JP2014107510A - Compound thin film solar cell - Google Patents

Compound thin film solar cell Download PDF

Info

Publication number
JP2014107510A
JP2014107510A JP2012261515A JP2012261515A JP2014107510A JP 2014107510 A JP2014107510 A JP 2014107510A JP 2012261515 A JP2012261515 A JP 2012261515A JP 2012261515 A JP2012261515 A JP 2012261515A JP 2014107510 A JP2014107510 A JP 2014107510A
Authority
JP
Japan
Prior art keywords
compound
thin film
film solar
solar cell
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012261515A
Other languages
Japanese (ja)
Other versions
JP6104576B2 (en
Inventor
Akihiko Asano
明彦 浅野
Toshiaki Yamaura
敏明 山浦
Tsuyoshi Yagioka
剛 八木岡
Masanori Nagahashi
正典 長橋
Hideki Sunayama
英樹 砂山
Masahiro Saito
雅弘 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Shell Sekiyu KK
Original Assignee
Showa Shell Sekiyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shell Sekiyu KK filed Critical Showa Shell Sekiyu KK
Priority to JP2012261515A priority Critical patent/JP6104576B2/en
Publication of JP2014107510A publication Critical patent/JP2014107510A/en
Application granted granted Critical
Publication of JP6104576B2 publication Critical patent/JP6104576B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compound thin film solar cell which uses a commonly-available stainless substrate and has good device characteristics.SOLUTION: A compound thin film solar cell comprises: a stainless substrate; an insulation layer deposited on a predetermined surface of the stainless substrate; a first electrode layer deposited on the insulation layer; a compound light absorption layer deposited on the first electrode layer; and a second electrode layer deposited on the compound light absorption layer, in which average roughness Ra of the predetermined surface is 85 nm and under.

Description

本発明は、化合物系薄膜太陽電池に関する。   The present invention relates to a compound-based thin film solar cell.

近年、燃料が不要であり温室効果ガスを排出しない太陽光発電が注目されており、例えば、ステンレス基板上にCIS系薄膜等の化合物系薄膜を形成した化合物系薄膜太陽電池が知られている。このような化合物系薄膜太陽電池において、良好な素子特性を得るためには、ステンレス基板の表面が平坦であることが必要であり、例えば、ステンレス基板上に絶縁層を形成することなく直接電極や化合物層を形成した化合物系薄膜太陽電池において、ステンレス基板の表面の平均粗さRaが30nm以下でなければならないことが開示されている(例えば、特許文献1参照)。   In recent years, photovoltaic power generation that does not require fuel and does not emit greenhouse gases has attracted attention. For example, a compound thin film solar cell in which a compound thin film such as a CIS thin film is formed on a stainless steel substrate is known. In such a compound-based thin film solar cell, in order to obtain good element characteristics, the surface of the stainless steel substrate needs to be flat. For example, the direct electrode or the electrode without forming an insulating layer on the stainless steel substrate. In a compound thin film solar cell in which a compound layer is formed, it is disclosed that the average roughness Ra of the surface of the stainless steel substrate must be 30 nm or less (see, for example, Patent Document 1).

特開2012−97341号公報JP 2012-97341 A

しかしながら、表面の平均粗さRaが30nm以下のステンレス基板は、既に太陽電池用ステンレス基板として一部で市販されてはいるものの、それは一般的なステンレス基板の表面粗さを低減することを目的にした特殊な圧延工程を経て製造される特殊品である。   However, although a stainless steel substrate having an average surface roughness Ra of 30 nm or less is already commercially available as a stainless steel substrate for solar cells, it is intended to reduce the surface roughness of a general stainless steel substrate. It is a special product manufactured through a special rolling process.

本発明は、上記の点に鑑みてなされたものであり、一般に入手可能なステレンス基板を用いた素子特性が良好な化合物系薄膜太陽電池を提供することを課題とする。   This invention is made | formed in view of said point, and makes it a subject to provide the compound type thin film solar cell with a favorable element characteristic using the generally available stainless steel substrate.

