JP2015224358A - Ferritic stainless steel wire excellent in formability and corrosion resistance and production method thereof - Google Patents

Ferritic stainless steel wire excellent in formability and corrosion resistance and production method thereof Download PDF

Info

Publication number
JP2015224358A
JP2015224358A JP2014108954A JP2014108954A JP2015224358A JP 2015224358 A JP2015224358 A JP 2015224358A JP 2014108954 A JP2014108954 A JP 2014108954A JP 2014108954 A JP2014108954 A JP 2014108954A JP 2015224358 A JP2015224358 A JP 2015224358A
Authority
JP
Japan
Prior art keywords
less
corrosion resistance
stainless steel
steel wire
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014108954A
Other languages
Japanese (ja)
Other versions
JP6308869B2 (en
Inventor
裕 田所
Yutaka Tadokoro
裕 田所
光司 高野
Koji Takano
光司 高野
好宣 多田
Yoshinori Tada
好宣 多田
裕也 日笠
Hironari Hikasa
裕也 日笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2014108954A priority Critical patent/JP6308869B2/en
Publication of JP2015224358A publication Critical patent/JP2015224358A/en
Application granted granted Critical
Publication of JP6308869B2 publication Critical patent/JP6308869B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ferritic stainless steel wire excellent in formability, corrosion resistance, wear resistance and economical efficiency, for use in a muffler hanger of an automobile running in a salt damage district.SOLUTION: The ferritic stainless steel wire excellent in formability and corrosion resistance is provided which contains C:0.02% or less, Si:1.0% or less, Mn:1.0% or less, P:0.04% or less, S:0.03% or less, Cr:10.5% to 25.0%, N:0.025% or less, and further one or more kind of Cu:2.0% or less, Mo:3.0% or less, Ni:5.0% or less and one or more kind of Nb:0.8% or less and Ti:0.5% or less, and which is characterized in that: a crystal grain size number in an inner layer of a cross section vertical to a longer direction is 4.0 to 9.0; a crystal grain size number in a surface layer from a surface to a depth of 1/4×(diameter) is 5.0 to 10.0, namely, the crystal grain size number in the surface layer is larger than that in the inner layer; an average intergranular erosion depth is 0.5 to 1 times the average crystal grain diameter in the surface layer; and hardness of the cross section from the surface to the depth of 1/4×(diameter) is 140 or more.

Description

本発明は、強度、成形性及び耐孔食性に優れたフェライト系ステンレス鋼線に関するものである。   The present invention relates to a ferritic stainless steel wire excellent in strength, formability and pitting corrosion resistance.

従来、ステンレス鋼製マフラーハンガーとして、STKM11Aなどの機械構造用炭素鋼が用いられてきたが、耐食性を確保するために、該炭素鋼に金属めっきや塗装が施されてきている。しかしながら、海岸沿いや、冬季に融雪塩を散布する積雪地域を走行する自動車においては、マフラーハンガーに塩分が多量に付着し、発銹が激しくなり、場合によっては、孔食の進展によって破断が生じ、マフラーが脱落する虞がある。   Conventionally, carbon steel for mechanical structures such as STKM11A has been used as a stainless steel muffler hanger. However, in order to ensure corrosion resistance, metal plating or coating has been applied to the carbon steel. However, in automobiles traveling along the coast or in snowy areas where snow melting salt is sprayed in winter, a large amount of salt is attached to the muffler hangers, resulting in severe bruising and, in some cases, breakage due to the progress of pitting corrosion. The muffler may fall off.

そこで、SUS410等のクロム含有量の低いフェライト系ステンレス鋼とともに、SUS304、SUSXM7等のオーステナイト系ステンレス鋼の使用が検討されてきた。フェライト系ステンレス鋼は、Cr以外の合金量が少なく、コストが低いものの耐食性が劣る。オーステナイト系ステンレス鋼は、耐食性や成形性に優れるもののNi含有量が多く、コストが高くなる。経済性の観点からは、Ni含有量の少ないフェライト系ステンレス鋼が有利である。   Therefore, the use of austenitic stainless steels such as SUS304 and SUSXM7 has been studied together with ferritic stainless steels having a low chromium content such as SUS410. Ferritic stainless steel has a small amount of alloy other than Cr and is low in cost, but is inferior in corrosion resistance. Although austenitic stainless steel is excellent in corrosion resistance and formability, it has a high Ni content and a high cost. From the economical point of view, ferritic stainless steel with a low Ni content is advantageous.

しかしながら、フェライト系ステンレス鋼をマフラーハンガーとして、製品化させるためには、
(1)頭部の冷間鍛造性を向上させること、
(2)成形後に塩水噴霧試験を行った場合のさび発生を防止するために、Cr量を始めとする合金量を多く含む必要があり、コスト下げるためには合金量を少なくして耐食性を向上させること、
(3)走行中に石や砂が跳ね、それらが連続的に衝突して摩耗するため、耐摩耗性の向上させること、及び、
(4)石や砂の衝突でできたキズ部からの腐食発生・進展に対する抵抗力を高めること
が課題となる。
However, in order to commercialize ferritic stainless steel as a muffler hanger,
(1) improving the cold forgeability of the head,
(2) In order to prevent the occurrence of rust when a salt spray test is performed after molding, it is necessary to include a large amount of alloy, including Cr, and to reduce costs, the amount of alloy is reduced to improve corrosion resistance. Letting
(3) Stones and sand jump while driving, and they collide and wear continuously, improving wear resistance; and
(4) The challenge is to increase the resistance to corrosion generation / development from scratches caused by stone and sand collisions.

特許文献1〜3には、これらの課題を個別に解決する技術が開示されている。特許文献1には、冷間鍛造性、耐食性及び電磁気特性に優れ、電磁部品などの素材として利用されるステンレス鋼が開示されている。特許文献2には、耐摩耗性と2次加工性に優れたフェライト系ステンレス鋼が開示されている。また、特許文献3には、冷間加工性、靭性及び耐食性に優れたフェライト系ステンレス鋼及びその製造方法が開示されている。しかし、何れの文献にも、上記4つの課題を全て解決する手段は開示されていない。   Patent Documents 1 to 3 disclose techniques for individually solving these problems. Patent Document 1 discloses stainless steel that is excellent in cold forgeability, corrosion resistance, and electromagnetic properties, and is used as a material for electromagnetic components and the like. Patent Document 2 discloses a ferritic stainless steel excellent in wear resistance and secondary workability. Patent Document 3 discloses a ferritic stainless steel excellent in cold workability, toughness, and corrosion resistance and a method for producing the same. However, none of the documents discloses means for solving all of the above four problems.

特許第2734035号公報Japanese Patent No. 2734035 特公平05−081656号公報Japanese Examined Patent Publication No. 05-081656 特許第2906445号公報Japanese Patent No. 2906445

本発明は、海岸沿いや、冬季に融雪塩を散布する積雪地域など塩害地域を走行する自動車のマフラーハンガー等に使用する、高い成形性と十分な耐食性、耐摩耗性を保ち、しかも経済性にも優れるフェライト系ステンレス鋼線とその製造方法を提供することを課題とする。   The present invention maintains high formability, sufficient corrosion resistance, wear resistance, etc., and is economical for use in automobile muffler hangers that run in salt damage areas such as snowy areas where snow melting salt is sprayed in the winter or in winter. Another object of the present invention is to provide a ferritic stainless steel wire and a method for producing the same.

本発明者らは、上記の課題を解決すべく、成形性(冷間鍛造性)、耐食性、耐摩耗性に及ぼす合金元素の影響について調査を行った。その結果、鋼の成分組成に加え、材質及び表面性状が、これら特性に影響するとの知見を得た。   In order to solve the above problems, the present inventors have investigated the influence of alloy elements on formability (cold forgeability), corrosion resistance, and wear resistance. As a result, in addition to the component composition of steel, it was found that the material and surface properties affect these properties.

