WO2018146783A1 - Austenitic heat-resistant alloy and method for producing same - Google Patents

Austenitic heat-resistant alloy and method for producing same Download PDF

Info

Publication number
WO2018146783A1
WO2018146783A1 PCT/JP2017/004824 JP2017004824W WO2018146783A1 WO 2018146783 A1 WO2018146783 A1 WO 2018146783A1 JP 2017004824 W JP2017004824 W JP 2017004824W WO 2018146783 A1 WO2018146783 A1 WO 2018146783A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
content
alloy
resistant alloy
surface portion
Prior art date
Application number
PCT/JP2017/004824
Other languages
French (fr)
Japanese (ja)
Inventor
仙波 潤之
岡田 浩一
吉澤 満
敏秀 小野
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to EP17895819.5A priority Critical patent/EP3581669A4/en
Priority to US16/483,049 priority patent/US20200232081A1/en
Priority to JP2018566714A priority patent/JP6816779B2/en
Priority to PCT/JP2017/004824 priority patent/WO2018146783A1/en
Priority to CN201780086046.1A priority patent/CN110268079A/en
Priority to KR1020197026299A priority patent/KR20190117598A/en
Priority to CA3052547A priority patent/CA3052547C/en
Publication of WO2018146783A1 publication Critical patent/WO2018146783A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Definitions

