JP2007302972A - High-strength nonmagnetic stainless steel sheet superior in age hardening characteristics, and manufacturing method therefor - Google Patents

High-strength nonmagnetic stainless steel sheet superior in age hardening characteristics, and manufacturing method therefor Download PDF

Info

Publication number
JP2007302972A
JP2007302972A JP2006134452A JP2006134452A JP2007302972A JP 2007302972 A JP2007302972 A JP 2007302972A JP 2006134452 A JP2006134452 A JP 2006134452A JP 2006134452 A JP2006134452 A JP 2006134452A JP 2007302972 A JP2007302972 A JP 2007302972A
Authority
JP
Japan
Prior art keywords
less
rolling
stainless steel
aging treatment
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006134452A
Other languages
Japanese (ja)
Other versions
JP4841308B2 (en
Inventor
Yasutoshi Hideshima
保利 秀嶋
Satoshi Suzuki
聡 鈴木
Hiroyasu Matsubayashi
弘泰 松林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2006134452A priority Critical patent/JP4841308B2/en
Publication of JP2007302972A publication Critical patent/JP2007302972A/en
Application granted granted Critical
Publication of JP4841308B2 publication Critical patent/JP4841308B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an austenitic stainless steel sheet which is superior in age hardening characteristics, keeps nonmagnetism property even when being subjected to a heavy working process, and has a high strength. <P>SOLUTION: A hot-rolled and annealed plate of the austenitic stainless steel has a composition comprising such elements as to have a Ni equivalent value of 19.0 or more, which is defined by the expression, Ni equivalent value=Ni+0.6Mn+9.69(C+N)+0.18Cr-0.11Si<SP>2</SP>+2.3(V+Nb+Ti), and make the elements of C, N, Si and V satisfy the relationships of C+N>0.20, and Si+4V>3. The manufacturing method comprises the steps of: cold-rolling the above hot-rolled and annealed plate at a reduction ratio of 60% or higher; continuously annealing the cold-rolled sheet at an annealing temperature of lower than 1,080°C; temper-rolling the annealed sheet at a reduction ratio of 30% or higher; and age-treating the temper-rolled sheet at such a temperature T (absolute temperature K) for a period of time t (h) as to satisfy an expression, 14,500<T(logt+20)<15,500. Thus obtained steel sheet has a structure which contains crystal grains having an average size of 20 μm or smaller in a direction parallel to a sheet thickness direction, in a cross section having a normal line directed at a rolling direction. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は磁気特性を利用して機能する各種機器・装置に使用される部品用として、過酷な加工を施しても非磁性を維持しうる高強度の非磁性ステンレス鋼板に関する。   The present invention relates to a high-strength non-magnetic stainless steel plate that can maintain non-magnetism even when subjected to severe processing, for parts used in various devices and apparatuses that function using magnetic properties.

SUS304で代表されるオーステナイト系ステンレス鋼は良好な耐食性と焼鈍状態で非磁性のオーステナイト組織を有していることから、非磁性鋼として各種機器・装置に使用されている。
しかしながら、用途によっては強度が要求されるために冷間加工を施し加工硬化させる必要がある。ところがSUS304はオーステナイト相が準安定であるため、冷間加工中にマルテンサイトの生成が誘起されて磁性を帯びるようになり、非磁性鋼としては使用できなくなる。また高強度用非磁性鋼としては、N含有量の高いSUS304Nが使用される場合もあるが、この鋼も冷間加工後の非磁性度は不充分である。
Since austenitic stainless steel represented by SUS304 has good corrosion resistance and a non-magnetic austenitic structure in an annealed state, it is used as a non-magnetic steel in various devices and apparatuses.
However, since strength is required depending on the application, it is necessary to perform cold working and work hardening. However, since SUS304 has a metastable austenite phase, martensite formation is induced during cold working and becomes magnetic, making it unusable as a nonmagnetic steel. Further, as a high-strength nonmagnetic steel, SUS304N having a high N content may be used, but this steel also has insufficient nonmagnetic degree after cold working.

したがって、高強度非磁性用途にはオーステナイト相がより安定なSUS316が使用される。しかしながら、この鋼は高価なMoを多量に含有している。そして、Moは耐食性に対しては優れた効果を発揮するものの、強度,非磁性に対する寄与度合は低く、高価な割に非磁性鋼としては不適当な材料である。
近年、エレクトロニクス分野の急速な発展により、各種機器・装置に使用される部品として非磁性と高強度を呈する材料に対するニーズも高まっている。
Therefore, SUS316 having a more stable austenite phase is used for high-strength nonmagnetic applications. However, this steel contains a large amount of expensive Mo. Mo exhibits an excellent effect on corrosion resistance, but has a low contribution to strength and non-magnetism, and is an inappropriate material for non-magnetic steel despite its high price.
In recent years, with the rapid development of the electronics field, there is an increasing need for materials exhibiting non-magnetic properties and high strength as components used in various devices and apparatuses.

上記のような部品として使用する場合、調質圧延材を曲げ加工したり打抜き加工したりして部品形状に成形した後、時効処理が施されている。このため、特に大量生産しようとすると、調質圧延材ではより軟質で曲げ加工や打抜き加工の金型負担が小さく、時効処理後にはより硬質化,高強度化できる材料が望まれている。すなわち、調質圧延での加工硬化は小さく、時効処理により時効後の高度が高い、いわゆる時効硬化特性ΔHVが高い材料が求められている。
そして、加工硬化のみを利用した非磁性鋼強度材として、本出願人は、過酷な加工を施しても非磁性を維持し、かつ強度,耐食性に優れた非磁性ステンレス鋼を提案した(特許文献1)。また、バネ特性に優れた非磁性ステンレス鋼を提案した(特許文献2)。さらに、別の出願人から、析出硬化型の高強度非磁性ステンレス鋼が提案されている(特許文献3)。
特開昭61−261463号公報 特公平6−4905号公報 特開平5−98391号公報
When used as a part as described above, an aging treatment is performed after the temper rolled material is formed into a part shape by bending or punching. For this reason, particularly when mass production is attempted, a tempered rolled material is softer and has a smaller burden on the die for bending and punching, and a material that can be hardened and strengthened after aging treatment is desired. That is, there is a demand for a material that has low work hardening in temper rolling and a high altitude after aging by aging treatment, that is, high so-called age hardening characteristics ΔHV.
As a non-magnetic steel strength material using only work hardening, the present applicant has proposed a non-magnetic stainless steel that maintains non-magnetism and is excellent in strength and corrosion resistance even when subjected to severe processing (Patent Literature). 1). Moreover, the nonmagnetic stainless steel excellent in the spring characteristic was proposed (patent document 2). Further, another applicant has proposed precipitation hardening type high-strength nonmagnetic stainless steel (Patent Document 3).
Japanese Patent Laid-Open No. 61-261463 Japanese Patent Publication No. 6-4905 JP-A-5-98391

しかしながら、特許文献1で提案した鋼に通常の調質圧延及び時効処理を施しても、必ずしも満足できる時効硬化特性は得られない。また、特許文献2で提案した鋼では、調質圧延後に時効することにより優れたバネ特性を得ているが、この技術では調質圧延後の硬質化が激しく、しかも満足する時効硬化特性は得られない。さらに、特許文献3で提案された鋼は、調質圧延による硬質化が激しいために加工性が低下する。このため、曲げ加工や打抜き加工が施されて製造される部品用には適さない。   However, even when the steel proposed in Patent Document 1 is subjected to normal temper rolling and aging treatment, satisfactory age-hardening characteristics cannot always be obtained. In addition, the steel proposed in Patent Document 2 obtains excellent spring characteristics by aging after temper rolling, but this technique is hard to harden after temper rolling and yet has satisfactory age hardening characteristics. I can't. Furthermore, the steel proposed in Patent Document 3 is hardened by temper rolling, so that workability is reduced. For this reason, it is not suitable for parts manufactured by bending or punching.

