JP2011204723A - Stainless steel plate for use of solar cell substrate material, and method of manufacturing the same - Google Patents

Stainless steel plate for use of solar cell substrate material, and method of manufacturing the same Download PDF

Info

Publication number
JP2011204723A
JP2011204723A JP2010067790A JP2010067790A JP2011204723A JP 2011204723 A JP2011204723 A JP 2011204723A JP 2010067790 A JP2010067790 A JP 2010067790A JP 2010067790 A JP2010067790 A JP 2010067790A JP 2011204723 A JP2011204723 A JP 2011204723A
Authority
JP
Japan
Prior art keywords
rolling
steel plate
stainless steel
solar cell
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010067790A
Other languages
Japanese (ja)
Other versions
JP5837284B2 (en
Inventor
Naoki Hirakawa
直樹 平川
Hiroshi Fujimoto
廣 藤本
Hiroki Tomimura
宏紀 冨村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44881116&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2011204723(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2010067790A priority Critical patent/JP5837284B2/en
Publication of JP2011204723A publication Critical patent/JP2011204723A/en
Application granted granted Critical
Publication of JP5837284B2 publication Critical patent/JP5837284B2/en
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To provide a stainless steel plate for use of a solar cell substrate material, which has superior deposition properties.SOLUTION: A steel plate surface has a ten-point average irregularity Rz of a surface roughness parameter of ≤0.3 μm, and a characteristic average parameter Rsk in a height direction of less than 0.7. Irregularities on the steel plate surface for worsening the deposition properties can be controlled by defining Rz and Rsk, thereby improving the deposition properties. In addition, in manufacturing such a stainless steel plate for use of the solar cell substrate material, the plate is rolled so that a total reduction rate of cold rolling to take place until temper rolling is ≥70%. In addition, in cold rolling before finish annealing, the plate is rolled using a pressure roll with a reduction rate of ≥30% and a roughness Ra of ≤0.4 μm in a final path. By manufacturing in such a manner, micro-cracks can be suppressed, and the stainless steel plate for use of the solar cell substrate material with a smooth steel plate surface with Rz of ≤0.3 μm and Rsk less than 0.7 can be easily manufactured.

Description

本発明は、薄膜系太陽電池用基板材として優れた表面性状を有する太陽電離基板材用ステンレス鋼板に関する。   The present invention relates to a stainless steel plate for solar ionization substrate material having excellent surface properties as a substrate material for thin film solar cells.

従来、薄膜シリコン太陽電池基板材には、ソーダガラスなどのガラス、金属箔であるステンレス鋼、合成樹脂であるポリイミドが主に用いられている。面積あたりの価格では、一般的にステンレス鋼、ガラス、ポリイミドの順に高くなっている。また、太陽電池におけるシリコン層の成膜工程では高温プロセスを経るが、ステンレス鋼やガラスと比較してポリイミドは耐熱性が大きく劣る。よって、価格および耐熱性についての観点から、太陽電池基板材の素材としてステンレス鋼が選択される場合がある。   Conventionally, glass such as soda glass, stainless steel as a metal foil, and polyimide as a synthetic resin are mainly used for a thin film silicon solar cell substrate material. In general, the price per area increases in the order of stainless steel, glass, and polyimide. Moreover, although the high temperature process is passed in the film-forming process of the silicon layer in a solar cell, a polyimide is largely inferior in heat resistance compared with stainless steel or glass. Therefore, stainless steel may be selected as the material for the solar cell substrate material from the viewpoint of price and heat resistance.

太陽電池基板材としてステンレス鋼板が用いられた構成としては、耐腐食性を向上させるために、可撓性基板である導電性基板としてステンレス鋼板が用いられた構成が知られている(例えば、特許文献1参照。)。   As a configuration in which a stainless steel plate is used as a solar cell substrate material, a configuration in which a stainless steel plate is used as a conductive substrate that is a flexible substrate is known in order to improve corrosion resistance (for example, patents). Reference 1).

特開平11−97727号公報(第5,9頁)JP-A-11-97727 (pages 5 and 9)

しかしながら、特許文献1などでは、耐腐食性の向上を目的として太陽電池基板材としてステンレス鋼板を用いただけであり、ステンレス鋼板における成膜性はあまり考慮されていなかった。   However, in Patent Document 1 and the like, only a stainless steel plate is used as a solar cell substrate material for the purpose of improving the corrosion resistance, and the film formability on the stainless steel plate has not been considered much.

すなわち、太陽電池基板に蒸着されるアモルファスシリコン層は、1μm以下の薄い層であるとともに、均一かつ連続的に形成する必要があるため、太陽電池基板としてステンレス鋼板を用いる場合、ステンレス鋼板表面の表面疵やマイクロクラックなどは、成膜状態を悪化させて歩留り低下の原因となる。また、ステンレス鋼板表面において、表面凹凸は成膜状態に影響し、製膜不良が発生すると回路が短絡してしまうおそれがある。例えば、凹凸の高低差が大きい場合などには、ピンホールなどの発生や膜厚の不均一化を招いて、回路短絡や電池特性の低下が起こってしまうという問題などが考えられる。   That is, since the amorphous silicon layer deposited on the solar cell substrate is a thin layer of 1 μm or less and needs to be formed uniformly and continuously, when using a stainless steel plate as the solar cell substrate, the surface of the stainless steel plate surface Wrinkles, microcracks, and the like deteriorate the film formation state and cause a decrease in yield. Further, on the surface of the stainless steel plate, the surface unevenness affects the film formation state, and there is a possibility that the circuit may be short-circuited when a film formation defect occurs. For example, when the height difference of the unevenness is large, there may be a problem that a short circuit or a deterioration in battery characteristics occurs due to the occurrence of pinholes or the like and non-uniform film thickness.

本発明はこのような点に鑑みなされたもので、成膜性が良好な太陽電池基板材用ステンレス鋼板およびその製造方法を提供することを目的とする。   This invention is made | formed in view of such a point, and it aims at providing the stainless steel plate for solar cell board | substrate materials with favorable film forming property, and its manufacturing method.

請求項1に記載された太陽電池基板材用ステンレス鋼板は、鋼板表面は、表面粗さパラメータの十点平均粗さRzが0.3μm以下であり、かつ、高さ方向の特徴平均パラメータRskが0.7未満であるものである。   In the stainless steel plate for solar cell substrate material according to claim 1, the steel plate surface has a 10-point average roughness Rz of the surface roughness parameter of 0.3 μm or less, and a feature average parameter Rsk in the height direction. It is less than 0.7.

