JP2002194506A - Stainless steel sheet and production method for the same - Google Patents

Stainless steel sheet and production method for the same

Info

Publication number
JP2002194506A
JP2002194506A JP2000392321A JP2000392321A JP2002194506A JP 2002194506 A JP2002194506 A JP 2002194506A JP 2000392321 A JP2000392321 A JP 2000392321A JP 2000392321 A JP2000392321 A JP 2000392321A JP 2002194506 A JP2002194506 A JP 2002194506A
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
stainless steel
recrystallized
martensite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000392321A
Other languages
Japanese (ja)
Inventor
Kazuhiko Adachi
和彦 安達
Kenichi Goshokubo
賢一 御所窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000392321A priority Critical patent/JP2002194506A/en
Publication of JP2002194506A publication Critical patent/JP2002194506A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a metastable austenitic stainless steel sheet having high strength and high fatigue characteristic, and superior workability as well, and also provide the method to produce the same without needing additional costs. SOLUTION: The stainless steel sheet is characterized in that it contains by mass % C: 0.01-0.13%, Si: 0.1-3.2%, Mn: 2.8% or less, Cr: 13-20%, Ni: 3-12%, N: 0.1-0.2%, Nb: 0.01-0.1% and at least any one from an among Mo: 4% or less, Cu: 4% or less, or Al: 3% or less, with the Md value in the range of 20-60, and that the metal structure of the steel consists of recrystallized structure ranging from 50 to 99% in terms of area % with the remainder being substantially non-recrystallized structures and precipitated micro structures.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高強度、高疲労特
性を備え、かつ加工性に優れていることが要求される準
安定オーステナイト系ステンレス鋼板およびその製造方
法に係り、このステンレス鋼板は繰返して変動応力が加
わる幅広い用途のバネ部品、例えば電子機器部品用バ
ネ、リトラクターバネ、さらには自動車やオートバイ等
のガスケットやメタルパッキン等の用途に好適である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metastable austenitic stainless steel sheet which is required to have high strength and high fatigue properties and to be excellent in workability, and a method for producing the same. It is suitable for a wide variety of spring components to which a variable stress is applied, such as springs for electronic device components, retractor springs, and gaskets and metal packings for automobiles and motorcycles.

【0002】[0002]

【従来の技術】従来、バネ用ステンレス鋼には準安定オ
ーステナイト系に属するSUS301およびSUS30
4が広く用いられてきた。これらのステンレス鋼は、一
般的に調質圧延後に使用され、加工誘起マルテンサイト
変態を伴う加工硬化により高強度を付与している。ま
た、同時に比較的高い耐食性も示す。
2. Description of the Related Art Conventionally, SUS301 and SUS30 belonging to a metastable austenitic system have been used for stainless steel for springs.
4 has been widely used. These stainless steels are generally used after temper rolling and impart high strength by work hardening accompanied by work-induced martensitic transformation. It also shows relatively high corrosion resistance.

【0003】他に、析出強化型ステンレス鋼であるSU
S631等も用いられ、調質圧延後にさらに時効処理を
施して使用される。
Another example is SU, which is a precipitation-strengthened stainless steel.
S631 and the like are also used, and are used after further aging treatment after temper rolling.

【0004】しかし、これらのバネ用ステンレス鋼は、
必要となる高強度が比較的容易に得らる反面、延性が急
激に低下し、製品への加工が難しくなる問題があった。
また、加工性不足に伴う割れ等の欠陥の発生等に起因し
て疲労特性も低下する。例えば、繰返し変動応力に対す
る疲労特性は、圧延後の平板のままでは高強度化に伴い
上昇するのに対し、製品への成形加工後には低下する場
合が数多く認められた。
However, these stainless steels for springs are:
Although the required high strength can be obtained relatively easily, there is a problem that the ductility sharply decreases and it becomes difficult to process the product.
In addition, fatigue characteristics are also reduced due to the occurrence of defects such as cracks due to insufficient workability. For example, it has been found that the fatigue characteristics against repeated fluctuating stresses increase with increasing strength in the flat plate after rolling, but often decrease after forming into a product.

【0005】すなわち、従来法で製造されたバネ用ステ
ンレス鋼は、最低限必要とされる高強度を満たしている
ものの、加工性や疲労特性が不足しているのが現状であ
った。
[0005] That is, although the stainless steel for springs manufactured by the conventional method satisfies the minimum required high strength, at present, workability and fatigue properties are insufficient.

【0006】特開平4−214841号、特開平5−2
79802号および特開平5−117813号各公報に
は、最終焼鈍後の結晶粒を10μm以下の微細かつ均一
な結晶粒とすることによって調質圧延後の延性劣化に起
因した製品加工時の板表面での割れ等の欠陥の発生が抑
制され、疲労特性が改善された準安定オーステナイト系
ステンレス鋼とその製造方法が開示されている。
JP-A-4-214484, JP-A-5-2-2
No. 79802 and Japanese Unexamined Patent Publication No. Hei 5-117213 disclose that the surface of a sheet at the time of product processing due to deterioration in ductility after temper rolling by making crystal grains after final annealing into fine and uniform crystal grains of 10 μm or less. The invention discloses a metastable austenitic stainless steel in which the generation of defects such as cracks in steel is suppressed and the fatigue characteristics are improved, and a method for producing the same.

【0007】しかし、これらの製造方法は調質圧延や時
効処理等が必要で製造コストも嵩み、得られたステンレ
ス鋼板も強度、疲労特性および加工性のバランスがバネ
用としては必ずしも十分とはいえない。
However, these production methods require temper rolling, aging treatment, and the like, and the production cost is high. The obtained stainless steel sheet does not always have a sufficient balance of strength, fatigue characteristics and workability for springs. I can't say.

【0008】[0008]

【発明が解決しようとする題】本発明の課題は、高強
度、高疲労特性を有し、かつ加工性にも優れた準安定オ
ーステナイト系ステンレス鋼板および製造コストの嵩ま
ない製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a metastable austenitic stainless steel sheet having high strength and high fatigue properties and excellent workability, and a manufacturing method which does not increase the manufacturing cost. It is in.

【0009】[0009]

【課題を解決するための手段】本発明者らは、従来のバ
ネ用ステンレス鋼に比べてより強度が高く、疲労特性と
加工性とに優れたステンレス鋼板と、そのステンレス鋼
板をより簡単な製造プロセスで製造する方法を開発する
ため種々実験、検討した結果、下記の知見を得た。
Means for Solving the Problems The present inventors have developed a stainless steel sheet having higher strength, superior fatigue characteristics and workability than conventional stainless steel for springs, and a simpler production of the stainless steel sheet. The following findings were obtained as a result of various experiments and investigations to develop a manufacturing method using a process.