  • the present invention relates to an austenitic heat-resistant alloy and a method for producing the same.
  • 18-8 austenitic stainless steels such as SUS304H, SUS316H, SUS321H, and SUS347H have been used as equipment materials in thermal power generation boilers and chemical plants used in high temperature environments.
  • Patent Documents 1 to 4 disclose highly corrosion-resistant austenitic steels having good high-temperature strength.
  • Patent Document 5 discloses an austenitic stainless steel excellent in high temperature strength and corrosion resistance. According to Patent Documents 1 to 5, the high temperature strength is improved by increasing the Cr content to 20% or more and containing W and / or Mo.
  • JP-A 61-179833 Japanese Patent Application Laid-Open No. Sho 61-179834 JP-A 61-179835 Japanese Patent Laid-Open No. 61-179836 JP 2004-3000 A
  • the present invention solves the above problems, and provides an austenitic heat resistant alloy that exhibits 0.2% proof stress and tensile strength at room temperature sufficient as a large structural member, and creep rupture strength at high temperature, and a method for producing the same.
  • the purpose is to provide.
  • the present invention has been made to solve the above-mentioned problems, and the gist thereof is the following austenitic heat-resistant alloy and a method for producing the same.
  • the chemical composition of the alloy is mass%, C: 0.02 to 0.12%, Si: 2.0% or less, Mn: 3.0% or less, P: 0.030% or less, S: 0.015% or less, Cr: 20.0% or more and less than 28.0%, Ni: more than 35.0% and 55.0% or less, Co: 0-20.0%, W: 4.0-10.0%, Ti: 0.01 to 0.50%, Nb: 0.01 to 1.0%, Mo: less than 0.50%, Cu: less than 0.50%, Al: 0.30% or less, N: less than 0.10%, Mg: 0 to 0.05%, Ca: 0 to 0.05%, REM: 0 to 0.50%, V: 0 to 1.5% B: 0 to 0.01% Zr: 0 to 0.10%, Hf: 0 to 1.0% Ta: 0 to 8.0%, Re: 0 to 8.0%, Balance: Fe and impurities, In the cross section perpendicular to the longitudinal direction of the alloy, the shortest distance from the center portion to
  • Cr PB / Cr PS ⁇ 10.0 (i) YS S / YS B ⁇ 1.5 (ii) TS S / TS B ⁇ 1.2 (iii)
  • Cr PB Cr amount existing as precipitates obtained by extraction residue analysis in the central portion
  • Cr PS Cr amount existing as precipitates obtained by extraction residue analysis in the outer surface portion
  • YS B 0.2% proof stress in the central portion
  • YS S 0.2% proof stress at the outer surface portion
  • TS B Tensile strength at the central portion TS S : Tensile strength at the outer surface portion
  • the chemical composition is mass%, Mg: 0.0005 to 0.05%, Ca: 0.0005 to 0.05%, REM: 0.0005 to 0.50%, V: 0.02 to 1.5%, B: 0.0005 to 0.01%, Zr: 0.005 to 0.10%, Hf: 0.005 to 1.0%, Ta: 0.01-8.0%, and Re: 0.01 to 8.0%, Containing one or more selected from The austenitic heat-resistant alloy according to (1) above.
  • the 10,000-hour creep rupture strength at 700 ° C. in the longitudinal direction in the central portion is 100 MPa or more.
  • the working is performed once or more in a direction substantially perpendicular to the longitudinal direction.
  • the austenitic heat-resistant alloy of the present invention has little variation in mechanical properties depending on the part, and is excellent in creep rupture strength at high temperatures.
  • C 0.02 to 0.12% C is an element essential for forming carbides and maintaining high-temperature tensile strength and creep rupture strength necessary for an austenitic heat-resistant alloy. Therefore, the C content needs to be 0.02% or more. However, if its content exceeds 0.12%, not only undissolved carbides are produced, but also Cr carbides increase, which deteriorates mechanical properties such as ductility and toughness and weldability. Therefore, the C content is 0.02 to 0.12%.
  • the C content is preferably 0.05% or more, and preferably 0.10% or less.
  • Si 2.0% or less Si is contained as a deoxidizing element. Further, Si is an element effective for enhancing oxidation resistance, steam oxidation resistance, and the like. It is also an element that improves the hot water flow in the cast material. However, when the Si content exceeds 2.0%, the formation of intermetallic compounds such as the ⁇ phase is promoted, so that the stability of the structure at high temperatures deteriorates and the toughness and ductility decrease. Furthermore, the weldability is also reduced. Therefore, the Si content is 2.0% or less. When the structural stability is important, the Si content is preferably 1.0% or less. In addition, when the deoxidation effect
  • Mn 3.0% or less Mn has a deoxidizing effect similar to Si, and has an effect of improving ductility at high temperatures by fixing S unavoidably contained in the alloy as a sulfide. However, if the Mn content exceeds 3.0%, precipitation of intermetallic compounds such as the ⁇ phase is promoted, so that mechanical properties such as structure stability and high temperature strength deteriorate. Therefore, the Mn content is 3.0% or less.
  • the Mn content is preferably 2.0% or less, and more preferably 1.5% or less.
  • the Mn content is preferably 0.10% or more, and is preferably 0.20% or more. More preferred.
  • P 0.030% or less P is inevitably mixed into the alloy as an impurity, and significantly reduces weldability and ductility at high temperatures. Therefore, the P content is 0.030% or less.
  • the P content is preferably as low as possible, preferably 0.020% or less, and more preferably 0.015% or less.
  • S 0.015% or less S, like P, is inevitably mixed into the alloy as an impurity, and significantly reduces weldability and ductility at high temperatures. Therefore, the S content is 0.015% or less. When emphasizing hot workability, the S content is preferably 0.010% or less, more preferably 0.005% or less, and even more preferably 0.003% or less.
  • Cr 20.0% or more and less than 28.0% Cr is an important element that exhibits an excellent action in improving corrosion resistance such as oxidation resistance, steam oxidation resistance, and high temperature corrosion resistance. However, if the content is less than 20.0%, these effects cannot be obtained. On the other hand, if the Cr content is increased, particularly 28.0% or more, the structure becomes unstable due to precipitation of the ⁇ phase and the weldability is also deteriorated. Therefore, the Cr content is 20.0% or more and less than 28.0%.
  • the Cr content is preferably 21.0% or more, and more preferably 22.0% or more. Moreover, it is preferable that Cr content is 26.0% or less, and it is more preferable that it is 25.0% or less.
  • Ni more than 35.0% and not more than 55.0%
  • Ni is an element that stabilizes the austenite structure, and is also an important element for ensuring corrosion resistance. From the balance with the above Cr content, Ni needs to be contained exceeding 35.0%. On the other hand, if the Ni content is excessive, the cost is increased.
  • the Ni content is preferably 40.0% or more, and more preferably 42.0% or more. Further, the Ni content is preferably 50.0% or less, and more preferably 48.0% or less.
  • Co 0-20.0%
  • Co is not necessarily contained, but it may be contained in place of a part of Ni in order to stabilize the austenite structure and contribute to the improvement of creep rupture strength as in the case of Ni.
  • the content exceeds 20.0%, the effect is saturated and the economic efficiency is lowered. Therefore, the Co content is 0 to 20.0%.
  • the Co content is preferably 15.0% or less.
  • W 4.0-10.0% W not only contributes to the improvement of creep rupture strength as a solid solution strengthening element by dissolving in the matrix, but also precipitates as a Fe 2 W type Laves phase or Fe 7 W 6 type ⁇ phase, and increases the creep rupture strength. It is an important element that greatly improves. However, if the W content is less than 4.0%, the above-described effects cannot be obtained. On the other hand, even if W is contained in an amount exceeding 10.0%, the effect of improving the strength is saturated and the structure stability and ductility at high temperature deteriorate. Therefore, the W content is 4.0 to 10.0%. The W content is preferably 5.0% or more, and more preferably 5.5% or more. Moreover, it is preferable that W content is 9.0% or less, and it is more preferable that it is 8.5% or less.
  • Ti 0.01 to 0.50%
  • Ti is an element that has the effect of forming carbonitrides and improving creep rupture strength. However, if the Ti content is less than 0.01%, a sufficient effect cannot be obtained. On the other hand, if it exceeds 0.50%, the ductility at high temperatures decreases. Therefore, the Ti content is set to 0.01 to 0.50%.
  • the Ti content is preferably 0.05 or more, and more preferably 0.10% or more. Further, the Ti content is preferably 0.40% or less, and more preferably 0.35% or less.
  • Nb 0.01 to 1.0%
  • Nb has the effect of forming a carbonitride to improve the creep rupture strength. However, if the Nb content is less than 0.01%, a sufficient effect cannot be obtained. On the other hand, if the Nb content exceeds 1.0%, the ductility at high temperatures decreases. Therefore, the Nb content is set to 0.01 to 1.0%.
  • the Nb content is preferably 0.10% or more. Moreover, it is preferable that Nb content is 0.90% or less, and it is more preferable that it is 0.70% or less.
  • Mo Less than 0.50% Conventionally, Mo has been considered to be an element having a function equivalent to that of W as an element contributing to an improvement in creep rupture strength as a solid solution strengthening element by dissolving in a matrix.
  • Mo when Mo is contained in a composite containing the above-mentioned amounts of W and Cr, a ⁇ phase may precipitate when used for a long time, For this reason, it has been found that creep rupture strength, ductility and toughness may be reduced. For this reason, it is desirable to make Mo content as low as possible, and to be less than 0.50%. Note that the Mo content is preferably limited to less than 0.20%.
  • Cu Less than 0.50% In the present invention, Cu lowers the melting point and decreases hot workability and weldability. Therefore, it is desirable to make Cu content as low as possible, and to be less than 0.50%. Note that the Cu content is preferably limited to less than 0.20%.
  • Al 0.30% or less
  • Al is an element to be contained as a deoxidizer for molten steel.
  • the Al content is set to 0.30% or less.
  • the Al content is preferably 0.25% or less, and more preferably 0.20% or less.
  • N Less than 0.10% N is an element having an effect of stabilizing the austenite structure, and is an element inevitably included in a normal melting method. However, in the present invention in which the inclusion of Ti is essential, it is better to reduce as much as possible to avoid the consumption of Ti due to TiN formation. However, since it is difficult to reduce extremely in the case of dissolution in the atmosphere, the N content is set to less than 0.10%.
  • the balance is Fe and impurities.
  • Fe is preferably contained in an amount of 0.1 to 40.0%.
  • impurities as used herein are components that are mixed due to various factors of raw materials such as ores and scraps and manufacturing processes when the alloy is industrially manufactured, and do not adversely affect the present invention. It means what is allowed.
  • the austenitic heat-resistant alloy of the present invention may further contain one or more selected from Mg, Ca, REM, V, B, Zr, Hf, Ta and Re.
  • Mg, Ca, and REM all have the effect of fixing S as a sulfide to improve high temperature ductility. For this reason, when it is desired to obtain better high-temperature ductility, one or more of these elements may be positively contained in the following range.
  • Mg 0.05% or less Mg has the action of fixing S, which inhibits ductility at high temperatures, as a sulfide to improve high-temperature ductility. Therefore, Mg may be included to obtain this effect. However, when the Mg content exceeds 0.05%, the cleanliness is lowered, and the high temperature ductility is impaired. Therefore, the Mg content in the case of inclusion is 0.05% or less.
  • the Mg content is more preferably 0.02% or less, and still more preferably 0.01% or less.
  • the Mg content is preferably 0.0005% or more, and more preferably 0.001% or more.
  • Ca 0.05% or less Ca has an action of fixing S as a sulfide to inhibit high temperature ductility to improve high temperature ductility. Therefore, Ca may be contained to obtain this effect. However, when the Ca content exceeds 0.05%, the cleanliness is deteriorated and the high temperature ductility is impaired. Therefore, the Ca content when contained is 0.05% or less.
  • the Ca content is more preferably 0.02% or less, and still more preferably 0.01% or less.
  • the Ca content is preferably 0.0005% or more, and more preferably 0.001% or more.
  • REM 0.50% or less REM has an action of fixing S as sulfide to improve high temperature ductility. REM also improves the adhesion of the Cr 2 O 3 protective coating on the steel surface, in particular, improves the oxidation resistance during repeated oxidation, and further contributes to the strengthening of grain boundaries. It also has the effect of improving creep rupture ductility. However, when the REM content exceeds 0.50%, inclusions such as oxides increase and workability and weldability are impaired. Therefore, the amount of REM when contained is 0.50% or less. The REM content is more preferably 0.30% or less, and further preferably 0.15% or less. On the other hand, in order to reliably obtain the above effect, the REM content is preferably 0.0005% or more, more preferably 0.001% or more, and further preferably 0.002% or more. preferable.
  • REM refers to a total of 17 elements of Sc, Y and lanthanoid, and the content of REM means the total content of these elements.
  • the total content of Mg, Ca and REM may be 0.6% or less, more preferably 0.4% or less, and still more preferably 0.2% or less.
  • V, B, Zr and Hf all have the effect of improving high temperature strength and creep rupture strength. For this reason, when it is desired to obtain a higher high-temperature strength and creep rupture strength, one or more of these elements may be positively contained in the following range.
  • V 1.5% or less
  • V has an action of forming a carbonitride to improve high temperature strength and creep rupture strength. For this reason, in order to acquire these effects, you may contain V. However, when the V content exceeds 1.5%, the high temperature corrosion resistance is lowered, and further ductility and toughness are deteriorated due to precipitation of the embrittled phase. Therefore, when V is included, the amount of V is 1.5% or less.
  • the V content is more preferably 1.0% or less.
  • the V content is preferably 0.02% or more, and more preferably 0.04% or more.
  • B 0.01% or less B exists in the carbide or in the matrix, and not only promotes refinement of the precipitated carbide, but also has an effect of improving the creep rupture strength by strengthening the grain boundary.