このように、調質圧延した段階では軟質で加工しやすく、時効処理後にはより硬質化,高強度化できる非磁性のステンレス鋼は未だ提供されていない。
本発明は、このような問題を解消するために案出されたものであり、時効硬化特性に優れ、過酷な加工を施しても非磁性を維持できる高強度のオーステナイト系ステンレス鋼板及びその製造方法を提供することを目的とする。
Thus, non-magnetic stainless steel that is soft and easy to work at the stage of temper rolling and can be made harder and stronger after aging treatment has not yet been provided.
The present invention has been devised in order to solve such a problem, and is a high-strength austenitic stainless steel sheet that has excellent age-hardening characteristics and can maintain non-magnetism even after severe processing, and a method for producing the same. The purpose is to provide.

本発明の時効硬化特性に優れた高強度非磁性ステンレス鋼板は、その目的を達成するため、含有成分を質量%で表示するとき、下記の式(1)で定義されるNi当量の値が19.0以上であり、含有C,N,Si及びVの間で、C+N>0.20,Si+4V>3の関係を満たす成分組成を有し、調質圧延とその後に下記式(3)で示す温度T(絶対温度K)×時間t(h)の時効処理が施され、圧延方向を法線とする断面において、板厚方向に平行な方向の平均結晶粒径が20μm以下になった組織を有することを特徴とする。
Ni当量=Ni+0.6Mn+9.69(C+N)+0.18Cr−0.11Si2+2.3(V+Nb+Ti) ・・・(1)
14500<T(logt+20)<15500 ・・・(3)
The high-strength nonmagnetic stainless steel sheet having excellent age-hardening characteristics of the present invention achieves its purpose, and when the content of components is expressed in mass%, the value of Ni equivalent defined by the following formula (1) is 19 It has a component composition satisfying the relationship of C + N> 0.20, Si + 4V> 3 among the contained C, N, Si and V, and is shown in the following formula (3) after temper rolling. A structure in which an aging treatment of temperature T (absolute temperature K) × time t (h) is performed and the average crystal grain size in a direction parallel to the plate thickness direction is 20 μm or less in a cross section having the rolling direction as a normal line. It is characterized by having.
Ni equivalent = Ni + 0.6Mn + 9.69 (C + N) + 0.18Cr−0.11Si 2 +2.3 (V + Nb + Ti) (1)
14500 <T (logt + 20) <15500 (3)

具体的な成分組成としては、質量%で、C:0.050超%〜0.090未満%,Si:1.0超%〜3.0未満%,Mn:2.0超%〜5.0未満%,Ni:9.0超%〜18.0未満%,Cr:16.0超%〜20.0未満%,N:0.10超%〜0.20未満%,V:0.3超%〜0.7未満%、さらに必要に応じて、0.0001〜0.0050%のCaと0.0010〜0.0100%のB及び0.50%以下のCuから選ばれる少なくとも1種の元素と、合計量で0.50%以下のTi及び/又はNbを含有し、残部がFe及び不可避的不純物からなるものが好ましい。   The specific component composition is, by mass%, C: more than 0.050% to less than 0.090%, Si: more than 1.0% to less than 3.0%, Mn: more than 2.0% to 5.%. Less than 0%, Ni: more than 9.0% to less than 18.0%, Cr: more than 16.0% to less than 20.0%, N: more than 0.10% to less than 0.20%, V: 0.0. More than 3% to less than 0.7%, and if necessary, at least 1 selected from 0.0001 to 0.0050% Ca, 0.0001 to 0.0100% B and 0.50% or less Cu It is preferable to contain seed elements and a total amount of Ti and / or Nb of 0.50% or less, with the balance being Fe and inevitable impurities.

本発明の時効硬化特性に優れた高強度非磁性ステンレス鋼板の製造方法は、上記の成分組成を有するステンレス鋼の熱延焼鈍板を、圧延率60%以上で冷間圧延した後、1080℃未満の焼鈍温度で連続焼鈍し、さらに圧延率30%以上で調質圧延した後に下記式(3)で示す温度T(絶対温度K)×時間t(h)の時効処理を施すことを特徴とする。
14500<T(logt+20)<15500 ・・・(3)
The method for producing a high-strength non-magnetic stainless steel sheet having excellent age-hardening characteristics according to the present invention is obtained by cold rolling a stainless steel hot-rolled annealed sheet having the above component composition at a rolling rate of 60% or more and less than 1080 ° C. After temper rolling at a rolling rate of 30% or more after continuous annealing at an annealing temperature of (2), an aging treatment of temperature T (absolute temperature K) × time t (h) shown in the following formula (3) is performed. .
14500 <T (logt + 20) <15500 (3)

本発明により、時効硬化特性に優れるとともに、過酷な加工を施しても非磁性の維持が可能なオーステナイト系ステンレス鋼板が提供される。
したがって、非磁性と高強度を必要とする各種機器・装置用の部品を安価に提供することが可能となる。
The present invention provides an austenitic stainless steel sheet that has excellent age-hardening properties and can maintain non-magnetic properties even when subjected to severe processing.
Therefore, it is possible to provide inexpensive parts for various devices and devices that require non-magnetism and high strength.

本発明者等は、オーステナイト系組成のステンレス鋼において、過酷な条件の加工を施してもマルテンサイトを誘起することなく、しかも使用環境下で非磁性を担保する要件について探索した。さらに、オーステナイト系組成のステンレス鋼において、時効硬化特性に及ぼす合金元素,冷間圧延条件及び時効熱処理条件等の影響を調査し、優れた時効硬化特性を発現する要件について探索した。
その結果を以下に紹介する。
The inventors of the present invention have searched for a requirement to ensure non-magnetism in a use environment without inducing martensite even in processing of severe conditions in austenitic stainless steel. Furthermore, in stainless steel with an austenitic composition, the effects of alloying elements, cold rolling conditions, aging heat treatment conditions, etc. on age hardening characteristics were investigated, and requirements for developing excellent age hardening characteristics were searched.
The results are introduced below.