【0010】a)最終焼鈍後の金属組織を高延性の再結
晶組織と高強度のマルテンサイト相の残る未再結晶組織
からなる混合組織とし、その比率を適正に調整すれば高
強度でありながら優れた加工性、疲労特性が得られる。
A) The metal structure after the final annealing is a mixed structure composed of a recrystallized structure having high ductility and a non-recrystallized structure having a high-strength martensite phase, and if the ratio thereof is appropriately adjusted, the metal structure can have high strength. Excellent workability and fatigue properties are obtained.

【0011】b)このような混合組織を安定して得るに
は、Md値を20〜60となるように化学組成を調整し
たステンレス鋼を、最終冷間圧延での圧下率を60%以
上と高め加工誘起マルテンサイトを飽和させてから焼鈍
温度と焼鈍時間を調整すればよい。
B) In order to stably obtain such a mixed structure, a stainless steel whose chemical composition has been adjusted so as to have an Md value of 20 to 60 has a reduction ratio of 60% or more in final cold rolling. It is sufficient to adjust the annealing temperature and the annealing time after saturation of the highly induced martensite.

【0012】c)混合組織は、1〜2μm以下の粒径か
らなる極めて微細なオーステナイト再結晶部と、それら
の結晶粒に囲まれたオーステナイトおよびマルテンサイ
ト相の未再結晶部よりなり、従来法の再結晶終了後に得
られる均一な微細粒に比べて、遙かに微細かつ比較的均
一な組織である。また、それによって疲労特性がより向
上する。さらに、製品への成形加工時には軟らかい再結
晶オーステナイト粒がまず変形すると考えられ、変形し
た粒が高硬度のマルテンサイト相に変態するため加工部
が硬化して、優れた強度が得られる。
C) The mixed structure comprises an extremely fine austenite recrystallized portion having a grain size of 1 to 2 μm or less and an unrecrystallized portion of austenite and martensite phases surrounded by these crystal grains. Has a much finer and relatively more uniform structure than the uniform fine particles obtained after the recrystallization of In addition, the fatigue characteristics are further improved thereby. Further, it is considered that the soft recrystallized austenite grains are first deformed during molding into a product, and the deformed grains are transformed into a high-hardness martensite phase, whereby the processed portion is hardened and excellent strength is obtained.

【0013】d)上記のような混合組織とすれば必要な
強度が得られ、最終焼鈍後に調質圧延や、時効処理を施
す必要がなくなり、製造プロセスが簡略化される。
D) With the above-mentioned mixed structure, required strength can be obtained, and it is not necessary to perform temper rolling or aging treatment after final annealing, thereby simplifying the manufacturing process.

【0014】本発明はこのような知見に基づきなされた
もので、その要旨は下記の通りである。
The present invention has been made based on such findings, and the gist is as follows.

【0015】(1)質量%で、C:0.01〜0.13
%、Si:0.1〜3.2%、Mn:0.4〜2.8
%、Cr:13〜20%、Ni:3〜12%、N:0.
1〜0.2%、Nb:0.01〜0.2%を含み、さら
にMo:0〜4%、Cu:0〜4%、Al:0〜3%、
Ca:0〜0.05%、希土類元素:0〜0.05%、
B:0〜0.05%を含有し、残部Feおよび不純物か
らなり、かつ下記式で示されるMd値が20〜60であ
り、面積%で50〜99%の再結晶組織と、残部が実質
的に未再結晶組織および微細析出物からなる金属組織を
有するステンレス鋼板。
(1) In mass%, C: 0.01 to 0.13
%, Si: 0.1 to 3.2%, Mn: 0.4 to 2.8
%, Cr: 13-20%, Ni: 3-12%, N: 0.
1 to 0.2%, Nb: 0.01 to 0.2%, Mo: 0 to 4%, Cu: 0 to 4%, Al: 0 to 3%,
Ca: 0 to 0.05%, rare earth element: 0 to 0.05%,
B: contains 0 to 0.05%, the balance is Fe and impurities, the Md value represented by the following formula is 20 to 60, the recrystallized structure of 50 to 99% in area%, and the balance is substantially Stainless steel sheet having a metallic structure consisting of a non-recrystallized structure and a fine precipitate.

【0016】Md=500-458(C+N)-9(Si+Mn)-14Cr-22Ni-21C
u-20Mo (2)上記(1)に記載の化学組成を有するステンレス
鋼を熱間圧延した後、冷間圧延と焼鈍とをおこない鋼板
を製造する方法であって、最終となる冷間圧延での圧下
率を60%以上とし、次いで750〜950℃の温度範
囲内で最終焼鈍するステンレス鋼板の製造方法。
Md = 500-458 (C + N) -9 (Si + Mn) -14Cr-22Ni-21C
u-20Mo (2) A method for hot-rolling a stainless steel having the chemical composition described in (1) above, followed by cold rolling and annealing to produce a steel sheet. And a final annealing in a temperature range of 750 to 950 ° C.

【0017】ここで、「実質的に」とは、製造上不可避
的に含有される介在物が存在してもよいことを意味す
る。最終となる冷間圧延とは、冷間圧延と焼鈍をそれぞ
れ1回おこなう方法では、焼鈍前の冷間圧延をいい、冷
間圧延と焼鈍とをそれぞれ2回以上おこなう方法では最
終の焼鈍とその前の焼鈍との間でおこなう冷間圧延をい
う。また、圧下率は最終となる冷間圧延での総圧下率を
いう。
Here, “substantially” means that inclusions unavoidable in production may be present. The final cold rolling means cold rolling before annealing in the method of performing cold rolling and annealing once, respectively, and final annealing and the method in the method of performing cold rolling and annealing twice or more each. This refers to cold rolling between the previous annealing. The rolling reduction refers to the total rolling reduction in the final cold rolling.

【0018】[0018]

【発明の実施の形態】以下、本発明のステンレス鋼板の
化学組成および製造条件について詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the chemical composition and production conditions of the stainless steel sheet of the present invention will be described in detail.

