JPH02126686A - Amorphous semiconductor solar cell - Google Patents

Amorphous semiconductor solar cell

Info

Publication number
JPH02126686A
JPH02126686A JP63280079A JP28007988A JPH02126686A JP H02126686 A JPH02126686 A JP H02126686A JP 63280079 A JP63280079 A JP 63280079A JP 28007988 A JP28007988 A JP 28007988A JP H02126686 A JPH02126686 A JP H02126686A
Authority
JP
Japan
Prior art keywords
layer
amorphous semiconductor
film
solar cell
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63280079A
Other languages
Japanese (ja)
Other versions
JPH07105516B2 (en
Inventor
Toshio Mishiyuku
俊雄 三宿
Ichiro Kanai
金井 一朗
Satoshi Takakuwa
高桑 聡
Hideyo Iida
英世 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP63280079A priority Critical patent/JPH07105516B2/en
Publication of JPH02126686A publication Critical patent/JPH02126686A/en
Publication of JPH07105516B2 publication Critical patent/JPH07105516B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To produce a product at a high yield and to enhance its conversion efficiency by a method wherein an insulating film layer is formed of a silica film, having a prescribed film thickness, formed by hardening a coating agent which is composed mainly of an organic silicate. CONSTITUTION:A silica film, with a film thickness of 3 to 12mum, formed by hardening a coating agent which is composed mainly of an organic silicate is used for an insulating film layer 6 with which the surface of a metal substrate 1 is covered. Accordingly, a close contact property between the insulating film layer and a rear electrode 2 or an amorphous semiconductor layer 3 formed on it is made stronger; it is possible to restrain the layer from being stripped off by a bend, moisture or the like. In addition, since the close contact property of the insulating film layer 6 is enhanced by using a single film composed of a silica film by hardening in organic silicate without using a resin layer, it is possible to prevent a conversion efficiency from being lowered.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、非晶質半導体により形成されたいわゆる非晶
質半導体太陽電池に関し、特に、金属基板を用いて形成
された非晶質半導体太陽電池に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a so-called amorphous semiconductor solar cell formed using an amorphous semiconductor, and in particular to an amorphous semiconductor solar cell formed using a metal substrate. Regarding batteries.

[従来の技術] いわゆる非晶質半導体太陽電池は、従来から可撓性を得
るために、ステンレス等の金属基板を用いて製造するこ
とが提案されており、この様な金属基板を用いた非晶質
半導体太陽電池の一般的な構成を、第1図によりその製
造方法に従って説明すると、次の通りである。
[Prior Art] It has been proposed that so-called amorphous semiconductor solar cells be manufactured using metal substrates such as stainless steel in order to obtain flexibility. The general structure of a crystalline semiconductor solar cell will be described below with reference to FIG. 1 and its manufacturing method.

まず、可撓性を有するステンレス等の金aM板10表面
に絶縁被膜層6を設けて絶縁化し、この上にステンレス
等の金属を形成し、背面電極2を形成する。さらに、非
晶質シリコン層3をP型、■型、N型あるいはN型、■
型、P型の順に形成し、この上に酸化インジウムスズ等
の透明導電膜4を形成する。最後に、上記の膜全体を透
明な保護膜5で覆う。
First, an insulating film layer 6 is provided on the surface of a flexible gold aM plate 10 made of stainless steel or the like to insulate it, and a metal such as stainless steel is formed thereon to form the back electrode 2. Furthermore, the amorphous silicon layer 3 is made of P type, ■ type, N type, or N type.
A type and a P type are formed in this order, and a transparent conductive film 4 made of indium tin oxide or the like is formed thereon. Finally, the entire film is covered with a transparent protective film 5.

従来、このステンレス基板1の絶総化は、あらかじめ表
面研石したステンレス基板上にポリイミド樹脂を塗布し
て焼付け、耐熱性樹脂層を形成することにより行なわれ
ており、場合によっては、この樹脂層の上に酸化珪素、
酸化チタン等の無機絶縁膜を真空蒸着法等により薄く形
成していた。
Conventionally, this stainless steel substrate 1 has been completely integrated by applying polyimide resin on a stainless steel substrate whose surface has been polished in advance and baking it to form a heat-resistant resin layer. silicon oxide on top of
A thin inorganic insulating film such as titanium oxide was formed using a vacuum evaporation method.

