 江苏金基特钢有限公司 Wear-resistant stainless steel wire
CN105821342A (en) * 2016-05-24 2016-08-03 江苏金基特钢有限公司 Abrasion-resistant and easy-to-mould special steel and making method thereof
CN105821341A (en) * 2016-05-24 2016-08-03 江苏金基特钢有限公司 Abrasion-resistant and corrosion-resistant special steel and making method thereof
CN105951001A (en) * 2016-05-24 2016-09-21 江苏金基特钢有限公司 Low-self-noise special steel and machining method thereof
CN105970114A (en) * 2016-05-25 2016-09-28 江苏金基特钢有限公司 Low self-noise stainless steel wire
CN105970113A (en) * 2016-05-25 2016-09-28 江苏金基特钢有限公司 Preparation method for low-self-noise stainless steel wire
CN105951002A (en) * 2016-05-25 2016-09-21 江苏金基特钢有限公司 Preparation method of corrosion-resistance stainless steel wire easy to mold
CN105821344A (en) * 2016-05-25 2016-08-03 江苏金基特钢有限公司 Corrosion-resisting easily-formed stainless steel wire
CN107587042A (en) * 2016-07-08 2018-01-16 Posco公司 Middle low chrome ferritic stainless steel cold-rolled steel sheet and its acid washing method
JP2020084210A (en) * 2018-11-16 2020-06-04 日鉄ステンレス株式会社 Bar-shaped steel material
JP7320936B2 (en) 2018-11-16 2023-08-04 日鉄ステンレス株式会社 bar steel
WO2020196595A1 (en) 2019-03-27 2020-10-01 日鉄ステンレス株式会社 Steel rod
JP2020158842A (en) * 2019-03-27 2020-10-01 日鉄ステンレス株式会社 Metal wire for welded and laminated shaping with metal 3d printer
JP7305394B2 (en) 2019-03-27 2023-07-10 日鉄ステンレス株式会社 Metal wire for welding additive manufacturing by metal 3D printer
CN112921163A (en) * 2021-02-03 2021-06-08 江阴法尔胜泓昇不锈钢制品有限公司 Production process of high-plasticity stainless steel wire for spectacle frame
CN112921163B (en) * 2021-02-03 2024-01-26 江阴法尔胜泓昇不锈钢制品有限公司 Production process of high-plasticity stainless steel wire for glasses frame

Also Published As

Publication number Publication date
JP6004653B2 (en) 2016-10-12

Similar Documents

Publication Publication Date Title
JP6004653B2 (en) Ferritic stainless steel wire, steel wire, and manufacturing method thereof
JP6286540B2 (en) High-strength duplex stainless steel wire, high-strength duplex stainless steel wire and its manufacturing method, and spring parts
US10597760B2 (en) High-strength steel material for oil well and oil well pipes
JP6302722B2 (en) High-strength duplex stainless steel wire excellent in spring fatigue characteristics, its manufacturing method, and high-strength duplex stainless steel wire excellent in spring fatigue characteristics
DK2591134T3 (en) Austenitic-ferritic stainless steel with improved machinability
JP5888476B2 (en) Material for stainless cold-rolled steel sheet and manufacturing method thereof
JP6264468B2 (en) High strength oil well steel and oil well pipe
JP7186859B2 (en) Steel wire, its manufacturing method, and spring or medical wire product manufacturing method
JP6475053B2 (en) Duplex stainless steel wire and screw product and method for producing duplex stainless steel wire
WO2009099010A1 (en) Ferrite-austenite stainless steel sheet excellent in ridging resistance and workability and process for manufacturing the same
CN102741445B (en) Highly corrosion-resistant cold-rolled ferrite stainless steel sheet having excellent toughness, and process for production thereof
WO2009017258A1 (en) Ferritic-austenitic stainless steel excellent in corrosion resistance and workability and process for manufacturing the same
JP2017531093A (en) High strength austenitic stainless steel and method for producing the same
JP6126881B2 (en) Stainless steel wire excellent in torsion workability and manufacturing method thereof, and stainless steel wire rod and manufacturing method thereof
JP6782601B2 (en) High-strength stainless steel wire with excellent warmth relaxation characteristics, its manufacturing method, and spring parts
KR101612474B1 (en) Ferritic stainless-steel wire with excellent cold forgeability and machinability
JP2011105973A (en) Duplex stainless steel having excellent alkali resistance
WO2018146783A1 (en) Austenitic heat-resistant alloy and method for producing same
JP5073966B2 (en) Age-hardening ferritic stainless steel sheet and age-treated steel using the same
JP6635890B2 (en) Martensitic stainless steel sheet for cutting tools with excellent manufacturability and corrosion resistance
WO2022153790A1 (en) Martensite-based stainless steel material and method for producing same
JP7504672B2 (en) Stainless steel wire, its manufacturing method, and spring parts
JP5233428B2 (en) Ferritic stainless steel sheet excellent in deep drawability and method for producing the same
KR101940427B1 (en) Ferritic stainless steel sheet
JP6895864B2 (en) Duplex stainless steel, duplex stainless steel plate and duplex stainless linear steel with excellent corrosion resistance on sheared surfaces

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160906

R150 Certificate of patent or registration of utility model

Ref document number: 6004653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250