本発明は、上記知見に基づいてなされたもので、その要旨とするところは以下の通りである。
(1)質量%で、C:0.02%以下、Si:1.0%以下、Mn:1.0%以下、P:0.04%以下、S:0.03%以下、Cr:10.5%以上25.0%以下、N:0.025%以下、更に、Cu:2.0%以下、Mo:3.0%以下、Ni:5.0%以下の1種又は2種以上を含有し、更に、Nb:0.8%以下、Ti:0.5%以下の1種又は2種を含有し、長手方向に対して垂直断面における内層のミクロ組織の結晶粒度番号が4.0〜9.0で、表面から1/4×(直径)の深さまでの表層の結晶粒度番号が5.0〜10.0で、内層より表層の結晶粒度番号が大きく、平均粒界侵食深さが表層の平均結晶粒径の0.5倍〜1倍であり、表面から1/4×(直径)の深さまでの断面についての硬さHv1(JIS Z 2244)が140以上であることを特徴とする成形性及び耐孔食性に優れたフェライト系ステンレス鋼線。
(2)更に、質量%で、Sn:1.0%以下を含有することを特徴とする前記(1)に記載の成形性及び耐孔食性に優れたフェライト系ステンレス鋼線。
(3)更に、質量%で、W:0.5%以下、Ta:0.5%以下、Co:0.5%以下、Al:0.05%以下、Ca:0.05%以下、V:0.5%以下、B:0.01%以下、Bi:0.5%以下、Mg:0.1%以下、Zr:0.5%以下、REM:0.1%以下、Ga:0.05%以下、Sr:0.05%以下、Se:0.05%以下、Ru:0.05%以下、Rh:0.05%以下、Pd:0.05%以下、Ag:0.05%以下、Cd:0.05%以下、In:0.05%以下、Sb:0.05%以下、Te:0.05%以下、Hf:0.05%以下、Re:0.05%以下、Os:0.05%以下、Ir:0.05%以下の1種又は2種以上を含有することを特徴とする前記(1)又は(2)に記載の成形性及び耐孔食性に優れたフェライト系ステンレス鋼線。
(4)マフラーハンガー用であることを特徴とする前記(1)〜(3)のいずれかに記載の成形性及び耐孔食性に優れたフェライト系ステンレス鋼線。
(5)前記(1)〜(3)のいずれかに記載の成分組成を有する鋳片を熱間圧延する工程、該熱間圧延後にショットブラスト処理を行う工程、該ショットブラスト処理後に900℃以上1100℃以下の温度で熱処理を行う工程、及び、該熱処理後に酸洗を行う工程を含むことを特徴とする前記(1)〜(4)のいずれかに記載の成形性及び耐孔食性に優れたフェライト系ステンレス鋼線の製造方法。
The present invention has been made based on the above findings, and the gist thereof is as follows.
(1) By mass%, C: 0.02% or less, Si: 1.0% or less, Mn: 1.0% or less, P: 0.04% or less, S: 0.03% or less, Cr: 10 1% or more of 5% or more and 25.0% or less, N: 0.025% or less, Cu: 2.0% or less, Mo: 3.0% or less, Ni: 5.0% or less Nb: 0.8% or less, Ti: 0.5% or less, and the grain size number of the microstructure of the inner layer in the cross section perpendicular to the longitudinal direction is 4. 0 to 9.0, the grain size number of the surface layer from the surface to a depth of 1/4 × (diameter) is 5.0 to 10.0, the grain size number of the surface layer is larger than the inner layer, and the average grain boundary erosion depth Is 0.5 to 1 times the average crystal grain size of the surface layer, and the hardness Hv1 (JIS Z 2244) for the cross section from the surface to a depth of 1/4 × (diameter). There formability and pitting corrosion resistance superior ferritic stainless steel wire, characterized in that at more than 140.
(2) The ferritic stainless steel wire having excellent formability and pitting corrosion resistance according to (1) above, further containing Sn: 1.0% or less by mass%.
(3) Further, in mass%, W: 0.5% or less, Ta: 0.5% or less, Co: 0.5% or less, Al: 0.05% or less, Ca: 0.05% or less, V : 0.5% or less, B: 0.01% or less, Bi: 0.5% or less, Mg: 0.1% or less, Zr: 0.5% or less, REM: 0.1% or less, Ga: 0 0.05% or less, Sr: 0.05% or less, Se: 0.05% or less, Ru: 0.05% or less, Rh: 0.05% or less, Pd: 0.05% or less, Ag: 0.05 % Or less, Cd: 0.05% or less, In: 0.05% or less, Sb: 0.05% or less, Te: 0.05% or less, Hf: 0.05% or less, Re: 0.05% or less Os: 0.05% or less, Ir: 0.05% or less, or one or more of Os: 0.05% or less, excellent in moldability and pitting corrosion resistance as described in (1) or (2) above Ferritic stainless steel wire was.
(4) The ferritic stainless steel wire excellent in formability and pitting corrosion resistance according to any one of the above (1) to (3), which is used for a muffler hanger.
(5) A step of hot rolling the slab having the component composition according to any one of (1) to (3), a step of performing a shot blast treatment after the hot rolling, and 900 ° C. or more after the shot blast treatment It is excellent in formability and pitting corrosion resistance according to any one of the above (1) to (4), comprising a step of performing a heat treatment at a temperature of 1100 ° C. or less and a step of pickling after the heat treatment A method for manufacturing ferritic stainless steel wires.

本発明によれば、成形性、耐孔食性及び耐磨耗性に優れた自動車マフラーハンガーに好適に使用されるフェライト系ステンレス鋼線を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the ferritic stainless steel wire used suitably for the automobile muffler hanger excellent in a moldability, pitting corrosion resistance, and abrasion resistance can be provided.

以下、本発明のフェライト系ステンレス鋼線について説明する。なお、以下「%」は、特に明記しない限り「質量%」を意味する。   Hereinafter, the ferritic stainless steel wire of the present invention will be described. Hereinafter, “%” means “% by mass” unless otherwise specified.

まず、ステンレス鋼線の成分組成の限定理由について説明する。   First, the reasons for limiting the component composition of the stainless steel wire will be described.

C:0.02%以下
Cは、マトリックスのフェライト組織の強度を高め、更に、オーステナイト相及び炭化物を生成する元素である。オーステナイト相は、溶接後においてマルテンサイト組織を生じて強度を向上させ、また、微細炭化物も強度の向上に寄与し、鋼線としての高温強度を向上させる。
C: 0.02% or less C is an element that increases the strength of the ferrite structure of the matrix and further generates an austenite phase and carbide. The austenite phase produces a martensite structure after welding to improve the strength, and fine carbides also contribute to improving the strength and improve the high-temperature strength as a steel wire.

しかしながら、0.02%超では、Cr炭化物が粒界に析出し、その回りにCr欠乏層が生成するようになる。腐食環境では、粒界に沿ったCr欠乏層が溶解するので、いわゆる粒界腐食が発生する。したがって、0.02%以下に限定した。更に、粒界腐食を防止するには、0.015%以下が好ましい。また、0.001%未満では、鋼線のオーステナイト相や微細炭化物の生成量が少なすぎて、強度が不足するため、0.001%以上が好ましい。   However, if it exceeds 0.02%, Cr carbide precipitates at the grain boundaries, and a Cr-depleted layer is generated around it. In a corrosive environment, so-called intergranular corrosion occurs because the Cr-depleted layer along the grain boundary dissolves. Therefore, it was limited to 0.02% or less. Furthermore, 0.015% or less is preferable to prevent intergranular corrosion. Moreover, if less than 0.001%, the amount of austenite phase and fine carbides produced in the steel wire is too small and the strength is insufficient, so 0.001% or more is preferable.

Si:1.0%以下
Siは、脱酸剤として、またSiOの酸化皮膜を形成して酸化の進行を抑制するので、耐高温酸化性に有用な元素である。しかしながら、1.0%超になると硬くなり機械的性質が劣化するので、1.0%以下とした。また、0.1%未満では、脱酸効果が得られないため、0.1%以上が好ましい。
Si: 1.0% or less Si is an element useful for high-temperature oxidation resistance because it suppresses the progress of oxidation as a deoxidizer and also by forming an oxide film of SiO 2 . However, if it exceeds 1.0%, it becomes hard and the mechanical properties deteriorate, so it was made 1.0% or less. Further, if it is less than 0.1%, a deoxidation effect cannot be obtained, so 0.1% or more is preferable.

Mn:1.0%以下
Mnは、Cと同様、マトリックスのフェライト組織の強度を高め、更に、オーステナイト相を生成する元素である。しかしながら、1.0%を超えると、鋼中に残存する介在物が多くなり耐食性が劣化するので、1.0%以下とした。また、0.1%より少ないと鋼線の強度が低く、また、溶接後も強度不足となるので、0.1%以上が好ましい。
Mn: 1.0% or less Mn, like C, is an element that increases the strength of the ferrite structure of the matrix and further generates an austenite phase. However, if it exceeds 1.0%, more inclusions remain in the steel and the corrosion resistance deteriorates, so the content was made 1.0% or less. Further, if it is less than 0.1%, the strength of the steel wire is low, and the strength is insufficient after welding, so 0.1% or more is preferable.

P:0.04%以下
Pは、靱性等の機械的性質を劣化させるのみならず、耐食性に対しても有害な元素である。0.04%超になると、その悪影響が顕著になるので、0.04%以下とした。下限は特に限定しないが、0.001%以下に低減すると、製造コストの上昇を招くので、実用鋼線上、0.001%が実質的な下限である。
P: 0.04% or less P is an element not only deteriorating mechanical properties such as toughness but also harmful to corrosion resistance. If it exceeds 0.04%, the adverse effect becomes remarkable, so it was set to 0.04% or less. The lower limit is not particularly limited, but if it is reduced to 0.001% or less, the production cost is increased, so 0.001% is a practical lower limit on a practical steel wire.

S:0.03%以下
Sは、Mnと結合して、初期発銹の起点となるMnSを形成する元素である。また、Sは、結晶粒界に偏析して粒界脆化を促進する有害元素でもあるので、極力低減することが好ましい。0.03%を超えるとその悪影響が顕著になるので、0.03%以下とした。下限は特に限定しないが、0.0001%以下に低減すると、製造コストの上昇を招くので、実用鋼線上、0.0001%が実質的な下限である。
S: 0.03% or less S is an element that combines with Mn to form MnS serving as a starting point of initial firing. S is also a harmful element that segregates at the crystal grain boundary and promotes embrittlement of the grain boundary, and is preferably reduced as much as possible. If it exceeds 0.03%, the adverse effect becomes remarkable, so 0.03% or less was set. The lower limit is not particularly limited, but if it is reduced to 0.0001% or less, the production cost is increased, so 0.0001% is a practical lower limit on a practical steel wire.