本化合物系薄膜太陽電池は、ステンレス基板と、前記ステンレス基板の所定の面に製膜された絶縁層と、前記絶縁層上に製膜された第1の電極層と、前記第1の電極層上に製膜された化合物系光吸収層と、前記化合物系光吸収層上に製膜された第2の電極層と、を有し、前記所定の面の平均粗さRaが85nm以下であることを要件とする。   The compound-based thin film solar cell includes a stainless steel substrate, an insulating layer formed on a predetermined surface of the stainless steel substrate, a first electrode layer formed on the insulating layer, and the first electrode layer. A compound-based light absorption layer formed on the film, and a second electrode layer formed on the compound-based light absorption layer, wherein the average roughness Ra of the predetermined surface is 85 nm or less. Is a requirement.

開示の技術によれば、一般に入手可能なステレンス基板を用いた素子特性が良好な化合物系薄膜太陽電池を提供できる。   According to the disclosed technology, it is possible to provide a compound-based thin film solar cell having good device characteristics using a generally available stainless steel substrate.

本実施の形態に係るCIS系の化合物系薄膜太陽電池を例示する断面図である。It is sectional drawing which illustrates the CIS type compound thin film solar cell which concerns on this Embodiment.

以下、図面を参照して発明を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。   Hereinafter, embodiments for carrying out the invention will be described with reference to the drawings. In the drawings, the same components are denoted by the same reference numerals, and redundant description may be omitted.

なお、以下の実施の形態等は、CIS系の化合物系薄膜太陽電池を例にとって説明するが、本発明は、CIS系以外の化合物系薄膜太陽電池にも適用可能である。本発明を適用可能なCIS系以外の化合物系薄膜太陽電池の一例として、光吸収層が銅(Cu)、亜鉛(Zn)、錫(Sn)、及びカルコゲン元素(セレン(Se)又は硫黄(S))を含有する化合物からなるCZTS系の化合物系薄膜太陽電池を挙げることができる。又、本発明を適用可能なCIS系以外の化合物系薄膜太陽電池の他の例として、光吸収層がカドミウム(Cd)及びテルル(Te)を含有する化合物からなるCdTe系の化合物系薄膜太陽電池等を挙げることができる。   In addition, although the following embodiment etc. demonstrate taking a CIS type compound thin film solar cell as an example, this invention is applicable also to compound type thin film solar cells other than a CIS type. As an example of a compound-based thin film solar cell other than the CIS system to which the present invention can be applied, the light absorption layer has copper (Cu), zinc (Zn), tin (Sn), and a chalcogen element (selenium (Se) or sulfur (S And CZTS-based compound thin film solar cells made of a compound containing)). As another example of a compound-based thin film solar cell other than the CIS system to which the present invention can be applied, a CdTe-based compound thin-film solar cell in which the light absorption layer is made of a compound containing cadmium (Cd) and tellurium (Te). Etc.

図1は、本実施の形態に係るCIS系の化合物系薄膜太陽電池を例示する断面図である。図1を参照するに、化合物系薄膜太陽電池10は、基板11と、絶縁層12と、第1の電極層13と、光吸収層14と、第2の電極層15とを有し、基板11上に、絶縁層12、第1の電極層13、光吸収層14、及び第2の電極層15が順次積層されている。以下、化合物系薄膜太陽電池10を構成する各要素について説明する。   FIG. 1 is a cross-sectional view illustrating a CIS-based compound thin-film solar battery according to this embodiment. Referring to FIG. 1, a compound-based thin film solar cell 10 includes a substrate 11, an insulating layer 12, a first electrode layer 13, a light absorption layer 14, and a second electrode layer 15. 11, an insulating layer 12, a first electrode layer 13, a light absorption layer 14, and a second electrode layer 15 are sequentially stacked. Hereinafter, each element which comprises the compound type thin film solar cell 10 is demonstrated.