【0019】1.ステンレス鋼板の化学組成(%は全て
質量%を示す) C:0.01〜0.13% Cは、オーステナイト母相および加工誘起マルテンサイ
ト相を固溶強化する元素であり、焼鈍後に必要な強度を
得るため少なくとも0.01%以上が必要である。ま
た、オーステナイト安定化元素でもあり、添加量の増加
にともないマルテンサイト変態を抑制する。さらに、過
度に含有させた場合、前記混合組織を得るために比較的
低温で実施される最終焼鈍の後に炭化物の析出を招き、
加工性や耐食性を劣化させる。したがって、Cの上限は
0.13%とした。好ましくは0.02〜0.12%で
ある。
1. Chemical composition of stainless steel sheet (% indicates mass%) C: 0.01 to 0.13% C is an element for solid solution strengthening the austenite matrix and the work-induced martensite phase, and the strength required after annealing. To obtain at least 0.01% or more. Further, it is an austenite stabilizing element, and suppresses martensitic transformation with an increase in the amount of addition. Furthermore, if excessively contained, carbide precipitation occurs after final annealing performed at a relatively low temperature to obtain the mixed structure,
Deterioration of workability and corrosion resistance. Therefore, the upper limit of C is set to 0.13%. Preferably it is 0.02-0.12%.

【0020】Si:0.1〜3.2% Siは、本発明鋼板においては重要な元素で、オーステ
ナイト母相およびマルテンサイト相を固溶硬化する作用
がある。また、Siを含有させると高温強度が上昇し、
再結晶開始および終了温度の差が広がり、混合組織を得
ることが容易となると考えられる。これらの効果を得る
ために、0.1%以上が必要である。ただし、3.2%
をこえると加工性が不良となる。このため、上限を3.
2%とした。好ましくは0.3〜3%である。
Si: 0.1 to 3.2% Si is an important element in the steel sheet of the present invention, and has an effect of solid solution hardening the austenite matrix phase and the martensite phase. Also, when Si is contained, the high-temperature strength increases,
It is considered that the difference between the recrystallization start and end temperatures is widened, and it becomes easy to obtain a mixed structure. To obtain these effects, 0.1% or more is required. However, 3.2%
Exceeding the above results in poor workability. Therefore, the upper limit is set to 3.
2%. Preferably it is 0.3 to 3%.

【0021】Mn:0.4〜2.8% Mnは、オーステナイト安定化元素で、熱間加工性を改
善する元素でもある。他のオーステナイト安定化元素と
のバランスのもとに含有させるが、前記効果を得るには
0.4%以上含有させる必要がある。しかし、2.8%
を超えて含有させると、加工誘起マルテンサイト相が得
られない場合があり、また介在物等の生成により材料の
延性の低下を招く。このため、上限を2.8%とした。
好ましくは0.6〜2.6%である。
Mn: 0.4 to 2.8% Mn is an austenite stabilizing element and also an element that improves hot workability. Although it is contained in a balance with other austenite stabilizing elements, it is necessary to contain 0.4% or more to obtain the above effect. However, 2.8%
If the content exceeds 0.1%, a work-induced martensite phase may not be obtained, and the ductility of the material may be reduced due to generation of inclusions and the like. Therefore, the upper limit is set to 2.8%.
Preferably it is 0.6 to 2.6%.

【0022】Cr:13〜20% Crは、ステンレス鋼の基本元素であり、耐食性を確保
するため13%以上含有させる。また、フェライト安定
化元素であり、20%を超えて含有させると鋼中へのフ
ェライト相の残存を招くので、上限を20%とした。好
ましくは15〜19%下である。
Cr: 13 to 20% Cr is a basic element of stainless steel, and is contained in an amount of 13% or more to ensure corrosion resistance. Further, it is a ferrite stabilizing element, and if contained in excess of 20%, the ferrite phase remains in the steel, so the upper limit was made 20%. Preferably it is below 15-19%.

【0023】Ni:3〜12% Niは、オーステナイト安定化元素である。室温におい
てオーステナイト相とするために必須の元素であるが、
本発明鋼板においては室温にて準安定オーステナイトと
し、良好な加工性を得るために3%以上含有させる必要
がある。ただし、12%を超えて含有させると加工誘起
マルテンサイト変態が起こらなくなるため、上限を12
%とした。好ましくは4〜11%である。
Ni: 3 to 12% Ni is an austenite stabilizing element. It is an essential element to make an austenite phase at room temperature,
In the steel sheet of the present invention, metastable austenite is required at room temperature, and it is necessary to contain 3% or more in order to obtain good workability. However, if the content exceeds 12%, work-induced martensitic transformation does not occur, so the upper limit is 12%.
%. Preferably it is 4 to 11%.

【0024】N:0.1〜0.2% Nは、本発明鋼板においては重要な元素で、オーステナ
イト母相および加工誘起マルテンサイト相を固溶強化す
る元素である。また、後述するように再結晶に先立つN
b−N化合物の析出により再結晶粒の成長が抑制されの
で微細粒を容易に得ることができる。これらの効果を得
るため、0.1%以上が必要である。また、オーステナ
イト安定化元素でもあり、含有量の増加にともないマル
テンサイト変態を抑制する効果がある。しかし、0.2
%を超えて含有させると熱間加工性を阻害し、耳割れ等
を発生させる。そのため、上限を0.2%とした。好ま
しくは、0.11〜0.16%である。
N: 0.1 to 0.2% N is an important element in the steel sheet of the present invention, and is an element for solid solution strengthening the austenite matrix and the work-induced martensite phase. In addition, as described later, N
Since the growth of recrystallized grains is suppressed by the precipitation of the bN compound, fine grains can be easily obtained. To obtain these effects, 0.1% or more is required. It is also an austenite stabilizing element and has the effect of suppressing martensitic transformation with increasing content. However, 0.2
%, The hot workability is impaired, and ear cracks and the like are generated. Therefore, the upper limit is set to 0.2%. Preferably, it is 0.11 to 0.16%.

【0025】Nb:0.01〜0.2% Nbは、Nb−N化合物の析出により粒成長を抑制する
作用を有するため、含有させることにより微細な再結晶
粒を得ることが容易となる。そのため、本発明鋼にとっ
て重要なな元素である。これらの効果を得るため、少な
くとも0.01%含有させる必要がある。ただし、極め
て高価な元素であり、多量に添加した場合高価な鋼とな
り、また鋼の延性の低下を招く。そのため、上限を0.
2%とした。好ましくは、0.03〜0.16%であ
る。
Nb: 0.01 to 0.2% Nb has an effect of suppressing grain growth by precipitating an Nb-N compound. Therefore, it becomes easy to obtain fine recrystallized grains by containing Nb. Therefore, it is an important element for the steel of the present invention. In order to obtain these effects, it is necessary to contain at least 0.01%. However, it is an extremely expensive element, and if added in a large amount, it becomes expensive steel and causes a reduction in ductility of the steel. Therefore, the upper limit is set to 0.
2%. Preferably, it is 0.03 to 0.16%.