Cr:10.5%以上25.0%以下、
Crは、本発明における耐食性発現成分として重要な元素である。本発明で対象にする鋼線においては、所要の耐食性を確保するために、少なくとも10.5%が必要である。好ましくは、11.0%以上である。これは、10.5%未満になると、強固な不動態皮膜が生成し難くなるためである。
Cr: 10.5% to 25.0%,
Cr is an important element as a corrosion resistance developing component in the present invention. In the steel wire which is the subject of the present invention, at least 10.5% is necessary in order to ensure the required corrosion resistance. Preferably, it is 11.0% or more. This is because when the content is less than 10.5%, it is difficult to form a strong passive film.

一方、25.0%超になると、耐食性は良くなるものの、フェライト相の生成量が多くなり靱性不足が生じることやコストアップに繋がる。この傾向は、20.0%超で生じるので、20%以下が好ましい。以上より、10.5%以上25.0%以下とした。好ましくは、11.0%以上20.0%以下である。   On the other hand, if it exceeds 25.0%, the corrosion resistance will be improved, but the amount of ferrite phase produced will increase, leading to insufficient toughness and increased costs. This tendency occurs at more than 20.0%, so 20% or less is preferable. From the above, the content was made 10.5% or more and 25.0% or less. Preferably, it is 11.0% or more and 20.0% or less.

N:0.025%以下
Nは、マトリックスのフェライト組織の強度を高め、更に、オーステナイト相及び窒化物を生成する元素である。しかしながら、0.025%を超えると、耐食性、冷間鍛造性が劣化するため、0.025%以下とした。また、0.001%未満では、鋼線の窒化物の生成が少なく強度向上の効果が得られないため、0.001%以上が好ましい。
N: 0.025% or less N is an element that increases the strength of the ferrite structure of the matrix and further generates an austenite phase and a nitride. However, if it exceeds 0.025%, corrosion resistance and cold forgeability deteriorate, so the content was made 0.025% or less. Further, if it is less than 0.001%, the production of steel wire nitride is small and the effect of improving the strength cannot be obtained, so 0.001% or more is preferable.

また、各特性を高めるために、本発明のフェライト系ステンレス鋼線においては、更に、Cu、Mo及びNiの1種又は2種以上を含有する。   Moreover, in order to improve each characteristic, the ferritic stainless steel wire of this invention contains 1 type (s) or 2 or more types of Cu, Mo, and Ni further.

Cu:2.0%以下
Cuは、耐食性及び強度を向上させる有用な元素である。しかしながら、2.0%超になると、靭性が劣化するばかりか冷間鍛造性が劣化するので、2.0%以下とした。また、0.2%未満では、耐食性向上効果が得られ難いため、0.2%以上が好ましい。
Cu: 2.0% or less Cu is a useful element that improves corrosion resistance and strength. However, if it exceeds 2.0%, not only the toughness is deteriorated but also the cold forgeability is deteriorated. Further, if it is less than 0.2%, it is difficult to obtain the effect of improving corrosion resistance, so 0.2% or more is preferable.

Mo:3.0%以下、
Moは、耐食性及び耐摩耗性を高める元素である。しかしながら、3.0%を超えるとσ相が析出しやすく脆化し、冷間鍛造性が劣化するので、3.0%以下とした。0.01%より少ないと耐食性が十分に発現しないので、0.01%以上が好ましい。より好ましくは、0.2%以上3.0%以下である。
Mo: 3.0% or less,
Mo is an element that improves corrosion resistance and wear resistance. However, if it exceeds 3.0%, the σ phase tends to precipitate and becomes brittle, and the cold forgeability deteriorates. If less than 0.01%, corrosion resistance is not sufficiently exhibited, so 0.01% or more is preferable. More preferably, it is 0.2% or more and 3.0% or less.

Ni:5.0%以下
Niは、Cuと同様に、耐食性、強度、及び耐摩耗性の向上に有効な元素である。しかしながら、5.0%超になると冷間鍛造性が劣化するので、5.0%以下とした。また、0.01%未満では、耐食性及び強度向上効果が得られ難いため、0.01%以上が好ましい。
Ni: 5.0% or less Ni, like Cu, is an element effective in improving corrosion resistance, strength, and wear resistance. However, if it exceeds 5.0%, the cold forgeability deteriorates, so the content was made 5.0% or less. Further, if it is less than 0.01%, it is difficult to obtain an effect of improving corrosion resistance and strength, so 0.01% or more is preferable.

また、Cr炭化物の生成を抑制し、粒界腐食を防止する目的で、本発明では、更に、Nb及びTiの1種又は2種を含有させる。   Moreover, in order to suppress the production of Cr carbide and prevent intergranular corrosion, the present invention further contains one or two of Nb and Ti.

Nb:0.8%以下
固溶したNbは、強度を高めるとともに、炭窒化物を形成するので、Cr炭化物の生成を抑制し、その結果、Cr欠乏層の生成を抑制するので粒界腐食の防止に寄与する元素である。即ち、Nbは、耐食性の向上に有用な元素である。しかしながら、0.8%超になると冷間鍛造性が劣化するので、0.8%以下とした。また、0.05%未満では、耐食性向上効果が得られ難いため、0.05%以上が好ましい。
Nb: 0.8% or less Solid solution Nb increases the strength and forms carbonitrides, so it suppresses the formation of Cr carbides and, as a result, suppresses the formation of Cr-deficient layers. It is an element that contributes to prevention. That is, Nb is an element useful for improving corrosion resistance. However, if it exceeds 0.8%, the cold forgeability deteriorates, so the content was made 0.8% or less. Further, if it is less than 0.05%, it is difficult to obtain the effect of improving the corrosion resistance, so 0.05% or more is preferable.

Ti:0.5%以下
Tiは、Nbと同様、炭化物や窒化物を形成するので、Cr炭化物の生成を抑制し、その結果、Cr欠乏層の生成を抑制して粒界腐食の防止に寄与する元素である。即ち、Tiは、耐食性の向上に有用な元素である。しかしながら、0.5%超になると冷間鍛造性が劣化するので、0.5%以下とする。また、0.05%未満であるとTiの耐食性向上効果を発現させることができないため、0.05%以上が好ましい。
Ti: 0.5% or less Ti, like Nb, forms carbides and nitrides, so suppresses the formation of Cr carbides, and as a result, suppresses the formation of Cr-deficient layers and contributes to the prevention of intergranular corrosion. Element. That is, Ti is an element useful for improving corrosion resistance. However, if it exceeds 0.5%, the cold forgeability deteriorates, so the content is made 0.5% or less. Moreover, since the corrosion resistance improvement effect of Ti cannot be expressed as it is less than 0.05%, 0.05% or more is preferable.

以上が本発明で必要な元素である。更に、各特性を向上させる目的で、必要に応じて、以下の元素を任意で含有させることができる。   The above is an element required by this invention. Furthermore, for the purpose of improving each characteristic, the following elements can be optionally contained as required.

Sn:1.0%以下
Snは、酸中での活性溶解を抑制させ、強度の向上に有用な元素である。しかしながら、1.0%超になると、熱間加工性が劣化するので、1.0%以下とした。また、0.001%未満であるとSnの効果を発現させることができないため、0.001%以上が好ましい。
Sn: 1.0% or less Sn is an element useful for improving strength by suppressing active dissolution in acid. However, if it exceeds 1.0%, the hot workability deteriorates, so the content was made 1.0% or less. Moreover, since the effect of Sn cannot be expressed as it is less than 0.001%, 0.001% or more is preferable.

本発明では、更に、種々の目的に応じて、W、Ta、Co、Al、Ca、V、B、Bi、Mg、Zr、REM(Sc、Y及び原子番号57番〜71番までの元素)、Ga、Sr、Se、Ru、Rh、Pd、Ag、Cd、In、Sb、Te、Hf、Re、Os、Irから選ばれた1種又は2種以上を添加することができる。   In the present invention, W, Ta, Co, Al, Ca, V, B, Bi, Mg, Zr, and REM (Sc, Y and elements having atomic numbers 57 to 71) are further used according to various purposes. One, or two or more selected from Ga, Sr, Se, Ru, Rh, Pd, Ag, Cd, In, Sb, Te, Hf, Re, Os, and Ir can be added.

W:0.5%以下
Wは、耐摩耗性及び耐食性の向上に有用な元素である。0.5%超になると靭性が劣化するので、0.5%以下とした。0.01%未満であると、耐摩耗性及び耐食性を発現させることができないため、0.01%以上が好ましい。
W: 0.5% or less W is an element useful for improving wear resistance and corrosion resistance. If it exceeds 0.5%, the toughness deteriorates, so the content was made 0.5% or less. If it is less than 0.01%, wear resistance and corrosion resistance cannot be expressed, so 0.01% or more is preferable.