まず、過酷な条件の加工を施してもマルテンサイトを誘起することなく、しかも使用環境下で非磁性を担保する要件については、本出願人が先に提案した特許文献1のNi当量を援用する。
すなわち、非磁性を利用して機能する各種機器・装置に使用される部品の本発明ステンレス鋼が用いられるためには、1kOeの磁場中での透磁率1.005以下が必要であることから、下記(1)で定義されるNi当量の値を19.0以上にする必要がある。Ni当量が19.0に満たないと、時効処理後に1kOeの磁場中での透磁率が1.005を超えてしまう。
Ni当量=Ni+0.6Mn+9.69(C+N)+0.18Cr−0.11Si2+2.3(V+Nb+Ti) ・・・(1)
First, the Ni equivalent of Patent Document 1 previously proposed by the present applicant is used for the requirement of ensuring non-magnetism in a use environment without inducing martensite even when processing under severe conditions. .
That is, in order to use the stainless steel of the present invention, which is a component used in various devices and apparatuses that function using non-magnetism, a magnetic permeability of 1.005 or less in a magnetic field of 1 kOe is required. The value of Ni equivalent defined in the following (1) needs to be 19.0 or more. If the Ni equivalent is less than 19.0, the magnetic permeability in a 1 kOe magnetic field will exceed 1.005 after the aging treatment.
Ni equivalent = Ni + 0.6Mn + 9.69 (C + N) + 0.18Cr−0.11Si 2 +2.3 (V + Nb + Ti) (1)

本発明のオーステナイト系ステンレス鋼は、後述するように、時効硬化特性の向上を主たる目的としている。そのために、既に上記したように、析出硬化能を有するVや、必要に応じてNb,Tiも含ませるとともに、成分調整を行っている。各成分の作用や含有量について説明する。以下、「%」表示は質量%とする。
C:0.050超%〜0.090未満%
CはNと同様に強力なオーステナイト相安定化元素であり、時効による析出物としてVの炭化物や窒化物を形成させる上で重要な元素となる。所望の時効硬化特性を得るためには、少なくとも0.050%を超えるCを必要とする。しかし、Cは耐食性及び溶接性を低下させるので、その上限は0.090%未満とする。より好ましくは、0.055〜0.065%である。
The austenitic stainless steel of the present invention is mainly intended to improve age hardening characteristics, as will be described later. Therefore, as described above, V having precipitation hardening ability and Nb and Ti are included as necessary, and the components are adjusted. The action and content of each component will be described. Hereinafter, the “%” display is mass%.
C: more than 0.050% to less than 0.090%
C, like N, is a strong austenite stabilizing element and is an important element in forming V carbide and nitride as a precipitate due to aging. In order to obtain the desired age-hardening properties, at least 0.050% C is required. However, since C lowers corrosion resistance and weldability, the upper limit is made less than 0.090%. More preferably, it is 0.055 to 0.065%.

Si:1.0超%〜3.0未満%
Siは本発明鋼の主要な特徴である高強度を達成する有用な元素である。Si含有量の増加とともに時効硬化特性が向上する。この効果を発揮するには少なくとも1.0%を超える量必要である。しかしその含有量が増加するにつれて熱間加工性が低下するとともに透磁率を上昇させる。このため、Si含有量の上限は3.0%未満とする。より好ましくは、1.5〜2.5%である。
Si: more than 1.0% to less than 3.0%
Si is a useful element that achieves high strength, which is a main feature of the steel of the present invention. Age hardening characteristics improve with increasing Si content. In order to exert this effect, an amount exceeding 1.0% is necessary. However, as the content increases, the hot workability decreases and the permeability increases. For this reason, the upper limit of Si content is made less than 3.0%. More preferably, it is 1.5 to 2.5%.

Mn:2.0超%〜5.0未満%
MnはNiと同様オーステナイト安定化元素であり、冷間加工による透磁率の上昇を抑制する。その作用を発揮するには2%を超える量が必要である。しかしながら約5%以上含有させてもそれに見合う効果は見られず、また介在物の増加をもたらし、曲げ加工性を低下させる。このため、その上限は5.0%未満とする。
Ni:9.0超%〜18.0未満%
Niはオーステナイト鋼に必須の合金成分であり、オーステナイト相を生成させるためには少なくとも9.0%を超えるNiが必要である。Niは含有量の増加に伴い透磁率の上昇を抑制する。しかし、過剰にNi添加は、積層欠陥エネルギーを増大させ、加工硬化が小さくなり、強度を低下させる。また高価な元素であるため、素材コストを上昇させることにもなる。このため、Ni添加量の上限は18.0%未満とする。
Mn: more than 2.0% to less than 5.0%
Mn is an austenite stabilizing element like Ni, and suppresses an increase in magnetic permeability due to cold working. In order to exert its effect, an amount exceeding 2% is required. However, even if it is contained in an amount of about 5% or more, an effect commensurate with it is not seen, and an increase in inclusions is caused and bending workability is lowered. For this reason, the upper limit is made less than 5.0%.
Ni: more than 9.0% to less than 18.0%
Ni is an essential alloy component for austenitic steel, and at least 9.0% of Ni is required to generate an austenitic phase. Ni suppresses an increase in magnetic permeability as the content increases. However, excessive addition of Ni increases stacking fault energy, reduces work hardening, and decreases strength. Moreover, since it is an expensive element, it will also raise material cost. For this reason, the upper limit of Ni addition amount is made less than 18.0%.

Cr:16.0超%〜20.0未満%
Crはステンレス鋼に要求される耐食性を得るために必須の合金成分である。優れた耐食性を得るためには16.0%を超える量が必要である。しかし、過剰に添加するとデルタフェライトが生成し、非磁性が確保できなくなる。このため、上限を20.0%未満とする。
N:0.10超%〜0.20未満%
Nは、非磁性を維持し、かつ高強度及び優れた時効硬化特性を得るために有効な元素である。これらの性能を発揮させるには0.1%を超える量を含有させる必要がある。しかし、0.20%以上含有させると鋳造性が悪化するので、その上限値は0.20%未満とする。
Cr: more than 16.0% to less than 20.0%
Cr is an essential alloy component in order to obtain the corrosion resistance required for stainless steel. In order to obtain excellent corrosion resistance, an amount exceeding 16.0% is required. However, if it is added excessively, delta ferrite is generated and non-magnetism cannot be secured. For this reason, the upper limit is made less than 20.0%.
N: more than 0.10% to less than 0.20%
N is an element effective for maintaining non-magnetism and obtaining high strength and excellent age-hardening characteristics. In order to exhibit these performances, it is necessary to contain an amount exceeding 0.1%. However, if the content is 0.20% or more, castability deteriorates, so the upper limit is made less than 0.20%.

V:0.3超%〜0.7未満%
Vは、時効硬化特性を高める元素である。本発明においては、優れた時効硬化特性を得るために調質圧延前の金属組織を微細化しているが、その結晶粒の微細化には適正条件の焼鈍を施してVの炭化物,窒化物を析出させることが必要である。炭化物,窒化物を析出させるには少なくとも0.3%を超える量のVを必要とする。しかしながら、過剰に添加してもその増量に見合う効果は発揮されない。また、デルタフェライトが生成して非磁性が確保できなくなる。このため、V添加量の上限は0.7%未満とする。
V: more than 0.3% to less than 0.7%
V is an element that enhances age hardening characteristics. In the present invention, the metal structure before temper rolling is refined in order to obtain excellent age-hardening characteristics. However, in order to refine the crystal grains, annealing is performed under appropriate conditions, and V carbides and nitrides are added. It is necessary to deposit. In order to precipitate carbide and nitride, an amount of V exceeding 0.3% is required. However, even if it adds excessively, the effect corresponding to the increase is not exhibited. Also, delta ferrite is generated and non-magnetism cannot be secured. For this reason, the upper limit of V addition amount is made less than 0.7%.

