KR101461810B1 - Method for treating surface of substrate for thin film sollar cell - Google Patents

Method for treating surface of substrate for thin film sollar cell Download PDF

Info

Publication number
KR101461810B1
KR101461810B1 KR20130073326A KR20130073326A KR101461810B1 KR 101461810 B1 KR101461810 B1 KR 101461810B1 KR 20130073326 A KR20130073326 A KR 20130073326A KR 20130073326 A KR20130073326 A KR 20130073326A KR 101461810 B1 KR101461810 B1 KR 101461810B1
Authority
KR
South Korea
Prior art keywords
substrate
steel substrate
polyimide
coating layer
steel
Prior art date
Application number
KR20130073326A
Other languages
Korean (ko)
Inventor
김무진
박영준
이재륭
백제훈
김경보
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR20130073326A priority Critical patent/KR101461810B1/en
Application granted granted Critical
Publication of KR101461810B1 publication Critical patent/KR101461810B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

The present invention relates to a method for processing the surface of a substrate for a thin film solar cell. For this, the present invention provides a method for efficiently improving surface roughness. The method for processing the surface of the substrate for the thin film solar cell according to the embodiment of the present invention includes the steps of: preparing a steel substrate; cleaning the steel substrate; forming a polyimide coating layer on the surface of the steel substrate; and drying the steel substrate on which the coating layer is formed.

Description

박막형 태양전지용 기판의 표면처리 방법 {METHOD FOR TREATING SURFACE OF SUBSTRATE FOR THIN FILM SOLLAR CELL}TECHNICAL FIELD [0001] The present invention relates to a surface treatment method for a thin film solar cell substrate,

본 발명은 박막형 태양전지용 기판을 표면처리하는 방법에 관한 것이다.
The present invention relates to a method for surface-treating a substrate for a thin film solar cell.

통상, 박막형 태양전지의 기판으로서 주로 유리재를 이용한 기판이 사용되었으나, 이러한 유리 기판은 충격에 약할 뿐만 아니라, 롤-투-롤(roll-to-roll) 공법과 같은 연속 생산 공정이 적용될 수 없기 때문에 대량 생산이 용이하지 않다는 문제가 있다.
In general, a glass substrate is used as a substrate of a thin film solar cell. However, such a glass substrate is not only susceptible to impact but also can not be applied to a continuous production process such as a roll-to-roll process Therefore, there is a problem that mass production is not easy.

이에, 최근에는 충격에 강하고, 연속적인 생산공정이 가능하며, 생산단가의 측면을 고려하여 압연방식으로 제조된 금속 소재를 기판으로 활용하는 연구가 지속적으로 행해지고 있다.
In recent years, strong resistance to impact, continuous production process is possible, and studies on the utilization of a metal material produced by a rolling process as a substrate have been continuously carried out in consideration of production cost.

특히, 금속 소재 중에서도 비용이 저렴하고, 연속공정이 가능한 스틸(steel) 소재가 주목을 받고 있다. 그러나, 상기 스틸(steel) 소재는 표면 조도가 높고, 박판으로 제조시 표면에 발생된 결함(예컨대, 스파이트(spike), 덴트(dent) 등)이 존재하는 등의 문제가 있다.
In particular, steel materials that are inexpensive and capable of continuous processing are attracting attention among metal materials. However, the steel material has a high surface roughness, and there is a problem that defects (for example, spike, dentation, etc.) are generated on the surface of the thin plate.