Ta:0.5%以下、
Taは、耐摩耗性及び耐食性を向上させる有用な元素である。0.5%超になると靭性が劣化するので、0.5%以下とした。0.01%未満であると、耐摩耗性及び耐食性を発現させることができないため、0.01%以上が好ましい。
Ta: 0.5% or less,
Ta is a useful element that improves wear resistance and corrosion resistance. If it exceeds 0.5%, the toughness deteriorates, so the content was made 0.5% or less. If it is less than 0.01%, wear resistance and corrosion resistance cannot be expressed, so 0.01% or more is preferable.

Co:0.5%以下
Coは、耐摩耗性の向上に有用な元素である。0.5%超になると靭性が劣化するので、0.5%以下とした。0.01%未満であると、耐摩耗性を発現させることができないため、0.01%以上が好ましい。
Co: 0.5% or less Co is an element useful for improving wear resistance. If it exceeds 0.5%, the toughness deteriorates, so the content was made 0.5% or less. If it is less than 0.01%, wear resistance cannot be exhibited, so 0.01% or more is preferable.

Al:0.05%以下
Alは、脱酸剤として有用な元素である。0.05%超になると靭性が劣化するので、0.05%以下とした。脱酸剤としての効果を発揮させるために、0.001%以上が好ましい。
Al: 0.05% or less Al is an element useful as a deoxidizer. If it exceeds 0.05%, the toughness deteriorates, so it was made 0.05% or less. In order to exhibit the effect as a deoxidizer, 0.001% or more is preferable.

Ca:0.05%以下
Caは、熱間加工性の向上に有用な元素である。0.05%超になると靭性が劣化するので、0.05%以下とした。熱間加工性向上効果を発揮させるために、0.001%以上が好ましい。
Ca: 0.05% or less Ca is an element useful for improving hot workability. If it exceeds 0.05%, the toughness deteriorates, so it was made 0.05% or less. In order to exhibit the effect of improving hot workability, 0.001% or more is preferable.

V:0.5%以下
Vは、耐食性の向上に有用な元素である。0.5%超になると靭性が劣化するので、0.5%以下とした。耐食性向上効果を発揮させるために、0.03%以上が好ましい。
V: 0.5% or less V is an element useful for improving corrosion resistance. If it exceeds 0.5%, the toughness deteriorates, so the content was made 0.5% or less. In order to exhibit the effect of improving corrosion resistance, 0.03% or more is preferable.

B:0.01%以下
Bは、熱間加工性の向上に有用な元素である。0.01%超になると靭性が劣化するので、0.01%以下とした。熱間加工性向上効果を発揮させるために、0.0003%以上が好ましい。
B: 0.01% or less B is an element useful for improving hot workability. If it exceeds 0.01%, the toughness deteriorates, so the content was made 0.01% or less. In order to exhibit the effect of improving hot workability, 0.0003% or more is preferable.

Bi:0.5%以下
Biは、耐食性及び切削加工性の向上に有用な元素である。0.5%超になると靭性が劣化するので、0.5%以下とした。耐食性及び切削加工性向上効果を発揮させるために、0.005%以上が好ましい。
Bi: 0.5% or less Bi is an element useful for improving corrosion resistance and cutting workability. If it exceeds 0.5%, the toughness deteriorates, so the content was made 0.5% or less. In order to exhibit the effect of improving corrosion resistance and cutting workability, 0.005% or more is preferable.

Mg:0.1%以下
Mgは、耐食性の向上に有用な元素である。0.1%超になると靭性が劣化するので、0.1%以下とした。耐食性向上効果を発揮させるために、0.0002%以上が好ましい。
Mg: 0.1% or less Mg is an element useful for improving corrosion resistance. If it exceeds 0.1%, the toughness deteriorates, so the content was made 0.1% or less. In order to exhibit the effect of improving corrosion resistance, 0.0002% or more is preferable.

Zr:0.5%以下
Zrは、耐食性と、熱間加工性の向上に有用な元素である。0.5%超になると、耐食性と熱間加工性の向上効果が飽和するので、0.5%以下とした。耐食性と熱間加工性の向上効果を発揮させるために、0.03%以上が好ましい。
Zr: 0.5% or less Zr is an element useful for improving corrosion resistance and hot workability. If it exceeds 0.5%, the effect of improving the corrosion resistance and hot workability is saturated, so the content is made 0.5% or less. In order to exhibit the improvement effect of corrosion resistance and hot workability, 0.03% or more is preferable.

REM:0.1%以下
REMは、熱間加工性の向上に有用な元素である。0.1%超になると靭性が劣化するので、0.1%以下とした。熱間加工性向上効果を発揮させるために、0.03%以上が好ましい。
REM: 0.1% or less REM is an element useful for improving hot workability. If it exceeds 0.1%, the toughness deteriorates, so the content was made 0.1% or less. In order to exhibit the effect of improving hot workability, 0.03% or more is preferable.

Ga:0.05%以下
Gaは、冷間鍛造や曲げ加工において加工性を向上させる有用な元素である。添加効果を確実に得るためには、0.0010%以上が好ましい。一方、0.05%超になると靭性が劣化するので、0.05%以下とした。
Ga: 0.05% or less Ga is a useful element that improves workability in cold forging and bending. In order to surely obtain the effect of addition, 0.0010% or more is preferable. On the other hand, if it exceeds 0.05%, the toughness deteriorates, so it was made 0.05% or less.

Sr:0.05%以下
Srは、Caと同様、熱間加工性の向上に有用な元素である。熱間加工性の向上効果を確実に得るためには、0.001%以上が好ましい。一方、0.05%超になると靭性が劣化するので、0.05%以下とした。
Sr: 0.05% or less Sr, like Ca, is an element useful for improving hot workability. In order to reliably obtain the effect of improving hot workability, 0.001% or more is preferable. On the other hand, if it exceeds 0.05%, the toughness deteriorates, so it was made 0.05% or less.

Se、Ru、Rh、Pd、Ag、Cd、In、Sb、Te、Hf、Re、Os、Ir:0.05%以下
Se、Ru、Rh、Pd、Ag、Cd、In、Sb、Te、Hf、Re、Os及びIrは、耐食性の向上に有用な元素である。耐食性の向上効果を得るため、それぞれ、0.0010%以上が好ましい。一方、0.05%超になると、偏析によって耐食性が劣化するので、それぞれ、0.05%以下とした。
Se, Ru, Rh, Pd, Ag, Cd, In, Sb, Te, Hf, Re, Os, Ir: 0.05% or less Se, Ru, Rh, Pd, Ag, Cd, In, Sb, Te, Hf , Re, Os and Ir are elements useful for improving corrosion resistance. In order to obtain the effect of improving the corrosion resistance, 0.0010% or more is preferable respectively. On the other hand, if it exceeds 0.05%, the corrosion resistance deteriorates due to segregation.

次に、鋼線の長手方向に対して、垂直断面における内層のミクロ組織の結晶粒度番号が4.0〜9.0で、表面から1/4×(直径)の深さまでの表層の結晶粒度番号が5.0〜10.0で、内層より表層の結晶粒度番号が大きいとした理由について説明する。   Next, the grain size number of the microstructure of the inner layer in the vertical section with respect to the longitudinal direction of the steel wire is 4.0 to 9.0, and the grain size of the surface layer from the surface to a depth of 1/4 × (diameter) The reason why the number is 5.0 to 10.0 and the surface grain size number is larger than the inner layer will be described.

まず、平均結晶粒度番号の測定方法について述べる。   First, a method for measuring the average grain size number will be described.

JIS G 0551(2013)(鋼−結晶粒度の顕微鏡試験方法)の付属書Cで規定される方法にて、単位長さ当たりの結晶粒界の交点数を測定し、JIS G 0551(2013)の表B.1又は附属書JBにより結晶粒度を求める。   The number of intersections of crystal grain boundaries per unit length was measured by the method specified in Appendix C of JIS G 0551 (2013) (steel-grain size microscopic test method), and JIS G 0551 (2013) Table B. Determine the grain size according to 1 or Annex JB.

鋼線の中心線に対する垂直断面に対して、表面から1/4×(直径)の深さまでの断面についての結晶粒度番号を表層の平均結晶粒度番号とし、表面から1/4×(直径)の深さから中心までの断面についての結晶粒度番号を内層の結晶粒度番号とする。   For the cross section perpendicular to the center line of the steel wire, the grain size number for the cross section from the surface to a depth of 1/4 × (diameter) is the average grain size number of the surface layer, and 1/4 × (diameter) from the surface The grain size number for the cross section from the depth to the center is the grain size number of the inner layer.

次に、平均結晶粒度番号の限定理由について述べる。   Next, the reason for limiting the average grain size number will be described.

結晶粒度番号が4.0以上の場合、曲げ加工が容易となり、マフラーハンガーの形状加工を達成できる。好ましくは、5.0以上である。4.0未満の場合、曲げ加工性が低いため、成形途中で割れが生じるなど成形そのものが難しくなる。10.0超の場合、曲げ加工の負荷が大きすぎて加工し難くなるため、10.0以下とした。好ましくは、9.0以下である。   When the crystal grain size number is 4.0 or more, the bending process becomes easy and the muffler hanger shape process can be achieved. Preferably, it is 5.0 or more. If it is less than 4.0, the bending workability is low, so that the molding itself becomes difficult, for example, cracking occurs during the molding. In the case of more than 10.0, the bending load is too large and it becomes difficult to process, so it was set to 10.0 or less. Preferably, it is 9.0 or less.