基板11は、絶縁層12、第1の電極層13、光吸収層14、及び第2の電極層15を形成する基体となる部分であり、材質はステンレスである。なお、基板11として、熱膨張率がCIS系の光吸収層に近いフェライト系ステンレス基板(例えば、SUS430)を用いると、熱処理時又は熱処理後に光吸収層が剥離することを防止でき好適である。基板11の厚さは、例えば、0.2〜0.6mm程度とすることができる。   The substrate 11 is a portion that serves as a base on which the insulating layer 12, the first electrode layer 13, the light absorption layer 14, and the second electrode layer 15 are formed, and the material thereof is stainless steel. Note that it is preferable to use a ferritic stainless steel substrate (for example, SUS430) having a thermal expansion coefficient close to that of a CIS-based light absorption layer as the substrate 11 because the light absorption layer can be prevented from peeling off during or after the heat treatment. The thickness of the board | substrate 11 can be about 0.2-0.6 mm, for example.

本実施の形態では、基板11の絶縁層12が製膜される面の平均粗さRaは85nm以下とされている。但し、基板11の絶縁層12が製膜される面の平均粗さRaを32nm以上かつ62nm以下とすることが好ましい。平均粗さRaをこのような数値範囲とすることの技術的な意義については、後述の実施例において説明する。   In the present embodiment, the average roughness Ra of the surface of the substrate 11 on which the insulating layer 12 is formed is 85 nm or less. However, the average roughness Ra of the surface of the substrate 11 on which the insulating layer 12 is formed is preferably 32 nm or more and 62 nm or less. The technical significance of setting the average roughness Ra in such a numerical range will be described in the examples described later.

絶縁層12は、基板11の所定の面(図1では上面)に形成されている。絶縁層12の材料としては、ガラスを用いることが好ましい。ガラスの一例としては、シリカ(SiO)、CaO、B、SrO、BaO、Al、ZnO、ZrO、MgOのうちの少なくとも一つを成分とするガラスや低融点ガラスを挙げることができる。絶縁層12の材料としてガラスが好ましい理由は、例えば絶縁層12の材料として有機樹脂を用いると、光吸収層14を製膜する際の熱処理によりダメージを受けるおそれがあるが、耐熱性の高いガラスを用いることにより、このような問題を回避できるからである。 The insulating layer 12 is formed on a predetermined surface (the upper surface in FIG. 1) of the substrate 11. As a material of the insulating layer 12, it is preferable to use glass. As an example of glass, glass or low melting point glass containing at least one of silica (SiO 2 ), CaO, B 2 O 3 , SrO, BaO, Al 2 O 3 , ZnO, ZrO 2 , and MgO as a component. Can be mentioned. The reason why glass is preferable as the material of the insulating layer 12 is that, for example, when an organic resin is used as the material of the insulating layer 12, there is a risk of being damaged by heat treatment when the light absorption layer 14 is formed. This is because such a problem can be avoided by using.

絶縁層12は、例えば、スリットコーター、乾燥炉、及びベーク炉を順次用いて基板11の所定の面に製膜できる。或いは、絶縁層12を、スパッタ法やプラズマCVD法、スピンコーター、ディップコーター、スクリーン印刷法等を用いて基板11の所定の面に製膜してもよい。   The insulating layer 12 can be formed on a predetermined surface of the substrate 11 by sequentially using, for example, a slit coater, a drying furnace, and a baking furnace. Alternatively, the insulating layer 12 may be formed on a predetermined surface of the substrate 11 using a sputtering method, a plasma CVD method, a spin coater, a dip coater, a screen printing method, or the like.