請求項2に記載された太陽電池基板材用ステンレス鋼板の製造方法は、熱間圧延以降から仕上焼鈍後の調質圧延までに行う冷間圧延は、総圧延率が70%以上であり、仕上焼鈍前に行う冷間圧延は、圧延率が30%以上であり、かつ、最終パスにて粗さRaが0.4μm以下の圧延ロールを用いて圧延するものである。   The method for producing a stainless steel plate for solar cell substrate according to claim 2 is such that cold rolling performed from hot rolling to temper rolling after finish annealing has a total rolling ratio of 70% or more, The cold rolling performed before annealing is performed using a rolling roll having a rolling rate of 30% or more and a roughness Ra of 0.4 μm or less in the final pass.

請求項3に記載された太陽電池基板材用ステンレス鋼板の製造方法は、請求項2に記載された太陽電池基板材用ステンレス鋼板の製造方法において、調質圧延は、潤滑剤を用いることなく、粗さRaが0.1μm以下の圧延ロールを用いて伸び率0.1〜2.0%に圧延するものである。   The method for producing a stainless steel plate for solar cell substrate material according to claim 3 is the method for producing a stainless steel plate for solar cell substrate material according to claim 2, wherein the temper rolling is performed without using a lubricant. It is rolled to an elongation of 0.1 to 2.0% using a rolling roll having a roughness Ra of 0.1 μm or less.

請求項1に記載された発明によれば、鋼板表面は、表面粗さパラメータの十点平均粗さRzが0.3μm以下であり、かつ、高さ方向の特徴平均パラメータRskが0.7未満であることにより、成膜層の膜厚を均一化しやすく、成膜層の短絡を抑制でき、成膜性を向上できる。   According to the invention described in claim 1, the steel sheet surface has a ten-point average roughness Rz of the surface roughness parameter of 0.3 μm or less and a feature average parameter Rsk in the height direction of less than 0.7. Therefore, it is easy to make the film thickness of the film formation layer uniform, a short circuit of the film formation layer can be suppressed, and the film formation property can be improved.

請求項2に記載された発明によれば、熱間圧延以降から仕上焼鈍後の調質圧延までに行う冷間圧延は総圧延率が70%以上であり、仕上焼鈍前に行う冷間圧延は圧延率が30%以上であり、かつ、最終パスにて粗さRaが0.4μm以下の圧延ロールを用いて圧延するため、鋼板表面の表面粗さパラメータの十点平均粗さRzが0.3μm以下であり、かつ、高さ方向の特徴平均パラメータRskが0.7未満であり、成膜性が良好な太陽電池基板材用ステンレス鋼板を容易に製造できる。   According to the invention described in claim 2, the cold rolling performed after hot rolling to temper rolling after finish annealing has a total rolling ratio of 70% or more, and cold rolling performed before finish annealing is Since the rolling rate is 30% or more and rolling is performed using a rolling roll having a roughness Ra of 0.4 μm or less in the final pass, the ten-point average roughness Rz of the surface roughness parameter of the steel sheet surface is 0. A stainless steel plate for solar cell substrate material having a film forming property of 3 μm or less and having a characteristic average parameter Rsk in the height direction of less than 0.7 and having good film formability can be easily produced.

請求項3に記載された発明によれば、調質圧延は、潤滑剤を用いることなく、粗さRaが0.1μm以下の圧延ロールを用いて伸び率0.1〜2.0%に圧延するため、成膜性が良好な太陽電池基板材用ステンレス鋼板を容易に製造できる。   According to the invention described in claim 3, temper rolling is performed without using a lubricant and rolled to an elongation of 0.1 to 2.0% using a rolling roll having a roughness Ra of 0.1 μm or less. Therefore, it is possible to easily manufacture a stainless steel plate for solar cell substrate material having good film forming properties.

太陽電池の構成を模式的に示す断面図である。It is sectional drawing which shows the structure of a solar cell typically.

以下、本発明の一実施の形態の構成について詳細に説明する。   Hereinafter, the configuration of an embodiment of the present invention will be described in detail.

太陽電池基板材用ステンレス鋼板は、例えばフェライト系ステンレス鋼およびオーステナイト系ステンレス鋼などのステンレス鋼にて板状に形成されたものである。   The stainless steel plate for solar cell substrate material is formed in a plate shape from stainless steel such as ferritic stainless steel and austenitic stainless steel.

この太陽電池基板材用ステンレス鋼板は、鋼板表面において、表面粗さパラメータの十点平均粗さRzが0.3μm以下であり、かつ、高さ方向の特徴平均パラメータRskが0.7より小さい。   The stainless steel plate for solar cell substrate material has a ten-point average roughness Rz of the surface roughness parameter of 0.3 μm or less and a feature average parameter Rsk in the height direction of less than 0.7 on the surface of the steel plate.

Rzは、JIS B 0601:’94にて規定され、鋼板表面の凹凸の高低差を示す十点平均粗さであって、粗さ曲線において、最も高い凸部を示す山頂から高い順に5番目までの凸部の高さの平均と、最も深い凹部を示す谷底から深い順に5番目までの凹部の深さの平均との和である。   Rz is specified in JIS B 0601: '94, and is a ten-point average roughness indicating the difference in level of the irregularities on the surface of the steel sheet, and in the roughness curve, from the peak showing the highest convex part to the fifth highest Is the sum of the average height of the convex portions and the average depth of the concave portions up to the fifth in the deepest order from the bottom showing the deepest concave portion.

鋼板表面の十点平均粗さRzが0.3μmより大きいと、凹凸の高低差が大きく、膜厚の不均一化および成膜層の短絡を招くだけでなく、パーティクルなどの汚れを凹部にトラップしやすい状態であることから、成膜性が悪化する。   If the 10-point average roughness Rz of the steel sheet surface is larger than 0.3 μm, the unevenness of the unevenness will be large, causing not only unevenness of the film thickness and short circuit of the film formation layer, but also trapping dirt such as particles in the recess Therefore, the film formability deteriorates.

Rskは、JIS B 0601:’01に規定され、鋼板表面の凸部および凹部の鋭角度合いを示す高さ方向の特徴平均パラメータであって、Rsk>0の場合は凸部形状が鋭角でかつ凹部形状が鈍角な状態であり、Rsk<0の場合は凸部形状が鈍角でかつ凹部が鋭角な状態である。また、特徴平均パラメータRskの数値が正に大きくなるに従い凸部形状がより鋭角になり、特徴平均パラメータRskの値が負に大きくなるに従い凹部形状がより鋭角になる。   Rsk is defined in JIS B 0601: '01, and is a feature average parameter in the height direction indicating the acute angle of the convex part and concave part of the steel sheet surface. When Rsk> 0, the convex part shape is acute and concave. When the shape is an obtuse angle and Rsk <0, the convex shape is an obtuse angle and the concave portion is an acute angle. Further, the convex shape becomes more acute as the numerical value of the feature average parameter Rsk becomes positive, and the concave shape becomes sharper as the value of the characteristic average parameter Rsk becomes negative.