表層は、耐摩耗性が要求されるため、結晶粒度番号を大きくすることで、強度が大きく、しかも、伸びも大きくなるため加工性が向上する。そこで、表層の結晶粒度番号を内層よりも1以上大きくした。結晶粒度番号は、表層が大きく、内層へ向かうほど小さくなる。表層の結晶粒度番号と、内層の結晶粒度番号の差が、明瞭であれば、冷間鍛造性、耐摩耗性、耐食性を満足することを見出した。   Since the surface layer is required to have wear resistance, increasing the crystal grain size number increases strength and increases elongation, thereby improving workability. Therefore, the crystal grain size number of the surface layer was made 1 or more larger than that of the inner layer. The crystal grain size number increases as the surface layer increases and decreases toward the inner layer. It has been found that if the difference between the crystal grain number of the surface layer and the crystal grain number of the inner layer is clear, the cold forgeability, wear resistance and corrosion resistance are satisfied.

したがって、鋼線の長手方向に対して、垂直断面における内層の結晶粒度番号が4.0〜9.0で、表層の結晶粒度番号が5.0〜10.0で、内層より表層の結晶粒度番号を大きくした。   Therefore, with respect to the longitudinal direction of the steel wire, the grain size number of the inner layer in the vertical section is 4.0 to 9.0, the grain size number of the surface layer is 5.0 to 10.0, and the grain size of the surface layer from the inner layer Increased the number.

次に、平均粒界侵食深さが表層の平均結晶粒径の0.5倍〜1倍であることとした理由について説明する。   Next, the reason why the average grain boundary erosion depth is 0.5 to 1 times the average crystal grain size of the surface layer will be described.

まず、平均粒界侵食深さの測定方法について述べる。   First, a method for measuring the average grain boundary erosion depth is described.

蓚酸電解エッチング等の方法により粒界を明確にし、200μm×200μm〜300μm×300μmの視野について、光学顕微鏡を用いて、表面の粒界侵食深さ(表面と粒界侵食の最も深い点の距離)をμm単位で測定し、その総和(ΣD)を計算する。次に、測定した粒界に接する結晶粒の数(N)を測定する。最後に、粒界侵食深さの総和(ΣD)を結晶粒の数(N)で割って、準平均粒界侵食深さ(=ΣD/N)とする。準平均粒界侵食深さを5視野について測定し、その平均を平均粒界侵食深さとする。   Grain boundaries are clarified by a method such as oxalic acid electroetching, and the surface grain boundary erosion depth (distance between the surface and the deepest point of grain boundary erosion) is measured using an optical microscope for a field of view of 200 μm × 200 μm to 300 μm × 300 μm. Is measured in μm and the sum (ΣD) is calculated. Next, the number (N) of crystal grains in contact with the measured grain boundary is measured. Finally, the sum of the grain boundary erosion depth (ΣD) is divided by the number of crystal grains (N) to obtain a quasi-average grain boundary erosion depth (= ΣD / N). The quasi-average grain boundary erosion depth is measured for five visual fields, and the average is defined as the average grain boundary erosion depth.

結晶粒径は、500μm×500μmの1視野に対して、画像解析により結晶粒の断面積から結晶粒を円とみなした直径を計算し、1視野における全結晶粒の平均直径を計算する。それを任意の5視野について計測し、5視野の平均直径を平均結晶粒径とする。   For the crystal grain size, for one field of view of 500 μm × 500 μm, the diameter of the crystal grain regarded as a circle is calculated from the cross-sectional area of the crystal grain by image analysis, and the average diameter of all crystal grains in one field of view is calculated. It is measured for five arbitrary visual fields, and the average diameter of the five visual fields is defined as the average crystal grain size.

次に、平均粒界侵食深さの限定理由について述べる。   Next, the reason for limiting the average grain boundary erosion depth will be described.

鋼線は、熱処理後、表層の粒界近傍に生成されるCr欠乏層が酸洗により優先的に溶削されて、粒界に沿った小さな溝(ミクログルーブ)が形成される。このミクログルーブは、伸線する場合、表面に潤滑剤を保持するために有効な部位となる。このミクログルーブの深さは、潤滑性、光沢等による表面の美麗さ、冷間加工性に影響を与え、深さは、ショットブラスト処理の有無に関係なく、平均結晶粒径との関連で整理できることを見出した。   In the steel wire, after heat treatment, a Cr-deficient layer generated near the grain boundary of the surface layer is preferentially welded by pickling to form a small groove (micro groove) along the grain boundary. When the microgroove is drawn, the microgroove is an effective part for holding the lubricant on the surface. The depth of this microgroove affects the surface beauty and cold workability due to lubricity, gloss, etc., and the depth is organized in relation to the average crystal grain size regardless of whether or not shot blasting is performed. I found out that I can do it.

ミクログルーブ深さ(粒界侵食深さ)が、表層の平均結晶粒径の0.5倍未満であると、表面の潤滑剤が少なすぎて伸線ができなかったり、表面に焼付きが生じたりする。ミクログルーブ深さが、平均結晶粒径の1倍を超えると、粒界侵食部が伸線後の表面に残り、表面の美麗さを損なうばかりか、冷間鍛造や曲げ加工を行う際の割れの起点となる。以上より、平均粒界侵食深さを表層の平均結晶粒径の0.5倍〜1倍とした。   If the microgroove depth (grain boundary erosion depth) is less than 0.5 times the average crystal grain size of the surface layer, the surface lubricant is too small to be drawn or the surface is seized. Or If the microgroove depth exceeds 1 times the average crystal grain size, the grain boundary erosion remains on the surface after wire drawing, not only deteriorating the surface beauty, but also cracking during cold forging and bending. Is the starting point. From the above, the average grain boundary erosion depth was set to 0.5 to 1 times the average crystal grain size of the surface layer.

次に、表面から1/4×(直径)の深さまでの断面の硬さHv1が140以上であることとした理由について説明する。   Next, the reason why the hardness Hv1 of the cross section from the surface to a depth of ¼ × (diameter) is 140 or more will be described.

鋼線の耐摩耗性は、表面硬さが高いほど耐摩耗性に優れるため、表面硬さによって制御する。表層の硬さが、Hv1(JIS Z 2244)で140未満であると、マフラーハンガーとして使用した際に、走行中に石や砂が跳ねそれらが連続的に衝突して摩耗するため、表層の硬さを140以上とした。好ましくは、160以上である。上限は特に限定しないが、加工性の点で、250程度が上限となる。   The wear resistance of the steel wire is controlled by the surface hardness because the higher the surface hardness, the better the wear resistance. If the hardness of the surface layer is less than 140 in Hv1 (JIS Z 2244), when used as a muffler hanger, stones and sand will bounce during running and wear out due to continuous collision. The thickness was 140 or more. Preferably, it is 160 or more. The upper limit is not particularly limited, but about 250 is the upper limit in terms of workability.

以上、説明してきた本発明のフェライト系ステンレス鋼線は、上述したマフラーハンガーに必要な条件を全て満たすため、マフラーハンガー用として特に好適に用いることができる。   As described above, the ferritic stainless steel wire of the present invention that has been described satisfies all the conditions necessary for the muffler hanger described above, and therefore can be particularly suitably used for the muffler hanger.

次に、本発明のフェライト系ステンレス鋼線の製造方法について説明する。   Next, the manufacturing method of the ferritic stainless steel wire of this invention is demonstrated.

本発明のフェライト系ステンレス鋼線は、前記成分組成に調整された鋳片を熱間圧延後に、ショットブラスト処理をして、熱処理、酸洗処理を行い、伸線することで製造されるが、熱間圧延後に、ショットブラスト処理を行い、その後更に熱処理を行う点が特徴である。   The ferritic stainless steel wire of the present invention is manufactured by hot-rolling the slab adjusted to the above component composition, then performing shot blasting, performing heat treatment, pickling treatment, and drawing, It is characterized in that after hot rolling, shot blasting is performed, and then further heat treatment is performed.

熱間圧延工程、ショットブラスト処理工程
熱間圧延(線材圧延)では、減面率((ビレットの断面積)−(熱間圧延後の断面積))/(ビレットの断面積)が、約98〜99%と大きくなり、全断面にわたって歪が導入される。熱間圧延に引き続き、ショットブラスト処理を行うことにより、表層にさらに細かい歪が導入される。ショットブラスト処理は、100kg/m以上300kg/m以下が好ましい。100kg/m未満では、歪を入れる効果は無く、300kg/m超では、表層の変形が大きくなり表面が美麗で無くなる。
Hot rolling process, shot blasting process In hot rolling (wire rolling), the area reduction ratio ((cross-sectional area of billet) − (cross-sectional area after hot rolling)) / (cross-sectional area of billet) is about 98. It becomes as large as ˜99%, and strain is introduced over the entire cross section. Subsequent to hot rolling, by performing shot blasting, finer strain is introduced into the surface layer. The shot blast treatment is preferably 100 kg / m 2 or more and 300 kg / m 2 or less. If it is less than 100 kg / m 2 , there is no effect of adding strain, and if it exceeds 300 kg / m 2 , the surface layer is greatly deformed and the surface is not beautiful.