【0026】上記の元素以外に、下記の元素を必要によ
り含有させてもよく、含有させることにより加工性およ
び疲労特性には特に影響しない。
In addition to the above-mentioned elements, the following elements may be contained as necessary, and the inclusion does not particularly affect the workability and the fatigue properties.

【0027】Mo、Cu、Al:これらの元素は、主と
して析出強化により鋼を硬化させるために必要により含
有させる元素である。他に耐食性の改善効果があり、ま
た脱酸剤としての効果ももある。含有させる場合、析出
強化の効果を得るにはいずれも0.6%以上含有させる
のが好ましい。
Mo, Cu, Al: These elements are elements contained as necessary to harden steel mainly by precipitation strengthening. In addition, it has an effect of improving corrosion resistance and also has an effect as a deoxidizing agent. When they are contained, it is preferable to contain 0.6% or more in order to obtain the effect of precipitation strengthening.

【0028】Moはフェライト安定化元素でもあり、4
%を超えて含有させると鋼中へのフェライト相の残存を
招くので上限を4%とした。
Mo is also a ferrite stabilizing element, and
%, The ferrite phase remains in the steel, so the upper limit was made 4%.

【0029】また、Cu、Alは多量に含有させると熱
間加工性を阻害し、粒界等への偏析により割れの要因と
なる。このため、それぞれの上限を4%と3%とした。
Further, when Cu and Al are contained in large amounts, the hot workability is impaired, and segregation at grain boundaries and the like causes cracking. Therefore, the upper limits are set to 4% and 3%, respectively.

【0030】Ca、希土類元素(REM) CaおよびREMは、必要により溶製時の脱酸剤として
使用できる。その効果を得るためには0.006%以上
含有させるのがよい。しかし、0.05%超えて多量に
なると介在物が増大し、疲労特性が低下するので、それ
ぞれ0.05%以下とした。
Ca, Rare Earth Element (REM) Ca and REM can be used as a deoxidizing agent at the time of melting, if necessary. In order to obtain the effect, the content is preferably 0.006% or more. However, when the content exceeds 0.05%, the inclusions increase and the fatigue characteristics decrease, so that the content is set to 0.05% or less, respectively.

【0031】B:0.05%以下 Bは、熱間加工性の改善効果があり、必要により含有さ
せる。その効果を得るためには0.004%以上含有さ
せるのが好ましく、また0.05%を超えると介在物
(硼化物)が増大して疲労特性が低下する場合があるの
で、含有させる場合には0.05%以下で含有させるの
がよい。
B: 0.05% or less B has an effect of improving hot workability, and is contained as necessary. In order to obtain the effect, the content is preferably 0.004% or more. If the content exceeds 0.05%, inclusions (borides) may increase and the fatigue properties may decrease. Is preferably contained at 0.05% or less.

【0032】2.Md値:Md=500-458(C+N)-9(Si+Mn)-1
4Cr-22Ni-21Cu-20Mo=20 〜60 Md(℃)は、30%の引張変形を与えた時、全体の5
0%がマルテンサイト変態を生じる温度(一般的にはM
d30)を示した経験式であり、一連の試験に基づいて
下記の式のように補正したものである。
2. Md value: Md = 500-458 (C + N) -9 (Si + Mn) -1
4Cr-22Ni-21Cu-20Mo = 20 to 60 Md (° C) is 5% of the total when 30% tensile deformation is given.
0% at which martensitic transformation occurs (generally M
d30) is an empirical formula that is corrected based on a series of tests as in the following formula.

【0033】Md=500-458(C+N)-9(Si+Mn)-14Cr-22Ni-21C
u-20Mo 最終焼鈍後の未再結晶部に残存するマルテンサイト量を
調整するには、加工率60%以上の冷間圧延後に誘起マ
ルテンサイト量を飽和、安定させる必要がある。そのた
めには、Mdを20〜60とする必要がある。
Md = 500-458 (C + N) -9 (Si + Mn) -14Cr-22Ni-21C
In order to adjust the amount of martensite remaining in the unrecrystallized portion after u-20Mo final annealing, it is necessary to saturate and stabilize the amount of induced martensite after cold rolling at a working ratio of 60% or more. For that purpose, Md needs to be 20 to 60.

【0034】すなわち、Md値が20未満ではオーステ
ナイト組織が安定なため冷間圧延でマルテンサイト相に
変態しにくく、一方60を超えるとオーステナイト相が
不安定になり最終焼鈍でマルテンサイトが多くなりすぎ
る。したがって、Md値は20〜60と規定した。 3.金属組織 本発明のステンレス鋼板の組織を、面積%で50〜99
%が再結晶組織、残部が実質的に前加工の影響を残す未
再結晶組織および全体に分散した微細析出物と限定した
理由について、一部の試験結果を用いて説明する。
That is, if the Md value is less than 20, the austenite structure is stable, so that it is difficult to transform into a martensite phase by cold rolling. . Therefore, the Md value was defined as 20 to 60. 3. Metallographic structure The structure of the stainless steel sheet of the present invention is 50 to 99% in area%.
The reason why the percentage is limited to the recrystallized structure, the remainder being the unrecrystallized structure substantially leaving the influence of the pre-processing, and the fine precipitate dispersed throughout will be described with reference to some test results.

【0035】表1に示す試料No.(2)の化学組成の熱
延鋼板を、最終冷間圧延での圧下率を62%で圧延し、
750〜900℃の温度範囲内で種々温度を変化させて
最終焼鈍した板厚0.4mmの鋼板についての再結晶粒
の面積率と硬度および伸びを測定した。
A hot-rolled steel sheet having the chemical composition of Sample No. (2) shown in Table 1 was rolled at a final rolling reduction of 62%.
The area ratio, hardness, and elongation of recrystallized grains of a steel sheet having a thickness of 0.4 mm which was finally annealed at various temperatures within a temperature range of 750 to 900 ° C. were measured.

【0036】[0036]

【表1】 図1は、測定結果の再結晶粒の面積率と硬度および伸び
との関係を示す。同図から明らかなように、再結晶粒面
積率の上昇に伴い硬度の比較的緩やかな低下に対し、伸
びは増加し、特に50%以上では急激な上昇を示す。こ
のように、本発明鋼は同面積率50〜99%において高
硬度と高延性が両立する。なお、99%を超えると硬度
が急激に低下する。
[Table 1] FIG. 1 shows the relationship between the area ratio of recrystallized grains and the hardness and elongation as a result of the measurement. As is apparent from the figure, the elongation increases while the hardness decreases relatively slowly with the increase in the area ratio of recrystallized grains. Thus, the steel of the present invention achieves both high hardness and high ductility at the same area ratio of 50 to 99%. In addition, when it exceeds 99%, the hardness sharply decreases.