이러한 표면 결함을 갖는 스틸 기판이 태양전지 기판으로 사용되기 위해서는 표면을 평탄화하는 작업이 필요하다. 이를 위하여, 스틸 기판 표면을 코팅하고 그 위에 전자 소자의 접촉(contact) 물질로 금속 예컨대, 몰리브덴(Mo) 또는 알루미늄(Al) 등을 습식 또는 건식 코팅방식으로 코팅하여 전도성을 부여하는 시도가 많이 이루어졌다. 그러나, 이와 같은 방식은 별도의 평탄 코팅층 형성을 위해 추가적인 공정이 수반되고, 코팅층과 스틸 기판과의 접합성이 우수하지 못한 문제가 있으며, 코팅 후 잔류 유기물 등에 따른 오염에 의한 전자소자의 특성이 저하되는 문제도 있다.
In order to use a steel substrate having such a surface defect as a solar cell substrate, it is necessary to planarize the surface. For this purpose, many attempts have been made to coat a surface of a steel substrate with a metal such as molybdenum (Mo) or aluminum (Al) as a contact material of an electronic device by wet or dry coating to impart conductivity lost. However, such a method involves an additional process for forming a separate flat coating layer, has a problem in that the bonding property between the coating layer and the steel substrate is not excellent, and the characteristics of the electronic device due to contamination due to remaining organic matters after coating are deteriorated There is also a problem.

앞서 언급한 바와 같이, 금속 소재의 스틸 기판은 박막형 태양전지를 위한 기판으로 매우 적합하므로, 스틸 기판의 표면조도를 우수하게 향상시킬 수 있는 획기적인 기술이 요구된다.
As mentioned above, since the steel substrate made of a metal material is very suitable as a substrate for a thin-film solar cell, a breakthrough technique capable of improving the surface roughness of the steel substrate is required.

본 발명의 일 측면은, 박막형 태양전지용으로 적합한 스틸 기판의 표면조도를 효과적으로 향상시킬 수 있는 표면처리 방법을 제공하고자 하는 것이다.
One aspect of the present invention is to provide a surface treatment method capable of effectively improving surface roughness of a steel substrate suitable for a thin film solar cell.

본 발명의 일 측면은, According to an aspect of the present invention,

스틸(steel) 기판을 준비하는 단계;Preparing a steel substrate;

상기 스틸 기판을 세정하는 단계;Cleaning the steel substrate;

상기 세정된 스틸 기판 표면에 폴리이미드 코팅층을 형성하는 단계; 및Forming a polyimide coating layer on the cleaned steel substrate surface; And

상기 코팅층이 형성된 스틸 기판을 건조하는 단계Drying the steel substrate on which the coating layer is formed

를 포함하는 박막형 태양전지용 기판의 표면처리 방법을 제공한다.
The present invention provides a method of treating a surface of a thin film solar cell substrate.

본 발명에 따라 표면처리된 스틸 기판은 표면조도가 효과적으로 개선되었을 뿐만 아니라, 그 위에 별도의 금속층 없이도 바로 전자소자를 구현할 수 있는 장점이 있다.
The steel substrate subjected to the surface treatment according to the present invention has an advantage that the surface roughness is effectively improved and an electronic device can be implemented directly without a separate metal layer thereon.

도 1은 본 발명의 일 측면에 따라 표면처리된 스틸 기판 상에 전자소자를 구현한 형태를 도식화하여 나타낸 것이다.FIG. 1 is a schematic representation of an embodiment of an electronic device on a surface-treated steel substrate according to an aspect of the present invention.

본 발명자들은, 박막형 태양전지용 기판으로서 적합한 스틸 기판을 적용함에 있어서, 상기 스틸 기판의 표면조도를 효과적으로 개선하기 위한 방안에 대해 깊이 연구한 결과, 내열성 및 전도성 등의 특성이 우수한 폴리이미드 코팅층을 기판 표면에 형성시키는 경우 스틸 기판의 표면조도를 효과적으로 개선할 수 있을 뿐만 아니라, 그 위에 전자소자를 바로 구현할 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.
The present inventors have intensively studied a method for effectively improving the surface roughness of the steel substrate in applying a steel substrate suitable for a thin film solar cell substrate and as a result have found that a polyimide coating layer having excellent heat resistance, The surface roughness of the steel substrate can be effectively improved, and an electronic device can be directly formed thereon. Thus, the present invention has been accomplished.