鋼板表面の凹凸では、鋼板表面の特徴平均パラメータRskが0.7以上で凸部が鋭角であると、成膜層の膜厚が不均一になり短絡が起こりやすくなるため、成膜性が悪化してしまう。   In the unevenness on the surface of the steel sheet, if the characteristic average parameter Rsk on the surface of the steel sheet is 0.7 or more and the convex part has an acute angle, the film thickness of the film forming layer becomes non-uniform and short-circuiting easily occurs. Resulting in.

ここで、鋼板表面の凹部が鋭角な場合、凹部の深さによってはパーティクルなどの汚れをトラップしやすくなる。すなわち、鋭角な凹部の深さが深い場合は、汚れをトラップしやすく、成膜性が悪化してしまう可能性が考えられる。   Here, when the concave portion on the surface of the steel plate is acute, depending on the depth of the concave portion, dirt such as particles can be easily trapped. That is, when the depth of the acute concave portion is deep, it is easy to trap dirt, and the film formability may be deteriorated.

しかしながら、十点平均粗さRzを0.3μm以下にすることで、凸部と凹部との高低差を規定できるので、凹部の深さも制御できる。すなわち、特徴平均パラメータRskが負の大きな値を示し鋼板表面に鋭角な凹部が形成された場合であっても、十点平均粗さRzが0.3μm以下でありその鋭角な凹部の深さが浅いので、汚れをトラップしにくく、成膜性が悪化しない。   However, by setting the ten-point average roughness Rz to 0.3 μm or less, the height difference between the convex portion and the concave portion can be defined, and therefore the depth of the concave portion can be controlled. That is, even when the feature average parameter Rsk shows a large negative value and an acute concave portion is formed on the steel plate surface, the ten-point average roughness Rz is 0.3 μm or less, and the depth of the acute concave portion is Since it is shallow, it is difficult to trap dirt, and the film formability does not deteriorate.

したがって、鋼板表面は、十点平均粗さRzが0.3μm以下であり、かつ、特徴平均パラメータRskが0.7未満である表面性状とした。   Therefore, the steel sheet surface was made to have a surface property having a ten-point average roughness Rz of 0.3 μm or less and a feature average parameter Rsk of less than 0.7.

そして、例えば図1に示すように、太陽電池基板材用ステンレス鋼板上に下部電極層、pin型太陽電池および上部電極層が順次形成され、太陽電池が形成される。なお、下部電極層は、ステンレス鋼板表面にZnO、AgおよびZnOが順次スパッタリングにより蒸着されて形成される。また、pin型太陽電池は、下部電極層上にn型非晶質シリコン層、i型非晶質シリコン層およびp型微結晶質シリコン層が順次プラズマ化学気相蒸着(CVD)法にて蒸着されて形成される。さらに、上部電極層は、pin型太陽電池上にIndium Tin Oxide(ITO)膜およびAgが順次スパッタリングにより蒸着されて形成される。   For example, as shown in FIG. 1, a lower electrode layer, a pin-type solar cell, and an upper electrode layer are sequentially formed on a stainless steel plate for a solar cell substrate material to form a solar cell. The lower electrode layer is formed by sequentially depositing ZnO, Ag, and ZnO on the stainless steel plate surface by sputtering. In the pin type solar cell, an n-type amorphous silicon layer, an i-type amorphous silicon layer, and a p-type microcrystalline silicon layer are sequentially deposited on the lower electrode layer by a plasma chemical vapor deposition (CVD) method. To be formed. Further, the upper electrode layer is formed by sequentially depositing an Indium Tin Oxide (ITO) film and Ag on a pin type solar cell by sputtering.

次に、太陽電池基板材用ステンレス鋼板の製造方法について説明する。   Next, the manufacturing method of the stainless steel plate for solar cell substrate materials is demonstrated.

太陽電池基板材用ステンレス鋼板は、従来のステンレス鋼板のように、例えば、精錬および鋳造の後、熱間圧延、中間圧延(冷間圧延)、中間焼鈍、仕上圧延(冷間圧延)、仕上焼鈍および調質圧延が順次行われる。   The stainless steel plate for solar cell substrate material, for example, after refining and casting, hot rolling, intermediate rolling (cold rolling), intermediate annealing, finish rolling (cold rolling), finish annealing, as with conventional stainless steel plates And temper rolling is performed sequentially.

熱間圧延以降から仕上焼鈍後の調質圧延までに行う冷間圧延である中間圧延および仕上圧延では、各冷間圧延における総圧延率を70%以上となるように圧延する。なお、熱間圧延以降は、焼鈍、冷間圧延、研磨などの工程に適宜通板されるため、熱間圧延以降から仕上焼鈍後の調質圧延までに行う冷間圧延の総圧延率が70%以上であればよい。   In intermediate rolling and finish rolling, which are cold rolling performed after hot rolling to temper rolling after finish annealing, rolling is performed so that the total rolling ratio in each cold rolling is 70% or more. In addition, since hot rolling is appropriately passed through steps such as annealing, cold rolling, and polishing, the total rolling rate of cold rolling performed after hot rolling to temper rolling after finish annealing is 70. % Or more.

また、仕上焼鈍の前に行う冷間圧延である仕上圧延は、そのステンレス鋼板の表面性状へ影響が大きい重要な工程である。このような仕上焼鈍の前に行う冷間圧延の際には、圧延率が30%以上となるように圧延するとともに、この冷間圧延の最終パスでは、算術粗さRaが0.4μm以下の圧延ロールを用いて圧延する。   Further, finish rolling, which is cold rolling performed before finish annealing, is an important process that greatly affects the surface properties of the stainless steel plate. In the case of cold rolling performed before such finish annealing, the rolling rate is 30% or more, and in the final pass of this cold rolling, the arithmetic roughness Ra is 0.4 μm or less. Roll using a rolling roll.

さらに、調質圧延は、潤滑剤を用いることなく、算術粗さRaが0.1μm以下の圧延ロールを用いて、伸び率0.1%以上2.0%以下に圧延すると好ましい。   Further, the temper rolling is preferably performed by rolling to an elongation of 0.1% or more and 2.0% or less using a rolling roll having an arithmetic roughness Ra of 0.1 μm or less without using a lubricant.