  • the B content is more preferably 0.008% or less, and further preferably 0.006% or less.
  • the B content is preferably 0.0005% or more, more preferably 0.001% or more, and further preferably 0.0015% or more. preferable.
  • Zr 0.10% or less
  • Zr is an element that promotes refinement of carbonitride and improves creep rupture strength as a grain boundary strengthening element. However, when the Zr content exceeds 0.10%, the ductility at high temperatures is lowered. Therefore, the amount of Zr in the case of containing is 0.10% or less.
  • the Zr content is more preferably 0.06% or less, and even more preferably 0.05% or less.
  • the Zr content is preferably 0.005% or more, and more preferably 0.01% or more.
  • Hf 1.0% or less Hf contributes to precipitation strengthening as a carbonitride and has an effect of improving creep rupture strength. Therefore, Hf may be contained in order to obtain these effects. However, if the Hf content exceeds 1.0%, workability and weldability are impaired. Therefore, the amount of Hf when contained is 1.0% or less.
  • the Hf content is more preferably 0.8% or less, and further preferably 0.5% or less.
  • the Hf content is preferably 0.005% or more, more preferably 0.01% or more, and further preferably 0.02% or more. preferable.
  • the total content of V, B, Zr and Hf described above is preferably 2.6% or less, and more preferably 1.8% or less.
  • Ta Both Ta and Re have a solid solution strengthening action by dissolving in austenite as a matrix. For this reason, when it is desired to obtain higher high-temperature strength and creep rupture strength by the solid solution strengthening action, one or both of these elements may be positively contained in the following range.
  • Ta 8.0% or less Ta has the effect of forming carbonitride and improving the high temperature strength and creep rupture strength as a solid solution strengthening element. For this reason, in order to acquire these effects, you may contain Ta. However, if the Ta content exceeds 8.0%, workability and mechanical properties are impaired. Therefore, when Ta is included, the amount of Ta is set to 8.0% or less.
  • the Ta content is more preferably 7.0% or less, and even more preferably 6.0% or less.
  • the Ta content is preferably 0.01% or more, more preferably 0.1% or more, and further preferably 0.5% or more. preferable.
  • Re 8.0% or less Re has a function of improving high-temperature strength and creep rupture strength mainly as a solid solution strengthening element. Therefore, Re may be contained in order to obtain these effects. However, if the Re content exceeds 8.0%, workability and mechanical properties are impaired. Therefore, the amount of Re when contained is 8.0% or less.
  • the Re content is more preferably 7.0% or less, and even more preferably 6.0%.
  • the Re content is preferably 0.01% or more, more preferably 0.1% or more, and further preferably 0.5% or more. preferable.
  • the total content of Ta and Re is preferably 14.0% or less, and more preferably 12.0% or less.
  • the austenite grain size number in the outer surface portion is set to -2.0 to 4.0.
  • the crystal grain size number of the outer surface portion after the final heat treatment can be set to the above range by appropriately adjusting the heat treatment temperature and holding time after the hot working and the cooling method. .
  • the austenitic heat-resistant alloy according to the present invention exhibits 0.2% proof stress and tensile strength at room temperature sufficient for a large structural member, and creep rupture strength at high temperature. That is, the effect of the present invention is remarkably exhibited for a thick member.
  • the shortest distance from the center portion to the outer surface portion is set to 40 mm or more in the cross section perpendicular to the longitudinal direction.
  • the shortest distance from the center portion to the outer surface portion is preferably 80 mm or more, and more preferably 100 mm or more.
  • the shortest distance from the center portion to the outer surface portion is, for example, a radius of the cross section (mm) when the alloy is cylindrical, and a length (mm) that is half the short side of the cross section when the alloy is a quadrangular prism. It becomes.
  • the heat-resistant alloy according to the present invention is obtained, for example, by subjecting a steel ingot or a cast piece obtained by continuous casting to hot working such as hot forging or hot rolling, as will be described later.
  • the longitudinal direction of the heat-resistant alloy is generally the direction connecting the top and bottom portions of the steel ingot when using a steel ingot, and the length direction when using a slab.
  • Cr PB Cr amount present as precipitates obtained by extraction residue analysis in the center portion
  • Cr PS Cr amount present as precipitates obtained by extraction residue analysis in the outer surface portion
  • the amount of Cr precipitates tends to increase. Therefore, if the value of Cr PB / Cr PS exceeds 10.0, it becomes impossible to maintain high creep rupture strength at high temperatures.
  • the lower limit of Cr PB / Cr PS does not need to be determined, but is preferably set to 1.0 or more because the central portion tends to increase the amount of precipitates more than the outer surface portion.
  • the extraction residue analysis is performed according to the following procedure. First, a test piece for measuring Cr precipitates is collected from the center portion and the outer surface portion in a cross section perpendicular to the longitudinal direction of the alloy sample. After obtaining the surface area of the test piece, only the base material of the alloy sample is completely electrolyzed in an electrolysis condition of 20 mA / cm 2 in a 10% acetylacetone-1% tetramethylammonium chloride-methanol solution. And the solution after electrolysis is filtered with a 0.2 micrometer filter, and deposits are extracted as a residue.
  • the extraction residue is acid-decomposed, and then analyzed using an inductively coupled plasma optical emission spectrometer (ICP-AES) to determine the Cr content (mass%) contained as undissolved Cr precipitates. Measure and obtain the value of Cr PB / Cr PS based on the measured value.
  • ICP-AES inductively coupled plasma optical emission spectrometer
  • the austenitic heat-resistant alloy according to the present invention satisfies the above formulas (ii) and (iii) in mechanical properties at room temperature.
  • both formulas (ii) and (iii) are set to 1.0 or more. It is preferable.
  • the 0.2% proof stress and tensile strength were determined by cutting a round bar tensile test piece with a parallel part length of 40 mm from the center part and outer surface part of the alloy in parallel with the longitudinal direction, and conducting a tensile test at room temperature. It asks by carrying out.
  • the tensile test is performed according to JIS Z 2241 (2011).
  • the austenitic heat-resistant alloy of the present invention is used in a high temperature environment, it requires high high temperature strength, particularly high creep rupture strength. Therefore, the heat-resistant alloy of the present invention preferably has a 10,000-hour creep rupture strength at 700 ° C. in the longitudinal direction of 100 MPa or more at the center.
  • Creep rupture strength is obtained by the following method. First, a round bar creep rupture test piece having a diameter of 6 mm and a gauge distance of 30 mm described in JIS Z 2241 (2011) is cut out by machining from the center of the alloy in parallel with the longitudinal direction. Then, a creep rupture test is performed in the atmosphere at 700 ° C., 750 ° C., and 800 ° C., and the creep rupture strength at 700 ° C. for 10,000 hours is obtained using the Larson-Miller parameter method. The creep rupture test is performed in accordance with JIS Z 2271 (2010).
  • the austenitic heat-resistant alloy of the present invention can be produced by subjecting a steel ingot or slab having the above-described chemical composition to hot working.
  • the treatment is performed so that the longitudinal direction of the final shape of the alloy coincides with the longitudinal direction of the steel ingot or slab as the raw material.
  • the hot working may be performed only in the longitudinal direction, the hot working is performed once or more in the direction substantially perpendicular to the longitudinal direction in order to provide a higher degree of working and a more homogeneous structure. You may give it. Moreover, you may further give hot processing of different methods, such as hot extrusion, as needed after the said hot processing.
  • the final heat treatment described below is performed in order to suppress the variation in the metal structure and mechanical properties of each part and maintain high creep rupture strength. Apply.
  • the hot-worked alloy is heated to a heat treatment temperature T (° C.) in the range of 1100 to 1250 ° C., and within that range, 1000 D / T to 1400 D / T (min) is maintained.
  • T heat treatment temperature
  • D is, for example, a diameter (mm) of the alloy when the alloy is cylindrical, and a diagonal distance (mm) when the alloy is square. That is, D is the maximum value (mm) of the linear distance between an arbitrary point on the outer edge of the cross section and another arbitrary point on the outer edge in a cross section perpendicular to the longitudinal direction of the alloy.
  • the heat treatment temperature is lower than 1100 ° C., undissolved chromium carbide and the like increase, and the creep rupture strength decreases.
  • the temperature exceeds 1250 ° C., the ductility decreases due to melting of the grain boundary or markedly coarsening of the crystal grains.
  • the heat treatment temperature is more preferably 1150 ° C. or higher, and more preferably 1230 ° C. or lower.
  • the holding time is less than 1000D / T (min), undissolved chromium carbide increases Cr PB / Cr PS central portion is out of the range defined in the present invention.
  • the crystal grains in the outer surface portion become coarse, and the austenite grain size number falls outside the range defined in the present invention.
  • An alloy having the chemical composition shown in Table 1 was melted in a high-frequency vacuum melting furnace to form a steel ingot having an outer diameter of 550 mm and a weight of 3 t.
  • the obtained steel ingot was processed into a cylindrical shape having an outer diameter of 120 to 480 mm by hot forging and subjected to final heat treatment under the conditions shown in Table 2 to obtain an alloy member sample.
  • For alloys 1, 2 and 4 forging in the direction substantially perpendicular to the longitudinal direction was performed after hot forging in the longitudinal direction and before the final heat treatment, and then final hot forging was further performed in the longitudinal direction. .
  • a specimen for observing the structure was collected from the outer surface, and the longitudinal section was polished with emery paper and buff, then corroded with mixed acid and observed with an optical microscope.
  • the crystal grain size number on the observation surface was determined according to the determination method based on the intersection line segment (grain size) defined in JIS G 0551 (2013).
  • a test piece for measuring Cr precipitates was collected from the center portion and the outer surface portion in the cross section perpendicular to the longitudinal direction of each sample.
  • the base material of the alloy sample was completely electrolyzed in an electrolytic condition of 20 mA / cm 2 in a 10% acetylacetone-1% tetramethylammonium chloride-methanol solution.
  • the solution after electrolysis was filtered with a 0.2 micrometer filter, and the deposit was extracted as a residue.
  • the extraction residue is subjected to acid decomposition, and then ICP-AES measurement is performed to measure the Cr content (mass%) contained as an undissolved Cr precipitate. Based on the measured value, Cr PB / Cr The PS value was determined.
  • a tensile test piece having a parallel part length of 40 mm was cut out by machining from the center part and the outer surface part of each sample, and a tensile test was performed at room temperature. I asked for strength. Further, a creep rupture test piece having a parallel part length of 30 mm was cut out from the center part of each sample in parallel with the longitudinal direction by machining. And the creep rupture test was implemented in 700 degreeC, 750 degreeC, and 800 degreeC air
  • Alloys A and B have substantially the same chemical composition as alloy 1 and have the same final shape by hot forging. However, the holding time at the time of heat treatment is outside the range of manufacturing conditions defined in the present invention. As a result, the grain size number of the outer surface portion of alloy A is outside the specified range of the present invention, and the values of YS S / YS B and TS S / TS B are out of the specified range of the present invention. As a result, the variation in mechanical properties increased depending on the part. Further, with respect to Alloy B, the creep rupture strength was outside the specified range of the present invention, and the result was significantly lower than that of Alloy 1.
  • Alloys C, D, and E have substantially the same chemical composition as alloy 2 and have the same final shape by hot forging. Since the heat treatment temperature of Alloy C is lower than the specified range of the present invention, the grain size number of the outer surface portion and the value of Cr PB / Cr PS are outside the range specified by the present invention. The creep rupture strength was extremely low.
  • the heat treatment temperature of the alloy D is higher than the specified range of the present invention, the crystal grain size number of the outer surface portion and the values of YS S / YS B and TS S / TS B are outside the specified range of the present invention. Compared to Alloy 2, the creep rupture strength was remarkably low.
  • the cooling method at the time of the final heat treatment of the alloy E is not water cooling but air cooling, and because the cooling rate is extremely slow, the value of Cr PB / Cr PS is outside the specified range of the present invention. Compared to Alloy 2, the creep rupture strength was significantly lower. On the other hand, Alloys 1 to 9 satisfying all the provisions of the present invention had small variations in mechanical properties and good creep rupture strength.
  • the austenitic heat-resistant alloy of the present invention has little variation in mechanical properties depending on the part, and is excellent in creep rupture strength at high temperatures. Therefore, the austenitic heat-resistant alloy of the present invention can be suitably used as a large structural member such as a thermal power generation boiler and a chemical plant used in a high temperature environment.