0.0001〜0.0050%のCaと0.0010〜0.0100%のB及び0.50%以下のCuから選ばれる少なくとも1種の元素
Caは、表面疵の低減に寄与するので、必要に応じて添加する。その作用は少なくとも0.0001%の含有で発現し、0.0050%を超えるほどに添加してもその効果は飽和する。したがって、Caを添加する場合は0.0001〜0.0050%の範囲とする。
Bは、熱間加工性の改善に寄与するので、必要に応じて添加する。その作用は少なくとも0.0010%の含有で発現し、0.0100%を超えるほどに添加してもその効果は飽和する。したがって、Bを添加する場合は0.0010〜0.0100%の範囲とする。
Cuは、前鍋からのコンタミや原料からの混入により、わずかながら不純物として鋼中に含まれる場合がある。しかしながら、Cuは、固溶軟化を招き、加工硬化を低減する作用があるため、0.50%以下に規制する。
At least one element Ca selected from 0.0001 to 0.0050% Ca, 0.0001 to 0.0100% B and 0.50% or less of Cu contributes to the reduction of surface defects, and is necessary. Add as appropriate. The effect is manifested at a content of at least 0.0001%, and the effect is saturated even when added to an amount exceeding 0.0050%. Therefore, when adding Ca, it is set as 0.0001 to 0.0050% of range.
Since B contributes to the improvement of hot workability, it is added as necessary. The effect is manifested at a content of at least 0.0010%, and the effect is saturated even if added in an amount exceeding 0.0100%. Therefore, when adding B, it is set as 0.0001 to 0.0100% of range.
Cu may be slightly contained as an impurity in steel due to contamination from the front pan or mixing from raw materials. However, Cu causes solid solution softening and has an effect of reducing work hardening, so it is regulated to 0.50% or less.

Ti及び/又はNb:合計量で0.50%以下
TiやNbは、前鍋からのコンタミや原料からの混入により、わずかながら不純物として鋼中に含まれる場合がある。しかしながら、TiやNbは、本発明で積極的に利用するVの炭化物や窒化物の生成を阻害し、結晶粒の微細化作用を消滅させる。このため、Ti及び/又はNbは合計量で0.50%以下に規制する。
Ti and / or Nb: not more than 0.50% in total amount Ti and Nb may be slightly contained in the steel as impurities due to contamination from the front pan and mixing from raw materials. However, Ti and Nb inhibit the formation of V carbide and nitride, which are actively used in the present invention, and eliminate the effect of crystal grain refinement. For this reason, Ti and / or Nb are regulated to a total amount of 0.50% or less.

本発明のオーステナイト系ステンレス鋼は、上記のような成分を含むものであるが、この内、SiとVが高強度化に大きな役割を果たしている。Si含有量が増えるとともに時効硬化特性が向上し、Vの含有で炭化物、窒化物が析出され結晶粒を微細化している。
Si及びVの作用効果を確認するために、次のような予備試験1を行った。
上記の成分組成を有するオーステナイト系ステンレス鋼であって、aC−bSi−4Mn−12Ni−19Cr−cN−dV−0.004B(ただし、a,b,c,dは変数)とした各種熱延焼鈍板を供試材とし、この供試材に60%の冷間圧延、1050℃の焼鈍(均熱1分)、40%の調質圧延、500℃×1時間の時効処理を順次施したものについて、時効処理前後の表面硬度を測定した。(時効処理後の硬度)−(時効処理前の硬度)をΔHVとして、Si+4VとC+Nの関係で整理すると図1に示す通りとなった。
この結果から、Si+4V>3及びC+N>0.2の範囲でΔHVが50を超えることがわかる。
The austenitic stainless steel of the present invention contains the above components, and among these, Si and V play a large role in increasing the strength. As the Si content increases, the age hardening characteristics improve, and with the V content, carbides and nitrides are precipitated to refine the crystal grains.
In order to confirm the effects of Si and V, the following preliminary test 1 was performed.
Various austenitic stainless steels having the above-mentioned composition, each of which is aC-bSi-4Mn-12Ni-19Cr-cN-dV-0.004B (where a, b, c and d are variables) The sample material was subjected to 60% cold rolling, 1050 ° C. annealing (soaking 1 minute), 40% temper rolling, and 500 ° C. × 1 hour aging treatment. The surface hardness before and after aging treatment was measured. When (hardness after aging treatment) − (hardness before aging treatment) is ΔHV, the relationship between Si + 4V and C + N is as shown in FIG.
From this result, it can be seen that ΔHV exceeds 50 in the range of Si + 4V> 3 and C + N> 0.2.

また、次のような予備試験2も行った。
0.06C−2Si−4Mn−12Ni−19Cr−0.15N−0.5V−0.004Bの熱延焼鈍板を供試材とし、60%の冷間圧延の後に条件を変えた各種の焼鈍を施し、その後に40%の調質圧延と500℃×1時間の時効処理を施したものについて、時効処理前後の表面硬度を測定した。また、時効処理後の供試材について、圧延方向を法線とする断面における、板厚方向に平行な方向の結晶粒径を測定した。前記の予備試験1と同様に(時効処理後の硬度)−(時効処理前の硬度)をΔHVとして、上記時効処理後の板厚方向に平行な方向の平均結晶粒径との関係を図2に示す通りとなった。
この結果から、圧延方向を法線とする断面における、板厚方向に平行な方向の平均結晶粒径を20μm以下とすれば、優れた時効硬化特性が得られることがわかる。
The following preliminary test 2 was also conducted.
Using a hot rolled annealed sheet of 0.06C-2Si-4Mn-12Ni-19Cr-0.15N-0.5V-0.004B as the test material, various annealing conditions were applied after 60% cold rolling, and then The surface hardness before and after the aging treatment was measured for the sample subjected to 40% temper rolling and aging treatment at 500 ° C. for 1 hour. Moreover, about the test material after an aging treatment, the crystal grain diameter of the direction parallel to a plate | board thickness direction in the cross section which makes a rolling direction a normal line was measured. As in the preliminary test 1, (Hardness after aging treatment) − (Hardness before aging treatment) is ΔHV, and the relationship between the average grain size in the direction parallel to the plate thickness direction after the aging treatment is shown in FIG. It became as shown in.
From this result, it can be seen that when the average grain size in the direction parallel to the plate thickness direction in the cross section with the rolling direction as the normal line is 20 μm or less, excellent age hardening characteristics can be obtained.

上記予備実験2では、条件を変えて焼鈍した後に施す調質圧延の圧下率やその後の時効処理条件は同じにしている。したがって、時効処理後の結晶粒径が異なることは、調質圧延前、すなわち焼鈍後の結晶粒のサイズが異なっていることを意味している。
そうすると、調質圧延前の焼鈍組織の結晶粒が微細化されていれば、調質圧延とその後の時効処理を施すことにより優れた時効硬化特性を呈することになると理解される。
この予備実験2で用いられた供試材では、V,C,Nが適正な比率で配合され、適切な条件の冷間圧延とその後の焼鈍が施されているために、焼鈍組織が微細になっているものと推測され、この微細な焼鈍組織が後工程で活用され、優れた時効硬化特性を発揮したものと推測される。ちなみに、詳細は後記の実施例に譲るが、V含有量が少ないと適正な条件の冷間圧延とその後の焼鈍を施しても、結晶粒は細かくなっておらず、所望の時効硬化特性が得られていない。
In the preliminary experiment 2, the reduction rate of the temper rolling performed after annealing under different conditions and the subsequent aging treatment conditions are the same. Therefore, the difference in the crystal grain size after the aging treatment means that the size of the crystal grain before temper rolling, that is, after annealing, is different.
If it does so, if the crystal grain of the annealing structure before temper rolling is refined | miniaturized, it will be understood that it will exhibit the excellent age hardening characteristic by performing temper rolling and subsequent aging treatment.
In the test material used in this preliminary experiment 2, V, C, and N are blended in an appropriate ratio, and cold rolling and subsequent annealing are performed under appropriate conditions, so that the annealing structure is fine. It is presumed that this fine annealed structure was utilized in the subsequent process and exhibited excellent age-hardening characteristics. Incidentally, details will be given in the examples described later, but if the V content is low, even if cold rolling under proper conditions and subsequent annealing are performed, the crystal grains do not become fine, and the desired age hardening characteristics are obtained. It is not done.