ここで、鋼板表面の微細な窪みであるマイクロクラックは、その深さが深いと、鋼板表面の表面性状が悪化し、太陽電池を成膜する際の短絡の原因となる。したがって、十点平均粗さRzが0.3μm以下であり、かつ、特徴平均パラメータRskが0.7未満というの表面性状を得るには、冷間圧延によりマイクロクラックの原因となる表面疵を引き伸ばして、マイクロクラックの深さを浅くすることが重要である。   Here, if the depth of the microcracks, which are fine depressions on the surface of the steel plate, is deep, the surface properties of the surface of the steel plate deteriorate and cause a short circuit when a solar cell is formed. Therefore, in order to obtain a surface property with a ten-point average roughness Rz of 0.3 μm or less and a feature average parameter Rsk of less than 0.7, the surface defects that cause microcracks are stretched by cold rolling. Therefore, it is important to reduce the depth of the microcracks.

調質圧延を行うまでの各冷間圧延の総圧延率が70%より低いと、鋼板表面の表面性状に悪影響を及ぼす、例えば深さが0.5μm以上のマイクロクラックが発生しやすく、鋼板表面の表面性状を十点平均粗さRzが0.3μm以下であり、かつ、特徴平均パラメータRskが0.7未満に制御しにくい。したがって、熱間圧延以降から仕上焼鈍後の調質圧延を行うまでの各冷間圧延の総圧延率を70%以上とした。   If the total rolling ratio of each cold rolling until temper rolling is lower than 70%, the surface properties of the steel sheet surface are adversely affected, for example, microcracks having a depth of 0.5 μm or more are likely to be generated. The ten-point average roughness Rz is 0.3 μm or less and the feature average parameter Rsk is difficult to control below 0.7. Therefore, the total rolling reduction of each cold rolling from hot rolling to temper rolling after finish annealing is set to 70% or more.

また、調質圧延までに行う各冷間圧延による総圧延率を管理するだけでなく、仕上焼鈍前の冷間圧延を特定の条件にて行い、マイクロクラックの痕跡が残存しないように引き延ばすことが表面性状の向上に重要である。仕上焼鈍前の冷間圧延は、圧延率が30%より低いと、表面性状に悪影響を与えるマイクロクラックが残存しやすい。したがって、仕上圧延前の冷間圧延の圧延率は30%以上とした。   In addition to managing the total rolling rate of each cold rolling performed before temper rolling, cold rolling before finish annealing can be performed under specific conditions and extended so that traces of microcracks do not remain. It is important for improving surface properties. In cold rolling before finish annealing, if the rolling rate is lower than 30%, microcracks that adversely affect the surface properties are likely to remain. Therefore, the rolling rate of cold rolling before finish rolling is set to 30% or more.

さらに、仕上焼鈍前の冷間圧延の最終パスに用いられる圧延ロールは鋼板表面の凹凸に影響しやすく、粗さRaが0.4μmより粗い圧延ロールを用いると、鋼板表面の凹凸の高低差が大きくなり、鋼板表面の十点平均粗さRzが0.3μmより大きくなりやすい。したがって、仕上焼鈍前の冷間圧延では、最終パスにて算術粗さRaが0.4μm以下の圧延ロールを用いて圧延する。   Furthermore, the rolling roll used in the final pass of cold rolling before finish annealing tends to affect the unevenness of the steel sheet surface, and if a rolling roll having a roughness Ra coarser than 0.4 μm is used, the unevenness of the unevenness of the steel sheet surface is different. The ten-point average roughness Rz on the steel sheet surface tends to be larger than 0.3 μm. Therefore, in cold rolling before finish annealing, rolling is performed using a rolling roll having an arithmetic roughness Ra of 0.4 μm or less in the final pass.

調質圧延は、鋼板表面を最終的に決定付ける工程であり、この調質圧延にてマイクロクラックが発生して表面性状が悪化する場合もある。   The temper rolling is a step of finally determining the surface of the steel sheet, and the temper rolling may cause micro cracks and may deteriorate the surface properties.

具体的には、調質圧延において、鋼板表面に光沢を付与することや錆びを防ぐことなどを目的として添加剤を配合した圧延油、潤滑油および防錆剤などの潤滑剤を使用した場合、この潤滑剤の油膜がロールと鋼板表面との間に入り込むことで、調質圧延の際にマイクロクラックが発生してしまう。   Specifically, in temper rolling, when using lubricants such as rolling oil, lubricating oil and rust preventive agent with additives for the purpose of imparting luster to the steel sheet surface and preventing rust, When the oil film of the lubricant enters between the roll and the steel plate surface, microcracks are generated during temper rolling.

したがって、調質圧延では、潤滑油および防錆剤などの潤滑剤を用いることなく圧延することが好ましい。なお、ロールと鋼板表面との間に油膜が入り込むことを防止できればよいので、例えば、ロール異物除去のために洗浄液などを用いてロールを洗浄する作業や、洗浄液などを用いてワイパなどによる拭き取る作業のように、洗浄液を用いてロールと鋼板表面との間に油膜や異物が入り込むことを防止してもよい。   Therefore, in temper rolling, it is preferable to perform rolling without using a lubricant such as a lubricating oil and a rust inhibitor. In addition, since it is only necessary to prevent the oil film from entering between the roll and the steel sheet surface, for example, the work of cleaning the roll with a cleaning liquid or the like for removing foreign substances from the roll, or the work of wiping with a wiper using a cleaning liquid or the like As described above, an oil film or a foreign substance may be prevented from entering between the roll and the steel sheet surface using a cleaning liquid.

また、調質圧延における圧延ロールの粗さや調質圧延におけるステンレス鋼板の伸び率もマイクロクラックの発生に影響するので、特定の調質圧延条件にて引き延ばすことが好ましい。   Moreover, since the roughness of the rolling roll in the temper rolling and the elongation of the stainless steel plate in the temper rolling also affect the generation of microcracks, it is preferable to stretch under specific temper rolling conditions.

具体的には、調質圧延では、調質圧延による伸び率が0.1%より低いと鋼板表面の表面性状に悪影響を与えるマイクロクラックの残存数が多くなり、調質圧延による伸び率が2.0%より高いと異物などの噛み込みなどを助長してしまう。したがって、調質圧延では、伸び率を0.1%以上2.0%以下に圧延することが好ましく、この調質圧延では、算術粗さRaが0.1μm以下の圧延ロールを用いることが好ましい。   Specifically, in temper rolling, if the elongation by temper rolling is lower than 0.1%, the number of remaining microcracks that adversely affect the surface properties of the steel sheet surface increases, and the elongation by temper rolling is 2 If it is higher than 0%, it will encourage the biting of foreign matter. Therefore, in temper rolling, it is preferable to roll the elongation to 0.1% or more and 2.0% or less, and in this temper rolling, it is preferable to use a rolling roll having an arithmetic roughness Ra of 0.1 μm or less. .