폴리이미드는 플라스틱 소재 중 하나로서, 기계적 강도가 높고, 내열성, 절연성, 내용제성 등의 우수한 특성으로 인해, 최근 반도체 공정이나 셀 공정 등에 전도성 물질로 많이 사용되고 있다.
Polyimide is one of plastic materials and has recently been widely used as a conductive material for semiconductor processing and cell processing due to its high mechanical strength and excellent properties such as heat resistance, insulation property and solvent resistance.

본 발명에서는 이러한 폴리이미드를 활용하여, 스틸 기판의 표면조도를 개선함과 동시에, 전극으로서도 활용하고자 한다.
In the present invention, such a polyimide is utilized to improve the surface roughness of a steel substrate and also to be used as an electrode.

이하, 본 발명에 대하여 상세히 설명한다.
Hereinafter, the present invention will be described in detail.

본 발명의 일 측면인 박막형 태양전지용 기판의 표면처리 방법은, 스틸(steel) 기판을 준비하는 단계; 상기 스틸 기판을 세정하는 단계; 상기 세정된 스틸 기판 표면에 폴리이미드 코팅층을 형성하는 단계; 및 상기 코팅층이 형성된 스틸 기판을 건조하는 단계로 이루어지는 것이 바람직하다.
According to one aspect of the present invention, there is provided a method of treating a thin film solar cell substrate, comprising: preparing a steel substrate; Cleaning the steel substrate; Forming a polyimide coating layer on the cleaned steel substrate surface; And drying the steel substrate having the coating layer formed thereon.

본 발명에서 상기 스틸 기판은 그 종류를 특별히 제한하는 것은 아니며, 롤-투-롤(roll-to-roll)과 같은 연속제조 공정에 사용될 수 있는 것이라면 충분하다. 예를들면, 탄소강, 스테인리스 스틸(STS), 알루미늄도금강판, 아연도금강판, 아연알루미늄도금강판 및 전기아연도금강판 중 하나 일 수 있다.
In the present invention, the type of the steel substrate is not particularly limited, and it is sufficient if it can be used in a continuous manufacturing process such as a roll-to-roll process. For example, it can be one of carbon steel, stainless steel (STS), aluminum-plated steel sheet, galvanized steel sheet, zinc-aluminum-coated steel sheet and electro galvanized steel sheet.

상술한 바와 같은 스틸 기판은 압연 공정을 거쳐 제조된 강판으로서, 이들은 압연롤 방향으로 미세한 줄무늬나 홈 등의 결함이 다수 존재한다. 이러한 표면 결함을 갖는 스틸이 박막형 태양전지용 기판으로 사용되기 위해서는 표면을 평탄화하는 작업이 필요하다.
The steel substrate as described above is a steel sheet manufactured through a rolling process, and there are many defects such as fine stripes and grooves in the rolling roll direction. In order to use steel having such a surface defect as a thin film solar cell substrate, it is necessary to planarize the surface.

본 발명에서는, 상기 스틸 기판의 표면을 평탄화하기 위하여, 상기 스틸 기판 표면에 폴리이미드 코팅층을 형성하는 것을 특징으로 한다.
In the present invention, a polyimide coating layer is formed on the surface of the steel substrate in order to planarize the surface of the steel substrate.

한편, 상기한 스틸 기판 표면에 폴리이미드 코팅층을 형성하기에 앞서, 상기 스틸 기판을 세정하는 것이 바람직하다. 이는, 후속되는 폴리이미드 코팅층의 형성을 용이하게 하기 위한 것으로서, 만일 스틸 기판 표면상에 유기물 등의 이물질이 존재할 경우 표면 코팅이 고르게 이루어지지 못하는 문제가 있다.
On the other hand, it is preferable to clean the steel substrate before forming the polyimide coating layer on the surface of the steel substrate. This is to facilitate the formation of the subsequent polyimide coating layer, and there is a problem that the surface coating is not uniform if foreign substances such as organic matter are present on the surface of the steel substrate.

이후, 세정이 완료된 스틸 기판 표면에 폴리이미드 코팅층을 형성하는 것이 바람직하다.
Thereafter, it is preferable to form a polyimide coating layer on the cleaned steel substrate surface.