【0037】なお、硬度はJIS−Z−2244に規定
のマイクロビッカース硬度計を用いて測定し、伸びはJ
IS−Z−2201、2241に規定のインストロン型
試験機を用いた引張試験により測定した。また、再結晶
粒面積率は光学顕微鏡および電子顕微鏡を用いた組織観
察により算出した平均値である。なお、当然ながら小さ
い結晶粒は電子顕微鏡、大きい場合は光学顕微鏡で観察
するのがよい。
The hardness is measured using a micro-Vickers hardness meter specified in JIS-Z-2244.
It was measured by a tensile test using an Instron type tester specified in IS-Z-2201 and 2241. Further, the recrystallized grain area ratio is an average value calculated by observing the structure using an optical microscope and an electron microscope. Naturally, small crystal grains should be observed with an electron microscope, and large crystal grains should be observed with an optical microscope.

【0038】上記板厚0.4mmの鋼板から、疲労試験
片を作製して疲労試験をおこない疲労特性と結晶粒度と
の関係を求めた。
From the steel plate having a thickness of 0.4 mm, a fatigue test piece was prepared and subjected to a fatigue test to determine the relationship between fatigue characteristics and crystal grain size.

【0039】図2は、疲労特性の評価方法を説明するた
めの図で、図2(a)は疲労試験片の作製方法を、図2
(b)は試験方法を説明するための図である。
FIG. 2 is a diagram for explaining a method of evaluating fatigue characteristics. FIG. 2A shows a method of manufacturing a fatigue test piece.
(B) is a diagram for explaining a test method.

【0040】疲労試験片3は、図2(a)に示すように
幅10mm、長さ40mmの短冊状の鋼板を上下の金型
1、2により90度の角度でV状に加工したものであ
る。試験は、図2(b)に示すように試験片3の片側を
固定具4により固定し、他端を振動させる片振り式平面
曲げ試験機を用いておこない、種々の振幅において10
6 回曲げ、曲げ戻しを繰返した後で短冊状試験片が破断
に至る振幅を求めて評価した。
As shown in FIG. 2 (a), the fatigue test piece 3 is obtained by processing a strip-shaped steel plate having a width of 10 mm and a length of 40 mm into a V shape at an angle of 90 degrees by upper and lower molds 1 and 2. is there. The test was performed using a pulsating flat bending tester in which one side of a test piece 3 was fixed by a fixture 4 and the other end was vibrated as shown in FIG.
After repeating bending and unbending six times, the amplitude at which the strip-shaped test piece was broken was obtained and evaluated.

【0041】図3に疲労試験結果と再結晶組織面積率と
の関係を示す。図3から明らかなように、破断に至る振
幅は同面積率50%以上で急激に上昇し、疲労特性が大
きく向上している。
FIG. 3 shows the relationship between the results of the fatigue test and the area ratio of the recrystallized structure. As is clear from FIG. 3, the amplitude leading to fracture sharply increases at the same area ratio of 50% or more, and the fatigue characteristics are greatly improved.

【0042】上記のような試験結果に基づき、再結晶組
織は50〜99面積%と規定した。
Based on the above test results, the recrystallized structure was defined as 50 to 99 area%.

【0043】図4は、最終焼鈍後の本発明鋼の電子顕微
鏡での金属組織の観察状態を示す。
FIG. 4 shows a state of observation of the metal structure of the steel of the present invention after the final annealing by an electron microscope.

【0044】金属組織は、内部に転移等の欠陥を殆ど含
まない1〜2μm以下の微細な再結晶粒とそれらに囲ま
れた未再結晶部よりなる。また、直径が約100ナノメートル
以下の微細なNb−N化合物が析出物として分散してお
り、その析出が再結晶粒の成長を抑制していると考えら
れる。好ましい再結晶粒の面積率は60〜95%であ
る。
The metallographic structure is composed of fine recrystallized grains having a size of 1 to 2 μm or less, which hardly contain defects such as dislocations, and an unrecrystallized portion surrounded by these grains. Further, it is considered that fine Nb-N compounds having a diameter of about 100 nm or less are dispersed as precipitates, and the precipitation suppresses the growth of recrystallized grains. The preferred area ratio of the recrystallized grains is 60 to 95%.

【0045】4.製造方法 最終冷間圧延での圧下率:最終冷間圧延での圧下率は、
冷間圧延後に誘起マルテンサイト量を飽和、安定させる
ために圧下率を60%以上とした。誘起マルテンサイト
量を飽和、安定させることにより最終焼鈍後の未再結晶
部に残存するマルテンサイト量も安定する。未再結晶部
に残存させるマルテンサイトは、強度を向上させる効果
がある。なお、60%を超えるとマルテンサイト量が飽
和するが、さらに圧下率を高くすると硬度がゆるやかに
上昇し、再結晶焼鈍後もよるやかに微細化するが、70
%を超えると再結晶がより急激に進行し、制御し難くな
る。好ましい圧下率は60〜70%である。
4. Manufacturing method Reduction rate in final cold rolling: Reduction rate in final cold rolling is as follows:
The rolling reduction was set to 60% or more in order to saturate and stabilize the amount of induced martensite after cold rolling. By saturating and stabilizing the amount of induced martensite, the amount of martensite remaining in the unrecrystallized portion after final annealing is also stabilized. Martensite remaining in the non-recrystallized portion has the effect of improving strength. In addition, when the content exceeds 60%, the amount of martensite is saturated, but when the rolling reduction is further increased, the hardness gradually increases, and the fineness is gradually reduced after recrystallization annealing.
%, Recrystallization proceeds more rapidly, making it difficult to control. The preferred rolling reduction is 60 to 70%.

【0046】最終焼鈍:最終焼鈍を施し、冷間圧延によ
り生じた加工組織を高延性の再結晶組織と残部が実質高
強度のマルテンサイト相の残る未再結晶組織からなる混
合組織とするためにおこなうものである。本発明で規定
する化学組成を有する冷間圧延した鋼板を焼鈍温度75
0〜900℃の温度範囲内で焼鈍することにより再結晶
組織と未再結晶組織の混合組織とすることができる。再
結晶組織の量は、焼鈍温度と焼鈍時間を調整して制御す
ることができる。750℃未満の温度では、目的とする
混合組織とするには長時間を要して実用的ではない。ま
た、900℃を超える温度では短時間の焼鈍で再結晶が
完了してしまい目的とする混合組織にすることができな
い。したがって、焼鈍温度は750〜900℃とした。
Final annealing: The final annealing is performed, and the processed structure produced by the cold rolling is made into a mixed structure composed of a recrystallized structure having high ductility and an unrecrystallized structure having a martensitic phase in which the remainder is substantially high in strength. Is what you do. The cold-rolled steel sheet having the chemical composition specified in the present invention is subjected to an annealing temperature of 75.
By annealing within a temperature range of 0 to 900 ° C., a mixed structure of a recrystallized structure and an unrecrystallized structure can be obtained. The amount of the recrystallized structure can be controlled by adjusting the annealing temperature and the annealing time. If the temperature is lower than 750 ° C., it takes a long time to obtain a target mixed structure, which is not practical. If the temperature exceeds 900 ° C., recrystallization is completed by short-time annealing, and the desired mixed structure cannot be obtained. Therefore, the annealing temperature was set to 750 to 900 ° C.