熱処理工程
ショットブラスト処理後に、900℃以上1100℃以下の温度で熱処理を施す。これにより、熱間圧延及びショットブラストで導入された歪が、余熱で回復する前に歪を核とした再結晶が表層から中心部全体にかけて進行し、表層が細かく、中心が大きな結晶粒分布が形成される。
Heat treatment step After the shot blast treatment, heat treatment is performed at a temperature of 900 ° C. or higher and 1100 ° C. or lower. As a result, the strain introduced by hot rolling and shot blasting is recrystallized from the surface layer to the entire center before recovering with residual heat, and the surface layer is fine and the center has a large grain distribution. It is formed.

しかも、鋼線の長手方向に対して、垂直断面における内層のミクロ組織の結晶粒度番号が4.0〜9.0で、表層の結晶粒度番号が5.0〜10.0で、表層の結晶粒度番号を内層のそれより大きくすることができる。また、表層の結晶粒径が小さい組織であるため、線材の表面粗さが小さく、美麗な表面とすることができ、冷間鍛造や曲げ加工によるしわやひび割れが出難い。   Moreover, the grain size number of the microstructure of the inner layer in the vertical cross section with respect to the longitudinal direction of the steel wire is 4.0 to 9.0, the grain size number of the surface layer is 5.0 to 10.0, and the crystal of the surface layer The particle size number can be larger than that of the inner layer. In addition, since the surface layer has a small crystal grain size, the surface roughness of the wire is small and a beautiful surface can be obtained, and wrinkles and cracks due to cold forging and bending are difficult to occur.

また、熱処理の温度は、900℃未満では再結晶が不十分であり、1100℃を超えると結晶が粗大粒となり、表層の結晶粒度番号が5.0より小さくなる。なお、熱処理時間は、4〜5分が望ましい。   Further, if the temperature of the heat treatment is less than 900 ° C., recrystallization is insufficient, and if it exceeds 1100 ° C., the crystal becomes coarse grains, and the crystal grain size number of the surface layer becomes smaller than 5.0. The heat treatment time is preferably 4 to 5 minutes.

酸洗工程
熱処理後に酸洗処理を行う。酸洗処理を行うことによって、脱スケールとともに適切な粒界侵食深さを得ることができる。酸洗処理は、硝弗酸のようなCr欠乏層を優先的に溶解する酸中に、一定温度、一定時間、鋼を浸漬させる。
Pickling process Pickling is performed after the heat treatment. By performing the pickling treatment, an appropriate grain boundary erosion depth can be obtained together with descaling. In the pickling treatment, steel is immersed in an acid that preferentially dissolves a Cr-deficient layer such as nitric hydrofluoric acid at a constant temperature for a predetermined time.

平均粒界腐食深さは、酸洗処理の温度と浸漬時間によって制御することができる。例えば、温度が高い場合は、浸漬時間を短く、温度が低い場合は、浸漬時間を長くする。温度に対する浸漬時間が、最適範囲より短い場合は、粒界侵食深さが、表層の平均結晶粒径の0.5倍より小さくなる。温度に対する浸漬時間が、最適範囲より長い場合は、表面粗度が大きくなり、粒界侵食深さが、表層の平均結晶粒径の1倍を超える部分が表れる。したがって、酸洗処理の温度と浸漬時間を調整することで、平均粒界侵食深さが、表層の平均結晶粒径の0.5倍〜1倍である鋼線を得ることができる。   The average intergranular corrosion depth can be controlled by the temperature of the pickling treatment and the immersion time. For example, when the temperature is high, the immersion time is shortened, and when the temperature is low, the immersion time is increased. When the immersion time with respect to temperature is shorter than the optimum range, the grain boundary erosion depth becomes smaller than 0.5 times the average crystal grain size of the surface layer. When the immersion time with respect to temperature is longer than the optimum range, the surface roughness becomes large, and a portion where the grain boundary erosion depth exceeds 1 times the average crystal grain size of the surface layer appears. Therefore, by adjusting the temperature of the pickling treatment and the dipping time, a steel wire having an average grain boundary erosion depth of 0.5 to 1 times the average crystal grain size of the surface layer can be obtained.

以下の(1)〜(7)の工程で、マフラーハンガーを製造した。
(1)ビレット(直径178mm丸断面)
(2)線材圧延(圧延後の直径11.5mm)
(3)ショットブラスト処理
(4)熱処理(900℃以上1100℃以下)
(5)酸洗
(6)伸線(伸線後の直径10.5mm)
(7)冷間鍛造
A muffler hanger was manufactured in the following steps (1) to (7).
(1) Billet (diameter 178mm round cross section)
(2) Wire rod rolling (11.5 mm diameter after rolling)
(3) Shot blasting (4) Heat treatment (900 ° C. or higher and 1100 ° C. or lower)
(5) Pickling (6) Wire drawing (10.5 mm diameter after wire drawing)
(7) Cold forging

表1に、本発明と比較鋼のステンレス鋼線の化学成分を示す。(5)の酸洗は、塩酸に浸漬した後、30℃の硝弗酸(1%のHFと10%のHNO)に5分浸漬した。 Table 1 shows chemical components of the stainless steel wires of the present invention and comparative steel. The pickling of (5) was immersed in hydrochloric acid and then immersed in 30 ° C. nitric hydrofluoric acid (1% HF and 10% HNO 3 ) for 5 minutes.

Figure 2015224358
Figure 2015224358

また、表2に、鋼線に(7)の冷間鍛造を施したマフラーハンガー模擬製品の評価結果を示す。結晶粒度番号は、上述した方法にて測定した。   Table 2 shows the evaluation result of the muffler hanger simulated product obtained by subjecting the steel wire to the cold forging of (7). The crystal grain size number was measured by the method described above.

冷間鍛造性は、φ10.5mm、長さ150mmのサンプルを据え込み鍛造で、ヘッドを加工した後、1/2長さ部分において、90°曲げ加工を行い、鍛造後表面の割れの有無を観察した。据え込み率70%で割れ無しを◎、据え込み率50%で割れ無しを○、据え込み率50%で割れ有りを×とした。また、据え込み率(%)は、下記のように求めた。
据え込み率(%)=((H−h)/H)×100
H:鍛造前のサンプルの長さ
h:鍛造後のサンプルの長さ
The cold forgeability is upset forging a sample of φ10.5mm and length 150mm. After the head is machined, 90 ° bending is performed on the 1/2 length part to check for cracks on the surface after forging. Observed. An upsetting rate of 70% indicates no cracking, an upsetting rate of 50% indicates no cracking, and an upsetting rate of 50% indicates that there is no cracking. The upsetting rate (%) was obtained as follows.
Upsetting rate (%) = ((H−h) / H) × 100
H: Length of sample before forging h: Length of sample after forging

耐摩耗性は、表面硬さが高いほど耐摩耗性に優れる。表面から1/4×(直径)までの深さの断面についての硬さHv1(JIS Z 2244)を5点平均により評価し、140以上を合格とした。   As for the wear resistance, the higher the surface hardness, the better the wear resistance. The hardness Hv1 (JIS Z 2244) for a cross section having a depth of ¼ × (diameter) from the surface was evaluated based on an average of 5 points, and 140 or more was regarded as acceptable.

耐食性は、マフラーハンガーを模擬したサンプルについてJIS Z 2371に準拠し、35℃、5%塩水噴霧試験(168h)を実施し、発銹の状況を観察した。発銹無しを◎、僅かに発銹有り(レイティングナンバー6以上)を○、発銹有り(レイティングナンバー6未満)を×とした。   For corrosion resistance, a sample simulating a muffler hanger was subjected to a 35 ° C., 5% salt spray test (168 h) in accordance with JIS Z 2371, and the state of rusting was observed. “No” indicates ◎, “Slightly” (with a rating number of 6 or more) indicates “◯”, and “No” (with a rating number of less than 6) indicates ×.

Figure 2015224358
Figure 2015224358

発明例である試験No.1〜12は、冷間鍛造性、硬さ、及び、耐食性の評価において、良好である。成分範囲を外れた比較例である試験No.13〜23は、冷間鍛造性、硬さ、及び、耐食性の1つ又は2つ以上の評価において、劣っている。酸洗方法を変化させ、平均粒界侵食深さ/表層平均結晶粒径の範囲を外れた比較例である試験No.24及び25は、冷間鍛造性の評価において、劣っている。   Test No. which is an invention example. 1-12 are favorable in evaluation of cold forgeability, hardness, and corrosion resistance. Test No. which is a comparative example out of the component range. 13-23 are inferior in one or more evaluations of cold forgeability, hardness, and corrosion resistance. Test No. 1 is a comparative example in which the pickling method was changed to deviate from the range of average grain boundary erosion depth / surface average grain size. 24 and 25 are inferior in the evaluation of cold forgeability.

表3に、鋼No.1、5及び8において、(3)ショットブラスト処理、(4)熱処理の条件を変化させて、評価した結果を示す。   In Table 3, steel No. 1, 5, and 8 show the evaluation results obtained by changing the conditions of (3) shot blast treatment and (4) heat treatment.