상기 폴리이미드 코팅층의 형성은, 폴리이미드와 탄소나노튜브(carbon nano tube)로 이루어지는 폴리이미드 조성물을 일정량 도포하고, 이를 건조하여 경화시킴으로써 수행될 수 있다.
The polyimide coating layer may be formed by applying a predetermined amount of a polyimide composition comprising a polyimide and a carbon nano tube, and drying and curing the polyimide composition.

상기 폴리이미드 조성물은 일정 함량의 탄소나노튜브를 폴리이미드 수지 또는 폴리이미드 전구체에 분산시킴으로써 제조할 수 있다. The polyimide composition can be prepared by dispersing a certain amount of carbon nanotubes in a polyimide resin or a polyimide precursor.

이때, 탄소나노튜브는 특별히 그 종류는 한정하는 것은 아니며, 예컨대 단일벽 탄소나노튜브(SWCNT), 이중벽 탄소나노튜브(DWCNT), 다중벽 탄소나노튜브(MWCNT) 및 탄소나노튜브 표면이 화학적 또는 물리적 처리를 통해 개질된 개질-탄소나노튜브 등일 수 있다. In this case, the type of the carbon nanotube is not particularly limited. For example, a single wall carbon nanotube (SWCNT), a double wall carbon nanotube (DWCNT), a multiwall carbon nanotube (MWCNT) Modified carbon nanotubes or the like.

이러한 탄소나노튜브는 폴리이미드 100 중량부에 대하여 1~10 중량부로 포함되는 것이 바람직하다. 폴리이미드 조성물 내 첨가되는 탄소나노튜브의 함량이 1 중량부 미만이면 기상 성장 탄소 나노 섬유의 함량이 지나치게 적어 목적하는 전기적 특성을 달성할 수 없다. 반면, 10 중량부를 초과하게 되면 폴리이미드 내부에 기상 성장 탄소 나노 섬유가 균일하게 분산되기 어렵고, 수득되는 복합물의 점성이 높아져 최종 필름 제조시 용이하게 제조되지 못하는 문제가 있다.The carbon nanotubes are preferably contained in an amount of 1 to 10 parts by weight based on 100 parts by weight of the polyimide. If the content of the carbon nanotubes added in the polyimide composition is less than 1 part by weight, the content of the vapor-grown carbon nanofibers is too small to achieve the desired electrical properties. On the other hand, when the amount exceeds 10 parts by weight, the vapor-grown carbon nanofibers are hardly uniformly dispersed in the polyimide, and the resulting composite has a high viscosity and can not be easily produced in the production of the final film.

그리고, 상술한 함량으로 탄소나노튜브를 분산시키는 방법은 특별히 제한하는 것은 아니며, 예컨대 초음파(Sonication) 분산, 3본롤(3-Roll Mill) 분산, 호모지나이저(Homogenizer) 또는 반죽기(Kneader), 밀블렌더(Mill-Blender), 볼밀(Ball Mill) 등의 물리적 분산과 화학적 처리를 통해 폴리이미드 수지 또는 폴리이미드 전구체에 단량체와의 화학 결합 등으로 상기 수지 내에 탄소나노튜브를 분산할 수 있다.
The method for dispersing the carbon nanotubes by the above-mentioned content is not particularly limited, and examples thereof include sonication dispersion, 3-roll mill dispersion, homogenizer or kneader, mill The carbon nanotubes can be dispersed in the resin by chemical bonding or the like to the polyimide resin or the polyimide precursor through physical dispersion and chemical treatment of a blender (Mill-Blender), a ball mill or the like.

상기한 폴리이미드 조성물의 도포는 당해 기술 분야에 알려져 있는 일반적인 도포 방법, 예컨대 스핀(spin) 코팅, 바(bar) 코팅, 스프레이(spray) 코팅, 슬롯-다이(slot-die) 코팅 등을 통해 수행될 수 있다.
The application of the polyimide composition may be accomplished by conventional coating methods known in the art such as spin coating, bar coating, spray coating, slot-die coating, and the like. .