なお、絶縁層12を同一材質や異なる材質を組み合わせた複数の層から構成してもよく、その場合には、アルカリバリア機能を有する層を有してもよい。アルカリバリア機能とは、ナトリウム(Na)やカリウム(K)等のアルカリ金属成分が光吸収層14に過剰に拡散することを防止する機能である。   Note that the insulating layer 12 may be composed of a plurality of layers in which the same material or different materials are combined. In that case, the insulating layer 12 may have a layer having an alkali barrier function. The alkali barrier function is a function of preventing an alkali metal component such as sodium (Na) or potassium (K) from being excessively diffused into the light absorption layer 14.

絶縁層12の厚さは、10μm以上かつ50μm以下とすることが好ましい。なお、発明者らの検討により、絶縁層12の厚さが10μm未満となると、化合物系薄膜太陽電池10の変換効率が低下することがわかっている。これは、基板11の上面の表面粗さが、絶縁層12上に形成する各層の平坦性に影響を及ぼすためであると考えられる。又、絶縁層12の厚さが50μmよりも大きくなると、絶縁層12の機械的強度が低下したり、基板11から剥離しやすくなるため好ましくない。   The thickness of the insulating layer 12 is preferably 10 μm or more and 50 μm or less. In addition, when the thickness of the insulating layer 12 becomes less than 10 micrometers by the inventors' examination, it turns out that the conversion efficiency of the compound type thin film solar cell 10 falls. This is presumably because the surface roughness of the upper surface of the substrate 11 affects the flatness of each layer formed on the insulating layer 12. Further, it is not preferable that the thickness of the insulating layer 12 is larger than 50 μm because the mechanical strength of the insulating layer 12 is reduced or the insulating layer 12 is easily peeled off from the substrate 11.

第1の電極層13は、絶縁層12上に形成されている。第1の電極層13の材料としては、例えば、モリブデン(Mo)を用いることができる。第1の電極層13の材料として、セレン(Se)や硫黄(S)に対する耐食性を有するチタン(Ti)やタングステン(W)等を用いてもよい。第1の電極層13の厚さは、例えば、数10nm〜数μm程度とすることができる。第1の電極層13は、例えば、DCマグネトロンスパッタ法を用いて絶縁層12上に製膜できる。或いは、第1の電極層13を、イオンビーム蒸着法等を用いて絶縁層12上に製膜してもよい。   The first electrode layer 13 is formed on the insulating layer 12. As a material of the first electrode layer 13, for example, molybdenum (Mo) can be used. As a material of the first electrode layer 13, titanium (Ti), tungsten (W), or the like having corrosion resistance against selenium (Se) or sulfur (S) may be used. The thickness of the first electrode layer 13 can be, for example, about several tens of nm to several μm. The first electrode layer 13 can be formed on the insulating layer 12 by using, for example, a DC magnetron sputtering method. Alternatively, the first electrode layer 13 may be formed on the insulating layer 12 using an ion beam evaporation method or the like.

光吸収層14は、p型半導体からなる層であり、第1の電極層13上に形成されている。光吸収層14は、照射された太陽光等を光電変換する部分である。光吸収層14が光電変換することにより生じた起電力は、第1の電極層13及び第2の電極層15に各々はんだ等で取り付けられた図示しない電極リボン(銅箔リボン)から外部に電流として取り出すことができる。光吸収層14の厚さは、例えば、数μm〜数10μm程度とすることができる。   The light absorption layer 14 is a layer made of a p-type semiconductor and is formed on the first electrode layer 13. The light absorption layer 14 is a part that photoelectrically converts irradiated sunlight and the like. The electromotive force generated by the photoelectric conversion of the light absorption layer 14 is caused by a current from an electrode ribbon (copper foil ribbon) (not shown) attached to the first electrode layer 13 and the second electrode layer 15 with solder or the like to the outside. Can be taken out as. The thickness of the light absorption layer 14 can be set to, for example, about several μm to several tens of μm.