【0047】焼鈍時に鋼板に張力を負荷して焼鈍を施す
と、同じ再結晶組織面積であってもより多くのマルテン
サイトを残留させることができるので、高強度とする場
合には張力を負荷しつつ焼鈍するのが好ましい。
When a steel sheet is annealed by applying a tension during annealing, more martensite can be left even with the same recrystallized structure area. It is preferable to perform annealing while annealing.

【0048】表1の試料 No.(2)に示す化学組成の熱
延鋼板を用いて、加工誘起マルテンサイト量が飽和、安
定する加工率64%の圧下率で最終の冷間圧延を施し、
焼鈍時に張力を負荷した場合と負荷しないで焼鈍した場
合とで、焼鈍温度の変化に伴い再結晶粒の面積率と残留
するマルテンサイト量がどのように変化するかを調べ
た。
Using a hot-rolled steel sheet having the chemical composition shown in Sample No. (2) in Table 1, the final cold rolling was performed at a rolling reduction of 64% at which the amount of work-induced martensite was saturated and stabilized, and
It was investigated how the area ratio of the recrystallized grains and the amount of residual martensite change with the change of the annealing temperature between the case where the tension is applied during the annealing and the case where the annealing is performed without applying the tension.

【0049】図5は、焼鈍温度と再結晶粒面積率および
未再結晶部中のマルテンサイト量との関係を示す。
FIG. 5 shows the relationship between the annealing temperature, the area ratio of recrystallized grains, and the amount of martensite in the unrecrystallized portion.

【0050】張力無しの場合、750℃ において一部
に再結晶が確認され、775℃では50%を超え、90
0℃ではほぼ再結晶粒のみとなり、再結晶が完了する。
また、張力有の場合、張力無しに比べて未再結晶部中の
マルテンサイト量は増加し、再結晶温度も25〜50℃
上昇し、再結晶の完了も900℃を超える。これは、体
積の減少を伴うマルテンサイト相のオーステナイト母相
への変態が張力により抑制されたためと考えられる。
In the absence of tension, recrystallization was partially observed at 750 ° C.
At 0 ° C., almost only recrystallized grains are obtained, and the recrystallization is completed.
In addition, when there is tension, the amount of martensite in the non-recrystallized portion increases as compared to when there is no tension, and the recrystallization temperature is 25 to 50 ° C.
And the completion of recrystallization also exceeds 900 ° C. This is presumably because the transformation of the martensite phase into the austenite matrix with the decrease in volume was suppressed by the tension.

【0051】また、当然のことながら焼鈍後に残存する
マルテンサイト量の増加により、張力有は無に比べて焼
鈍後の材料の強度も上昇する。なお、張力は断面積あた
り49N/mm2とし、焼鈍時保持時間は試験片が設定
温度到達後に10秒とした。
Naturally, the increase in the amount of martensite remaining after annealing increases the strength of the material after annealing as compared to the case with no tension. The tension was 49 N / mm 2 per sectional area, and the holding time during annealing was 10 seconds after the test piece reached the set temperature.

【0052】マルテンサイト量はX線回折装置を用い、
オーステナイト相とマルテンサイト相の回折ピーク積分
強度に対するマルテンサイト相の強度の割合(%)によ
り算出した。X線はCu−Kα線を用いた。
The amount of martensite was determined by using an X-ray diffractometer.
It was calculated from the ratio (%) of the intensity of the martensite phase to the integrated intensity of the diffraction peak of the austenite phase and the martensite phase. X-rays used were Cu-Kα rays.

【0053】好ましい焼鈍温度は、無張力状態では76
0〜890℃であり、張力を付与した場合は760〜9
30℃である。
A preferable annealing temperature is 76 in a non-tension state.
0 to 890 ° C. and 760 to 9 when a tension is applied.
30 ° C.

【0054】混合組織を得るための焼鈍時の保持時間は
1〜120秒であり、高温にて長時間保持した場合には
再結晶粒のみとなる。好ましくは、経済的な面より1〜
90秒である。これらの仕上げ焼鈍は工業規模での連続
焼鈍ラインでも実施することができる。
The holding time during annealing to obtain a mixed structure is from 1 to 120 seconds, and when held at a high temperature for a long time, only recrystallized grains are formed. Preferably, from the economic point of view
90 seconds. These finish annealings can also be performed in a continuous annealing line on an industrial scale.

【0055】なお、本発明の製造方法で最終焼鈍したス
テンレス鋼に、さらに従来法と同様に時効処理、調質圧
延−時効処理を施して使用してもよい。
The stainless steel finally annealed by the production method of the present invention may be further subjected to aging treatment, temper rolling and aging treatment in the same manner as in the conventional method.

【0056】[0056]

【実施例】表1に示す化学組成からなるステンレス鋼を
真空溶解炉にて溶製し、15kgインゴットとし、熱間
圧延、焼鈍、脱スケール(酸洗)した後、冷間圧延およ
び焼鈍を繰り返し、最終冷間圧延は圧下率を62%以上
で実施し、最終焼鈍後して厚さ0.4mmの薄鋼板を製
作した。最終焼鈍は、49N/mm2 で張力を付与した
ものも実施した。最終焼鈍の保持時間は、全て10秒と
した。
EXAMPLE Stainless steel having the chemical composition shown in Table 1 was melted in a vacuum melting furnace to form a 15 kg ingot, and after hot rolling, annealing, descaling (pickling), cold rolling and annealing were repeated. The final cold rolling was performed at a draft of 62% or more, and after the final annealing, a thin steel sheet having a thickness of 0.4 mm was manufactured. The final annealing was also performed by applying tension at 49 N / mm 2 . The holding time of the final annealing was all 10 seconds.