상기에 따라 세정된 스틸 기판 표면에 폴리이미드 조성물을 도포함에 있어서, 그 도포량은 상기 스틸 기판의 표면조도를 고려하여 건조 전 두께 1μm 이상, 바람직하게는 1~20μm의 두께로 도포함이 바람직하다.In coating the polyimide composition on the cleaned steel substrate surface in accordance with the above, the coating amount is preferably applied to a thickness of 1 μm or more, preferably 1 to 20 μm, before drying in consideration of the surface roughness of the steel substrate.

다만, 스핀 코팅을 이용하여 도포하는 경우에는, 회전에 의해 약 90% 정도의 용액이 증발되므로, 이를 고려하여 많은 양으로 도포함이 바람직하다.
However, in the case of applying by spin coating, about 90% of the solution is evaporated by the rotation, and therefore it is preferable to apply it in a large amount in consideration of this.

앞서 언급한 바와 같이, 스틸 기판 표면에 폴리이미드 코팅층의 형성은 폴리이미드 조성물을 도포한 후 건조하여 완전히 경화시킴으로서 형성함이 바람직하다.
As described above, it is preferable that the polyimide coating layer is formed on the surface of the steel substrate by applying the polyimide composition, drying it, and completely curing it.

상기 건조하는 단계는, 온도 변화가 가능한 장치를 이용하여 실시함이 바람직하다. 예컨대, 퍼니스(furnace) 또는 RTA(Rapid Thermal Annealing) 장치를 이용할 수 있는데, 이 중 RTA는 급속 가열 및 냉각으로 행해지는 열처리 방식으로서 기판 표면의 열팽창 계수 차이로 인해 표면결함 등이 유발될 수 있으므로, 바람직하게는 퍼니스(furnace)를 이용하는 것이 좋다. 퍼니스(furnace)를 이용하는 경우, 열처리 온도를 점차적으로 증가시킬 수 있으므로, 기판의 내열성은 향상시키면서도 표면결함없이 건조가 가능하다는 장점이 있다.
It is preferable that the drying step is performed using an apparatus capable of changing the temperature. For example, a furnace or a RTA (Rapid Thermal Annealing) apparatus can be used. Of these, RTA is a heat treatment method performed by rapid heating and cooling, and surface defects may be caused due to a difference in thermal expansion coefficient of the substrate surface. It is preferable to use a furnace. In the case of using a furnace, since the heat treatment temperature can be gradually increased, there is an advantage that the substrate can be dried without surface defects while improving heat resistance.

이때, 열처리는 온도 증가 및 안정화 단계를 반복적으로 행함으로써 이루어지는 것이 바람직하다.At this time, it is preferable that the heat treatment is performed by repeating the temperature increasing and stabilizing steps.

일 예로서, 폴리이미드는 열처리 수용 범위가 400℃ 정도이므로, 먼저 상온에서 100℃까지 15~20℃/분의 승온속도로 열처리한 후 15~25분 안정화하는 제1 열처리 단계를 수행하고, 그 다음 100℃부터 200℃까지, 200℃부터 300℃까지, 300℃부터 400℃까지 열처리와 안정화를 반복함으로써 도포된 폴리이미드 조성물을 균일하게 경화시킬 수 있다.
For example, since the polyimide has a heat treatment receptivity range of about 400 ° C, it is first subjected to a first heat treatment step in which the heat treatment is performed from room temperature to 100 ° C at a heating rate of 15 to 20 ° C / minute and then stabilized for 15 to 25 minutes, Then, the heat treatment and stabilization are repeated from 100 ° C to 200 ° C, from 200 ° C to 300 ° C, and from 300 ° C to 400 ° C, whereby the applied polyimide composition can be uniformly cured.

이와 같이, 단계적으로 열처리를 수행함으로써 균일한 두께의 폴리이미드 코팅층의 형성이 가능하며, 균일한 두께의 폴리이미드 코팅층을 갖는 스틸 기판은 표면조도가 향상되었을 뿐만 아니라, 전자소자 제작용으로 적극 활용될 수 있다.
As described above, the polyimide coating layer having a uniform thickness can be formed by performing the heat treatment step by step, and the steel substrate having the polyimide coating layer having a uniform thickness has not only improved surface roughness, but also can be utilized for manufacturing electronic devices .