光吸収層14としては、例えば、I-III-VI2族元素からなるCIS系の化合物、例えば、銅(Cu),インジウム(In),セレン(Se)からなる化合物や、銅(Cu),インジウム(In),ガリウム(Ga),セレン(Se),硫黄(S)からなる化合物等を用いることができる。   As the light absorption layer 14, for example, a CIS compound composed of an I-III-VI2 group element, for example, a compound composed of copper (Cu), indium (In), selenium (Se), copper (Cu), indium A compound composed of (In), gallium (Ga), selenium (Se), sulfur (S), or the like can be used.

具体的な化合物の一例を挙げれば、2セレン化銅インジウム(CuInSe)、2イオウ化銅インジウム(CuInS)、2セレン・イオウ化銅インジウム(CuIn(SSe))、2セレン化銅ガリウム(CuGaSe)、2イオウ化銅ガリウム(CuGaS)、2セレン化銅インジウム・ガリウム(Cu(InGa)Se)、2イオウ化銅インジウム・ガリウム(Cu(InGa)S)、2セレン・イオウ化銅インジウム・ガリウム(Cu(InGa)(SSe))等である。 An example of a specific compound is copper indium diselenide (CuInSe 2 ), copper indium disulfide (CuInS 2 ), copper indium selenium sulfide (CuIn (SSe) 2 ), copper gallium selenide (CuGaSe 2 ), copper gallium disulfide (CuGaS 2 ), copper indium gallium selenide (Cu (InGa) Se 2 ), copper indium gallium sulphide (Cu (InGa) S 2 ), 2 selenium For example, copper indium gallium sulfide (Cu (InGa) (SSe) 2 ).

光吸収層14は、例えば、スパッタ法や蒸着法等により銅(Cu),ガリウム(Ga),インジウム(In)等を含むプリカーサ膜を形成し、セレン化水素(HSe)雰囲気中、硫化水素(HS)雰囲気中、又は、セレン化水素(HSe)及び硫化水素(HS)雰囲気中で熱処理することにより製膜できる(セレン化/硫化過程)。 The light absorption layer 14 is formed, for example, by forming a precursor film containing copper (Cu), gallium (Ga), indium (In), etc. by sputtering or vapor deposition, and in a hydrogen selenide (H 2 Se) atmosphere. A film can be formed by heat treatment in a hydrogen (H 2 S) atmosphere or in a hydrogen selenide (H 2 Se) and hydrogen sulfide (H 2 S) atmosphere (selenization / sulfurization process).

光吸収層14は、銅(Cu),ガリウム(Ga),インジウム(In),及びセレン(Se)を蒸着することにより製膜してもよい。又、光吸収層14は、銅(Cu),ガリウム(Ga),インジウム(In),及び硫黄(S)を蒸着することにより製膜してもよい。又、光吸収層14は、銅(Cu),ガリウム(Ga),インジウム(In),及びセレン(Se)と硫黄(S)を蒸着することにより製膜してもよい。   The light absorption layer 14 may be formed by evaporating copper (Cu), gallium (Ga), indium (In), and selenium (Se). The light absorption layer 14 may be formed by vapor-depositing copper (Cu), gallium (Ga), indium (In), and sulfur (S). The light absorption layer 14 may be formed by evaporating copper (Cu), gallium (Ga), indium (In), selenium (Se), and sulfur (S).

なお、光吸収層14として、例えば、銅(Cu),亜鉛(Zn),錫(Sn),カルコゲン元素からなるCZTS系の化合物を用いてもよい。具体的な化合物の一例を挙げれば、4イオウ化2銅スズ・亜鉛(CuZnSnS)、4セレン・イオウ化2銅スズ・亜鉛(CuZnSn(SSe))等である。 As the light absorption layer 14, for example, a CZTS compound composed of copper (Cu), zinc (Zn), tin (Sn), or a chalcogen element may be used. An example of a specific compound is tetrasulfuric dicopper tin / zinc (Cu 2 ZnSnS 4 ), selenium tetrasulfuric dicopper tin / zinc (Cu 2 ZnSn (SSe) 4 ), or the like.