上記絶縁被膜層6を二層に形成するのは、これを樹脂層
のみを形成した場合、この樹脂層とこの上に形成される
背面電極や半導体層との間に強い密着性が得られず、曲
げ等に伴って内部に発生する応力により、容易に破損、
Tj離してしまい、さらに、加熱時に樹脂から発生する
ガス等がこの上に積層された非晶質半導体層に悪影響を
与え、特性を劣化させることがあったためであった。
The reason why the insulating coating layer 6 is formed into two layers is because if only a resin layer is formed, strong adhesion cannot be obtained between this resin layer and the back electrode or semiconductor layer formed thereon. , easily damaged due to stress generated internally due to bending, etc.
This is because the Tj is separated, and furthermore, gas generated from the resin during heating may have an adverse effect on the amorphous semiconductor layer laminated thereon, resulting in deterioration of characteristics.

[発明が解決しようとする課題] しかし、上記のようにして絶縁層1摸層6を二重構造と
した場合においても、樹脂層と無機絶縁層との密着性が
必ずしも充分ではないため、曲げや湿度等の影響を受け
て剥離し、また、無機絶縁層が樹脂層から発生するガス
による非晶質半導体層への影響を完全に押さえることは
できない。
[Problems to be Solved by the Invention] However, even when the insulating layer 1 and the inorganic insulating layer 6 have a double structure as described above, the adhesion between the resin layer and the inorganic insulating layer is not necessarily sufficient. In addition, the inorganic insulating layer cannot completely suppress the influence of gas generated from the resin layer on the amorphous semiconductor layer.

このため、この上に非晶質半導体層を形成して太陽電池
とした場合、その変換効率が低下し、好ましい特性が得
られない、歩留りが悪いなどの問題があった。
For this reason, when an amorphous semiconductor layer is formed on top of this to form a solar cell, there are problems such as a decrease in conversion efficiency, failure to obtain desirable characteristics, and poor yield.

そこで、本発明の目的は、上記問題点が解決された非晶
質半導体太陽電池を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an amorphous semiconductor solar cell in which the above-mentioned problems are solved.

〔課題を解決するための手段] すなわち、上記の本発明の目的は、金属基板1の上に絶
縁被膜層6、背面電極2、非晶質半導体層3、保護膜層
4を順次形成して成る非晶質半導体太陽電池において、
前記絶縁被膜層6が、膜厚3〜12μmの有機シリケー
トを主成分とするコーティング剤を硬化させたノリ力被
膜から成ることを特徴とする非晶質半導体太陽電池によ
って達成される。
[Means for Solving the Problems] That is, the object of the present invention described above is to form an insulating film layer 6, a back electrode 2, an amorphous semiconductor layer 3, and a protective film layer 4 in sequence on a metal substrate 1. In an amorphous semiconductor solar cell consisting of
This is achieved by an amorphous semiconductor solar cell characterized in that the insulating coating layer 6 is made of a glue coating formed by curing a coating agent containing organic silicate as a main component and having a thickness of 3 to 12 μm.

[作   用コ 上記の非晶質半導体太陽電池によれば、金属基板1の表
面を覆う絶縁被膜層6に、膜厚3〜12μmの有機シリ
ケートを主成分とするコーティング剤を硬化させたシリ
カ被膜を用いることによって、従来技術の課題であった
絶縁被膜層6とこの上に形成される背面電極2や非晶質
半導体層3との間の密着性をより強固なものにし、曲げ
や湿度等により剥離が生じることな抑えることが可能に
なった。
[Function] According to the above-mentioned amorphous semiconductor solar cell, the insulating coating layer 6 covering the surface of the metal substrate 1 is coated with a silica coating having a thickness of 3 to 12 μm and having a hardened coating agent mainly composed of organic silicate. By using this, the adhesion between the insulating coating layer 6 and the back electrode 2 and the amorphous semiconductor layer 3 formed thereon, which was a problem with the prior art, is strengthened, and it is possible to prevent bending, humidity, etc. This makes it possible to prevent peeling.