Abstract

Provided is an austenitic heat resistant alloy containing, in mass%, 0.02-0.12% of C, at most 2.0% of Si, at most 3.0% of Mn, at most 0.030% of P, at most 0.015% of S, at least 20.0% and less than 28.0% of Cr, more than 35.0% and at most 55.0% of Ni, 0-20% of Co, 4.0-10.0% of W, 0.01-0.50% of Ti, 0.01-1.0% of Nb, less than 0.50% of Mo, less than 0.50% of Cu, at most 0.30% of Al, less than 0.10% of N, 0-0.05% of Mg, 0-0.05% of Ca, 0-0.50% of REM, 0-1.5% of V, 0-0.1% of B, 0-0.10% of Zr, 0-1.0% of Hf, 0-8.0% of Ta, and 0-8.0% of Re, with the remainder comprising Fe and inevitable impurities, wherein, in a cross section perpendicular to the longitudinal direction of the alloy, the shortest distance from the center to the outer surface portion is 40 mm or more, the austenite grain size number of the outer surface portion is -2.0 to 4.0, the amount of Cr present as a precipitate satisfies [CrPB/CrP S≤10.0], and [YSS/YSB≤1.5] and [TSS/TSB≤1.2] are satisfied at room temperature.

Description

オーステナイト系耐熱合金およびその製造方法Austenitic heat-resistant alloy and method for producing the same
 本発明は、オーステナイト系耐熱合金およびその製造方法に関する。 The present invention relates to an austenitic heat-resistant alloy and a method for producing the same.
 従来、高温環境下で使用される火力発電用ボイラおよび化学プラント等においては、装置用材料としてSUS304H、SUS316H、SUS321H、SUS347H等の18-8系オーステナイトステンレス鋼が使用されてきた。 Conventionally, 18-8 austenitic stainless steels such as SUS304H, SUS316H, SUS321H, and SUS347H have been used as equipment materials in thermal power generation boilers and chemical plants used in high temperature environments.
 しかし、近年、高効率化のために蒸気の温度と圧力とを高めた超々臨界圧ボイラの新設が世界中で進められている。このような高温環境下における装置の使用条件が著しく過酷化し、それに伴って使用材料に対する要求性能が厳しくなってきた。そして、従来用いられてきた18-8系オーステナイトステンレス鋼では耐食性に加え、高温強度、特にクリープ破断強度が著しく不足する状況となっている。 However, in recent years, new super-supercritical boilers with higher steam temperatures and pressures have been developed all over the world for higher efficiency. The use conditions of the apparatus in such a high temperature environment have become extremely severe, and accordingly, the required performance for the materials used has become severe. The conventionally used 18-8 austenitic stainless steel is in a state where the high temperature strength, particularly the creep rupture strength, is remarkably insufficient in addition to the corrosion resistance.
 上記の問題を解決するため、これまで様々な研究がなされてきた。例えば、特許文献1~4には、高温強度の良好な高耐食オーステナイト鋼が開示されている。また、特許文献5には、高温強度と耐食性に優れたオーステナイト系ステンレス鋼が開示されている。特許文献1~5によれば、Cr量を20%以上に高めるとともに、Wおよび/またはMoを含有させることで、高温強度の向上を図っている。 * Various studies have been conducted so far to solve the above problems. For example, Patent Documents 1 to 4 disclose highly corrosion-resistant austenitic steels having good high-temperature strength. Patent Document 5 discloses an austenitic stainless steel excellent in high temperature strength and corrosion resistance. According to Patent Documents 1 to 5, the high temperature strength is improved by increasing the Cr content to 20% or more and containing W and / or Mo.
特開昭61-179833号公報JP-A 61-179833 特開昭61-179834号公報Japanese Patent Application Laid-Open No. Sho 61-179834 特開昭61-179835号公報JP-A 61-179835 特開昭61-179836号公報Japanese Patent Laid-Open No. 61-179836 特開2004-3000号公報JP 2004-3000 A
 ところで、火力発電用ボイラおよび化学プラント等の装置用材料のような大型の構造部材は、熱間圧延または熱間鍛造後、冷間加工を施さずに最終熱処理を実施して使用されるため、結晶粒径が比較的大きい。そのため、通常、材料の仕様として規定される常温における0.2%耐力および引張強さが、冷間加工後に最終熱処理を施したものより低くなるという問題がある。 By the way, since large structural members such as boilers for thermal power generation and materials for devices such as chemical plants are used after hot rolling or hot forging, without performing cold processing, and are used, The crystal grain size is relatively large. Therefore, there is a problem that the 0.2% proof stress and the tensile strength at normal temperature, which are normally specified as the material specifications, are lower than those subjected to the final heat treatment after cold working.
 加えて、大型の構造部材では、熱処理時の冷却速度が部位により大きく異なるため、高温での使用時に析出物として強化に寄与する固溶元素の量が部位により異なる。そのことに起因して、クリープ破断強度のばらつきが生じるといった問題もある。そのため、特許文献1~5に記載の鋼を、大型の構造部材に適用するのは困難である。 In addition, in large structural members, the cooling rate during heat treatment varies greatly depending on the site, so the amount of solid solution elements that contribute to strengthening as precipitates when used at high temperatures varies depending on the site. As a result, there is also a problem that variation in creep rupture strength occurs. Therefore, it is difficult to apply the steels described in Patent Documents 1 to 5 to large structural members.
 本発明は上記の問題を解決し、大型の構造部材として十分な常温での0.2%耐力および引張強さ、ならびに、高温でのクリープ破断強度を発現するオーステナイト系耐熱合金およびその製造方法を提供することを目的とする。 The present invention solves the above problems, and provides an austenitic heat resistant alloy that exhibits 0.2% proof stress and tensile strength at room temperature sufficient as a large structural member, and creep rupture strength at high temperature, and a method for producing the same. The purpose is to provide.
 本発明は、上記の課題を解決するためになされたものであり、下記のオーステナイト系耐熱合金およびその製造方法を要旨とする。 The present invention has been made to solve the above-mentioned problems, and the gist thereof is the following austenitic heat-resistant alloy and a method for producing the same.
 (1)合金の化学組成が、質量%で、
 C:0.02~0.12%、
 Si:2.0%以下、
 Mn:3.0%以下、
 P:0.030%以下、
 S:0.015%以下、
 Cr:20.0%以上28.0%未満、
 Ni:35.0%を超えて55.0%以下、
 Co:0~20.0%、
 W:4.0~10.0%、
 Ti:0.01~0.50%、
 Nb:0.01~1.0%、
 Mo:0.50%未満、
 Cu:0.50%未満、
 Al:0.30%以下、
 N:0.10%未満、
 Mg:0~0.05%、
 Ca:0~0.05%、
 REM:0~0.50%、
 V:0~1.5%、
 B:0~0.01%、
 Zr:0~0.10%、
 Hf:0~1.0%、
 Ta:0~8.0%、
 Re:0~8.0%、
 残部:Feおよび不純物であり、
 前記合金の長手方向と垂直な断面において、中心部から外面部までの最短距離が40mm以上であり、
 前記外面部におけるオーステナイト結晶粒度番号が-2.0~4.0であり、
 抽出残渣分析によって得られる析出物として存在するCr量が下記(i)式を満足し、
 常温での機械的特性が下記(ii)式および(iii)式を満足する、
 オーステナイト系耐熱合金。
 CrPB/CrPS≦10.0 ・・・(i)
 YS/YS≦1.5 ・・・(ii)
 TS/TS≦1.2 ・・・(iii)
 但し、上記式中の各記号の意味は以下のとおりである。
 CrPB:中心部において抽出残渣分析によって得られる析出物として存在するCr量
 CrPS:外面部において抽出残渣分析によって得られる析出物として存在するCr量
 YS:中心部における0.2%耐力
 YS:外面部における0.2%耐力
 TS:中心部における引張強さ
 TS:外面部における引張強さ
(1) The chemical composition of the alloy is mass%,
C: 0.02 to 0.12%,
Si: 2.0% or less,
Mn: 3.0% or less,
P: 0.030% or less,
S: 0.015% or less,
Cr: 20.0% or more and less than 28.0%,
Ni: more than 35.0% and 55.0% or less,
Co: 0-20.0%,
W: 4.0-10.0%,
Ti: 0.01 to 0.50%,
Nb: 0.01 to 1.0%,
Mo: less than 0.50%,
Cu: less than 0.50%,
Al: 0.30% or less,
N: less than 0.10%,
Mg: 0 to 0.05%,
Ca: 0 to 0.05%,
REM: 0 to 0.50%,
V: 0 to 1.5%
B: 0 to 0.01%
Zr: 0 to 0.10%,
Hf: 0 to 1.0%
Ta: 0 to 8.0%,
Re: 0 to 8.0%,
Balance: Fe and impurities,
In the cross section perpendicular to the longitudinal direction of the alloy, the shortest distance from the center portion to the outer surface portion is 40 mm or more,
The austenite grain size number in the outer surface portion is -2.0 to 4.0,
The amount of Cr present as a precipitate obtained by extraction residue analysis satisfies the following formula (i):
Mechanical properties at room temperature satisfy the following formulas (ii) and (iii):
Austenitic heat-resistant alloy.
Cr PB / Cr PS ≦ 10.0 (i)
YS S / YS B ≦ 1.5 (ii)
TS S / TS B ≦ 1.2 (iii)
However, the meaning of each symbol in the above formula is as follows.
Cr PB : Cr amount existing as precipitates obtained by extraction residue analysis in the central portion Cr PS : Cr amount existing as precipitates obtained by extraction residue analysis in the outer surface portion YS B : 0.2% proof stress in the central portion YS S : 0.2% proof stress at the outer surface portion TS B : Tensile strength at the central portion TS S : Tensile strength at the outer surface portion
 (2)前記化学組成が、質量%で、
 Mg:0.0005~0.05%、
 Ca:0.0005~0.05%、
 REM:0.0005~0.50%、
 V:0.02~1.5%、
 B:0.0005~0.01%、
 Zr:0.005~0.10%、
 Hf:0.005~1.0%、
 Ta:0.01~8.0%、および、
 Re:0.01~8.0%、
 から選択される1種以上を含有する、
 上記(1)に記載のオーステナイト系耐熱合金。
(2) The chemical composition is mass%,
Mg: 0.0005 to 0.05%,
Ca: 0.0005 to 0.05%,
REM: 0.0005 to 0.50%,
V: 0.02 to 1.5%,
B: 0.0005 to 0.01%,
Zr: 0.005 to 0.10%,
Hf: 0.005 to 1.0%,
Ta: 0.01-8.0%, and
Re: 0.01 to 8.0%,
Containing one or more selected from
The austenitic heat-resistant alloy according to (1) above.
 (3)前記中心部における前記長手方向の700℃における10,000時間クリープ破断強度が100MPa以上である、
 上記(1)または(2)に記載のオーステナイト系耐熱合金。
(3) The 10,000-hour creep rupture strength at 700 ° C. in the longitudinal direction in the central portion is 100 MPa or more.
The austenitic heat-resistant alloy according to (1) or (2) above.
 (4)上記(1)または(2)に記載の化学組成を有する鋼塊または鋳片に、熱間加工を施す工程と、
 その後、1100~1250℃の範囲の熱処理温度T(℃)まで加熱し、1000D/T~1400D/T(min)保持した後、水冷する熱処理を施す工程と、を備える、
 オーステナイト系耐熱合金の製造方法。
 但し、Dは、合金の長手方向と垂直な断面における、当該断面の外縁上の任意の点と該外縁上の他の任意の点との直線距離の最大値(mm)である。
(4) Hot-working the steel ingot or slab having the chemical composition described in (1) or (2) above;
Thereafter, heating to a heat treatment temperature T (° C.) in the range of 1100 to 1250 ° C., holding 1000 D / T to 1400 D / T (min), and then performing a heat treatment of cooling with water,
A method for producing an austenitic heat-resistant alloy.
However, D is the maximum value (mm) of the linear distance between an arbitrary point on the outer edge of the cross section and another arbitrary point on the outer edge in a cross section perpendicular to the longitudinal direction of the alloy.
 (5)前記熱間加工を施す工程において、長手方向と略垂直な方向に加工を1回以上施す、
 上記(4)に記載のオーステナイト系耐熱合金の製造方法。
(5) In the step of performing the hot working, the working is performed once or more in a direction substantially perpendicular to the longitudinal direction.
The manufacturing method of the austenitic heat-resistant alloy as described in said (4).
 本発明のオーステナイト系耐熱合金は、部位による機械的性質のばらつきが少なく、また、高温でのクリープ破断強度に優れる。 The austenitic heat-resistant alloy of the present invention has little variation in mechanical properties depending on the part, and is excellent in creep rupture strength at high temperatures.
 以下、本発明の各要件について詳しく説明する。 Hereinafter, each requirement of the present invention will be described in detail.
 1.化学組成
 各元素の限定理由は下記のとおりである。なお、以下の説明において含有量についての「%」は、「質量%」を意味する。
1. Chemical composition The reasons for limiting each element are as follows. In the following description, “%” for the content means “% by mass”.
 C:0.02~0.12%
 Cは、炭化物を形成してオーステナイト系耐熱合金として必要な高温引張強さ、クリープ破断強度を保持する上で必須の元素である。そのため、C含有量は0.02%以上とする必要がある。しかしながら、その含有量が0.12%を超えると、未固溶炭化物が生じるだけでなく、Crの炭化物が増えて延性、靭性などの機械的性質および溶接性を劣化させる。したがって、C含有量は0.02~0.12%とする。C含有量は0.05%以上であるのが好ましく、0.10%以下であるのが好ましい。
C: 0.02 to 0.12%
C is an element essential for forming carbides and maintaining high-temperature tensile strength and creep rupture strength necessary for an austenitic heat-resistant alloy. Therefore, the C content needs to be 0.02% or more. However, if its content exceeds 0.12%, not only undissolved carbides are produced, but also Cr carbides increase, which deteriorates mechanical properties such as ductility and toughness and weldability. Therefore, the C content is 0.02 to 0.12%. The C content is preferably 0.05% or more, and preferably 0.10% or less.
 Si:2.0%以下
 Siは、脱酸元素として含有される。また、Siは、耐酸化性、耐水蒸気酸化性等を高めるためにも有効な元素である。さらに鋳造材で湯流れを良好にする元素でもある。しかしながら、Si含有量が2.0%を超えると、σ相等の金属間化合物の生成を促進するので、高温における組織の安定性が劣化して靱性および延性の低下を招く。さらに、溶接性も低下する。したがって、Si含有量は2.0%以下とする。組織安定性が重視される場合には、Si含有量は1.0%以下にすることが好ましい。なお、他の元素で脱酸作用が十分確保されている場合、特にSi含有量について下限を設ける必要はない。しかし、脱酸作用、耐酸化性、耐水蒸気酸化性などを重視する場合は、Si含有量は0.05%以上とするのが好ましく、0.10%以上とするのがより好ましい。
Si: 2.0% or less Si is contained as a deoxidizing element. Further, Si is an element effective for enhancing oxidation resistance, steam oxidation resistance, and the like. It is also an element that improves the hot water flow in the cast material. However, when the Si content exceeds 2.0%, the formation of intermetallic compounds such as the σ phase is promoted, so that the stability of the structure at high temperatures deteriorates and the toughness and ductility decrease. Furthermore, the weldability is also reduced. Therefore, the Si content is 2.0% or less. When the structural stability is important, the Si content is preferably 1.0% or less. In addition, when the deoxidation effect | action is fully ensured with another element, it is not necessary to provide a minimum especially about Si content. However, when importance is attached to deoxidation, oxidation resistance, steam oxidation resistance, etc., the Si content is preferably 0.05% or more, and more preferably 0.10% or more.
 Mn:3.0%以下
 Mnは、Siと同様に脱酸作用を有するとともに、合金中に不可避的に含有されるSを硫化物として固定して高温での延性を改善する作用を有する。しかしながら、Mn含有量が3.0%を超えると、σ相等の金属間化合物の析出を助長するので、組織安定性および高温強度などの機械的性質が劣化する。したがって、Mn含有量は3.0%以下とする。Mn含有量は2.0%以下であるのが好ましく、1.5%以下であるのがより好ましい。なお、Mn含有量について下限を設ける必要はないが、高温での延性改善作用を重視する場合は、Mn含有量は0.10%以上とするのが好ましく、0.20%以上とするのがより好ましい。
Mn: 3.0% or less Mn has a deoxidizing effect similar to Si, and has an effect of improving ductility at high temperatures by fixing S unavoidably contained in the alloy as a sulfide. However, if the Mn content exceeds 3.0%, precipitation of intermetallic compounds such as the σ phase is promoted, so that mechanical properties such as structure stability and high temperature strength deteriorate. Therefore, the Mn content is 3.0% or less. The Mn content is preferably 2.0% or less, and more preferably 1.5% or less. In addition, although it is not necessary to provide a lower limit for the Mn content, when importance is placed on the ductility improving effect at high temperature, the Mn content is preferably 0.10% or more, and is preferably 0.20% or more. More preferred.
 P:0.030%以下