そして、このような太陽電池基板材用ステンレス鋼板によれば、鋼板表面は、表面粗さパラメータの十点平均粗さRzが0.3μm以下であり、かつ、高さ方向の特徴平均パラメータRskが0.7未満であるので、マイクロクラックや表面疵が少なく、鋼板表面の平滑性が良好である。したがって、太陽電池を形成する際に蒸着を行うための表面性状が良好であり、鋼板表面の成膜性を向上できる。   And according to such a stainless steel plate for solar cell substrate materials, the steel plate surface has a 10-point average roughness Rz of the surface roughness parameter of 0.3 μm or less and a feature average parameter Rsk in the height direction. Since it is less than 0.7, there are few microcracks and surface flaws, and the smoothness of the steel sheet surface is good. Therefore, the surface property for performing vapor deposition when forming the solar cell is good, and the film formability on the surface of the steel sheet can be improved.

太陽電気基板材用ステンレス鋼板を製造する際には、熱間圧延以降から仕上焼鈍後の調質圧延までに行う冷間圧延は総圧延率が70%以上であり、また、仕上焼鈍前に行う冷間圧延は圧延率が30%以上であり、かつ、最終パスにて粗さRaが0.4μm以下の圧延ロールを用いて圧延するため、マイクロクラック数が少なく、鋼板表面の凹凸の高低差が小さくなる。したがって、十点平均粗さRzが0.3μm以下で特徴平均パラメータRskが0.7未満の平滑な鋼板表面であるステンレス鋼板を形成しやすく、成膜性が良好な太陽電池基板材用ステンレス鋼板を容易に製造できる。   When producing a stainless steel plate for solar electric substrate material, cold rolling performed after hot rolling to temper rolling after finish annealing has a total rolling ratio of 70% or more, and is performed before finish annealing. Cold rolling is performed using a rolling roll having a rolling rate of 30% or more and a roughness Ra of 0.4 μm or less in the final pass, so that the number of microcracks is small and the unevenness of the surface of the steel sheet is low. Becomes smaller. Therefore, it is easy to form a stainless steel plate that is a smooth steel plate surface with a ten-point average roughness Rz of 0.3 μm or less and a feature average parameter Rsk of less than 0.7, and a stainless steel plate for a solar cell substrate material having good film formability. Can be easily manufactured.

調質圧延は、潤滑剤を用いることなく、算術粗さRaが0.1μm以下の圧延ロールを用いて伸び率0.1〜2.0%に圧延するため、調質圧延でのマイクロクラックの発生を抑制できる。したがって、十点平均粗さRzが0.3μm以下で特徴平均パラメータRskが0.7未満の平滑な鋼板表面であるステンレス鋼板を形成しやすく、成膜性が良好な太陽電池基板材用ステンレス鋼板を容易に製造できる。   The temper rolling is performed using a rolling roll having an arithmetic roughness Ra of 0.1 μm or less without using a lubricant. Generation can be suppressed. Therefore, it is easy to form a stainless steel plate that is a smooth steel plate surface with a ten-point average roughness Rz of 0.3 μm or less and a feature average parameter Rsk of less than 0.7, and a stainless steel plate for a solar cell substrate material having good film formability. Can be easily manufactured.

なお、上記一実施の形態では、太陽電池基板材用ステンレス鋼板を製造する際に、精錬および鋳造後、熱間圧延、中間圧延、中間焼鈍、仕上圧延、仕上焼鈍、および調質圧延を順次行い、調質圧延では、潤滑剤を用いることなく、算術粗さRaが0.1μm以下の圧延ロールを用いて伸び率0.1〜2.0%に圧延する構成としたが、このような構成には限定されず、熱間圧延以降から仕上焼鈍後の調質圧延までに行う冷間圧延は総圧延率が70%以上であり、仕上焼鈍前に行う冷間圧延は圧延率が30%以上であり、かつ、最終パスにて算術粗さRaが0.4μm以下の圧延ロールを用いて圧延する方法であればよい。   In the above embodiment, when producing a stainless steel plate for solar cell substrate material, hot rolling, intermediate rolling, intermediate annealing, finish rolling, finish annealing, and temper rolling are sequentially performed after refining and casting. In temper rolling, a configuration is used in which rolling is performed to 0.1 to 2.0% elongation using a rolling roll having an arithmetic roughness Ra of 0.1 μm or less without using a lubricant. However, the cold rolling performed from hot rolling to temper rolling after finish annealing has a total rolling rate of 70% or more, and cold rolling performed before finish annealing has a rolling rate of 30% or more. And a method of rolling using a rolling roll having an arithmetic roughness Ra of 0.4 μm or less in the final pass.

以下に示す本実施例および比較例のステンレス鋼板を用いて太陽電池基板材としての成膜評価を行った。炭素(C):0.01質量%、ケイ素(Si):0.52質量%、マンガン(Mn):0.2質量%、クロム(Cr):18.2質量%、ニオブ(Nb):0.41質量%、銅(Cu):0.48質量%を含有し、残部が鉄(Fe)および不可避的不純物であるフェライト系ステンレス鋼板と、C:0.04質量%、Si:0.48質量%、Mn:0.2質量%、Cr:18.4質量%、ニッケル(Ni):8.2質量%、窒素(N):0.02質量%を含有し、残部が鉄(Fe)および不可避的不純物であるオーステナイト系ステンレス鋼板とを表1に示す条件にて形成した。なお、鋼種a,b,d,f,i,kは供試材としてフェライト系ステンレス鋼を用い、鋼種c,e,g,h,j,lは供試材としてオーステナイト系ステンレス鋼を用いた。   Film formation evaluation as a solar cell substrate material was performed using the stainless steel plates of the present examples and comparative examples shown below. Carbon (C): 0.01 mass%, Silicon (Si): 0.52 mass%, Manganese (Mn): 0.2 mass%, Chromium (Cr): 18.2 mass%, Niobium (Nb): 0 .41% by mass, copper (Cu): 0.48% by mass, the balance being ferritic stainless steel sheet with iron (Fe) and inevitable impurities, C: 0.04% by mass, Si: 0.48 Containing mass%, Mn: 0.2 mass%, Cr: 18.4 mass%, nickel (Ni): 8.2 mass%, nitrogen (N): 0.02 mass%, the balance being iron (Fe) And the austenitic stainless steel plate which is an unavoidable impurity was formed on the conditions shown in Table 1. Steel types a, b, d, f, i, and k used ferritic stainless steel as test materials, and steel types c, e, g, h, j, and l used austenitic stainless steel as test materials. .