さらに従来では、加熱時に樹脂層から発生していたガス
等によりこの上に積層された非晶質半導体に悪i Wを
与え、変換効率の低下を引き起こす等、その特性を劣化
させていたが、本発明においては、樹脂層を用いず、有
機シリケートを硬化させたシリカ被膜からなる単一膜を
用いて絶縁被膜層6の密着性を高めたことにより、上記
原因による変換効率の低下を防ぐことができる。
Furthermore, in the past, gases generated from the resin layer during heating gave harmful iW to the amorphous semiconductor layered thereon, causing a reduction in conversion efficiency and deteriorating its characteristics. In the present invention, the adhesion of the insulating coating layer 6 is improved by using a single film made of a silica coating made of hardened organic silicate without using a resin layer, thereby preventing a decrease in conversion efficiency due to the above-mentioned causes. Can be done.

なお、ここで上記絶縁被膜層6の膜厚を3〜12μmと
したのは、後述するように、膜厚が13μmより厚くな
るとクラックや剥離が発生しやすくなり、また、3μm
より薄(なるとステンレス表面の絶縁化が不十分となる
ためである。
The reason why the thickness of the insulating coating layer 6 is set to 3 to 12 μm is because, as will be described later, if the thickness is thicker than 13 μm, cracks and peeling will easily occur.
This is because the thinner the stainless steel surface becomes, the less insulated the stainless steel surface becomes.

[実 施 例コ 以下、本発明の実施例について、添付の図面を参照にし
ながら説明する。
[Embodiments] Hereinafter, embodiments of the present invention will be described with reference to the attached drawings.

(実施例1) まず、第1図において、金属基板lとして厚さ0.1m
m5  表面粗さ0.5μmのステンレス板(SUS3
04)を用いた。また、水12gとブチルアルコール5
0gとテトラエトキンシラン100gと塩化錫1gとを
混合し、エチルシリケートを基剤とするコーティング剤
を得た。
(Example 1) First, in FIG. 1, the metal substrate l has a thickness of 0.1 m.
m5 Stainless steel plate (SUS3) with a surface roughness of 0.5μm
04) was used. Also, 12g of water and 5g of butyl alcohol.
0 g, 100 g of tetraethquinsilane, and 1 g of tin chloride were mixed to obtain a coating agent based on ethyl silicate.

前記ステンレス基板上に、前記コーティング剤を塗布し
、これを100℃で予備乾燥した後、300℃で20分
間焼成し焼き付け、膜厚が1゜0μm−15μmの範囲
で各々異なる絶縁被膜層6を有する絶縁化されたステン
レス基板な得た。
The coating agent is applied onto the stainless steel substrate, pre-dried at 100°C, and then baked at 300°C for 20 minutes to form different insulating coating layers 6 with film thicknesses in the range of 1°0 μm to 15 μm. An insulated stainless steel substrate was obtained.

次いで既知の方法により、上記絶縁被膜層6上に非晶質
半導体太陽電池を形成した。すなわち、背面電極2とし
て膜厚5000オングストロームのステンレス膜をスッ
パタ法により形成し、続けてグロー放電法(プラズマC
VD法)により非晶質半導体層3をP型層、■型層、N
型層の順に積層した。すなわち、P型層は、SiH4と
B 2 H6を用い、約500オングストロームの膜厚
に、■型層は5iHzのみを用いて約500オングスト
ロームの膜厚に、N型層はSiH4とP H3を用いて
約100オングストロームの膜厚に、それぞれ形成した
Next, an amorphous semiconductor solar cell was formed on the insulating coating layer 6 by a known method. That is, a stainless steel film with a thickness of 5000 angstroms was formed as the back electrode 2 by a sputtering method, and then a glow discharge method (plasma carbon
VD method), the amorphous semiconductor layer 3 is formed into a P-type layer, a ■-type layer, and an N-type layer.
The mold layers were laminated in order. That is, the P-type layer uses SiH4 and B 2 H6 and has a thickness of about 500 angstroms, the ■-type layer uses only 5iHz and has a thickness of about 500 angstroms, and the N-type layer uses SiH4 and P H3 and has a thickness of about 500 angstroms. Each layer was formed to a thickness of about 100 angstroms.

さらに、この上に透明電極4として酸化インジウムスズ
を約700オングストロームの厚さに形成した。最後に
透明なフッ素樹脂を全体に塗布し、保護膜層5を形成し
た。
Furthermore, indium tin oxide was formed on this as a transparent electrode 4 to a thickness of about 700 angstroms. Finally, a transparent fluororesin was applied to the entire surface to form a protective film layer 5.