Figure 2015224358
Figure 2015224358

発明例である試験No.26〜No.34は、冷間鍛造性、硬さ、及び、耐食性の評価において、良好である。比較例である試験No.35〜No.43は、冷間鍛造性、硬さ、及び、耐食性の1つ又は2つ以上の評価において、劣っている。   Test No. which is an invention example. 26-No. No. 34 is good in the evaluation of cold forgeability, hardness, and corrosion resistance. Test No. which is a comparative example. 35-No. No. 43 is inferior in one or more evaluations of cold forgeability, hardness, and corrosion resistance.

前記したように、本発明によれば、成形性、耐孔食性及び耐磨耗性に優れた自動車マフラーハンガーに好適に使用されるフェライト系ステンレス鋼線を提供することができる。よって、本発明は、産業上の利用可能性が大きいものである。   As described above, according to the present invention, it is possible to provide a ferritic stainless steel wire that is suitably used for an automobile muffler hanger excellent in formability, pitting corrosion resistance, and wear resistance. Therefore, the present invention has great industrial applicability.

Claims (5)

質量%で、
C :0.02%以下、
Si:1.0%以下、
Mn:1.0%以下、
P :0.04%以下、
S :0.03%以下、
Cr:10.5%以上25.0%以下、
N :0.025%以下、更に、
Cu:2.0%以下、
Mo:3.0%以下、
Ni:5.0%以下
の1種又は2種以上を含有し、更に、
Nb:0.8%以下、
Ti:0.5%以下
の1種又は2種を含有し、長手方向に対して垂直断面における内層のミクロ組織の結晶粒度番号が4.0〜9.0で、表面から1/4×(直径)の深さまでの表層の結晶粒度番号が5.0〜10.0で、内層より表層の結晶粒度番号が大きく、平均粒界侵食深さが表層の平均結晶粒径の0.5倍〜1倍であり、
表面から1/4×(直径)の深さまでの断面についての硬さHv1(JIS Z 2244)が140以上であることを特徴とする成形性及び耐孔食性に優れたフェライト系ステンレス鋼線。
% By mass
C: 0.02% or less,
Si: 1.0% or less,
Mn: 1.0% or less,
P: 0.04% or less,
S: 0.03% or less,
Cr: 10.5% to 25.0%,
N: 0.025% or less,
Cu: 2.0% or less,
Mo: 3.0% or less,
Ni: containing 1 type or 2 types or less of 5.0% or less,
Nb: 0.8% or less,
Ti: 1 or 2% of 0.5% or less, the grain size number of the microstructure of the inner layer in the cross section perpendicular to the longitudinal direction is 4.0 to 9.0, and 1/4 × (( The grain size number of the surface layer up to the depth of (diameter) is 5.0 to 10.0, the grain size number of the surface layer is larger than the inner layer, and the average grain boundary erosion depth is 0.5 times the average grain size of the surface layer 1x
A ferritic stainless steel wire excellent in formability and pitting corrosion resistance, characterized in that the hardness Hv1 (JIS Z 2244) for a cross section from the surface to a depth of 1/4 × (diameter) is 140 or more.
更に、質量%で、
Sn:1.0%以下
を含有することを特徴とする請求項1に記載の成形性及び耐孔食性に優れたフェライト系ステンレス鋼線。
Furthermore, in mass%,
The ferritic stainless steel wire excellent in formability and pitting corrosion resistance according to claim 1, characterized by containing Sn: 1.0% or less.
更に、質量%で、
W :0.5%以下、
Ta:0.5%以下、
Co:0.5%以下、
Al:0.05%以下、
Ca:0.05%以下、
V :0.5%以下、
B :0.01%以下、
Bi:0.5%以下、
Mg:0.1%以下、
Zr:0.5%以下、
REM:0.1%以下、
Ga:0.05%以下、
Sr:0.05%以下、
Se:0.05%以下、
Ru:0.05%以下、
Rh:0.05%以下、
Pd:0.05%以下、
Ag:0.05%以下、
Cd:0.05%以下、
In:0.05%以下、
Sb:0.05%以下、
Te:0.05%以下、
Hf:0.05%以下、
Re:0.05%以下、
Os:0.05%以下、
Ir:0.05%以下
の1種又は2種以上を含有することを特徴とする請求項1又は2に記載の成形性及び耐孔食性に優れたフェライト系ステンレス鋼線。
Furthermore, in mass%,
W: 0.5% or less,
Ta: 0.5% or less,
Co: 0.5% or less,
Al: 0.05% or less,
Ca: 0.05% or less,
V: 0.5% or less,
B: 0.01% or less,
Bi: 0.5% or less,
Mg: 0.1% or less,
Zr: 0.5% or less,
REM: 0.1% or less,
Ga: 0.05% or less,
Sr: 0.05% or less,
Se: 0.05% or less,
Ru: 0.05% or less,
Rh: 0.05% or less,
Pd: 0.05% or less,
Ag: 0.05% or less,
Cd: 0.05% or less,
In: 0.05% or less,
Sb: 0.05% or less,
Te: 0.05% or less,
Hf: 0.05% or less,
Re: 0.05% or less,
Os: 0.05% or less,
The ferritic stainless steel wire excellent in formability and pitting corrosion resistance according to claim 1 or 2, characterized by containing Ir: 0.05% or less.
マフラーハンガー用であることを特徴とする請求項1〜3のいずれか1項に記載の成形性及び耐孔食性に優れたフェライト系ステンレス鋼線。   The ferritic stainless steel wire excellent in formability and pitting corrosion resistance according to any one of claims 1 to 3, which is used for a muffler hanger. 請求項1〜3のいずれか1項に記載の成分組成を有する鋳片を熱間圧延する工程、該熱間圧延後にショットブラスト処理を行う工程、該ショットブラスト処理後に900℃以上1100℃以下の温度で熱処理を行う工程、及び、該熱処理後に酸洗を行う工程を含むことを特徴とする請求項1〜4のいずれか1項に記載の成形性及び耐孔食性に優れたフェライト系ステンレス鋼線の製造方法。   A step of hot rolling the slab having the component composition according to any one of claims 1 to 3, a step of performing a shot blast treatment after the hot rolling, and a temperature of 900 ° C or higher and 1100 ° C or lower after the shot blast treatment. The ferritic stainless steel excellent in formability and pitting corrosion resistance according to any one of claims 1 to 4, comprising a step of performing a heat treatment at a temperature, and a step of pickling after the heat treatment. Wire manufacturing method.
JP2014108954A 2014-05-27 2014-05-27 Ferritic stainless steel wire excellent in formability and pitting corrosion resistance and method for producing the same Active JP6308869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014108954A JP6308869B2 (en) 2014-05-27 2014-05-27 Ferritic stainless steel wire excellent in formability and pitting corrosion resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014108954A JP6308869B2 (en) 2014-05-27 2014-05-27 Ferritic stainless steel wire excellent in formability and pitting corrosion resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015224358A true JP2015224358A (en) 2015-12-14
JP6308869B2 JP6308869B2 (en) 2018-04-11

Family

ID=54841365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014108954A Active JP6308869B2 (en) 2014-05-27 2014-05-27 Ferritic stainless steel wire excellent in formability and pitting corrosion resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP6308869B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105568176A (en) * 2015-12-28 2016-05-11 钢铁研究总院 High-strength high-toughness high-sharpness-persistence antibacterial stainless steel
CN105803348A (en) * 2016-05-24 2016-07-27 江苏金基特钢有限公司 Wear-resistant stainless steel wire
CN105970113A (en) * 2016-05-25 2016-09-28 江苏金基特钢有限公司 Preparation method for low-self-noise stainless steel wire
CN105970114A (en) * 2016-05-25 2016-09-28 江苏金基特钢有限公司 Low self-noise stainless steel wire
CN106834935A (en) * 2016-12-27 2017-06-13 芜湖倍思科创园有限公司 A kind of wear-resistant ball of high rigidity high-hardenability energy and preparation method thereof
JP2017179463A (en) * 2016-03-30 2017-10-05 新日鐵住金ステンレス株式会社 Ferritic stainless steel tube for muffler hanger and muffler hanger
CN107326287A (en) * 2017-06-09 2017-11-07 太仓东旭精密机械有限公司 A kind of component of machine steel
CN107541661A (en) * 2017-09-29 2018-01-05 江苏理工学院 A kind of antibacterial ferritic stainless steel alloy material and preparation method thereof
CN109487171A (en) * 2018-12-21 2019-03-19 中南大学 A kind of corrosion-resisting steel of hydrochloric acid corrosion resistant and preparation method thereof
JP2020084210A (en) * 2018-11-16 2020-06-04 日鉄ステンレス株式会社 Bar-shaped steel material
WO2020196595A1 (en) 2019-03-27 2020-10-01 日鉄ステンレス株式会社 Steel rod
KR20210032765A (en) * 2019-09-17 2021-03-25 주식회사 포스코 LOW-Cr FERRITIC STAINLESS STEEL WITH IMPROVED EXPANABILITY AND MANUFACTURING METHOD THEREOF
CN114260449A (en) * 2021-11-06 2022-04-01 广东省粤钢新材料科技有限公司 High-hardness stainless steel wire
CN116024504A (en) * 2022-12-16 2023-04-28 坤石容器制造有限公司 Ferrite stainless steel for high-purity unstable electron special gas in semiconductor industry and preparation method thereof
CN116288073A (en) * 2023-05-23 2023-06-23 北京科技大学 High corrosion resistant tellurium-containing stainless steel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111235474A (en) * 2020-02-20 2020-06-05 孙志颜 High-corrosion-resistance stainless steel and manufacturing method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052523A (en) * 1983-09-01 1985-03-25 Nippon Stainless Steel Co Ltd Production of ferrite-austenite two-phase stainless steel
JPS63317651A (en) * 1987-02-27 1988-12-26 テイツセン・エーデルシユタールヴエルケ・アクチエンゲゼルシヤフト Semi-product, heater, construction member and catalyst carrier of ferrite alloy steel
JPH05320961A (en) * 1992-05-22 1993-12-07 Mitsubishi Heavy Ind Ltd Method for descaling stainless hot rolled steel sheet
JPH09256065A (en) * 1996-03-22 1997-09-30 Nippon Steel Corp Production of ferritic stainless steel thin sheet excellent in surface property
US5795411A (en) * 1995-11-03 1998-08-18 Ugine Savoie Ferritic stainless steel wire and steel wool
JP2003105495A (en) * 2001-09-28 2003-04-09 Kobe Steel Ltd Wire-shaped or bar-shaped steel excellent in deformability and machine part
JP2011001564A (en) * 2008-03-21 2011-01-06 Nisshin Steel Co Ltd Ferritic stainless steel sheet having excellent roughening resistance and method for producing the same
JP2012082488A (en) * 2010-10-13 2012-04-26 Sumitomo Metal Ind Ltd Austenitic stainless steel excellent in adhesion to film
JP2012201929A (en) * 2011-03-25 2012-10-22 Nippon Steel & Sumikin Stainless Steel Corp Stainless steel wire material and steel wire excellent in corrosion resistance, strength, ductility, and method for producing the same
JP2013147705A (en) * 2012-01-19 2013-08-01 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel wire rod and steel wire, and method for producing them