 Pは、不純物として合金中に不可避的に混入し、溶接性および高温での延性を著しく低下させる。したがって、P含有量を0.030%以下とする。P含有量は極力低くすることがよく、0.020%以下とするのが好ましく、0.015%以下とするのがより好ましい。
P: 0.030% or less P is inevitably mixed into the alloy as an impurity, and significantly reduces weldability and ductility at high temperatures. Therefore, the P content is 0.030% or less. The P content is preferably as low as possible, preferably 0.020% or less, and more preferably 0.015% or less.
 S:0.015%以下
 Sは、Pと同様に不純物として合金中に不可避的に混入し、溶接性および高温での延性を著しく低下させる。したがって、S含有量を0.015%以下とする。熱間加工性を重視する場合には、S含有量は0.010%以下とするのが好ましく、0.005%以下とするのがより好ましく、0.003%以下とするのがさらに好ましい。
S: 0.015% or less S, like P, is inevitably mixed into the alloy as an impurity, and significantly reduces weldability and ductility at high temperatures. Therefore, the S content is 0.015% or less. When emphasizing hot workability, the S content is preferably 0.010% or less, more preferably 0.005% or less, and even more preferably 0.003% or less.
 Cr:20.0%以上28.0%未満
 Crは、耐酸化性、耐水蒸気酸化性、耐高温腐食性などの耐食性改善に優れた作用を発揮する重要な元素である。しかしながら、その含有量が20.0%未満では、これらの効果が得られない。一方、Cr含有量が多くなって、特に、28.0%以上となると、σ相の析出などによる組織の不安定化を招き、溶接性も劣化する。したがって、Cr含有量は20.0%以上28.0%未満とする。Cr含有量は21.0%以上であるのが好ましく、22.0%以上であるのがより好ましい。また、Cr含有量は26.0%以下であるのが好ましく、25.0%以下であるのがより好ましい。
Cr: 20.0% or more and less than 28.0% Cr is an important element that exhibits an excellent action in improving corrosion resistance such as oxidation resistance, steam oxidation resistance, and high temperature corrosion resistance. However, if the content is less than 20.0%, these effects cannot be obtained. On the other hand, if the Cr content is increased, particularly 28.0% or more, the structure becomes unstable due to precipitation of the σ phase and the weldability is also deteriorated. Therefore, the Cr content is 20.0% or more and less than 28.0%. The Cr content is preferably 21.0% or more, and more preferably 22.0% or more. Moreover, it is preferable that Cr content is 26.0% or less, and it is more preferable that it is 25.0% or less.
 Ni:35.0%を超えて55.0%以下
 Niは、オーステナイト組織を安定にする元素であり、耐食性の確保にも重要な元素である。上記のCr含有量とのバランスから、Niは35.0%を超えて含有させる必要がある。一方、Ni含有量が過剰になるとコスト上昇を招くため、55.0%以下とする。Ni含有量は40.0%以上であるのが好ましく、42.0%以上であるのがより好ましい。また、Ni含有量は50.0%以下であるのが好ましく、48.0%以下であるのがより好ましい。
Ni: more than 35.0% and not more than 55.0% Ni is an element that stabilizes the austenite structure, and is also an important element for ensuring corrosion resistance. From the balance with the above Cr content, Ni needs to be contained exceeding 35.0%. On the other hand, if the Ni content is excessive, the cost is increased. The Ni content is preferably 40.0% or more, and more preferably 42.0% or more. Further, the Ni content is preferably 50.0% or less, and more preferably 48.0% or less.
 Co:0~20.0%
 Coは必ずしも含有させる必要はないが、Niと同様オーステナイト組織を安定にし、クリープ破断強度向上にも寄与するため、Niの一部に代えて含有させてもよい。しかしながら、その含有量が20.0%を超えると効果が飽和し経済性も低下する。そのため、Co含有量は0~20.0%とする。Co含有量は15.0%以下であるのが好ましい。なお、上記の効果を得たい場合は、Co含有量は0.5%以上とするのが好ましい。
Co: 0-20.0%
Co is not necessarily contained, but it may be contained in place of a part of Ni in order to stabilize the austenite structure and contribute to the improvement of creep rupture strength as in the case of Ni. However, if the content exceeds 20.0%, the effect is saturated and the economic efficiency is lowered. Therefore, the Co content is 0 to 20.0%. The Co content is preferably 15.0% or less. In addition, when obtaining said effect, it is preferable that Co content shall be 0.5% or more.
 W:4.0~10.0%
 Wは、マトリックスに固溶して固溶強化元素としてクリープ破断強度の向上に寄与するばかりでなく、FeW型のLaves相またはFe型のμ相として析出し、クリープ破断強度を大幅に向上させる重要な元素である。しかしながら、W含有量が4.0%未満では、前記した効果が得られない。一方、10.0%を超える量のWを含有させても、強度向上効果は飽和するとともに組織安定性、高温での延性も劣化する。したがって、W含有量は4.0~10.0%とする。W含有量は5.0%以上であるのが好ましく、5.5%以上であるのがより好ましい。また、W含有量は9.0%以下であるのが好ましく、8.5%以下であるのがより好ましい。
W: 4.0-10.0%
W not only contributes to the improvement of creep rupture strength as a solid solution strengthening element by dissolving in the matrix, but also precipitates as a Fe 2 W type Laves phase or Fe 7 W 6 type μ phase, and increases the creep rupture strength. It is an important element that greatly improves. However, if the W content is less than 4.0%, the above-described effects cannot be obtained. On the other hand, even if W is contained in an amount exceeding 10.0%, the effect of improving the strength is saturated and the structure stability and ductility at high temperature deteriorate. Therefore, the W content is 4.0 to 10.0%. The W content is preferably 5.0% or more, and more preferably 5.5% or more. Moreover, it is preferable that W content is 9.0% or less, and it is more preferable that it is 8.5% or less.
 Ti:0.01~0.50%
 Tiは、炭窒化物を形成しクリープ破断強度を向上させる効果を有する元素である。しかしながら、Ti含有量が0.01%未満では十分な効果が得られず、一方、0.50%を超えると高温での延性が低下する。したがって、Ti含有量は0.01~0.50%とする。Ti含有量は0.05以上とするのが好ましく、0.10%以上とするのがより好ましい。また、Ti含有量は0.40%以下とするのが好ましく、0.35%以下とするのがより好ましい。
Ti: 0.01 to 0.50%
Ti is an element that has the effect of forming carbonitrides and improving creep rupture strength. However, if the Ti content is less than 0.01%, a sufficient effect cannot be obtained. On the other hand, if it exceeds 0.50%, the ductility at high temperatures decreases. Therefore, the Ti content is set to 0.01 to 0.50%. The Ti content is preferably 0.05 or more, and more preferably 0.10% or more. Further, the Ti content is preferably 0.40% or less, and more preferably 0.35% or less.
 Nb:0.01~1.0%
 Nbは、炭窒化物を形成してクリープ破断強度を向上させる作用を有する。しかしながら、Nb含有量が0.01%未満では十分な効果が得られず、一方、1.0%を超えると、高温での延性が低下する。したがって、Nb含有量は0.01~1.0%とする。Nb含有量は0.10%以上であるのが好ましい。また、Nb含有量は0.90%以下であるのが好ましく、0.70%以下であるのがより好ましい。
Nb: 0.01 to 1.0%
Nb has the effect of forming a carbonitride to improve the creep rupture strength. However, if the Nb content is less than 0.01%, a sufficient effect cannot be obtained. On the other hand, if the Nb content exceeds 1.0%, the ductility at high temperatures decreases. Therefore, the Nb content is set to 0.01 to 1.0%. The Nb content is preferably 0.10% or more. Moreover, it is preferable that Nb content is 0.90% or less, and it is more preferable that it is 0.70% or less.
 Mo:0.50%未満
 従来、Moは、マトリックスに固溶して、固溶強化元素としてクリープ破断強度の向上に寄与する元素として、Wと同等の作用を有する元素と考えられてきた。しかしながら、本発明者らの検討によって、前述した量のWとCrとを含む合金にMoが複合して含まれている場合には、長時間使用した際にσ相が析出することがあり、このため、クリープ破断強度、延性および靱性の低下をきたすことがあることが判明した。このため、Mo含有量は極力低くすることが望ましく、0.50%未満とする。なお、Mo含有量は0.20%未満に制限することが好ましい。
Mo: Less than 0.50% Conventionally, Mo has been considered to be an element having a function equivalent to that of W as an element contributing to an improvement in creep rupture strength as a solid solution strengthening element by dissolving in a matrix. However, as a result of studies by the present inventors, when Mo is contained in a composite containing the above-mentioned amounts of W and Cr, a σ phase may precipitate when used for a long time, For this reason, it has been found that creep rupture strength, ductility and toughness may be reduced. For this reason, it is desirable to make Mo content as low as possible, and to be less than 0.50%. Note that the Mo content is preferably limited to less than 0.20%.
 Cu:0.50%未満
 本発明においてCuは融点を低下させ、熱間加工性および溶接性を低下させる。そのため、Cu含有量は極力低くすることが望ましく、0.50%未満とする。なお、Cu含有量は0.20%未満に制限することが好ましい。
Cu: Less than 0.50% In the present invention, Cu lowers the melting point and decreases hot workability and weldability. Therefore, it is desirable to make Cu content as low as possible, and to be less than 0.50%. Note that the Cu content is preferably limited to less than 0.20%.
 Al:0.30%以下
 Alは、溶鋼の脱酸剤として含有させる元素である。しかしながら、Al含有量が0.30%を超えると、高温での延性が劣化する。そのため、Al含有量は0.30%以下とする。Al含有量は0.25%以下であるのが好ましく、0.20%以下であるのがより好ましい。なお、上記の効果を得たい場合は、Al含有量は0.01%以上とするのが好ましく、0.02%以上とするのがより好ましい。
Al: 0.30% or less Al is an element to be contained as a deoxidizer for molten steel. However, when the Al content exceeds 0.30%, ductility at high temperatures deteriorates. Therefore, the Al content is set to 0.30% or less. The Al content is preferably 0.25% or less, and more preferably 0.20% or less. In addition, when obtaining said effect, it is preferable that Al content shall be 0.01% or more, and it is more preferable to set it as 0.02% or more.
 N:0.10%未満
 Nは、オーステナイト組織を安定化する作用を有する元素であり、通常の溶解法では不可避的に含まれる元素である。しかしながら、Tiの含有を必須としている本発明においては、TiN形成によるTiの消耗を避けるため極力低減する方がよい。しかし、大気溶解の場合は極度に低減することは困難であるため、N含有量は0.10%未満とする。
N: Less than 0.10% N is an element having an effect of stabilizing the austenite structure, and is an element inevitably included in a normal melting method. However, in the present invention in which the inclusion of Ti is essential, it is better to reduce as much as possible to avoid the consumption of Ti due to TiN formation. However, since it is difficult to reduce extremely in the case of dissolution in the atmosphere, the N content is set to less than 0.10%.
 本発明のオーステナイト系耐熱合金の化学組成において、残部はFeおよび不純物である。Feは0.1~40.0%含まれることが好ましい。また、ここで「不純物」とは、合金を工業的に製造する際に、鉱石、スクラップ等の原料、製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。 In the chemical composition of the austenitic heat-resistant alloy of the present invention, the balance is Fe and impurities. Fe is preferably contained in an amount of 0.1 to 40.0%. In addition, “impurities” as used herein are components that are mixed due to various factors of raw materials such as ores and scraps and manufacturing processes when the alloy is industrially manufactured, and do not adversely affect the present invention. It means what is allowed.
 本発明のオーステナイト系耐熱合金には、さらに、Mg、Ca、REM、V、B、Zr、Hf、TaおよびReから選択される1種以上を含有させてもよい。 The austenitic heat-resistant alloy of the present invention may further contain one or more selected from Mg, Ca, REM, V, B, Zr, Hf, Ta and Re.
 Mg、CaおよびREMは、いずれもSを硫化物として固定して高温延性を向上させる作用を有する。このため、より良好な高温延性を得たい場合には、これらの元素の1種以上を以下の範囲で積極的に含有させてもよい。 Mg, Ca, and REM all have the effect of fixing S as a sulfide to improve high temperature ductility. For this reason, when it is desired to obtain better high-temperature ductility, one or more of these elements may be positively contained in the following range.
 Mg:0.05%以下
 Mgは、高温での延性を阻害するSを硫化物として固定して高温延性を改善する作用を有するので、この効果を得るためにMgを含有させてもよい。しかしながら、Mg含有量が0.05%を超えると、清浄性が低下し、かえって高温延性が損なわれる。したがって、含有させる場合のMgの量は0.05%以下とする。Mg含有量は0.02%以下とするのがより好ましく、0.01%以下とするのがさらに好ましい。一方、上記の効果を確実に得るためには、Mg含有量は0.0005%以上とするのが好ましく、0.001%以上とするのがより好ましい。
Mg: 0.05% or less Mg has the action of fixing S, which inhibits ductility at high temperatures, as a sulfide to improve high-temperature ductility. Therefore, Mg may be included to obtain this effect. However, when the Mg content exceeds 0.05%, the cleanliness is lowered, and the high temperature ductility is impaired. Therefore, the Mg content in the case of inclusion is 0.05% or less. The Mg content is more preferably 0.02% or less, and still more preferably 0.01% or less. On the other hand, in order to reliably obtain the above effect, the Mg content is preferably 0.0005% or more, and more preferably 0.001% or more.
 Ca:0.05%以下
 Caは、高温での延性を阻害するSを硫化物として固定して高温延性を改善する作用を有するので、この効果を得るためにCaを含有させてもよい。しかしながら、Ca含有量が0.05%を超えると、清浄性が低下し、かえって高温延性が損なわれる。したがって、含有させる場合のCaの量は0.05%以下とする。Ca含有量は0.02%以下とするのがより好ましく、0.01%以下とするのがさらに好ましい。一方、上記の効果を確実に得るためには、Ca含有量は0.0005%以上とするのが好ましく、0.001%以上とするのがより好ましい。
Ca: 0.05% or less Ca has an action of fixing S as a sulfide to inhibit high temperature ductility to improve high temperature ductility. Therefore, Ca may be contained to obtain this effect. However, when the Ca content exceeds 0.05%, the cleanliness is deteriorated and the high temperature ductility is impaired. Therefore, the Ca content when contained is 0.05% or less. The Ca content is more preferably 0.02% or less, and still more preferably 0.01% or less. On the other hand, in order to surely obtain the above effect, the Ca content is preferably 0.0005% or more, and more preferably 0.001% or more.
 REM:0.50%以下
 REMは、Sを硫化物として固定して高温延性を改善する作用を有する。また、REMには、鋼表面のCr保護皮膜の密着性を改善し、特に、繰り返し酸化時の耐酸化性を改善する作用、さらには、粒界強化に寄与して、クリープ破断強度およびクリープ破断延性を向上させる作用もある。しかしながら、REM含有量が0.50%を超えると、酸化物などの介在物が多くなり加工性および溶接性が損なわれる。したがって、含有させる場合のREMの量は0.50%以下とする。REM含有量は0.30%以下とするのがより好ましく、0.15%以下とするのがさらに好ましい。一方、上記の効果を確実に得るためには、REM含有量は0.0005%以上とするのが好ましく、0.001%以上とするのがより好ましく、0.002%以上とするのがさらに好ましい。
REM: 0.50% or less REM has an action of fixing S as sulfide to improve high temperature ductility. REM also improves the adhesion of the Cr 2 O 3 protective coating on the steel surface, in particular, improves the oxidation resistance during repeated oxidation, and further contributes to the strengthening of grain boundaries. It also has the effect of improving creep rupture ductility. However, when the REM content exceeds 0.50%, inclusions such as oxides increase and workability and weldability are impaired. Therefore, the amount of REM when contained is 0.50% or less. The REM content is more preferably 0.30% or less, and further preferably 0.15% or less. On the other hand, in order to reliably obtain the above effect, the REM content is preferably 0.0005% or more, more preferably 0.001% or more, and further preferably 0.002% or more. preferable.
 なお、REMは、Sc、Yおよびランタノイドの合計17元素を指し、前記REMの含有量はこれらの元素の合計含有量を意味する。 REM refers to a total of 17 elements of Sc, Y and lanthanoid, and the content of REM means the total content of these elements.
 上記のMg、CaおよびREMの合計含有量は0.6%以下であってもよいが、0.4%以下であることがより好ましく、0.2%以下であることがさらに好ましい。 The total content of Mg, Ca and REM may be 0.6% or less, more preferably 0.4% or less, and still more preferably 0.2% or less.