光吸収層14上にバッファ層(図示せず)を形成してもよい。バッファ層は、光吸収層14からの電流の漏出を防止する機能を有する高抵抗の層である。バッファ層の材料としては、例えば、亜鉛化合物、硫化亜鉛(ZnS)、硫化カドミウム(CdS)、硫化インジウム(InS)等を用いることができる。バッファ層の厚さは、例えば、数nm〜数10nm程度とすることができる。バッファ層は、例えば、溶液成長法(CBD法)や有機金属気相成長法(MOCVD法)、アトミックレイヤーデポジション法(ALD法)等により、光吸収層14上に製膜できる。   A buffer layer (not shown) may be formed on the light absorption layer 14. The buffer layer is a high-resistance layer having a function of preventing current leakage from the light absorption layer 14. As a material of the buffer layer, for example, a zinc compound, zinc sulfide (ZnS), cadmium sulfide (CdS), indium sulfide (InS), or the like can be used. The thickness of the buffer layer can be, for example, about several nm to several tens of nm. The buffer layer can be formed on the light absorption layer 14 by, for example, a solution growth method (CBD method), a metal organic chemical vapor deposition method (MOCVD method), an atomic layer deposition method (ALD method), or the like.

なお、第1の電極層13と光吸収層14との間にアルカリバリア層を形成してもよい。アルカリバリア層は、ナトリウム(Na)やカリウム(K)等のアルカリ金属成分が光吸収層14に過剰に拡散することを防止するために設ける層である。アルカリバリア層の材料としては、例えば、シリカ(SiO)等を用いることができる。アルカリバリア層の厚さは、例えば、5〜100nm程度とすることができる。 Note that an alkali barrier layer may be formed between the first electrode layer 13 and the light absorption layer 14. The alkali barrier layer is a layer provided to prevent alkali metal components such as sodium (Na) and potassium (K) from being excessively diffused into the light absorption layer 14. As a material of the alkali barrier layer, for example, silica (SiO 2 ) or the like can be used. The thickness of the alkali barrier layer can be about 5 to 100 nm, for example.

第2の電極層15は、n型半導体からなる透明な層であり、光吸収層14上に形成されている。第2の電極層15としては、例えば、酸化亜鉛系薄膜(ZnO)やITO薄膜等の透明導電膜を用いることができる。酸化亜鉛系薄膜(ZnO)を用いる場合には、硼素(B)やアルミニウム(Al)やガリウム(Ga)等をドーパントとして添加することにより、低抵抗化でき好適である。第2の電極層15の厚さは、例えば、0.1μm〜数μm程度とすることができる。光吸収層14と第2の電極層15とは、pn接合を形成している。第2の電極層15は、例えば、MOCVD法やスパッタ法、蒸着法等により、光吸収層14上に製膜できる。   The second electrode layer 15 is a transparent layer made of an n-type semiconductor, and is formed on the light absorption layer 14. As the second electrode layer 15, for example, a transparent conductive film such as a zinc oxide-based thin film (ZnO) or an ITO thin film can be used. In the case of using a zinc oxide-based thin film (ZnO), the resistance can be reduced by adding boron (B), aluminum (Al), gallium (Ga), or the like as a dopant. The thickness of the second electrode layer 15 can be, for example, about 0.1 μm to several μm. The light absorption layer 14 and the second electrode layer 15 form a pn junction. The second electrode layer 15 can be formed on the light absorption layer 14 by, for example, MOCVD, sputtering, vapor deposition, or the like.

以上のように、基板11上に、絶縁層12、第1の電極層13、光吸収層14、及び第2の電極層15を順次積層後、充填材、カバーガラス、アルミフレーム、バックシートを取り付けるが、本発明とは無関係のため説明は省略する。   As described above, the insulating layer 12, the first electrode layer 13, the light absorption layer 14, and the second electrode layer 15 are sequentially laminated on the substrate 11, and then the filler, the cover glass, the aluminum frame, and the back sheet are laminated. Although attached, it is irrelevant to the present invention and will not be described.