太陽電池の成膜評価では、これらフェライト系ステンレス鋼板およびオーステナイト系ステンレス鋼板を供試材として用い、従来の方法にて太陽電池を形成して成膜性の評価を行った。   In the film formation evaluation of solar cells, these ferritic stainless steel plates and austenitic stainless steel plates were used as test materials, and solar cells were formed by conventional methods to evaluate the film formability.

具体的には、図1に示すように、まず、各ステンレス鋼板の表面に、ZnOを20nm、Agを250nm、ZnOを20nm順次スパッタリングにより蒸着させて下部電極層を形成した。   Specifically, as shown in FIG. 1, first, a lower electrode layer was formed on the surface of each stainless steel plate by sequentially depositing ZnO at 20 nm, Ag at 250 nm, and ZnO at 20 nm.

次いで、下部電極層上にpin型太陽電池をプラズマCVD法にて作製した。すなわち、下部電極層上に、n型非晶質シリコン層を20nm、i型非晶質シリコン層を300nm、p型微結晶質シリコン層を20nm順次形成した。   Next, a pin type solar cell was fabricated on the lower electrode layer by a plasma CVD method. That is, on the lower electrode layer, an n-type amorphous silicon layer was formed in a thickness of 20 nm, an i-type amorphous silicon layer was formed in a thickness of 300 nm, and a p-type microcrystalline silicon layer was sequentially formed in a thickness of 20 nm.

さらに、pin型太陽電池上に、ITO膜を70nm、Agを250nm順次スパッタリングにより蒸着させて、上部電極層を形成した。   Further, an ITO film of 70 nm and Ag of 250 nm were sequentially deposited on the pin type solar cell by sputtering to form an upper electrode layer.

また、太陽電池セルのサイズは5mm×5mmとし、1枚の各ステンレス鋼板上にアモルファスシリコン太陽電池をそれぞれ16セルずつ形成した。セルの形成後、150℃×2時間の真空焼鈍を行い、評価用の太陽電池とした。   Moreover, the size of the solar cell was 5 mm × 5 mm, and 16 amorphous silicon solar cells were formed on each stainless steel plate. After the formation of the cell, vacuum annealing was performed at 150 ° C. for 2 hours to obtain a solar cell for evaluation.

このように形成した太陽電池に対して、山下電装株式会社製のソーラシミュレータを使用して光電変換率を求めた。回路の短絡などによる成膜結果を考慮し、光電変換率の測定を行った16セルのうちの光電効率の測定が行えたセルの比率、すなわち、セルの歩留りを算出して成膜性を評価した。   The photoelectric conversion rate was calculated | required using the solar simulator by Yamashita Denso Co., Ltd. with respect to the solar cell formed in this way. In consideration of the result of film formation due to a short circuit, etc., the ratio of the cells in which the photoelectric efficiency was measured out of the 16 cells in which the photoelectric conversion rate was measured, that is, the yield of the cells was calculated to evaluate the film formability. did.

また、表面性状の評価については、株式会社東京精密製の表面粗さ測定装置を用いて、表面粗さパラメータである十点平均粗さRzおよび特徴平均パラメータRskの測定を行った。なお、表面粗さは、JIS’94規格に基づき、測定方向を圧延方向に対して直角方向であるC方向とし、測定距離を4mmとし、測定速度を0.3mm/sとし、カットオフ値を0.8mmとして算出した。本実施例および比較例の表面粗さパラメータおよびセルの歩留りを表1に示す。   Moreover, about evaluation of surface property, the 10-point average roughness Rz and the characteristic average parameter Rsk which are surface roughness parameters were measured using the surface roughness measuring apparatus by Tokyo Seimitsu Co., Ltd. The surface roughness is based on JIS'94 standard, the measurement direction is the C direction perpendicular to the rolling direction, the measurement distance is 4 mm, the measurement speed is 0.3 mm / s, and the cutoff value is It was calculated as 0.8 mm. Table 1 shows the surface roughness parameters and cell yields of this example and the comparative example.

Figure 2011204723
Figure 2011204723

表1に示すように、規定した上記各条件にて形成した鋼種a,b,c,d,e,h,kのステンレス鋼を用いた本実施例は、十点平均粗さRzが0.3μm以下であり、かつ、特徴平均パラメータRskが0.7未満であった。また、セルの歩留りはそれぞれ90%以上であり、成膜性が良好であると言える。なお、例えば従来から太陽電池基板材として用いられているガラス基板の成膜の歩留りは、90%以上であり、本実施例はセルの歩留りがガラス基板と同程度であった。   As shown in Table 1, in this example using stainless steels of steel types a, b, c, d, e, h, and k formed under the above specified conditions, the ten-point average roughness Rz is 0. It was 3 μm or less, and the feature average parameter Rsk was less than 0.7. Further, the cell yield is 90% or more, respectively, and it can be said that the film formability is good. In addition, for example, the yield of film formation of a glass substrate conventionally used as a solar cell substrate material is 90% or more, and in this example, the yield of cells was comparable to that of a glass substrate.

本実施例は、十点平均粗さRzが0.3μm以下であり、かつ、特徴平均パラメータRskが0.7未満であり、鋼板表面の表面性状が平滑であるため、マイクロクラックや表面凹凸による回路の短絡が発生しにくいので、成膜性が良好であると考えられる。   In this example, the ten-point average roughness Rz is 0.3 μm or less, the feature average parameter Rsk is less than 0.7, and the surface properties of the steel sheet surface are smooth. Since a short circuit is unlikely to occur, the film formability is considered to be good.

これに対して、規定した上記各条件とは異なる条件が含まれた製造工程にて形成した鋼種f,g,iのステンレス鋼板を用いた比較例は、十点平均粗さRzが0.3μmより大きく、セルの歩留りが13%、16%、0%と非常に低かった。   On the other hand, the comparative example using the stainless steel plates of the steel types f, g, i formed in the manufacturing process including conditions different from the above-described conditions described above has a ten-point average roughness Rz of 0.3 μm. The cell yield was much lower, 13%, 16% and 0%.