 V、B、ZrおよびHfは、いずれも高温強度およびクリープ破断強度を向上させる作用を有する。このため、より大きな高温強度およびクリープ破断強度を得たい場合には、これらの元素の1種以上を以下の範囲で積極的に含有させてもよい。 V, B, Zr and Hf all have the effect of improving high temperature strength and creep rupture strength. For this reason, when it is desired to obtain a higher high-temperature strength and creep rupture strength, one or more of these elements may be positively contained in the following range.
 V:1.5%以下
 Vは、炭窒化物を形成して高温強度およびクリープ破断強度を向上させる作用を有する。このため、これらの効果を得るためにVを含有させてもよい。しかしながら、V含有量が1.5%を超えると、耐高温腐食性が低下し、さらに脆化相の析出に起因した延性および靱性の劣化をきたす。したがって、含有させる場合のVの量は1.5%以下とする。V含有量は1.0%以下とするのがより好ましい。一方、上記の効果を確実に得るためには、V含有量は0.02%以上とするのが好ましく、0.04%以上とするのがより好ましい。
V: 1.5% or less V has an action of forming a carbonitride to improve high temperature strength and creep rupture strength. For this reason, in order to acquire these effects, you may contain V. However, when the V content exceeds 1.5%, the high temperature corrosion resistance is lowered, and further ductility and toughness are deteriorated due to precipitation of the embrittled phase. Therefore, when V is included, the amount of V is 1.5% or less. The V content is more preferably 1.0% or less. On the other hand, in order to surely obtain the above effect, the V content is preferably 0.02% or more, and more preferably 0.04% or more.
 B:0.01%以下
 Bは、炭化物中またはマトリックスに存在し、析出する炭化物の微細化を促進するだけでなく、粒界を強化することでクリープ破断強度を向上させる作用を有する。しかしながら、B含有量が0.01%を超えると、高温での延性が低下し融点も低下する。したがって、含有させる場合のBの量は0.01%以下とする。B含有量は0.008%以下であるのがより好ましく、0.006%以下であるのがさらに好ましい。一方、上記の効果を確実に得るためには、B含有量は0.0005%以上とするのが好ましく、0.001%以上とするのがより好ましく、0.0015%以上とするのがさらに好ましい。
B: 0.01% or less B exists in the carbide or in the matrix, and not only promotes refinement of the precipitated carbide, but also has an effect of improving the creep rupture strength by strengthening the grain boundary. However, if the B content exceeds 0.01%, the ductility at high temperatures is lowered and the melting point is also lowered. Therefore, the amount of B when contained is 0.01% or less. The B content is more preferably 0.008% or less, and further preferably 0.006% or less. On the other hand, in order to reliably obtain the above effect, the B content is preferably 0.0005% or more, more preferably 0.001% or more, and further preferably 0.0015% or more. preferable.
 Zr:0.10%以下
 Zrは、炭窒化物の微細化を促進するとともに、粒界強化元素としてクリープ破断強度を向上させる元素である。しかしながら、Zr含有量が0.10%を超えると、高温での延性が低下する。したがって、含有させる場合のZrの量は0.10%以下とする。Zr含有量は0.06%以下であるのがより好ましく、0.05%以下であるのがさらに好ましい。一方、上記の効果を確実に得るためには、Zr含有量は0.005%以上とするのが好ましく、0.01%以上とするのがより好ましい。
Zr: 0.10% or less Zr is an element that promotes refinement of carbonitride and improves creep rupture strength as a grain boundary strengthening element. However, when the Zr content exceeds 0.10%, the ductility at high temperatures is lowered. Therefore, the amount of Zr in the case of containing is 0.10% or less. The Zr content is more preferably 0.06% or less, and even more preferably 0.05% or less. On the other hand, in order to reliably obtain the above effect, the Zr content is preferably 0.005% or more, and more preferably 0.01% or more.
 Hf:1.0%以下
 Hfは、炭窒化物として析出強化に寄与しクリープ破断強度を向上させる作用を有するので、これらの効果を得るためにHfを含有させてもよい。しかしながら、Hf含有量が1.0%を超えると、加工性および溶接性が損なわれる。したがって、含有させる場合のHfの量は1.0%以下とする。Hf含有量は0.8%以下とするのがより好ましく、0.5%以下とするのがさらに好ましい。一方、上記の効果を確実に得るためには、Hf含有量は0.005%以上とするのが好ましく、0.01%以上とするのがより好ましく、0.02%以上とするのがさらに好ましい。
Hf: 1.0% or less Hf contributes to precipitation strengthening as a carbonitride and has an effect of improving creep rupture strength. Therefore, Hf may be contained in order to obtain these effects. However, if the Hf content exceeds 1.0%, workability and weldability are impaired. Therefore, the amount of Hf when contained is 1.0% or less. The Hf content is more preferably 0.8% or less, and further preferably 0.5% or less. On the other hand, in order to reliably obtain the above effect, the Hf content is preferably 0.005% or more, more preferably 0.01% or more, and further preferably 0.02% or more. preferable.
 上記のV、B、ZrおよびHfの合計含有量は2.6%以下であることが好ましく、1.8%以下であることがより好ましい。 The total content of V, B, Zr and Hf described above is preferably 2.6% or less, and more preferably 1.8% or less.
 TaおよびReは、いずれもマトリックスであるオーステナイトに固溶して固溶強化作用を有する。このため、固溶強化作用よって、一層高い高温強度およびクリープ破断強度を得たい場合には、これらの元素の一方または両方を以下の範囲で積極的に含有させてもよい。 Ta Both Ta and Re have a solid solution strengthening action by dissolving in austenite as a matrix. For this reason, when it is desired to obtain higher high-temperature strength and creep rupture strength by the solid solution strengthening action, one or both of these elements may be positively contained in the following range.
 Ta:8.0%以下
 Taは、炭窒化物を形成するとともに固溶強化元素として高温強度およびクリープ破断強度を向上させる作用を有する。このため、これらの効果を得るためにTaを含有させてもよい。しかしながら、Ta含有量が8.0%を超えると、加工性および機械的性質が損なわれる。したがって、含有させる場合のTaの量は8.0%以下とする。Ta含有量は7.0%以下とするのがより好ましく、6.0%以下とするのがさらに好ましい。一方、上記の効果を確実に得るためには、Ta含有量は0.01%以上とするのが好ましく、0.1%以上とするのがより好ましく、0.5%以上とするのがさらに好ましい。
Ta: 8.0% or less Ta has the effect of forming carbonitride and improving the high temperature strength and creep rupture strength as a solid solution strengthening element. For this reason, in order to acquire these effects, you may contain Ta. However, if the Ta content exceeds 8.0%, workability and mechanical properties are impaired. Therefore, when Ta is included, the amount of Ta is set to 8.0% or less. The Ta content is more preferably 7.0% or less, and even more preferably 6.0% or less. On the other hand, in order to surely obtain the above effect, the Ta content is preferably 0.01% or more, more preferably 0.1% or more, and further preferably 0.5% or more. preferable.
 Re:8.0%以下
 Reは、主として固溶強化元素として高温強度およびクリープ破断強度を向上させる作用を有するので、これらの効果を得るためにReを含有させてもよい。しかしながら、Re含有量が8.0%を超えると、加工性および機械的性質が損なわれる。したがって、含有させる場合のReの量は8.0%以下とする。Re含有量は7.0%以下とするのがより好ましく、6.0%とするのがさらに好ましい。一方、上記の効果を確実に得るためには、Re含有量は0.01%以上とするのが好ましく、0.1%以上とするのがより好ましく、0.5%以上とするのがさらに好ましい。
Re: 8.0% or less Re has a function of improving high-temperature strength and creep rupture strength mainly as a solid solution strengthening element. Therefore, Re may be contained in order to obtain these effects. However, if the Re content exceeds 8.0%, workability and mechanical properties are impaired. Therefore, the amount of Re when contained is 8.0% or less. The Re content is more preferably 7.0% or less, and even more preferably 6.0%. On the other hand, in order to reliably obtain the above effect, the Re content is preferably 0.01% or more, more preferably 0.1% or more, and further preferably 0.5% or more. preferable.
 上記のTaおよびReの合計含有量は14.0%以下であるのが好ましく、12.0%以下であるのがより好ましい。 The total content of Ta and Re is preferably 14.0% or less, and more preferably 12.0% or less.
 2.結晶粒度
 外面部におけるオーステナイト結晶粒度番号:-2.0~4.0
 外面部におけるオーステナイト結晶粒度が粗すぎると、常温での0.2%耐力および引張強さが低くなり、一方、細かすぎると、高温における高いクリープ破断強度を保持することができなくなる。したがって、外面部におけるオーステナイト結晶粒度番号は-2.0~4.0とする。なお、Ni基合金の製造工程において、熱間加工後の熱処理温度および保持時間ならびに冷却方法を適切に調整することで、最終熱処理後の外面部の結晶粒度番号を上記の範囲とすることができる。
2. Grain size Austenite grain size number in the outer surface: -2.0 to 4.0
If the austenite grain size in the outer surface portion is too coarse, the 0.2% proof stress and tensile strength at room temperature will be low, while if too fine, it will not be possible to maintain high creep rupture strength at high temperatures. Therefore, the austenite grain size number in the outer surface portion is set to -2.0 to 4.0. In addition, in the manufacturing process of the Ni-base alloy, the crystal grain size number of the outer surface portion after the final heat treatment can be set to the above range by appropriately adjusting the heat treatment temperature and holding time after the hot working and the cooling method. .
 3.寸法
 中心部から外面部までの最短距離:40mm以上
 上述のように、大型の構造部材では、常温における0.2%耐力および引張強さが低くなることに加えて、部位によってクリープ破断強度のばらつきが生じるという問題もある。しかしながら、本発明に係るオーステナイト系耐熱合金は、大型の構造部材として十分な常温での0.2%耐力および引張強さ、ならびに、高温でのクリープ破断強度を発現する。すなわち、本発明の効果は、厚肉の部材に対して顕著に発揮される。
3. Dimensions Shortest distance from the center to the outer surface: 40 mm or more As described above, in a large structural member, in addition to the 0.2% proof stress and tensile strength at room temperature, the creep rupture strength varies depending on the part. There is also a problem that occurs. However, the austenitic heat-resistant alloy according to the present invention exhibits 0.2% proof stress and tensile strength at room temperature sufficient for a large structural member, and creep rupture strength at high temperature. That is, the effect of the present invention is remarkably exhibited for a thick member.
 したがって、本発明のオーステナイト系耐熱合金においては、長手方向と垂直な断面において、中心部から外面部までの最短距離を40mm以上とする。本発明による効果をより顕著に得るためには、中心部から外面部までの最短距離は80mm以上であるのが好ましく、100mm以上であるのがより好ましい。ここで、中心部から外面部までの最短距離は、例えば、合金が円柱状である場合、断面の半径(mm)となり、四角柱状である場合、断面の短辺の半分の長さ(mm)となる。 Therefore, in the austenitic heat-resistant alloy of the present invention, the shortest distance from the center portion to the outer surface portion is set to 40 mm or more in the cross section perpendicular to the longitudinal direction. In order to obtain the effects of the present invention more remarkably, the shortest distance from the center portion to the outer surface portion is preferably 80 mm or more, and more preferably 100 mm or more. Here, the shortest distance from the center portion to the outer surface portion is, for example, a radius of the cross section (mm) when the alloy is cylindrical, and a length (mm) that is half the short side of the cross section when the alloy is a quadrangular prism. It becomes.
 なお、本発明に係る耐熱合金は、後述するように、例えば、鋼塊、または連続鋳造等によって得られた鋳片に、熱間鍛造または熱間圧延等の熱間加工を施すことによって得られる。そして、耐熱合金の長手方向は概して、鋼塊を用いる場合は、鋼塊のトップ部とボトム部とを結ぶ方向となり、鋳片を用いる場合は、長さ方向となる。 The heat-resistant alloy according to the present invention is obtained, for example, by subjecting a steel ingot or a cast piece obtained by continuous casting to hot working such as hot forging or hot rolling, as will be described later. . The longitudinal direction of the heat-resistant alloy is generally the direction connecting the top and bottom portions of the steel ingot when using a steel ingot, and the length direction when using a slab.
 4.抽出残渣分析によって得られる析出物として存在するCr量
 CrPB/CrPS≦10.0   ・・・(i)
 但し、(i)式中の各記号の意味は以下のとおりである。
 CrPB:中心部において抽出残渣分析によって得られる析出物として存在するCr量
 CrPS:外面部において抽出残渣分析によって得られる析出物として存在するCr量
 合金の製造工程において、熱間加工後の熱処理を施した後の結晶粒界または粒内には未固溶のCrの析出物(主として、炭化物)が生じる。特に、合金の中心部では外面部と比べて冷却速度が遅くなるため、Crの析出物の量が増す傾向にある。そのため、CrPB/CrPSの値が10.0を超えると、高温における高いクリープ破断強度を保持することができなくなる。一方、CrPB/CrPSの下限値は定める必要はないが、中心部が外面部よりも析出物の量が増す傾向にあることから1.0以上とすることが好ましい。
4). Cr amount present as precipitate obtained by extraction residue analysis Cr PB / Cr PS ≦ 10.0 (i)
However, the meaning of each symbol in the formula (i) is as follows.
Cr PB : Cr amount present as precipitates obtained by extraction residue analysis in the center portion Cr PS : Cr amount present as precipitates obtained by extraction residue analysis in the outer surface portion In the manufacturing process of the alloy, heat treatment after hot working An insoluble Cr precipitate (mainly carbide) is formed in the crystal grain boundary or in the grain after the treatment. In particular, since the cooling rate is slower at the center of the alloy than at the outer surface, the amount of Cr precipitates tends to increase. Therefore, if the value of Cr PB / Cr PS exceeds 10.0, it becomes impossible to maintain high creep rupture strength at high temperatures. On the other hand, the lower limit of Cr PB / Cr PS does not need to be determined, but is preferably set to 1.0 or more because the central portion tends to increase the amount of precipitates more than the outer surface portion.
 なお、抽出残渣分析は以下の手順により行うものとする。まず、合金試料の長手方向と垂直な断面における中心部および外面部から、Cr析出物を測定するための試験片を採取する。上記の試験片の表面積を求めた上でそれぞれ10%アセチルアセトン-1%テトラメチルアンモニウムクロライド-メタノール溶液中で20mA/cmの電解条件で合金試料の母材のみを完全に電解する。そして、電解後の溶液を0.2μmフィルターでろ過し、析出物を残渣として抽出する。その後、抽出残渣を酸分解してから、誘導結合プラズマ発光分光分析装置(ICP-AES)を用いて分析することによって、未固溶のCr析出物として含まれるCrの含有量(質量%)を測定し、その測定値に基づきCrPB/CrPSの値を求める。 The extraction residue analysis is performed according to the following procedure. First, a test piece for measuring Cr precipitates is collected from the center portion and the outer surface portion in a cross section perpendicular to the longitudinal direction of the alloy sample. After obtaining the surface area of the test piece, only the base material of the alloy sample is completely electrolyzed in an electrolysis condition of 20 mA / cm 2 in a 10% acetylacetone-1% tetramethylammonium chloride-methanol solution. And the solution after electrolysis is filtered with a 0.2 micrometer filter, and deposits are extracted as a residue. After that, the extraction residue is acid-decomposed, and then analyzed using an inductively coupled plasma optical emission spectrometer (ICP-AES) to determine the Cr content (mass%) contained as undissolved Cr precipitates. Measure and obtain the value of Cr PB / Cr PS based on the measured value.
 5.機械的性質
 YS/YS≦1.5 ・・・(ii)
 TS/TS≦1.2 ・・・(iii)
 但し、上記式中の各記号の意味は以下のとおりである。
 YS:中心部における0.2%耐力
 YS:外面部における0.2%耐力
 TS:中心部における引張強さ
 TS:外面部における引張強さ
 大型の構造部材では、熱処理時の冷却速度が部位により異なることに起因して、部位ごとの機械的性質に大きなばらつきが生じる傾向にある。大型構造部材において、その中心部と外面部とで、常温での0.2%耐力および引張強さが大きく異なると、部位によって仕様を満たさないという問題が生じる。
5). Mechanical properties YS S / YS B ≦ 1.5 (ii)
TS S / TS B ≦ 1.2 (iii)
However, the meaning of each symbol in the above formula is as follows.