【0057】得られた薄鋼板を用いて、再結晶粒面積
率、マルテンサイト量、硬度、伸び、および疲労特性を
調査した。
Using the obtained thin steel sheet, the recrystallized grain area ratio, the amount of martensite, the hardness, the elongation, and the fatigue properties were examined.

【0058】疲労特性は、図2で説明した試験方法によ
り実施した。振幅2.0mmにおいて106 回の曲げ、
曲げ戻し後に加工後の試験片が破断に至るか否かで評価
した。なお、ここではバネ材として最低限必要な硬度と
伸びをそれぞれHv300以上、10%以上とした。
The fatigue characteristics were measured by the test method described with reference to FIG. 10 6 bends at an amplitude of 2.0 mm,
The evaluation was performed by examining whether or not the processed test piece after breaking was bent. Here, the minimum hardness and elongation required for the spring material are set to Hv300 or more and 10% or more, respectively.

【0059】表2にそれらの製造条件、試験結果を示
す。
Table 2 shows the manufacturing conditions and test results.

【0060】[0060]

【表2】 同表より明らかなように、(1)−1〜(10)−1に
示すように本発明鋼は再結晶粒面積率50%以上におい
てHv300を超える高硬度と、10%を超える伸びと
が両立している。また、疲労特性に関しても、試験後の
破断は確認されなかった。 これに対して、(11)−
1〜(14)−2の比較例は50%を超える再結晶粒面
積率を得ることができない場合があり、得られた場合で
も硬度ないしは伸びが劣っている。特に、伸びが劣って
いる場合、疲労試験での破断も確認された。
[Table 2] As is clear from the table, as shown in (1) -1 to (10) -1, the steel of the present invention has a high hardness exceeding Hv300 and an elongation exceeding 10% at a recrystallized grain area ratio of 50% or more. It is compatible. Also, regarding the fatigue properties, no break after the test was confirmed. On the other hand, (11)-
In Comparative Examples 1 to (14) -2, a recrystallized grain area ratio exceeding 50% may not be obtained in some cases, and even when obtained, the hardness or elongation is inferior. In particular, when the elongation was inferior, breakage in a fatigue test was also confirmed.

【0061】[0061]

【発明の効果】本発明によれば、バネ用素材として好適
な高強度、高疲労特性かつ加工性に優れたステンレス鋼
板を安定供給でき、今後予想されるバネ部品の小型化、
薄板化等に貢献できる
According to the present invention, it is possible to stably supply a stainless steel sheet having high strength, high fatigue properties and excellent workability, which is suitable as a material for a spring.
Can contribute to thinning etc.

【図面の簡単な説明】[Brief description of the drawings]

【図1】再結晶粒の面積率と硬度および伸びとの関係を
示す図である。
FIG. 1 is a diagram showing the relationship between the area ratio of recrystallized grains and hardness and elongation.

【図2】疲労試験方法を説明するための図である。FIG. 2 is a diagram for explaining a fatigue test method.

【図3】再結晶粒面積率と応力振幅の関係を示す図であ
る。
FIG. 3 is a diagram showing a relationship between a recrystallized grain area ratio and a stress amplitude.

【図4】最終焼鈍後の金属組織の観察状態の一例を示す
図である。
FIG. 4 is a diagram showing an example of an observation state of a metal structure after final annealing.

【図5】焼鈍温度と再結晶粒面積率および未再結晶部中
のマルテンサイト量との関係を示す図
FIG. 5 is a diagram showing a relationship between an annealing temperature, a recrystallized grain area ratio, and an amount of martensite in an unrecrystallized portion.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K037 EA01 EA02 EA05 EA06 EA09 EA12 EA13 EA15 EA16 EA17 EA18 EA19 EA20 EA21 EA27 EA28 EA36 EB14 FG03 FG10 FJ05 FJ06 JA06  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K037 EA01 EA02 EA05 EA06 EA09 EA12 EA13 EA15 EA16 EA17 EA18 EA19 EA20 EA21 EA27 EA28 EA36 EB14 FG03 FG10 FJ05 FJ06 JA06

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】質量%で、C:0.01〜0.13%、S
i:0.1〜3.2%、Mn:0.4〜2.8%、C
r:13〜20%、Ni:3〜12%、N:0.1〜
0.2%、Nb:0.01〜0.2%を含み、さらにM
o:0〜4%、Cu:0〜4%、Al:0〜3%、C
a:0〜0.05%、希土類元素:0〜0.05%、
B:0〜0.05%を含有し、残部Feおよび不純物か
らなり、かつ下記式で示されるMd値が20〜60であ
り、面積%で50〜99%の再結晶組織と、残部が実質
的に未再結晶組織および微細析出物からなる金属組織を
有することを特徴とするステンレス鋼板。 Md=500-458(C+N)-9(Si+Mn)-14Cr-22Ni-21Cu-20Mo
C .: 0.01 to 0.13% by mass, S:
i: 0.1 to 3.2%, Mn: 0.4 to 2.8%, C
r: 13 to 20%, Ni: 3 to 12%, N: 0.1 to
0.2%, Nb: 0.01 to 0.2%, and M
o: 0 to 4%, Cu: 0 to 4%, Al: 0 to 3%, C
a: 0 to 0.05%, rare earth element: 0 to 0.05%,
B: contains 0 to 0.05%, the balance is Fe and impurities, the Md value represented by the following formula is 20 to 60, the recrystallized structure of 50 to 99% in area%, and the balance is substantially A stainless steel sheet characterized by having a non-recrystallized structure and a metal structure composed of fine precipitates. Md = 500-458 (C + N) -9 (Si + Mn) -14Cr-22Ni-21Cu-20Mo
【請求項2】請求項1に記載の化学組成を有するステン
レス鋼を熱間圧延した後、冷間圧延と焼鈍とをおこない
鋼板を製造する方法であって、最終となる冷間圧延での
圧下率を60%以上とし、次いで750〜950℃の温
度範囲内で最終焼鈍することを特徴とするステンレス鋼
板の製造方法。
2. A method for producing a steel sheet by subjecting a stainless steel having the chemical composition according to claim 1 to hot rolling, followed by cold rolling and annealing to produce a steel sheet. A rate of 60% or more, and then a final annealing within a temperature range of 750 to 950 ° C.
JP2000392321A 2000-12-25 2000-12-25 Stainless steel sheet and production method for the same Pending JP2002194506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000392321A JP2002194506A (en) 2000-12-25 2000-12-25 Stainless steel sheet and production method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000392321A JP2002194506A (en) 2000-12-25 2000-12-25 Stainless steel sheet and production method for the same

Publications (1)

Publication Number Publication Date
JP2002194506A true JP2002194506A (en) 2002-07-10