また、規定した上記各条件とは異なる条件が含まれた製造工程にて形成した鋼種jのステンレス鋼板を用いた比較例は、特徴平均パラメータRskが0.7以上であり、セルの歩留りが13%と非常に低かった。   Moreover, the comparative example using the stainless steel plate of the steel type j formed in the manufacturing process including conditions different from the above-mentioned conditions described above has a feature average parameter Rsk of 0.7 or more and a cell yield of 13 % Was very low.

また、規定した上記各条件とは異なる条件が含まれた製造工程にて形成した鋼種lのステンレス鋼板を用いた比較例は、十点平均粗さRzが0.3μmより大きく、かつ、特徴平均パラメータRskが0.7以上であり、セルの歩留りが0%だった。   Moreover, the comparative example using the stainless steel plate of the steel type 1 formed in the manufacturing process including conditions different from the above-mentioned conditions specified above has a ten-point average roughness Rz larger than 0.3 μm and a feature average. The parameter Rsk was 0.7 or more, and the cell yield was 0%.

各比較例では、規定した上記条件とは異なる製造工程が含まれており、鋼板表面にマイクロクラックなどが多数発生し、鋼板表面の凹凸の高低差が大きく、凸部の頂点が鋭角形状であったため、回路の短絡が起こりやすい表面性状であったと考えられる。   In each comparative example, a manufacturing process different from the above-mentioned conditions is included, a large number of microcracks and the like are generated on the surface of the steel sheet, the unevenness of the unevenness on the surface of the steel sheet is large, and the apex of the convex part is an acute angle shape. For this reason, it is considered that the surface properties were likely to cause a short circuit.

Claims (3)

鋼板表面は、表面粗さパラメータの十点平均粗さRzが0.3μm以下であり、かつ、高さ方向の特徴平均パラメータRskが0.7未満である
ことを特徴とする太陽電池基板材用ステンレス鋼板。
The steel plate surface has a ten-point average roughness Rz of the surface roughness parameter of 0.3 μm or less and a feature average parameter Rsk in the height direction of less than 0.7. Stainless steel sheet.
熱間圧延以降から仕上焼鈍後の調質圧延までに行う冷間圧延は、総圧延率が70%以上であり、
仕上焼鈍前に行う冷間圧延は、圧延率が30%以上であり、かつ、最終パスにて粗さRaが0.4μm以下の圧延ロールを用いて圧延する
ことを特徴とする太陽電池基板材用ステンレス鋼板の製造方法。
Cold rolling performed after hot rolling to temper rolling after finish annealing has a total rolling rate of 70% or more,
Cold rolling performed before finish annealing is performed using a rolling roll having a rolling rate of 30% or more and a roughness Ra of 0.4 μm or less in the final pass. Method for manufacturing stainless steel sheet.
調質圧延は、潤滑剤を用いることなく、粗さRaが0.1μm以下の圧延ロールを用いて伸び率0.1〜2.0%に圧延する
ことを特徴とする請求項2記載の太陽電池基板材用ステンレス鋼板の製造方法。
The temper rolling is performed by rolling to an elongation of 0.1 to 2.0% using a rolling roll having a roughness Ra of 0.1 μm or less without using a lubricant. Manufacturing method of stainless steel sheet for battery substrate material.
JP2010067790A 2010-03-24 2010-03-24 Stainless steel sheet for solar cell substrate material and method for producing the same Ceased JP5837284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010067790A JP5837284B2 (en) 2010-03-24 2010-03-24 Stainless steel sheet for solar cell substrate material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010067790A JP5837284B2 (en) 2010-03-24 2010-03-24 Stainless steel sheet for solar cell substrate material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011204723A true JP2011204723A (en) 2011-10-13
JP5837284B2 JP5837284B2 (en) 2015-12-24

Family

ID=44881116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010067790A Ceased JP5837284B2 (en) 2010-03-24 2010-03-24 Stainless steel sheet for solar cell substrate material and method for producing the same

Country Status (1)

Country Link
JP (1) JP5837284B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014107510A (en) * 2012-11-29 2014-06-09 Showa Shell Sekiyu Kk Compound thin film solar cell
WO2014181768A1 (en) 2013-05-10 2014-11-13 新日鐵住金ステンレス株式会社 Stainless steel substrate for solar battery having excellent insulation properties and small thermal expansion coefficient, and process for producing same
KR101461810B1 (en) 2013-06-25 2014-11-14 주식회사 포스코 Method for treating surface of substrate for thin film sollar cell
KR20160136357A (en) 2014-04-04 2016-11-29 신닛테츠스미킨 카부시키카이샤 Transparent electrode, and organic electronic device
WO2018088070A1 (en) * 2016-11-09 2018-05-17 株式会社クボタ Tubular body used in high temperature atmosphere and method for forming metal oxide layer on inner surface of tubular body
JP2018076589A (en) * 2016-10-28 2018-05-17 新日鐵住金ステンレス株式会社 Al-CONTAINING FERRITIC STAINLESS STEEL SHEET EXCELLENT IN SURFACE PROPERTY AND SULFIDE CORROSION RESISTANCE AND PRODUCTION METHOD THEREFOR
JP2019122997A (en) * 2018-01-18 2019-07-25 Jfeスチール株式会社 Metal plate and manufacturing method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02126686A (en) * 1988-11-05 1990-05-15 Taiyo Yuden Co Ltd Amorphous semiconductor solar cell
JPH11227100A (en) * 1998-02-19 1999-08-24 Mitsubishi Chemical Corp Heat-resistant substrate
JP2001234236A (en) * 2000-02-28 2001-08-28 Nisshin Steel Co Ltd Producing method for martensitic stainless steel excellent in strength, ductility and toughness
JP2001262232A (en) * 2000-03-15 2001-09-26 Kawasaki Steel Corp Method for producing stainless steel strip
JP2003041352A (en) * 2001-05-25 2003-02-13 Sumitomo Metal Ind Ltd Hot-rolled stainless steel sheet and manufacturing method therefor
JP2005320586A (en) * 2004-05-10 2005-11-17 Nippon Yakin Kogyo Co Ltd Stainless steel sheet for photoetching and its production method
JP2006283069A (en) * 2005-03-31 2006-10-19 Jfe Steel Kk Production method of electrogalvanized steel sheet
JP2007302972A (en) * 2006-05-12 2007-11-22 Nisshin Steel Co Ltd High-strength nonmagnetic stainless steel sheet superior in age hardening characteristics, and manufacturing method therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02126686A (en) * 1988-11-05 1990-05-15 Taiyo Yuden Co Ltd Amorphous semiconductor solar cell
JPH11227100A (en) * 1998-02-19 1999-08-24 Mitsubishi Chemical Corp Heat-resistant substrate
JP2001234236A (en) * 2000-02-28 2001-08-28 Nisshin Steel Co Ltd Producing method for martensitic stainless steel excellent in strength, ductility and toughness
JP2001262232A (en) * 2000-03-15 2001-09-26 Kawasaki Steel Corp Method for producing stainless steel strip
JP2003041352A (en) * 2001-05-25 2003-02-13 Sumitomo Metal Ind Ltd Hot-rolled stainless steel sheet and manufacturing method therefor
JP2005320586A (en) * 2004-05-10 2005-11-17 Nippon Yakin Kogyo Co Ltd Stainless steel sheet for photoetching and its production method
JP2006283069A (en) * 2005-03-31 2006-10-19 Jfe Steel Kk Production method of electrogalvanized steel sheet
JP2007302972A (en) * 2006-05-12 2007-11-22 Nisshin Steel Co Ltd High-strength nonmagnetic stainless steel sheet superior in age hardening characteristics, and manufacturing method therefor