Claims (5)

스틸(steel) 기판을 준비하는 단계;
상기 스틸 기판을 세정하는 단계;
상기 세정된 스틸 기판 표면에 폴리이미드 코팅층을 형성하는 단계; 및
상기 코팅층이 형성된 스틸 기판을 건조하는 단계를 포함하고,
상기 건조하는 단계는, 상온부터 100℃까지 15~20℃/분의 승온속도로 열처리한 후 15~25분 안정화하는 제1 열처리 단계; 및 100℃부터 200℃까지, 200℃부터 300℃까지 및 300℃부터 400℃까지 상기 승온속도로 열처리 및 안정화를 반복하는 열처리 단계로 이루어지는 박막형 태양전지용 기판의 표면처리 방법.
Preparing a steel substrate;
Cleaning the steel substrate;
Forming a polyimide coating layer on the cleaned steel substrate surface; And
And drying the steel substrate on which the coating layer is formed,
Wherein the drying step comprises: a first heat treatment step of performing heat treatment from a room temperature to 100 캜 at a heating rate of 15 to 20 캜 / min and then stabilizing for 15 to 25 minutes; And a heat treatment step of repeating heat treatment and stabilization at a heating rate of 100 ° C to 200 ° C, 200 ° C to 300 ° C, and 300 ° C to 400 ° C.
제 1항에 있어서,
상기 스틸 기판은 탄소강, 스테인리스 스틸(STS), 알루미늄도금강판, 아연도금강판, 아연알루미늄도금강판 및 전기아연도금강판으로 이루어지는 그룹에서 선택된 것인 박막형 태양전지용 기판의 표면처리 방법.
The method according to claim 1,
Wherein the steel substrate is selected from the group consisting of carbon steel, stainless steel (STS), aluminum plated steel plate, zinc plated steel plate, zinc aluminum plated steel plate, and electrogalvanized steel plate.
제 1항에 있어서,
상기 폴리이미드 코팅층을 형성하는 단계는,
폴리이미드와 탄소나노튜브(carbon nano tube)로 이루어지는 폴리이미드 조성물을 도포하여 수행되는 것인 박막형 태양전지용 기판의 표면처리 방법.
The method according to claim 1,
Wherein the step of forming the polyimide coating layer comprises:
Wherein the polyimide composition is applied by applying a polyimide composition comprising polyimide and a carbon nano tube.
제 1항 또는 제 3항에 있어서,
상기 폴리이미드 코팅층은 건조 전 두께로 1~20μm인 박막형 태양전지용 기판의 표면처리 방법.
The method according to claim 1 or 3,
Wherein the polyimide coating layer is 1 to 20 占 퐉 in thickness before drying.
삭제delete
KR20130073326A 2013-06-25 2013-06-25 Method for treating surface of substrate for thin film sollar cell KR101461810B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20130073326A KR101461810B1 (en) 2013-06-25 2013-06-25 Method for treating surface of substrate for thin film sollar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20130073326A KR101461810B1 (en) 2013-06-25 2013-06-25 Method for treating surface of substrate for thin film sollar cell

Publications (1)

Publication Number Publication Date
KR101461810B1 true KR101461810B1 (en) 2014-11-14

Family

ID=52290341

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20130073326A KR101461810B1 (en) 2013-06-25 2013-06-25 Method for treating surface of substrate for thin film sollar cell

Country Status (1)