このような背景を考慮すると、適正量のV,C,Nを含むステンレス鋼では、まず、調質圧延前の焼鈍過程或いはそれ以前の過程において、微細なVの窒化物が析出し、その析出物がピン止めとなり微細な結晶粒を形成する。この微細組織を有する焼鈍板を調質圧延することにより加工歪みを加え、その後に時効処理すると、転位及びその周辺に非常に微細なVとCrの炭化物が析出し、優れた時効硬化特性を発揮すると推測される。
そこで、調質圧延前の焼鈍組織の影響をみるために、次のような予備実験3を行った。
Considering such a background, in stainless steel containing an appropriate amount of V, C, N, first, fine V nitride is precipitated in the annealing process before temper rolling or the process before it, and the precipitation The object is pinned to form fine crystal grains. When an annealing plate having this microstructure is temper-rolled to add work strain and then aging treatment, very fine carbides of V and Cr are precipitated around the dislocations and the surrounding area, and excellent age hardening characteristics are exhibited. I guess that.
Therefore, the following preliminary experiment 3 was performed in order to examine the influence of the annealing structure before temper rolling.

0.06C−2Si−4Mn−12Ni−19Cr−0.15N−0.5V−0.004Bの熱延焼鈍板を供試材とし、種々の冷間圧延率の冷間圧延と焼鈍温度を変えた各種の焼鈍(均熱1分)を施し、その後に40%の調質圧延と500℃×1時間の時効処理を施したものについて、時効処理前後の表面硬度を測定した。そして時効硬化特性ΔHVを、冷間圧延率と焼鈍温度の関係で整理すると図3に示す通りとなった。なお、図中、○,×の上に示した数値は、圧延方向を法線とする断面における板厚方向に平行な方向の平均結晶粒径(単位μm)である。
この結果から、調質圧延の前に、圧延率60%以上の冷間圧延とその後に1080℃以下の焼鈍を施す必要があることがわかる。詳細は後記の実施例に譲るが、圧延率が60%に満たなかったり、焼鈍温度が1080℃を超えたりすると、結晶粒が大きくなって所望の時効硬化特性を発揮することができない。圧延率が60%に満たないと必要な加工歪みが蓄積されず、また焼鈍温度が1080℃を超えると再結晶粒が成長して、微細な焼鈍組織が得られないと推察される。
Various hot-rolled annealed sheets of 0.06C-2Si-4Mn-12Ni-19Cr-0.15N-0.5V-0.004B were used as test materials, and various types of annealing with different cold rolling rates and different annealing temperatures ( The surface hardness before and after the aging treatment was measured for the sample subjected to 40% temper rolling and aging treatment at 500 ° C. for 1 hour. And when age hardening characteristic (DELTA) HV was arranged by the relationship between a cold rolling rate and annealing temperature, it became as shown in FIG. In the figure, the numerical values shown above .largecircle. And x are average crystal grain sizes (unit: .mu.m) in a direction parallel to the plate thickness direction in a cross section having the rolling direction as a normal line.
This result shows that it is necessary to perform cold rolling with a rolling rate of 60% or more and annealing at 1080 ° C. or less before temper rolling. Details will be given in the examples described later, but if the rolling rate is less than 60% or the annealing temperature exceeds 1080 ° C., the crystal grains become large and the desired age hardening characteristics cannot be exhibited. If the rolling rate is less than 60%, necessary processing strain is not accumulated, and if the annealing temperature exceeds 1080 ° C., it is assumed that recrystallized grains grow and a fine annealing structure cannot be obtained.

最後に、適正な微細組織を有する焼鈍板に施す調質圧延とその後の時効処理について検討するために、次のような予備実験4を行った。
0.06C−2Si−4Mn−12Ni−19Cr−0.15N−0.5V−0.004Bの熱延焼鈍板を供試材とし、60%の冷間圧延と1050℃の焼鈍(均熱1分)を施した後に、圧延率を変更した種々の調質圧延を施した後、500℃×1時間の時効処理を施したものについて、時効処理前後の表面硬度を測定した。そして調質圧延率と時効硬化特性ΔHVとの関係を整理すると図4に示す通りとなった。
この結果から、調質圧延は30%以上の圧延率で行う必要があることがわかる。
Finally, in order to examine the temper rolling applied to the annealed sheet having an appropriate microstructure and the subsequent aging treatment, the following preliminary experiment 4 was performed.
Using a hot rolled annealed sheet of 0.06C-2Si-4Mn-12Ni-19Cr-0.15N-0.5V-0.004B as a test material, 60% cold rolling and 1050 ° C. annealing (soaking for 1 minute) were performed. Later, after performing various temper rollings with different rolling rates, the surface hardness before and after the aging treatment was measured for those subjected to the aging treatment at 500 ° C. for 1 hour. Then, the relationship between the temper rolling ratio and the age hardening property ΔHV is summarized as shown in FIG.
From this result, it is understood that temper rolling needs to be performed at a rolling rate of 30% or more.

さらに、次のような予備実験5を行った。
0.06C−2Si−4Mn−12Ni−19Cr−0.15N−0.5V−0.004Bの熱延焼鈍板を供試材とし、60%の冷間圧延と1050℃の焼鈍(均熱1分)、さらに40%の調質圧延を施した後、種々の条件の時効処理を施したものについて、時効処理前後の表面硬度を測定した。そして時効処理条件を焼き戻しパラメータ「T(logt+20)(ただしTは温度(絶対温度K)、tは処理時間(h)を表す。)」で整理し、その時効処理条件と時効硬化特性ΔHVとの関係をみると図5に示す通りとなった。
この結果から、時効処理条件T(logt+20)は、14500以上、15500以下にする必要があることがわかる。なお、時効処理温度は450〜550℃の範囲とし、時効処理時間は6時間以下とすることが好ましい。
Furthermore, the following preliminary experiment 5 was conducted.
Using a hot-rolled annealed sheet of 0.06C-2Si-4Mn-12Ni-19Cr-0.15N-0.5V-0.004B as a test material, 60% cold rolling and 1050 ° C annealing (soaking 1 minute), 40 The surface hardness before and after the aging treatment was measured for those subjected to the aging treatment under various conditions after the temper rolling of%. The aging treatment conditions are arranged by tempering parameters “T (logt + 20) (where T is temperature (absolute temperature K) and t is treatment time (h))”, and the aging treatment conditions and age hardening characteristics ΔHV The relationship is as shown in FIG.
From this result, it is understood that the aging treatment condition T (logt + 20) needs to be 14500 or more and 15500 or less. The aging treatment temperature is preferably in the range of 450 to 550 ° C., and the aging treatment time is preferably 6 hours or less.