YS B : 0.2% yield strength at the center YS S : 0.2% yield strength at the outer surface TS B : Tensile strength at the center TS S : Tensile strength at the outer surface Cooling during heat treatment for large structural members Due to the fact that the speed varies from site to site, the mechanical properties of each site tend to vary greatly. In a large-sized structural member, when the 0.2% proof stress and tensile strength at normal temperature are greatly different between the central portion and the outer surface portion, there is a problem that the specification is not satisfied depending on the part.
 したがって、本発明に係るオーステナイト系耐熱合金は、常温での機械的特性が上記の(ii)式および(iii)式を満足するものとする。なお、それぞれ下限値は定める必要はないが、中心部の機械特性の方が外面部の機械特性よりも劣る傾向にあることから、(ii)式および(iii)式ともに1.0以上とすることが好ましい。 Therefore, it is assumed that the austenitic heat-resistant alloy according to the present invention satisfies the above formulas (ii) and (iii) in mechanical properties at room temperature. In addition, although it is not necessary to set a lower limit for each, since the mechanical properties of the central portion tend to be inferior to the mechanical properties of the outer surface portion, both formulas (ii) and (iii) are set to 1.0 or more. It is preferable.
 0.2%耐力および引張強さは、合金の中心部および外面部から、長手方向に平行に、平行部の長さが40mmの丸棒引張試験片を機械加工により切り出し、室温において引張試験を実施することで求める。また、引張試験はJIS Z 2241(2011)に準拠して行うこととする。 The 0.2% proof stress and tensile strength were determined by cutting a round bar tensile test piece with a parallel part length of 40 mm from the center part and outer surface part of the alloy in parallel with the longitudinal direction, and conducting a tensile test at room temperature. It asks by carrying out. In addition, the tensile test is performed according to JIS Z 2241 (2011).
 6.クリープ破断強度
 本発明のオーステナイト系耐熱合金は、高温環境下で使用するため、高い高温強度、特に、高いクリープ破断強度が求められる。そのため、本発明の耐熱合金は、その中心部において、長手方向の700℃における10,000時間クリープ破断強度が100MPa以上であることが好ましい。
6). Creep rupture strength Since the austenitic heat-resistant alloy of the present invention is used in a high temperature environment, it requires high high temperature strength, particularly high creep rupture strength. Therefore, the heat-resistant alloy of the present invention preferably has a 10,000-hour creep rupture strength at 700 ° C. in the longitudinal direction of 100 MPa or more at the center.
 クリープ破断強度は、以下の方法により求める。まず、合金の中心部から、長手方向に平行に、JIS Z 2241(2011)に記載される直径6mm、標点距離30mmの丸棒クリープ破断試験片を機械加工により切り出す。そして、700℃、750℃、800℃の大気中においてクリープ破断試験を実施し、Larson-Millerパラメータ法を用いて700℃、10,000時間のクリープ破断強度を求める。また、クリープ破断試験は、JIS Z 2271(2010)に準拠して行うこととする。 Creep rupture strength is obtained by the following method. First, a round bar creep rupture test piece having a diameter of 6 mm and a gauge distance of 30 mm described in JIS Z 2241 (2011) is cut out by machining from the center of the alloy in parallel with the longitudinal direction. Then, a creep rupture test is performed in the atmosphere at 700 ° C., 750 ° C., and 800 ° C., and the creep rupture strength at 700 ° C. for 10,000 hours is obtained using the Larson-Miller parameter method. The creep rupture test is performed in accordance with JIS Z 2271 (2010).
 7.製造方法
 本発明のオーステナイト系耐熱合金は、上述の化学組成を有する鋼塊または鋳片に、熱間加工を施すことによって製造することができる。なお、上記の熱間加工工程においては、合金の最終形状における長手方向が、素材となる鋼塊または鋳片の長手方向と一致するように処理が施される。熱間加工は、長手方向のみに行ってもよいが、より高い加工度を与えて、より均質な組織とするため、上記長手方向と略垂直な方向に対して、熱間加工を1回以上施してもよい。また、当該熱間加工の後に、必要に応じて熱間押出等の異なる方法の熱間加工をさらに施してもよい。
7). Production Method The austenitic heat-resistant alloy of the present invention can be produced by subjecting a steel ingot or slab having the above-described chemical composition to hot working. In the hot working step described above, the treatment is performed so that the longitudinal direction of the final shape of the alloy coincides with the longitudinal direction of the steel ingot or slab as the raw material. Although the hot working may be performed only in the longitudinal direction, the hot working is performed once or more in the direction substantially perpendicular to the longitudinal direction in order to provide a higher degree of working and a more homogeneous structure. You may give it. Moreover, you may further give hot processing of different methods, such as hot extrusion, as needed after the said hot processing.
 本発明のオーステナイト系耐熱合金を製造するに際しては、上記の工程の後、部位ごとの金属組織および機械的性質のばらつきを抑制し、高いクリープ破断強度を保持するために、以下に説明する最終熱処理を施す。 In producing the austenitic heat-resistant alloy of the present invention, after the above steps, the final heat treatment described below is performed in order to suppress the variation in the metal structure and mechanical properties of each part and maintain high creep rupture strength. Apply.
 まず、熱間加工後の合金を、1100~1250℃の範囲の熱処理温度T(℃)まで加熱し、その範囲内において、1000D/T~1400D/T(min)保持する。ここで、Dは、例えば、合金が円柱状である場合、合金の直径(mm)となり、四角柱状である場合、対角の距離(mm)となる。すなわちDは、合金の長手方向と垂直な断面における、当該断面の外縁上の任意の点と該外縁上の他の任意の点との直線距離の最大値(mm)である。 First, the hot-worked alloy is heated to a heat treatment temperature T (° C.) in the range of 1100 to 1250 ° C., and within that range, 1000 D / T to 1400 D / T (min) is maintained. Here, D is, for example, a diameter (mm) of the alloy when the alloy is cylindrical, and a diagonal distance (mm) when the alloy is square. That is, D is the maximum value (mm) of the linear distance between an arbitrary point on the outer edge of the cross section and another arbitrary point on the outer edge in a cross section perpendicular to the longitudinal direction of the alloy.
 上記の熱処理温度が1100℃未満であると、未固溶のクロム炭化物等が増大しクリープ破断強度が低下する。一方、1250℃を超えると、粒界が溶融したり著しく結晶粒が粗大化したりすることによって延性が低下する。熱処理温度は1150℃以上とするのがより望ましく、1230℃以下とするのがより望ましい。また、上記保持時間が1000D/T(min)未満では、中心部の未固溶クロム炭化物が増大しCrPB/CrPSが本発明で規定する範囲外となる。一方、1400D/T(min)を超えると外面部の結晶粒が粗大化し、オーステナイト結晶粒度番号が本発明で規定する範囲外となる。 When the heat treatment temperature is lower than 1100 ° C., undissolved chromium carbide and the like increase, and the creep rupture strength decreases. On the other hand, when the temperature exceeds 1250 ° C., the ductility decreases due to melting of the grain boundary or markedly coarsening of the crystal grains. The heat treatment temperature is more preferably 1150 ° C. or higher, and more preferably 1230 ° C. or lower. Further, the holding time is less than 1000D / T (min), undissolved chromium carbide increases Cr PB / Cr PS central portion is out of the range defined in the present invention. On the other hand, if it exceeds 1400 D / T (min), the crystal grains in the outer surface portion become coarse, and the austenite grain size number falls outside the range defined in the present invention.
 加熱保持後は、合金を直ちに水冷する。冷却速度が遅くなると、特に合金の中心部において結晶粒界または粒内に未固溶Cr析出物が多量に生じ、上記の(i)式を満足しなくなるおそれがあるためである。 ・ After heating and holding, immediately cool the alloy with water. This is because when the cooling rate is slow, a large amount of undissolved Cr precipitates are generated at the grain boundaries or in the grains, particularly at the center of the alloy, and the above formula (i) may not be satisfied.
 以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically by way of examples. However, the present invention is not limited to these examples.
 表1に示す化学組成を有する合金を高周波真空溶解炉で溶製し、外径が550mm、重量が3tの鋼塊とした。 An alloy having the chemical composition shown in Table 1 was melted in a high-frequency vacuum melting furnace to form a steel ingot having an outer diameter of 550 mm and a weight of 3 t.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 得られた鋼塊を、熱間鍛造によって外径120~480mmの円柱状に加工し、表2に示す条件で最終熱処理を施し、合金部材試料を得た。なお、合金1、2および4については長手方向の熱間鍛造の後、最終熱処理の前に、長手方向と略垂直な方向に鍛造を行い、その後さらに長手方向に最終の熱間鍛造を行った。 The obtained steel ingot was processed into a cylindrical shape having an outer diameter of 120 to 480 mm by hot forging and subjected to final heat treatment under the conditions shown in Table 2 to obtain an alloy member sample. For alloys 1, 2 and 4, forging in the direction substantially perpendicular to the longitudinal direction was performed after hot forging in the longitudinal direction and before the final heat treatment, and then final hot forging was further performed in the longitudinal direction. .
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 各試料について、外面部から組織観察用の試験片を採取し、長手方向の断面をエメリーペーパーとバフで研磨後、混酸で腐食して光学顕微鏡観察を行った。観察面の結晶粒度番号はJIS G 0551(2013)に規定される交差線分(粒径)による判定方法に従って求めた。 For each sample, a specimen for observing the structure was collected from the outer surface, and the longitudinal section was polished with emery paper and buff, then corroded with mixed acid and observed with an optical microscope. The crystal grain size number on the observation surface was determined according to the determination method based on the intersection line segment (grain size) defined in JIS G 0551 (2013).
 次に、各試料の長手方向と垂直な断面における中心部および外面部から、Cr析出物を測定するための試験片を採取した。上記の試験片の表面積を求めた上でそれぞれ10%アセチルアセトン-1%テトラメチルアンモニウムクロライド-メタノール溶液中で20mA/cmの電解条件で合金試料の母材のみを完全に電解した。そして、電解後の溶液を0.2μmフィルターでろ過し、析出物を残渣として抽出した。その後、抽出残渣を酸分解してから、ICP-AES測定することによって、未固溶のCr析出物として含まれるCrの含有量(質量%)を測定し、その測定値に基づきCrPB/CrPSの値を求めた。 Next, a test piece for measuring Cr precipitates was collected from the center portion and the outer surface portion in the cross section perpendicular to the longitudinal direction of each sample. After determining the surface area of the above test piece, only the base material of the alloy sample was completely electrolyzed in an electrolytic condition of 20 mA / cm 2 in a 10% acetylacetone-1% tetramethylammonium chloride-methanol solution. And the solution after electrolysis was filtered with a 0.2 micrometer filter, and the deposit was extracted as a residue. After that, the extraction residue is subjected to acid decomposition, and then ICP-AES measurement is performed to measure the Cr content (mass%) contained as an undissolved Cr precipitate. Based on the measured value, Cr PB / Cr The PS value was determined.
 また、各試料の中心部および外面部から、長手方向に平行に、平行部の長さが40mmの引張試験片を機械加工により切り出し、室温において引張試験を実施し、0.2%耐力および引張強さを求めた。さらに、各試料の中心部から、長手方向に平行に、平行部の長さが30mmのクリープ破断試験片を機械加工により切り出した。そして、700℃、750℃、800℃の大気中においてクリープ破断試験を実施し、Larson-Millerパラメータ法を用いて700℃、10,000時間のクリープ破断強度を求めた。 In addition, a tensile test piece having a parallel part length of 40 mm was cut out by machining from the center part and the outer surface part of each sample, and a tensile test was performed at room temperature. I asked for strength. Further, a creep rupture test piece having a parallel part length of 30 mm was cut out from the center part of each sample in parallel with the longitudinal direction by machining. And the creep rupture test was implemented in 700 degreeC, 750 degreeC, and 800 degreeC air | atmosphere, The 700 degreeC creep rupture strength was calculated | required using the Larson-Miller parameter method.
 それらの結果を表3にまとめて示す。 The results are summarized in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 合金AおよびBは、合金1と化学組成がほぼ同等であり、熱間鍛造によって同一の最終形状としたものである。しかしながら、熱処理時の保持時間が本発明で規定する製造条件の範囲外である。そのことに起因にして、合金Aについては外面部の結晶粒度番号が本発明の規定範囲外となり、YS/YSおよびTS/TSの値が本発明の規定範囲外となっており部位により機械特性のばらつきが大きくなる結果となった。また、合金Bについてはクリープ破断強度が本発明の規定範囲外となっており、合金1と比較して著しく低い結果となった。 Alloys A and B have substantially the same chemical composition as alloy 1 and have the same final shape by hot forging. However, the holding time at the time of heat treatment is outside the range of manufacturing conditions defined in the present invention. As a result, the grain size number of the outer surface portion of alloy A is outside the specified range of the present invention, and the values of YS S / YS B and TS S / TS B are out of the specified range of the present invention. As a result, the variation in mechanical properties increased depending on the part. Further, with respect to Alloy B, the creep rupture strength was outside the specified range of the present invention, and the result was significantly lower than that of Alloy 1.
 合金C、DおよびEは、合金2と化学組成がほぼ同等であり、熱間鍛造によって同一の最終形状としたものである。合金Cは熱処理温度が本発明の規定範囲より低いために、外面部の結晶粒度番号とCrPB/CrPSの値とが本発明で規定する範囲外となっており、合金2と比較してクリープ破断強度が著しく低い結果となった。 Alloys C, D, and E have substantially the same chemical composition as alloy 2 and have the same final shape by hot forging. Since the heat treatment temperature of Alloy C is lower than the specified range of the present invention, the grain size number of the outer surface portion and the value of Cr PB / Cr PS are outside the range specified by the present invention. The creep rupture strength was extremely low.
 合金Dは熱処理温度が本発明の規定範囲より高いために、外面部の結晶粒度番号と、YS/YSおよびTS/TSの値とが本発明の規定範囲外となっており、合金2と比較してクリープ破断強度が著しく低い結果となった。 Since the heat treatment temperature of the alloy D is higher than the specified range of the present invention, the crystal grain size number of the outer surface portion and the values of YS S / YS B and TS S / TS B are outside the specified range of the present invention. Compared to Alloy 2, the creep rupture strength was remarkably low.
 また、合金Eは最終熱処理時の冷却方法が水冷ではなく空冷であり、冷却速度が著しく遅かったことに起因して、CrPB/CrPSの値が本発明の規定範囲外となり、その結果、合金2と比較してクリープ破断強度が著しく低くなった。一方、本発明の規定を全て満足する合金1~9は、機械特性のばらつきも小さく、クリープ破断強度も良好であった。 In addition, the cooling method at the time of the final heat treatment of the alloy E is not water cooling but air cooling, and because the cooling rate is extremely slow, the value of Cr PB / Cr PS is outside the specified range of the present invention. Compared to Alloy 2, the creep rupture strength was significantly lower. On the other hand, Alloys 1 to 9 satisfying all the provisions of the present invention had small variations in mechanical properties and good creep rupture strength.
 本発明のオーステナイト系耐熱合金は、部位による機械的性質のばらつきが少なく、また、高温でのクリープ破断強度に優れる。そのため、本発明のオーステナイト系耐熱合金は、高温環境下で使用される火力発電用ボイラおよび化学プラント等の大型構造部材として好適に用いることができる。