Country Link
KR (1) KR101461810B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000040837A (en) * 1998-07-24 2000-02-08 Nisshin Steel Co Ltd Production of insulating substrate for thin amorphous silicon solar cell
JP2002097365A (en) * 2000-09-25 2002-04-02 Nisshin Steel Co Ltd Insulating substrate for thin-film polycrystal silicon solar battery, and method for producing the same
JP2011181887A (en) 2010-02-08 2011-09-15 Fujifilm Corp Metal substrate with insulating layer and manufacturing method thereof, semiconductor device and manufacturing method thereof, solar cell and manufacturing method thereof, electronic circuit and manufacturing method thereof, and light-emitting element and manufacturing method thereof
JP2011204723A (en) 2010-03-24 2011-10-13 Nisshin Steel Co Ltd Stainless steel plate for use of solar cell substrate material, and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000040837A (en) * 1998-07-24 2000-02-08 Nisshin Steel Co Ltd Production of insulating substrate for thin amorphous silicon solar cell
JP2002097365A (en) * 2000-09-25 2002-04-02 Nisshin Steel Co Ltd Insulating substrate for thin-film polycrystal silicon solar battery, and method for producing the same
JP2011181887A (en) 2010-02-08 2011-09-15 Fujifilm Corp Metal substrate with insulating layer and manufacturing method thereof, semiconductor device and manufacturing method thereof, solar cell and manufacturing method thereof, electronic circuit and manufacturing method thereof, and light-emitting element and manufacturing method thereof
JP2011204723A (en) 2010-03-24 2011-10-13 Nisshin Steel Co Ltd Stainless steel plate for use of solar cell substrate material, and method of manufacturing the same

Similar Documents

Publication Publication Date Title
Valentini et al. A novel method to prepare conductive nanocrystalline cellulose/graphene oxide composite films
Li et al. Fabrication of robust and highly thermally conductive nanofibrillated cellulose/graphite nanoplatelets composite papers
Nguyen et al. Controlled growth of carbon nanotube–graphene hybrid materials for flexible and transparent conductors and electron field emitters
Lee et al. Modification of electronic properties of graphene with self-assembled monolayers
Luo et al. Flexible carbon nanotube/polyurethane electrothermal films
Abdelhalim et al. Fabrication of carbon nanotube thin films on flexible substrates by spray deposition and transfer printing
Joseph et al. Screen-printable electronic ink of ultrathin boron nitride nanosheets
US20150024122A1 (en) Graphene ink and method for manufacturing graphene pattern using the same
Seol et al. Nanocomposites of reduced graphene oxide nanosheets and conducting polymer for stretchable transparent conducting electrodes
KR20150085523A (en) Film forming composition comprising graphene material and conducting polymer
Goyal Cost-efficient high performance polyetheretherketone/expanded graphite nanocomposites with high conductivity for EMI shielding application
KR101884701B1 (en) PVDF NANOFIBROUS MEMBRANE WITH HIGH RATIO OF β-PHASE, PIEZOELECTRIC AND FERROELECTRIC PROPERTIES, AND MANUFACTURING METHOD OF THE SAME
Wang et al. Polypyrrole/poly (vinyl alcohol-co-ethylene) nanofiber composites on polyethylene terephthalate substrate as flexible electric heating elements
KR101504956B1 (en) Preparation of Liquid Crystal Alignment Layer with Graphene
US9458344B2 (en) Semicrystalline polymer/graphene oxide composite film and method for fabricating the same
Kim et al. Dielectric polymer matrix composite films of CNT coated with anatase TiO2
Liu et al. Modified carbon nanotubes/polyvinyl alcohol composite electrothermal films
Santidrián et al. Chemical postdeposition treatments to improve the adhesion of carbon nanotube films on plastic substrates
KR101304190B1 (en) Manufacturing method of carbon nanotube transparent electrode with improved conductivity
Bârsan et al. Single-walled carbon nanotube networks in conductive composite materials
Zhou et al. Dielectric and thermal performances of the graphene/bismaleimide/2, 2′-diallylbisphenol A composite
CN106832718A (en) A kind of conducting polymer composite graphite alkene material and preparation method thereof
KR101461810B1 (en) Method for treating surface of substrate for thin film sollar cell
Lv et al. Graphene mobility enhancement by organosilane interface engineering
KR102244823B1 (en) Coating method of graphene oxide by electrophoretic deposition on 3-dimensional metal surface

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20171102

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20181107

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20191106

Year of fee payment: 6