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014107510A (en) * 2012-11-29 2014-06-09 Showa Shell Sekiyu Kk Compound thin film solar cell
WO2014181768A1 (en) 2013-05-10 2014-11-13 新日鐵住金ステンレス株式会社 Stainless steel substrate for solar battery having excellent insulation properties and small thermal expansion coefficient, and process for producing same
KR20150140809A (en) 2013-05-10 2015-12-16 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Stainless steel substrate for solar battery having excellent insulation properties and small thermal expansion coefficient, and process for producing same
US9837567B2 (en) 2013-05-10 2017-12-05 Nippon Steel & Sumikin Stainless Steel Corporation Stainless steel substrate for solar cell having superior insulating properties and low thermal expansion coefficient and method of producing the same
KR101461810B1 (en) 2013-06-25 2014-11-14 주식회사 포스코 Method for treating surface of substrate for thin film sollar cell
US10033006B2 (en) 2014-04-04 2018-07-24 Nippon Steel & Sumitomo Metal Corporation Carbon fiber-conductive polymer transparent electrode
KR20160136357A (en) 2014-04-04 2016-11-29 신닛테츠스미킨 카부시키카이샤 Transparent electrode, and organic electronic device
JP7133917B2 (en) 2016-10-28 2022-09-09 日鉄ステンレス株式会社 Al-containing ferritic stainless steel sheet with excellent surface properties and sulfidation corrosion resistance, and method for producing the same
JP2018076589A (en) * 2016-10-28 2018-05-17 新日鐵住金ステンレス株式会社 Al-CONTAINING FERRITIC STAINLESS STEEL SHEET EXCELLENT IN SURFACE PROPERTY AND SULFIDE CORROSION RESISTANCE AND PRODUCTION METHOD THEREFOR
JP2018076555A (en) * 2016-11-09 2018-05-17 株式会社クボタ Casting having an alumina barrier layer on the surface, and production thereof
JP6355813B1 (en) * 2016-11-09 2018-07-11 株式会社クボタ Tube used in high-temperature atmosphere and method for forming metal oxide layer on inner surface of tube
JP2019065376A (en) * 2016-11-09 2019-04-25 株式会社クボタ Pipe body used under high temperature atmosphere, and method for forming metal oxide layer on inner surface of pipe body
CN109996900A (en) * 2016-11-09 2019-07-09 株式会社久保田 The method of the tube body and the inner surface formation metal oxide layer in tube body that are used under high-temperature atmosphere
US11162151B2 (en) 2016-11-09 2021-11-02 Kubota Corporation Tube body that is to be used in high-temperature atmosphere and method for forming metal oxide layer on inner surface of tube body
CN109996900B (en) * 2016-11-09 2022-06-07 株式会社久保田 Pipe body used under high temperature atmosphere and method for forming metal oxide layer on inner surface of pipe body
WO2018088070A1 (en) * 2016-11-09 2018-05-17 株式会社クボタ Tubular body used in high temperature atmosphere and method for forming metal oxide layer on inner surface of tubular body
JP2019122997A (en) * 2018-01-18 2019-07-25 Jfeスチール株式会社 Metal plate and manufacturing method thereof

Also Published As

Publication number Publication date
JP5837284B2 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP5837284B2 (en) Stainless steel sheet for solar cell substrate material and method for producing the same
CN105861796B (en) Stainless steel plate and its manufacture method
JP5570078B2 (en) Ni-plated steel sheet and battery can manufacturing method using the Ni-plated steel sheet
US9871258B2 (en) Stainless steel for fuel cell separators
CN103249502B (en) Solar cell substrate steel foil, solar cell substrate, solaode and their manufacture method
JP5596036B2 (en) Ni-plated steel sheet for battery cans with excellent pressability
AU2016366239B2 (en) Steel sheet for cans and production method for steel sheet for cans
TW201704502A (en) Austenite stainless plate, cover member and method for producing austenite stainless plate
JP2006328525A (en) Low carbon-low nitrogen ferritic stainless steel thin sheet having reduced plane anisotropy upon forming and having excellent ridging resistance and roughening resistance, and method for producing the same
JP5418373B2 (en) Nickel-plated steel sheet for battery can and manufacturing method thereof
JP6170470B2 (en) Method for producing separator material for fuel cell
CN109023192A (en) A method of improving galvanized sheet surface quality
KR101568477B1 (en) Method for annealing-pickling ferritic stainless steel having high silicon content
JP5648308B2 (en) Zinc-based plated steel sheet with excellent slidability
JP2013208638A (en) Ferritic stainless steel having excellent washability and method for producing the same
JP5867927B2 (en) Steel plate for pipe production excellent in corrosion resistance to fuel vapor, pipe using the same, and method for producing the pipe
JP7133917B2 (en) Al-containing ferritic stainless steel sheet with excellent surface properties and sulfidation corrosion resistance, and method for producing the same
US20210285118A1 (en) Manufacturing method of surface-treated zinc-nickel alloy electroplated steel sheet having excellent corrosion resistivity and paintability
JP2015199985A (en) Method for producing aluminum substrate with anodic oxidation coating
JP7281929B2 (en) Stainless steel sheet and method for manufacturing stainless steel sheet
CN114011883B (en) 300-series stainless steel BA plate bright furnace scratch defect control method
JP7160204B2 (en) hot stamped body
US20100300527A1 (en) Substrate for compound semiconductor solar cell
JP2014162986A (en) METHOD FOR PRODUCING HIGH Si COLD ROLLED STEEL SHEET
CN117102811A (en) Roller preparation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151105

R150 Certificate of patent or registration of utility model

Ref document number: 5837284

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RVOP Cancellation by post-grant opposition
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371