[実施例]
まず、基板11として、上面(絶縁層12が形成される面)の平均粗さRaが24nmである、厚さ0.3mmのフェライト系ステンレス基板(SUS430)を準備した。次に、基板11の上面に、スリットコーターを用いて、シリカ(SiO)を主成分とするガラスからなる厚さ20μmの絶縁層12を製膜した。次に、絶縁層12上に、DCマグネトロンスパッタ法を用いて、モリブデン(Mo)からなる厚さ0.5μmの第1の電極層13を製膜した。
[Example]
First, as the substrate 11, a 0.3 mm-thick ferritic stainless steel substrate (SUS430) having an average roughness Ra of the upper surface (surface on which the insulating layer 12 is formed) of 24 nm was prepared. Next, an insulating layer 12 having a thickness of 20 μm made of glass containing silica (SiO 2 ) as a main component was formed on the upper surface of the substrate 11 using a slit coater. Next, a first electrode layer 13 made of molybdenum (Mo) and having a thickness of 0.5 μm was formed on the insulating layer 12 by using a DC magnetron sputtering method.

次に、第1の電極層13上に、光吸収層14として、厚さ1〜3μm程度のI-III-VI2族元素からなるCIS系の化合物系薄膜を製膜した。具体的には、第1の電極層13上に、銅(Cu),ガリウム(Ga),インジウム(In)を含む積層構造の金属プリカーサ膜をスパッタ法で製膜した後、セレン化及び硫化を行って、2セレン・イオウ化銅インジウム・ガリウム(Cu(InGa)(SSe))を形成した。 Next, a CIS-based compound thin film made of an I-III-VI2 group element having a thickness of about 1 to 3 μm was formed on the first electrode layer 13 as the light absorption layer 14. Specifically, a metal precursor film having a laminated structure containing copper (Cu), gallium (Ga), and indium (In) is formed on the first electrode layer 13 by sputtering, and then selenization and sulfidation are performed. And formed selenium disulfide copper indium gallium (Cu (InGa) (SSe) 2 ).

次に、光吸収層14上に、MOCVD法を用いて、硼素(B)を添加した酸化亜鉛(ZnO:B)からなる厚さ0.5〜2.5μm程度の第2の電極層15を製膜した。以上により試料番号1の化合物系薄膜太陽電池が完成した。   Next, a second electrode layer 15 made of zinc oxide (ZnO: B) added with boron (B) and having a thickness of about 0.5 to 2.5 μm is formed on the light absorption layer 14 by MOCVD. A film was formed. The compound type thin film solar cell of sample number 1 was completed by the above.

同様の方法により、基板11の上面の平均粗さRaのみを異ならせた化合物系薄膜太陽電池(試料番号2〜7)を作製した。そして、試料番号1〜7の化合物系薄膜太陽電池について、それぞれ変換効率(%)の測定を行い、太陽電池としての特性を評価した。各試料の平均粗さRa及び評価結果を表1に示す。   By the same method, compound type thin film solar cells (sample numbers 2 to 7) in which only the average roughness Ra of the upper surface of the substrate 11 was varied were produced. And about the compound type thin film solar cell of the sample numbers 1-7, the conversion efficiency (%) was measured, respectively, and the characteristic as a solar cell was evaluated. Table 1 shows the average roughness Ra and the evaluation results of each sample.