こうしてステンレス基板上に設けられたtQ iJ被膜
層の膜厚が1.0μm〜15μmの範囲で異なる受光面
積1cm2の非晶質半導体太陽電池を各々10,000
個ずつ作り、これらの絶縁被膜層6の膜厚と製品の歩留
りの関係を調べ、その結果を第2図に示した。
In this way, 10,000 amorphous semiconductor solar cells each having a light-receiving area of 1 cm2 and having different thicknesses of tQ iJ coating layers in the range of 1.0 μm to 15 μm were fabricated on stainless steel substrates.
The relationship between the thickness of the insulating coating layer 6 and the yield of the product was investigated, and the results are shown in FIG.

この図より高い歩留りを得るためには、絶縁被膜層6の
膜厚を、5μm−12μmとすることが必要であること
がわかる。これは、膜厚が13μmより厚(なるとクラ
ックや剥離が発生しやすくなるため、絶1縁性が低下し
、絶縁被膜層としては使えず、また、5μmより薄くな
った場合も、ステンレス表面の絶縁化が不十分となるた
めである。
From this figure, it can be seen that in order to obtain a higher yield, it is necessary to set the thickness of the insulating coating layer 6 to 5 μm to 12 μm. This means that if the film is thicker than 13 μm, cracks and peeling will occur more easily, so the insulation properties will be lowered and it cannot be used as an insulating coating layer. This is because insulation becomes insufficient.

(実施例2) 金属基板1として、厚さO,1mm5  表面粗さ0.
15μmのステンレス基板を用いた以外は、実施例1と
同様にして非晶質半導体太陽電池を製作した。また、同
様にしてこの太陽電池における絶縁被膜層6の膜厚と歩
留りの関係を第2図に示す。
(Example 2) The metal substrate 1 has a thickness of O, 1 mm5 and a surface roughness of 0.
An amorphous semiconductor solar cell was manufactured in the same manner as in Example 1 except that a 15 μm stainless steel substrate was used. Similarly, FIG. 2 shows the relationship between the thickness of the insulating coating layer 6 and the yield in this solar cell.

この図より高い歩留りを得るためには、絶縁被膜層6の
膜厚を、3μm〜12μmとすることが必要であること
がわかる。
From this figure, it can be seen that in order to obtain a higher yield, it is necessary to set the thickness of the insulating coating layer 6 to 3 μm to 12 μm.

この場合に、絶縁被膜層の膜厚が実施例1の場合より薄
くても高い歩留りが得られたのは、ステンレス基板の表
面粗さが小さいためと考えられる。
In this case, the reason why a high yield was obtained even though the thickness of the insulating coating layer was thinner than in Example 1 is thought to be because the surface roughness of the stainless steel substrate was small.

[発明の効果コ 以上の説明からも明かなように、金属基板表面を覆う絶
縁被膜層にシリカ被膜を用い、その膜厚を3μm〜12
μmとすることにより高い歩留りをもって製品の生産が
でき、その変換効率の高い非晶質半導体太陽電池が提供
できる。
[Effects of the invention] As is clear from the above explanation, a silica film is used as the insulating film layer covering the surface of the metal substrate, and the film thickness is 3 μm to 12 μm.
By using μm, products can be produced with a high yield, and an amorphous semiconductor solar cell with high conversion efficiency can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、非晶質半導体太陽電池の構造を示す一部切欠
の模式斜視図であり、第2図は、本発明の実施例1及び
実施例2における上記太陽電池の絶縁被膜層の膜厚と歩
留りとの関係を示すグラフである。 1・・・金属基板 2・・・背面電極 3・・・非晶質
半導体層 4・・・透明電極 5・・・保護膜 6・・
・絶縁被膜層 特許出願人  太陽誘電株式会社 代 理 人 弁理士 北條 和由
FIG. 1 is a partially cutaway schematic perspective view showing the structure of an amorphous semiconductor solar cell, and FIG. 2 is a film of an insulating coating layer of the solar cell in Example 1 and Example 2 of the present invention. It is a graph showing the relationship between thickness and yield. 1... Metal substrate 2... Back electrode 3... Amorphous semiconductor layer 4... Transparent electrode 5... Protective film 6...
・Insulating coating layer patent applicant Taiyo Yuden Co., Ltd. Representative Patent attorney Kazuyoshi Hojo