実施例1:
本発明鋼を比較鋼と比べた実施例をもって、本発明を詳細に説明する。
第1表に示す組成の鋼を溶製した。鋼A〜Gが本発明鋼であり、鋼H〜Nが比較鋼である。それぞれの鋼30kgを真空溶解炉で溶製した。それぞれの鋼を板厚40mmに鍛造し、その後に板厚3.6mmの熱延板を得た。この熱延板を焼鈍,酸洗後に板厚1.0mmまで冷間圧延した。調質圧延の前の焼鈍を1050℃で行い、板厚0.6mmまで圧延率40%の調質圧延を行った。その後、500℃×1時間(T(logt+20)=15460)の時効処理を施した。
Example 1:
The present invention will be described in detail with examples comparing the steel of the present invention with the comparative steel.
Steels having the compositions shown in Table 1 were melted. Steels A to G are invention steels, and steels H to N are comparative steels. 30 kg of each steel was melted in a vacuum melting furnace. Each steel was forged to a plate thickness of 40 mm, and then a hot-rolled plate having a plate thickness of 3.6 mm was obtained. The hot-rolled sheet was annealed, pickled, and cold-rolled to a thickness of 1.0 mm. Annealing before temper rolling was performed at 1050 ° C., and temper rolling with a rolling rate of 40% was performed to a plate thickness of 0.6 mm. Thereafter, an aging treatment of 500 ° C. × 1 hour (T (logt + 20) = 15460) was performed.

調質圧延後の硬さと時効処理後の硬さを測定し、その差ΔHVを算出した。
また時効材の透磁率を島津製作所製の磁気天秤MB−3型を用い、1000Oeの磁場のもとで測定した。
さらに、調質圧延の後に時効処理した板材について、圧延方向を法線とする断面での板厚方向と平行な方向の結晶粒径を測定した。
その結果を表2に示す。なお表2中、時効処理後の透磁率については、1000Oeの磁場で1.005以下のものを○で、1.005を超えたものを×で表示した。
The hardness after temper rolling and the hardness after aging treatment were measured, and the difference ΔHV was calculated.
The magnetic permeability of the aging material was measured using a magnetic balance MB-3 manufactured by Shimadzu Corporation under a magnetic field of 1000 Oe.
Furthermore, the crystal grain size in the direction parallel to the plate thickness direction in the cross section with the rolling direction as the normal line was measured for the plate material subjected to aging treatment after temper rolling.
The results are shown in Table 2. In Table 2, the permeability after aging treatment is indicated by ◯ when the magnetic field is 1000 Oe and below 1.005, and by × when the magnetic field exceeds 1.005.

本発明に従った鋼は、結晶粒の微細化が十分になされ、ΔHVがいずれも50以上と大きく、透磁率も1.005以下を達成できている。
これに対して、比較鋼である鋼H,IはC+Nが少ないため、また鋼JはSi+4Vが少ないため、さらに鋼K,L,MはCu,Ti,Nbを過剰に含むため、ΔHVが小さくなっている。比較鋼の鋼NはNi当量が少ないため、透磁率が1.005を超えている。
In the steel according to the present invention, the crystal grains are sufficiently refined, the ΔHV is as large as 50 or more, and the magnetic permeability is achieved to be 1.005 or less.
On the other hand, steels H and I, which are comparative steels, have a small amount of C + N, steel J has a small amount of Si + 4V, and steels K, L, and M contain excessive amounts of Cu, Ti, and Nb, so ΔHV is small. It has become. Since steel N as a comparative steel has a small Ni equivalent, the magnetic permeability exceeds 1.005.

Figure 2007302972
Figure 2007302972

Figure 2007302972
Figure 2007302972

実施例2:
本発明鋼である鋼A,Bを供試材とし、その熱延焼鈍板に、種々の条件で冷間圧延,焼鈍,調質圧延及び時効処理を施した。そして、時効処理後の板材について、実施例1と同様に、調質圧延後の硬さと時効処理後の硬さを測定し、その差ΔHVを算出した。また、調質圧延の後に時効処理した板材について、圧延方向を法線とする断面での板厚方向と平行な方向の結晶粒径を測定した。
その結果を表3に示す。
Example 2:
Steels A and B, which are steels of the present invention, were used as test materials, and the hot-rolled annealed sheets were subjected to cold rolling, annealing, temper rolling and aging treatment under various conditions. And about the board | plate material after an aging treatment, similarly to Example 1, the hardness after temper rolling and the hardness after an aging treatment were measured, and the difference (DELTA) HV was computed. Further, the crystal grain size in the direction parallel to the plate thickness direction in the cross section with the rolling direction as the normal line was measured for the plate material subjected to aging treatment after temper rolling.
The results are shown in Table 3.

本発明に従った試験No.A1及びB1では、結晶粒の微細化が十分になされ、ΔHVがいずれも50以上と大きく時効硬化特性が得られている。
これに対して、調質圧延前の冷間圧延条件や焼鈍条件が規定の範囲を外れていると(試験No.A2,A3,B2,B3)、調質圧延後に所定の時効処理を施しても結晶粒が細かくならず、所望の時効硬化特性が得られていない。また、所定圧延率の冷間加工と所定条件の焼鈍を施しても、その後の調質圧延率が規定の範囲よりも低いと(試験No.A4,B4)、時効前の歪みの付与が不十分となり、所望の時効硬化特性が得られていない。さらに、時効処理条件が規定の範囲を外れると(試験No.A5,A6,B5,B6)、時効硬化が発現するエネルギーが足りずに歪み時効及び析出時効の効果が発現できず、若しくは析出物が粗大化しすぎて、所望の時効硬化特性が得られていない。
In Test Nos. A1 and B1 according to the present invention, the crystal grains are sufficiently refined, and ΔHV is as large as 50 or more, and an age hardening characteristic is obtained.
On the other hand, when the cold rolling conditions and annealing conditions before temper rolling are out of the specified range (test No. A2, A3, B2, B3), a predetermined aging treatment is performed after temper rolling. However, the crystal grains do not become fine and the desired age hardening characteristics are not obtained. Further, even when cold working at a predetermined rolling rate and annealing at a predetermined condition are performed, if the subsequent temper rolling rate is lower than the specified range (Test Nos. A4 and B4), it is not possible to impart strain before aging. The desired age-hardening characteristics are not obtained. Furthermore, if the aging treatment conditions are out of the specified range (Test Nos. A5, A6, B5, B6), the energy for aging hardening is insufficient and the effects of strain aging and precipitation aging cannot be exhibited, or precipitates. Is too coarse to obtain the desired age hardening characteristics.

Figure 2007302972
Figure 2007302972

含有C,N,Si及びV量が時効硬化特性に及ぼす影響を説明する図The figure explaining the influence which contained C, N, Si, and V amount on age hardening characteristics 時効処理後の、圧延方向を法線とする断面における板厚方向と平行な方向の結晶粒径と時効硬化特性との関係を説明する図The figure explaining the relationship between the crystal grain size of the direction parallel to the plate thickness direction and the age hardening characteristics in the cross section with the rolling direction as the normal line after the aging treatment 調質圧延前の冷間圧延率と焼鈍温度が時効硬化特性に及ぼす影響を説明する図Diagram explaining the effect of cold rolling ratio and annealing temperature on age hardening characteristics before temper rolling 調質圧延率と時効硬化特性との関係を説明する図Diagram explaining the relationship between temper rolling ratio and age hardening characteristics 時効処理条件と時効硬化特性との関係を説明する図Diagram explaining the relationship between aging treatment conditions and age hardening characteristics

Claims (4)