Family

ID=18858327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000392321A Pending JP2002194506A (en) 2000-12-25 2000-12-25 Stainless steel sheet and production method for the same

Country Status (1)

Country Link
JP (1) JP2002194506A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004244725A (en) * 2003-01-21 2004-09-02 Nikko Metal Manufacturing Co Ltd High strength austenitic stainless steel strip having excellent fatigue property
US7101446B2 (en) * 2002-12-12 2006-09-05 Sumitomo Metal Industries, Ltd. Austenitic stainless steel
JP2007302972A (en) * 2006-05-12 2007-11-22 Nisshin Steel Co Ltd High-strength nonmagnetic stainless steel sheet superior in age hardening characteristics, and manufacturing method therefor
WO2008013305A1 (en) 2006-07-28 2008-01-31 Sumitomo Metal Industries, Ltd. Stainless steel sheet for parts and process for manufacturing the same
JP2009503246A (en) * 2005-06-28 2009-01-29 ユジンヌ・エ・アルツ・フランス Austenitic stainless steel strip with bright surface finish and excellent mechanical properties
JP2009171775A (en) * 2008-01-18 2009-07-30 Daikin Ind Ltd Rotor, motor, and compressor
EP2103705A1 (en) * 2008-03-21 2009-09-23 ArcelorMittal-Stainless France Method of manufacturing sheets of austenitic stainless steel with high mechanical properties
CN104726789A (en) * 2013-12-24 2015-06-24 Posco公司 Low-nickel containing stainless steels
WO2019176283A1 (en) 2018-03-15 2019-09-19 日鉄ステンレス株式会社 Martensitic stainless steel sheet, method for manufacturing same, and spring member

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7101446B2 (en) * 2002-12-12 2006-09-05 Sumitomo Metal Industries, Ltd. Austenitic stainless steel
JP2004244725A (en) * 2003-01-21 2004-09-02 Nikko Metal Manufacturing Co Ltd High strength austenitic stainless steel strip having excellent fatigue property
JP2009503246A (en) * 2005-06-28 2009-01-29 ユジンヌ・エ・アルツ・フランス Austenitic stainless steel strip with bright surface finish and excellent mechanical properties
JP2007302972A (en) * 2006-05-12 2007-11-22 Nisshin Steel Co Ltd High-strength nonmagnetic stainless steel sheet superior in age hardening characteristics, and manufacturing method therefor
WO2008013305A1 (en) 2006-07-28 2008-01-31 Sumitomo Metal Industries, Ltd. Stainless steel sheet for parts and process for manufacturing the same
JP2009171775A (en) * 2008-01-18 2009-07-30 Daikin Ind Ltd Rotor, motor, and compressor
EP2103705A1 (en) * 2008-03-21 2009-09-23 ArcelorMittal-Stainless France Method of manufacturing sheets of austenitic stainless steel with high mechanical properties
WO2009115702A2 (en) * 2008-03-21 2009-09-24 Arcelormittal-Stainless France Process for manufacturing austenitic stainless steel plate having high mechanical properties, and plate thus obtained
WO2009115702A3 (en) * 2008-03-21 2009-11-12 Arcelormittal-Stainless France Process for manufacturing austenitic stainless steel plate having high mechanical properties, and plate thus obtained
US20110061776A1 (en) * 2008-03-21 2011-03-17 Arcelormittal-Stainless France Process for manufacturing sheet of austenitic stainless steel having high mechanical properties and sheet thus obtained
TWI405858B (en) * 2008-03-21 2013-08-21 Arcelormittal Stainless France Process for manufacturing sheet of austenitic stainless steel having high mechanical properties and sheet thus obtained
CN104726789A (en) * 2013-12-24 2015-06-24 Posco公司 Low-nickel containing stainless steels
WO2019176283A1 (en) 2018-03-15 2019-09-19 日鉄ステンレス株式会社 Martensitic stainless steel sheet, method for manufacturing same, and spring member
KR20200130422A (en) 2018-03-15 2020-11-18 닛테츠 스테인레스 가부시키가이샤 Martensitic stainless steel plate and its manufacturing method and spring member
US11499204B2 (en) 2018-03-15 2022-11-15 Nippon Steel Stainless Steel Corporation Martensitic stainless steel sheet, method for manufacturing same, and spring member

Similar Documents

Publication Publication Date Title
WO2013146876A1 (en) High-strength stainless steel wire having excellent heat deformation resistance, high-strength spring, and method for manufacturing same
EP3023508A1 (en) Expanded member comprising cu-al-mn alloy material and exhibiting superior anti-stress corrosion properties, and use therefor
JP5103107B2 (en) High elastic alloy
JP5363922B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP4252893B2 (en) Duplex stainless steel strip for steel belt
WO2013080699A1 (en) Stainless steel and method of manufacturing same
CN111727269B (en) Martensitic stainless steel sheet, method for producing same, and spring member
EP4043597A1 (en) Ferritic stainless steel sheet, method for producing same and ferritic stainless steel member
JP2011214058A (en) High-strength stainless steel wire, and method for producing the same
JP2011080106A (en) High strength cold-rolled steel sheet excellent in balance of extension and formability for extending flange
WO2014157146A1 (en) Austenitic stainless steel sheet and method for manufacturing high-strength steel material using same
JP5080215B2 (en) High-strength cold-rolled steel sheet with excellent isotropy, elongation and stretch flangeability
JP2002194506A (en) Stainless steel sheet and production method for the same
JP5189959B2 (en) High strength cold-rolled steel sheet with excellent elongation and stretch flangeability
KR100504581B1 (en) Ferritic stainless steel sheet having superior workability at room temperatures and mechanical characteristics at high temperatures, and method of producing the same
JP3603726B2 (en) Austenitic stainless steel sheet for electronic components
JP3289980B2 (en) Method for producing high-strength austenitic stainless steel with excellent toughness
WO2023105852A1 (en) Stainless steel having excellent cold forgeability, hydrogen embrittlement resistance properties or corrosion resistance and non-magnetism
JP3999457B2 (en) Wire rod and steel bar excellent in cold workability and manufacturing method thereof
JP4841308B2 (en) High-strength nonmagnetic stainless steel sheet and method for producing the same
JP3370441B2 (en) Duplex stainless steel sheet with excellent elongation characteristics and method for producing the same
JPH11140598A (en) High strength stainless steel strip with high spring limit value, and its production
JPH1180906A (en) High strength stainless steel strip increased in yield stress, and its production
JPH07300654A (en) Stainless steel strip having high strength and high toughness and its production
JP5360544B2 (en) Steel plate and steel plate coil