 
The austenitic heat-resistant alloy of the present invention has little variation in mechanical properties depending on the part, and is excellent in creep rupture strength at high temperatures. Therefore, the austenitic heat-resistant alloy of the present invention can be suitably used as a large structural member such as a thermal power generation boiler and a chemical plant used in a high temperature environment.

Claims (5)

  1.  合金の化学組成が、質量%で、
     C:0.02~0.12%、
     Si:2.0%以下、
     Mn:3.0%以下、
     P:0.030%以下、
     S:0.015%以下、
     Cr:20.0%以上28.0%未満、
     Ni:35.0%を超えて55.0%以下、
     Co:0~20.0%、
     W:4.0~10.0%、
     Ti:0.01~0.50%、
     Nb:0.01~1.0%、
     Mo:0.50%未満、
     Cu:0.50%未満、
     Al:0.30%以下、
     N:0.10%未満、
     Mg:0~0.05%、
     Ca:0~0.05%、
     REM:0~0.50%、
     V:0~1.5%、
     B:0~0.01%、
     Zr:0~0.10%、
     Hf:0~1.0%、
     Ta:0~8.0%、
     Re:0~8.0%、
     残部:Feおよび不純物であり、
     前記合金の長手方向と垂直な断面において、中心部から外面部までの最短距離が40mm以上であり、
     前記外面部におけるオーステナイト結晶粒度番号が-2.0~4.0であり、
     抽出残渣分析によって得られる析出物として存在するCr量が下記(i)式を満足し、
     常温での機械的特性が下記(ii)式および(iii)式を満足する、
     オーステナイト系耐熱合金。
     CrPB/CrPS≦10.0 ・・・(i)
     YS/YS≦1.5 ・・・(ii)
     TS/TS≦1.2 ・・・(iii)
     但し、上記式中の各記号の意味は以下のとおりである。
     CrPB:中心部において抽出残渣分析によって得られる析出物として存在するCr量
     CrPS:外面部において抽出残渣分析によって得られる析出物として存在するCr量
     YS:中心部における0.2%耐力
     YS:外面部における0.2%耐力
     TS:中心部における引張強さ
     TS:外面部における引張強さ
    The chemical composition of the alloy is mass%,
    C: 0.02 to 0.12%,
    Si: 2.0% or less,
    Mn: 3.0% or less,
    P: 0.030% or less,
    S: 0.015% or less,
    Cr: 20.0% or more and less than 28.0%,
    Ni: more than 35.0% and 55.0% or less,
    Co: 0-20.0%,
    W: 4.0-10.0%,
    Ti: 0.01 to 0.50%,
    Nb: 0.01 to 1.0%,
    Mo: less than 0.50%,
    Cu: less than 0.50%,
    Al: 0.30% or less,
    N: less than 0.10%,
    Mg: 0 to 0.05%,
    Ca: 0 to 0.05%,
    REM: 0 to 0.50%,
    V: 0 to 1.5%
    B: 0 to 0.01%
    Zr: 0 to 0.10%,
    Hf: 0 to 1.0%
    Ta: 0 to 8.0%,
    Re: 0 to 8.0%,
    Balance: Fe and impurities,
    In the cross section perpendicular to the longitudinal direction of the alloy, the shortest distance from the center portion to the outer surface portion is 40 mm or more,
    The austenite grain size number in the outer surface portion is -2.0 to 4.0,
    The amount of Cr present as a precipitate obtained by extraction residue analysis satisfies the following formula (i):
    Mechanical properties at room temperature satisfy the following formulas (ii) and (iii):
    Austenitic heat-resistant alloy.
    Cr PB / Cr PS ≦ 10.0 (i)
    YS S / YS B ≦ 1.5 (ii)
    TS S / TS B ≦ 1.2 (iii)
    However, the meaning of each symbol in the above formula is as follows.
    Cr PB : Cr amount existing as precipitates obtained by extraction residue analysis in the central portion Cr PS : Cr amount existing as precipitates obtained by extraction residue analysis in the outer surface portion YS B : 0.2% proof stress in the central portion YS S : 0.2% proof stress at the outer surface portion TS B : Tensile strength at the central portion TS S : Tensile strength at the outer surface portion
  2.  前記化学組成が、質量%で、
     Mg:0.0005~0.05%、
     Ca:0.0005~0.05%、
     REM:0.0005~0.50%、
     V:0.02~1.5%、
     B:0.0005~0.01%、
     Zr:0.005~0.10%、
     Hf:0.005~1.0%、
     Ta:0.01~8.0%、および、
     Re:0.01~8.0%、
     から選択される1種以上を含有する、
     請求項1に記載のオーステナイト系耐熱合金。
    The chemical composition is mass%,
    Mg: 0.0005 to 0.05%,
    Ca: 0.0005 to 0.05%,
    REM: 0.0005 to 0.50%,
    V: 0.02 to 1.5%,
    B: 0.0005 to 0.01%,
    Zr: 0.005 to 0.10%,
    Hf: 0.005 to 1.0%,
    Ta: 0.01-8.0%, and
    Re: 0.01 to 8.0%,
    Containing one or more selected from
    The austenitic heat-resistant alloy according to claim 1.
  3.  前記中心部における前記長手方向の700℃における10,000時間クリープ破断強度が100MPa以上である、
     請求項1または請求項2に記載のオーステナイト系耐熱合金。
    10,000 hours creep rupture strength at 700 ° C. in the longitudinal direction in the central portion is 100 MPa or more,
    The austenitic heat-resistant alloy according to claim 1 or 2.
  4.  請求項1または請求項2に記載の化学組成を有する鋼塊または鋳片に、熱間加工を施す工程と、
     その後、1100~1250℃の範囲の熱処理温度T(℃)まで加熱し、1000D/T~1400D/T(min)保持した後、水冷する熱処理を施す工程と、を備える、
     オーステナイト系耐熱合金の製造方法。
     但し、Dは、合金の長手方向と垂直な断面における、当該断面の外縁上の任意の点と該外縁上の他の任意の点との直線距離の最大値(mm)である。
    A step of hot-working the steel ingot or slab having the chemical composition according to claim 1 or 2,
    Thereafter, heating to a heat treatment temperature T (° C.) in the range of 1100 to 1250 ° C., holding 1000 D / T to 1400 D / T (min), and then performing a heat treatment of cooling with water,
    A method for producing an austenitic heat-resistant alloy.
    However, D is the maximum value (mm) of the linear distance between an arbitrary point on the outer edge of the cross section and another arbitrary point on the outer edge in a cross section perpendicular to the longitudinal direction of the alloy.
  5.  前記熱間加工を施す工程において、長手方向と略垂直な方向に加工を1回以上施す、
     請求項4に記載のオーステナイト系耐熱合金の製造方法。

     
    In the step of performing the hot processing, the processing is performed at least once in a direction substantially perpendicular to the longitudinal direction.
    The manufacturing method of the austenitic heat-resistant alloy of Claim 4.

PCT/JP2017/004824 2017-02-09 2017-02-09 Austenitic heat-resistant alloy and method for producing same WO2018146783A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP17895819.5A EP3581669A4 (en) 2017-02-09 2017-02-09 Austenitic heat-resistant alloy and method for producing same
US16/483,049 US20200232081A1 (en) 2017-02-09 2017-02-09 Austenitic Heat Resistant Alloy and Method for Producing Same
JP2018566714A JP6816779B2 (en) 2017-02-09 2017-02-09 Austenitic heat-resistant alloy member and its manufacturing method
PCT/JP2017/004824 WO2018146783A1 (en) 2017-02-09 2017-02-09 Austenitic heat-resistant alloy and method for producing same
CN201780086046.1A CN110268079A (en) 2017-02-09 2017-02-09 Austenitic heat-resistant alloy and its manufacturing method
KR1020197026299A KR20190117598A (en) 2017-02-09 2017-02-09 Austenitic Heat Resistant Alloy and Manufacturing Method Thereof
CA3052547A CA3052547C (en) 2017-02-09 2017-02-09 Austenitic heat resistant alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/004824 WO2018146783A1 (en) 2017-02-09 2017-02-09 Austenitic heat-resistant alloy and method for producing same

Publications (1)

Publication Number Publication Date
WO2018146783A1 true WO2018146783A1 (en) 2018-08-16

Family

ID=63108183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004824 WO2018146783A1 (en) 2017-02-09 2017-02-09 Austenitic heat-resistant alloy and method for producing same

Country Status (7)

Country Link
US (1) US20200232081A1 (en)
EP (1) EP3581669A4 (en)
JP (1) JP6816779B2 (en)
KR (1) KR20190117598A (en)
CN (1) CN110268079A (en)
CA (1) CA3052547C (en)
WO (1) WO2018146783A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3739080B1 (en) 2018-01-10 2024-05-01 Nippon Steel Corporation Austenitic heat-resistant alloy, method for producing same, and austenitic heat-resistant alloy material
CN109735757A (en) * 2019-01-18 2019-05-10 株洲金佰利硬质合金有限公司 A kind of sintered hard alloy boat contact material
CN112593120A (en) * 2020-12-09 2021-04-02 上海蓝铸特种合金材料有限公司 Nickel-based multi-element alloy, pipe made of nickel-based multi-element alloy and preparation method of pipe
CN113584350A (en) * 2021-07-30 2021-11-02 湖北精利机电科技有限公司 High-temperature oxidation resistant cast high-tungsten-nickel-based alloy and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61179836A (en) 1985-01-10 1986-08-12 Sumitomo Metal Ind Ltd Highly corrosion resistant austenitic stainless steel having high strength
JPS61179834A (en) 1985-01-10 1986-08-12 Sumitomo Metal Ind Ltd Highly corrosion resistant austenitic stainless steel having superior strength at high temperature
JPS61179833A (en) 1985-01-10 1986-08-12 Sumitomo Metal Ind Ltd Highly corrosion resistant austenitic stainless steel having superior strength at high temperature
JPS61179835A (en) 1985-01-10 1986-08-12 Sumitomo Metal Ind Ltd High-strength and highly corrosion resistant austenitic stainless steel
JP2004003000A (en) 2002-04-17 2004-01-08 Sumitomo Metal Ind Ltd Austenitic stainless steel excellent in high-temperature strength and corrosion resistance, heat- and pressure-resistant member made of this and its manufacturing process
JP2011063838A (en) * 2009-09-16 2011-03-31 Sumitomo Metal Ind Ltd Ni-BASED ALLOY PRODUCT AND MANUFACTURING METHOD THEREFOR
JP2016037664A (en) * 2014-08-06 2016-03-22 新日鐵住金株式会社 Austenitic heat resistant alloy member

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100532877B1 (en) * 2002-04-17 2005-12-01 스미토모 긴조쿠 고교 가부시키가이샤 Austenitic stainless steel excellent in high temperature strength and corrosion resistance, heat resistant pressurized parts, and the manufacturing method thereof
JP4431905B2 (en) * 2008-06-16 2010-03-17 住友金属工業株式会社 Austenitic heat-resistant alloy, heat-resistant pressure-resistant member made of this alloy, and manufacturing method thereof
JP5212533B2 (en) * 2011-11-15 2013-06-19 新日鐵住金株式会社 Seamless austenitic heat-resistant alloy tube
JP5413543B1 (en) * 2012-06-07 2014-02-12 新日鐵住金株式会社 Ni-based alloy
JP5857894B2 (en) * 2012-07-05 2016-02-10 新日鐵住金株式会社 Austenitic heat-resistant alloy
JP5998950B2 (en) * 2013-01-24 2016-09-28 新日鐵住金株式会社 Austenitic heat-resistant alloy members
JP6048169B2 (en) * 2013-01-29 2016-12-21 新日鐵住金株式会社 Austenitic heat-resistant alloy members and austenitic heat-resistant alloy materials
JP6477252B2 (en) * 2015-05-26 2019-03-06 新日鐵住金株式会社 Austenitic heat-resistant alloy and heat-resistant pressure-resistant member
JP6520546B2 (en) * 2015-08-10 2019-05-29 日本製鉄株式会社 Austenitic heat-resistant alloy member and method of manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61179836A (en) 1985-01-10 1986-08-12 Sumitomo Metal Ind Ltd Highly corrosion resistant austenitic stainless steel having high strength
JPS61179834A (en) 1985-01-10 1986-08-12 Sumitomo Metal Ind Ltd Highly corrosion resistant austenitic stainless steel having superior strength at high temperature
JPS61179833A (en) 1985-01-10 1986-08-12 Sumitomo Metal Ind Ltd Highly corrosion resistant austenitic stainless steel having superior strength at high temperature
JPS61179835A (en) 1985-01-10 1986-08-12 Sumitomo Metal Ind Ltd High-strength and highly corrosion resistant austenitic stainless steel
JP2004003000A (en) 2002-04-17 2004-01-08 Sumitomo Metal Ind Ltd Austenitic stainless steel excellent in high-temperature strength and corrosion resistance, heat- and pressure-resistant member made of this and its manufacturing process
JP2011063838A (en) * 2009-09-16 2011-03-31 Sumitomo Metal Ind Ltd Ni-BASED ALLOY PRODUCT AND MANUFACTURING METHOD THEREFOR
JP2016037664A (en) * 2014-08-06 2016-03-22 新日鐵住金株式会社 Austenitic heat resistant alloy member

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3581669A4 *

Also Published As

Publication number Publication date
CA3052547A1 (en) 2018-08-16
JPWO2018146783A1 (en) 2019-11-07
EP3581669A1 (en) 2019-12-18
CA3052547C (en) 2020-06-02
EP3581669A4 (en) 2020-08-19
US20200232081A1 (en) 2020-07-23
CN110268079A (en) 2019-09-20
JP6816779B2 (en) 2021-01-20
KR20190117598A (en) 2019-10-16

Similar Documents

Publication Publication Date Title
JP6819700B2 (en) Ni-based heat-resistant alloy member and its manufacturing method
JP4431905B2 (en) Austenitic heat-resistant alloy, heat-resistant pressure-resistant member made of this alloy, and manufacturing method thereof
JP6226081B2 (en) High strength stainless steel seamless pipe and method for manufacturing the same
JP6256458B2 (en) Austenitic stainless steel and manufacturing method thereof
CN109642282B (en) Duplex stainless steel and method for producing same
JP6369662B1 (en) Duplex stainless steel and manufacturing method thereof
US20190284666A1 (en) NiCrFe Alloy
JPWO2017119415A1 (en) Austenitic heat-resistant alloy and manufacturing method thereof
JPWO2009044802A1 (en) Austenitic stainless steel
WO2018104984A1 (en) HIGH Mn STEEL SHEET AND PRODUCTION METHOD THEREFOR
WO2021033672A1 (en) Duplex stainless steel material
JP6520546B2 (en) Austenitic heat-resistant alloy member and method of manufacturing the same
JP6816779B2 (en) Austenitic heat-resistant alloy member and its manufacturing method
WO2019107456A1 (en) PROCESS FOR MANUFACTURING Ni-BASED ALLOY, AND Ni-BASED ALLOY
JP5018863B2 (en) Duplex stainless steel with excellent alkali resistance
US20190127832A1 (en) Austenitic Stainless Steel
JP6229794B2 (en) Seamless stainless steel pipe for oil well and manufacturing method thereof
JP2020105572A (en) Austenitic heat resistant steel
JP6690359B2 (en) Austenitic heat-resistant alloy member and method for manufacturing the same
JP6772735B2 (en) Ni-based heat-resistant alloy member and its manufacturing method
JP7372537B2 (en) Austenitic heat-resistant steel
JP2017088957A (en) Austenitic heat resistant steel
JP7226019B2 (en) Austenitic heat resistant steel
JP7131332B2 (en) Austenitic heat-resistant alloys and parts of austenitic heat-resistant alloys
JP7307370B2 (en) Alloy materials and seamless pipes for oil wells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895819

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018566714

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3052547

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197026299

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017895819

Country of ref document: EP

Effective date: 20190909