含有成分を質量%で表示するとき、下記の式(1)で定義されるNi当量の値が19.0以上であり、含有C,N,Si及びVの間で、C+N>0.20,Si+4V>3の関係を満たす成分組成を有し、調質圧延とその後に下記式(3)で示す温度T(絶対温度K)×時間t(h)の時効処理が施され、圧延方向を法線とする断面において、板厚方向に平行な方向の平均結晶粒径が20μm以下になった組織を有することを特徴とする時効硬化特性に優れた高強度非磁性ステンレス鋼板。
Ni当量=Ni+0.6Mn+9.69(C+N)+0.18Cr−0.11Si2+2.3(V+Nb+Ti) ・・・(1)
14500<T(logt+20)<15500 ・・・(3)
When the containing component is expressed by mass%, the value of Ni equivalent defined by the following formula (1) is 19.0 or more, and between containing C, N, Si and V, C + N> 0.20, It has a component composition satisfying the relationship of Si + 4V> 3, and is subjected to temper rolling and then an aging treatment of temperature T (absolute temperature K) × time t (h) represented by the following formula (3), and the rolling direction is determined by the method. A high-strength nonmagnetic stainless steel plate having excellent age-hardening characteristics, characterized in that it has a structure in which the average crystal grain size in the direction parallel to the plate thickness direction is 20 μm or less in a cross section taken as a line.
Ni equivalent = Ni + 0.6Mn + 9.69 (C + N) + 0.18Cr−0.11Si 2 +2.3 (V + Nb + Ti) (1)
14500 <T (logt + 20) <15500 (3)
質量%で、C:0.050超%〜0.090未満%,Si:1.0超%〜3.0未満%,Mn:2.0超%〜5.0未満%,Ni:9.0超%〜18.0未満%,Cr:16.0超%〜20.0未満%,N:0.10超%〜0.20未満%,V:0.3超%〜0.7未満%を含有し、残部がFe及び不可避的不純物からなり、かつ下記の式(2)で定義されるNi当量の値が19.0以上であり、含有C,N,Si及びVの間で、C+N>0.20,Si+4V>3の関係を満たす成分組成を有し、調質圧延とその後に下記式(3)で示す温度T(絶対温度K)×時間t(h)の時効処理が施され、圧延方向を法線とする断面において、板厚方向に平行な方向の平均結晶粒径が20μm以下になった組織を有することを特徴とする時効硬化特性に優れた高強度非磁性ステンレス鋼板。
Ni当量=Ni+0.6Mn+9.69(C+N)+0.18Cr−0.11Si2+2.3V ・・・(2)
14500<T(logt+20)<15500 ・・・(3)
C: more than 0.050% to less than 0.090%, Si: more than 1.0% to less than 3.0%, Mn: more than 2.0% to less than 5.0%, Ni: 9. More than 0% to less than 18.0%, Cr: more than 16.0% to less than 20.0%, N: more than 0.10% to less than 0.20%, V: more than 0.3% to less than 0.7 %, The balance is Fe and inevitable impurities, and the value of Ni equivalent defined by the following formula (2) is 19.0 or more, and between the contained C, N, Si and V, It has a component composition that satisfies the relationship of C + N> 0.20, Si + 4V> 3, and is subjected to temper rolling and then an aging treatment of temperature T (absolute temperature K) × time t (h) represented by the following formula (3) A high-strength non-magnetic material with excellent age-hardening characteristics characterized by having a structure in which the average crystal grain size in the direction parallel to the plate thickness direction is 20 μm or less in the cross section with the rolling direction as the normal line Stainless steel plate.
Ni equivalent = Ni + 0.6Mn + 9.69 (C + N) + 0.18Cr−0.11Si 2 + 2.3V (2)
14500 <T (logt + 20) <15500 (3)
質量%で、C:0.050超%〜0.090未満%,Si:1.0超%〜3.0未満%,Mn:2.0超%〜5.0未満%,Ni:9.0超%〜18.0未満%,Cr:16.0超%〜20.0未満%,N:0.10超%〜0.20未満%,V:0.3超%〜0.7未満%、さらに0.0001〜0.0050%のCaと0.0010〜0.0100%のB及び0.50%以下のCuから選ばれる少なくとも1種の元素と、合計量で0.50%以下のTi及び/又はNbを含有し、残部がFe及び不可避的不純物からなり、かつ下記の式(1)で定義されるNi当量の値が19.0以上であり、含有C,N,Si及びVの間で、C+N>0.20,Si+4V>3の関係を満たす成分組成を有し、調質圧延とその後に下記式(3)で示す温度T(絶対温度K)×時間t(h)の時効処理が施され、圧延方向を法線とする断面において、板厚方向に平行な方向の平均結晶粒径が20μm以下になった組織を有することを特徴とする時効硬化特性に優れた高強度非磁性ステンレス鋼板。
Ni当量=Ni+0.6Mn+9.69(C+N)+0.18Cr−0.11Si2+2.3(V+Nb+Ti) ・・・(1)
14500<T(logt+20)<15500 ・・・(3)
C: more than 0.050% to less than 0.090%, Si: more than 1.0% to less than 3.0%, Mn: more than 2.0% to less than 5.0%, Ni: 9. More than 0% to less than 18.0%, Cr: more than 16.0% to less than 20.0%, N: more than 0.10% to less than 0.20%, V: more than 0.3% to less than 0.7 %, And at least one element selected from 0.0001 to 0.0050% Ca, 0.0001 to 0.0100% B and 0.50% or less of Cu, and a total amount of 0.50% or less. Of Ti and / or Nb, the balance is Fe and inevitable impurities, and the value of Ni equivalent defined by the following formula (1) is 19.0 or more, containing C, N, Si and V has a component composition satisfying the relationship of C + N> 0.20, Si + 4V> 3, temper rolling and then temperature T (absolute temperature K) represented by the following formula (3) × time t (h) High strength with excellent age hardening characteristics characterized by having a structure in which the average crystal grain size in the direction parallel to the plate thickness direction is 20 μm or less in the cross section with the aging treatment as the normal line and the rolling direction Non-magnetic stainless steel plate.
Ni equivalent = Ni + 0.6Mn + 9.69 (C + N) + 0.18Cr−0.11Si 2 +2.3 (V + Nb + Ti) (1)
14500 <T (logt + 20) <15500 (3)
請求項1〜3のいずれか1項に記載の成分組成を有するステンレス鋼の熱延焼鈍板を、圧延率60%以上で冷間圧延した後、1080℃未満の焼鈍温度で連続焼鈍し、さらに圧延率30%以上で調質圧延した後に下記式(3)で示す温度T(絶対温度K)×時間t(h)の時効処理を施すことを特徴とする時効硬化特性に優れた高強度非磁性ステンレス鋼板の製造方法。
14500<T(logt+20)<15500 ・・・(3)
A stainless steel hot-rolled annealed sheet having the composition according to any one of claims 1 to 3 is cold-rolled at a rolling rate of 60% or more, and then continuously annealed at an annealing temperature of less than 1080 ° C. High-strength non-excellent in age-hardening characteristics, characterized by performing aging treatment at a temperature T (absolute temperature K) x time t (h) represented by the following formula (3) after temper rolling at a rolling rate of 30% or more Manufacturing method of magnetic stainless steel sheet.
14500 <T (logt + 20) <15500 (3)
JP2006134452A 2006-05-12 2006-05-12 High-strength nonmagnetic stainless steel sheet and method for producing the same Active JP4841308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006134452A JP4841308B2 (en) 2006-05-12 2006-05-12 High-strength nonmagnetic stainless steel sheet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006134452A JP4841308B2 (en) 2006-05-12 2006-05-12 High-strength nonmagnetic stainless steel sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007302972A true JP2007302972A (en) 2007-11-22
JP4841308B2 JP4841308B2 (en) 2011-12-21