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052523A (en) * 1983-09-01 1985-03-25 Nippon Stainless Steel Co Ltd Production of ferrite-austenite two-phase stainless steel
US4659397A (en) * 1983-09-01 1987-04-21 Nippon Stainless Steel Co. Ltd. Manufacturing process for plate or forging of ferrite-austenite two-phase stainless steel
JPS63317651A (en) * 1987-02-27 1988-12-26 テイツセン・エーデルシユタールヴエルケ・アクチエンゲゼルシヤフト Semi-product, heater, construction member and catalyst carrier of ferrite alloy steel
US4859649A (en) * 1987-02-27 1989-08-22 Thyssen Edelstahlwerke Ag Semi-finished products of ferritic steel and catalytic substrate containing same
JPH05320961A (en) * 1992-05-22 1993-12-07 Mitsubishi Heavy Ind Ltd Method for descaling stainless hot rolled steel sheet
US5795411A (en) * 1995-11-03 1998-08-18 Ugine Savoie Ferritic stainless steel wire and steel wool
JPH09256065A (en) * 1996-03-22 1997-09-30 Nippon Steel Corp Production of ferritic stainless steel thin sheet excellent in surface property
JP2003105495A (en) * 2001-09-28 2003-04-09 Kobe Steel Ltd Wire-shaped or bar-shaped steel excellent in deformability and machine part
JP2011001564A (en) * 2008-03-21 2011-01-06 Nisshin Steel Co Ltd Ferritic stainless steel sheet having excellent roughening resistance and method for producing the same
JP2012082488A (en) * 2010-10-13 2012-04-26 Sumitomo Metal Ind Ltd Austenitic stainless steel excellent in adhesion to film
JP2012201929A (en) * 2011-03-25 2012-10-22 Nippon Steel & Sumikin Stainless Steel Corp Stainless steel wire material and steel wire excellent in corrosion resistance, strength, ductility, and method for producing the same
JP2013147705A (en) * 2012-01-19 2013-08-01 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel wire rod and steel wire, and method for producing them

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105568176A (en) * 2015-12-28 2016-05-11 钢铁研究总院 High-strength high-toughness high-sharpness-persistence antibacterial stainless steel
JP2017179463A (en) * 2016-03-30 2017-10-05 新日鐵住金ステンレス株式会社 Ferritic stainless steel tube for muffler hanger and muffler hanger
CN105803348A (en) * 2016-05-24 2016-07-27 江苏金基特钢有限公司 Wear-resistant stainless steel wire
CN105970113A (en) * 2016-05-25 2016-09-28 江苏金基特钢有限公司 Preparation method for low-self-noise stainless steel wire
CN105970114A (en) * 2016-05-25 2016-09-28 江苏金基特钢有限公司 Low self-noise stainless steel wire
CN106834935A (en) * 2016-12-27 2017-06-13 芜湖倍思科创园有限公司 A kind of wear-resistant ball of high rigidity high-hardenability energy and preparation method thereof
CN107326287A (en) * 2017-06-09 2017-11-07 太仓东旭精密机械有限公司 A kind of component of machine steel
CN107541661A (en) * 2017-09-29 2018-01-05 江苏理工学院 A kind of antibacterial ferritic stainless steel alloy material and preparation method thereof
JP7320936B2 (en) 2018-11-16 2023-08-04 日鉄ステンレス株式会社 bar steel
JP2020084210A (en) * 2018-11-16 2020-06-04 日鉄ステンレス株式会社 Bar-shaped steel material
CN109487171A (en) * 2018-12-21 2019-03-19 中南大学 A kind of corrosion-resisting steel of hydrochloric acid corrosion resistant and preparation method thereof
CN109487171B (en) * 2018-12-21 2021-02-02 中南大学 Corrosion-resistant steel resistant to hydrochloric acid corrosion and preparation method thereof
WO2020196595A1 (en) 2019-03-27 2020-10-01 日鉄ステンレス株式会社 Steel rod
KR102255119B1 (en) 2019-09-17 2021-05-24 주식회사 포스코 LOW-Cr FERRITIC STAINLESS STEEL WITH IMPROVED EXPANABILITY AND MANUFACTURING METHOD THEREOF
CN114585754A (en) * 2019-09-17 2022-06-03 株式会社Posco Low-CR ferritic stainless steel with improved pipe expansion workability and method for producing same
KR20210032765A (en) * 2019-09-17 2021-03-25 주식회사 포스코 LOW-Cr FERRITIC STAINLESS STEEL WITH IMPROVED EXPANABILITY AND MANUFACTURING METHOD THEREOF
CN114260449A (en) * 2021-11-06 2022-04-01 广东省粤钢新材料科技有限公司 High-hardness stainless steel wire
CN116024504A (en) * 2022-12-16 2023-04-28 坤石容器制造有限公司 Ferrite stainless steel for high-purity unstable electron special gas in semiconductor industry and preparation method thereof
CN116288073A (en) * 2023-05-23 2023-06-23 北京科技大学 High corrosion resistant tellurium-containing stainless steel
CN116288073B (en) * 2023-05-23 2023-07-21 北京科技大学 High corrosion resistant tellurium-containing stainless steel

Also Published As

Publication number Publication date
JP6308869B2 (en) 2018-04-11

Similar Documents

Publication Publication Date Title
JP6308869B2 (en) Ferritic stainless steel wire excellent in formability and pitting corrosion resistance and method for producing the same
JP6721077B2 (en) Abrasion resistant steel plate and method for producing abrasion resistant steel plate
KR101758003B1 (en) Hot-rolled steel sheet
KR101492753B1 (en) High strength hot rolled steel sheet having excellent fatigue resistance and method for manufacturing the same
KR101621639B1 (en) Steel sheet, plated steel sheet, method for producing steel sheet, and method for producing plated steel sheet
JP6314520B2 (en) High-strength steel sheet having a maximum tensile strength of 1300 MPa or more, excellent formability, high-strength hot-dip galvanized steel sheet, high-strength galvannealed steel sheet, and methods for producing them
JP5779907B2 (en) Steel for heat treatment
JP5880788B2 (en) High strength oil well steel and oil well pipe
KR101987573B1 (en) High strength steel sheet and manufacturing method thereof
JP6683294B1 (en) Steel plate and enamel products
JP7311807B2 (en) steel plate
JP6475053B2 (en) Duplex stainless steel wire and screw product and method for producing duplex stainless steel wire
TWI507541B (en) Cold-rolled steel sheet, galvanized cold-rolled steel sheet and the like
JP5825185B2 (en) Cold rolled steel sheet and method for producing the same
JP5846445B2 (en) Cold rolled steel sheet and method for producing the same
JP6816738B2 (en) Steel wire manufacturing method
JP2012219341A (en) Cold-rolled steel sheet and manufacturing method thereof
JP6540245B2 (en) High strength steel plate excellent in shape freezing property and method for manufacturing the same
TWI655299B (en) High-strength steel plate and manufacturing method thereof
JP6750771B1 (en) Hot-dip galvanized steel sheet and method for producing the same
JP6737208B2 (en) Wear-resistant steel plate
JP6264176B2 (en) Cold rolled steel sheet and method for producing the same
JP6213683B2 (en) Steel and pipe for oil expansion
JP2020111835A (en) Method for producing abrasion-resistant steel sheet
TWI622654B (en) High strength steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180313

R150 Certificate of patent or registration of utility model

Ref document number: 6308869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250