Claims (1)

【特許請求の範囲】[Claims] 金属基板上に絶縁被膜層、背面電極、非晶質半導体層、
保護膜層を順次形成して成る非晶質半導体太陽電池にお
いて、前記絶縁被膜層が、膜厚3〜12μmの有機シリ
ケートを主成分とするコーティング剤を硬化させたシリ
カ被膜から成ることを特徴とする非晶質半導体太陽電池
Insulating coating layer, back electrode, amorphous semiconductor layer,
An amorphous semiconductor solar cell formed by sequentially forming protective film layers, characterized in that the insulating film layer is made of a silica film obtained by curing a coating agent containing organic silicate as a main component and having a thickness of 3 to 12 μm. Amorphous semiconductor solar cells.
JP63280079A 1988-11-05 1988-11-05 Amorphous semiconductor solar cell Expired - Lifetime JPH07105516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63280079A JPH07105516B2 (en) 1988-11-05 1988-11-05 Amorphous semiconductor solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63280079A JPH07105516B2 (en) 1988-11-05 1988-11-05 Amorphous semiconductor solar cell

Publications (2)

Publication Number Publication Date
JPH02126686A true JPH02126686A (en) 1990-05-15
JPH07105516B2 JPH07105516B2 (en) 1995-11-13

Family

ID=17620016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63280079A Expired - Lifetime JPH07105516B2 (en) 1988-11-05 1988-11-05 Amorphous semiconductor solar cell

Country Status (1)

Country Link
JP (1) JPH07105516B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011204723A (en) * 2010-03-24 2011-10-13 Nisshin Steel Co Ltd Stainless steel plate for use of solar cell substrate material, and method of manufacturing the same
JP2014107510A (en) * 2012-11-29 2014-06-09 Showa Shell Sekiyu Kk Compound thin film solar cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152275A (en) * 1980-04-25 1981-11-25 Teijin Ltd Thin film type solar cell
JPS5778183A (en) * 1980-09-09 1982-05-15 Energy Conversion Devices Inc Photoresponse amorphous alloy and method of producing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152275A (en) * 1980-04-25 1981-11-25 Teijin Ltd Thin film type solar cell
JPS5778183A (en) * 1980-09-09 1982-05-15 Energy Conversion Devices Inc Photoresponse amorphous alloy and method of producing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011204723A (en) * 2010-03-24 2011-10-13 Nisshin Steel Co Ltd Stainless steel plate for use of solar cell substrate material, and method of manufacturing the same
JP2014107510A (en) * 2012-11-29 2014-06-09 Showa Shell Sekiyu Kk Compound thin film solar cell

Also Published As

Publication number Publication date
JPH07105516B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
US7999177B2 (en) Optical thin film for solar cells and method of forming the same
JP2002536834A (en) Solar cell module
WO2010150692A1 (en) Solar battery
JP2567078B2 (en) Liquid crystal light valve device
WO2020228235A1 (en) Array substrate and preparation method therefor, and flexible display panel
JPH04299873A (en) Manufacture of photovoltaic device
JPS6329398B2 (en)
CN101399295A (en) Passivation encapsulation method for back electrode of solar cell
JP2000058890A (en) Solar cell and fabrication thereof
JPH02126686A (en) Amorphous semiconductor solar cell
JPS63107073A (en) Manufacture of thin film solar cell
JP3216754B2 (en) Manufacturing method of thin film solar cell
JP2006049541A (en) Solar cell module and its manufacturing method
JPH1064897A (en) Protective film for semiconductor element and its manufacturing method
JPH04196364A (en) Manufacture of photovoltage device
JPH06310748A (en) Solar cell module
JPS63117429A (en) Semiconductor device
JPH0419707B2 (en)
JPS58135645A (en) Manufacture of semiconductor device
JPS6060774A (en) Solar cell
JPH04212475A (en) Manufacture of photovoltaic device
JPH09232305A (en) Film forming method
JPH01293318A (en) Electrode substrate for liquid crystal display panel
JPS6127685A (en) Manufacture of amorphous silicon solar cell
JP2000357806A (en) Solar battery module and its manufacture