Family

ID=38837148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006134452A Active JP4841308B2 (en) 2006-05-12 2006-05-12 High-strength nonmagnetic stainless steel sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP4841308B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011204723A (en) * 2010-03-24 2011-10-13 Nisshin Steel Co Ltd Stainless steel plate for use of solar cell substrate material, and method of manufacturing the same
WO2014133058A1 (en) * 2013-02-28 2014-09-04 日新製鋼株式会社 Austenitic stainless-steel sheet and process for producing high-elastic-limit nonmagnetic steel material therefrom
CN105316594A (en) * 2014-08-05 2016-02-10 中国钢铁股份有限公司 Austenitic alloy and method for producing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261463A (en) * 1985-05-13 1986-11-19 Nisshin Steel Co Ltd Work hardening-type nonmagnetic stainless steel
JPS6220855A (en) * 1985-07-19 1987-01-29 Daido Steel Co Ltd Non-magnetic high-strength stainless steel and its production
JPS6338558A (en) * 1986-08-04 1988-02-19 Nisshin Steel Co Ltd High strength nonmagnetic stainless steel having superior workability
JPS6369951A (en) * 1986-09-09 1988-03-30 Kawasaki Steel Corp Nonmagnetic austenitic stainless steel having high hardness
JPH02225646A (en) * 1989-02-27 1990-09-07 Nisshin Steel Co Ltd High strength stainless steel and manufacture of its steel material
JPH05279802A (en) * 1991-03-11 1993-10-26 Nisshin Steel Co Ltd Stainless steel for spring excellent in fatigue characteristic in formed part as well as in spring characteristic and its production
JP2002194506A (en) * 2000-12-25 2002-07-10 Sumitomo Metal Ind Ltd Stainless steel sheet and production method for the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261463A (en) * 1985-05-13 1986-11-19 Nisshin Steel Co Ltd Work hardening-type nonmagnetic stainless steel
JPS6220855A (en) * 1985-07-19 1987-01-29 Daido Steel Co Ltd Non-magnetic high-strength stainless steel and its production
JPS6338558A (en) * 1986-08-04 1988-02-19 Nisshin Steel Co Ltd High strength nonmagnetic stainless steel having superior workability
JPS6369951A (en) * 1986-09-09 1988-03-30 Kawasaki Steel Corp Nonmagnetic austenitic stainless steel having high hardness
JPH02225646A (en) * 1989-02-27 1990-09-07 Nisshin Steel Co Ltd High strength stainless steel and manufacture of its steel material
JPH05279802A (en) * 1991-03-11 1993-10-26 Nisshin Steel Co Ltd Stainless steel for spring excellent in fatigue characteristic in formed part as well as in spring characteristic and its production
JP2002194506A (en) * 2000-12-25 2002-07-10 Sumitomo Metal Ind Ltd Stainless steel sheet and production method for the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011204723A (en) * 2010-03-24 2011-10-13 Nisshin Steel Co Ltd Stainless steel plate for use of solar cell substrate material, and method of manufacturing the same
CN108754333A (en) * 2013-02-28 2018-11-06 日新制钢株式会社 Austenite stainless steel plate and the manufacturing method for using its non magnetic steel of high elastic limit
JP5791791B2 (en) * 2013-02-28 2015-10-07 日新製鋼株式会社 Method for producing high elastic limit non-magnetic steel
KR20150121061A (en) * 2013-02-28 2015-10-28 닛신 세이코 가부시키가이샤 Austenitic stainless-steel sheet and process for producing high-elastic-limit nonmagnetic steel material therefrom
CN105026594A (en) * 2013-02-28 2015-11-04 日新制钢株式会社 Austenitic stainless-steel sheet and process for producing high-elastic-limit nonmagnetic steel material therefrom
JP2015206124A (en) * 2013-02-28 2015-11-19 日新製鋼株式会社 Austenitic stainless steel sheet and high elastic limit nonmagnetic steel material
JPWO2014133058A1 (en) * 2013-02-28 2017-02-02 日新製鋼株式会社 Method for producing highly elastic non-magnetic steel
WO2014133058A1 (en) * 2013-02-28 2014-09-04 日新製鋼株式会社 Austenitic stainless-steel sheet and process for producing high-elastic-limit nonmagnetic steel material therefrom
US10125404B2 (en) 2013-02-28 2018-11-13 Nisshin Steel Co., Ltd. Method for producing high elastic limit nonmagnetic steel material using an austenitic stainless steel sheet
KR102190538B1 (en) * 2013-02-28 2020-12-15 닛테츠 스테인레스 가부시키가이샤 Austenitic stainless-steel sheet and process for producing high-elastic-limit nonmagnetic steel material therefrom
CN108754333B (en) * 2013-02-28 2021-02-09 日铁不锈钢株式会社 Austenitic stainless steel sheet and method for producing high-elastic-limit nonmagnetic steel material using same
CN105316594A (en) * 2014-08-05 2016-02-10 中国钢铁股份有限公司 Austenitic alloy and method for producing same
CN105316594B (en) * 2014-08-05 2017-04-05 中国钢铁股份有限公司 Austenitic alloy and method for producing same

Also Published As

Publication number Publication date
JP4841308B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
JP5056985B2 (en) Austenitic stainless steel sheet and manufacturing method thereof
JP6302722B2 (en) High-strength duplex stainless steel wire excellent in spring fatigue characteristics, its manufacturing method, and high-strength duplex stainless steel wire excellent in spring fatigue characteristics
JP5156293B2 (en) Ferritic / austenitic stainless steel with excellent corrosion resistance and workability and manufacturing method thereof
JP2012097350A (en) Precipitation hardening type metastable austenitic stainless steel wire excellent in fatigue resistance and production method therefor
JP2019014933A (en) Steel sheet and method of producing the same
JP2001323342A (en) Austenitic stainless steel excellent in fine blanking property
JP4589747B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties, its manufacturing method and strain relief annealing method
JP2008308717A (en) High-strength steel sheet, and method for producing the same
JP2010215953A (en) Austenitic stainless steel and method for producing austenitic stainless steel sheet
JP2008038191A (en) Austenitic stainless steel and its production method
JP4841308B2 (en) High-strength nonmagnetic stainless steel sheet and method for producing the same
JP6140856B1 (en) Ferritic / austenitic stainless steel sheet with excellent formability and method for producing the same
JP5100144B2 (en) Steel plate for spring, spring material using the same, and manufacturing method thereof
JP6308849B2 (en) High elastic limit nonmagnetic austenitic stainless steel sheet and method for producing the same
JP5045050B2 (en) Ferritic stainless hot rolled steel sheet for cold rolling and method for producing the same
JP4606113B2 (en) Austenitic stainless steel with high proportional limit stress and manufacturing method
WO2014157146A1 (en) Austenitic stainless steel sheet and method for manufacturing high-strength steel material using same
JP3939568B2 (en) Nonmagnetic stainless steel with excellent workability
JP2010189719A (en) Age-hardening type stainless steel sheet for spring
JP2000129401A (en) High toughness skin pass-rolled martensitic stainless steel plate having high spring characteristic and its production
JP2019501286A (en) Lean duplex stainless steel with improved corrosion resistance and workability and method for producing the same
JP6111109B2 (en) Low Ni austenitic stainless steel sheet with excellent age hardening characteristics and method for producing the same
JP2022064692A (en) Austenitic stainless steel and method for producing austenitic stainless steel
JP5045051B2 (en) Ferritic stainless hot rolled steel sheet for cold rolling and method for producing the same
JP2000129400A (en) Annealed martensitic stainless steel excellent in strength, toughness, and spring characteristic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111004

R150 Certificate of patent or registration of utility model

Ref document number: 4841308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250