なお、試料番号1で基板11として使用したフェライト系ステンレス基板は、表面仕上げ記号がBAのステンレス素材を電解複合研磨して製造されたものである。試料番号2〜4で基板11として使用したフェライト系ステンレス基板は、表面仕上げ記号がBAの通常に市販されているステンレス素材をそのまま使用したものである。試料番号5で基板11として使用したフェライト系ステンレス基板は、表面仕上げ記号が2Bの通常に市販されているステンレス素材をそのまま使用したものである。   The ferritic stainless steel substrate used as the substrate 11 in the sample number 1 is manufactured by electrolytic composite polishing of a stainless steel material whose surface finish symbol is BA. The ferritic stainless steel substrate used as the substrate 11 in the sample numbers 2 to 4 is a stainless steel material that is usually commercially available and has a surface finish symbol of BA. The ferritic stainless steel substrate used as the substrate 11 in the sample number 5 is a stainless steel material that is usually commercially available with a surface finish symbol of 2B.

Figure 2014107510
Figure 2014107510

表1に示すように、基板11の上面の平均粗さRaが30nm以下である試料番号1及び2の化合物系薄膜太陽電池では、素子特性良否の目安としての変換効率は13.36%であった。一方、通常に市販されている素材をそのまま使用した試料番号3〜5の化合物系薄膜太陽電池では、試料番号1及び2の化合物系薄膜太陽電池を上回る変換効率が得られた。   As shown in Table 1, in the compound thin film solar cells of Sample Nos. 1 and 2 in which the average roughness Ra of the upper surface of the substrate 11 is 30 nm or less, the conversion efficiency as a measure of the device characteristics is 13.36%. It was. On the other hand, the conversion efficiency exceeding the compound type thin film solar cell of the sample numbers 1 and 2 was acquired in the compound type thin film solar cell of the sample numbers 3-5 which used the raw material normally marketed as it is.

又、基板11の上面の平均粗さRaが85nmと大きいと試料番号6の化合物系薄膜太陽電池でも比較的良好な変換効率が得られた。しかし、基板11の上面の平均粗さRaが98nmと更に大きい試料番号7の化合物系薄膜太陽電池では、試料番号1〜6の化合物系薄膜太陽電池のような良好な特性は得られなかった。   When the average roughness Ra of the upper surface of the substrate 11 was as large as 85 nm, a relatively good conversion efficiency was obtained even in the compound thin film solar cell of Sample No. 6. However, the compound-type thin film solar cell of Sample No. 7 having a larger average roughness Ra of the upper surface of the substrate 11 of 98 nm could not obtain good characteristics as the compound-type thin film solar cells of Sample Nos. 1-6.

つまり、従来、化合物系薄膜太陽電池に用いる基板の上面の平均粗さRaの上限とされていた30nmを超えても、85nm以下の範囲であれば良好な素子特性を得ることができた。又、平均粗さRaが32nm以上かつ62nm以下の範囲においては、更に良好な素子特性を得ることができた。これは、本実施例で作製した化合物系薄膜太陽電池の上記構成よって初めて成し得たものである。   In other words, even when the upper limit of the average roughness Ra of the upper surface of the substrate used in the compound-based thin film solar cell has been conventionally exceeded, excellent element characteristics can be obtained within the range of 85 nm or less. Further, in the range where the average roughness Ra is 32 nm or more and 62 nm or less, further excellent device characteristics can be obtained. This can be achieved for the first time by the above-described configuration of the compound thin film solar cell produced in this example.

換言すれば、従来は、ステンレス基板上に絶縁層を形成することなく直接電極や化合物層を形成した化合物系薄膜太陽電池において、ステンレス基板の上面の平均粗さRaが30nm以下でなければならないとされていた。しかしながら、発明者らは、ステンレス基板上に絶縁層を介して電極層や光吸収層等を製膜する場合には、上面の平均粗さRaが85nm以下のステンレス基板を使用すれば良好な素子特性を得られることを実験的に見出した。   In other words, conventionally, in a compound thin film solar cell in which an electrode and a compound layer are directly formed without forming an insulating layer on a stainless steel substrate, the average roughness Ra of the upper surface of the stainless steel substrate must be 30 nm or less. It had been. However, when forming an electrode layer, a light absorption layer, or the like on an insulating layer on a stainless steel substrate, the inventors use a stainless steel substrate having an upper surface with an average roughness Ra of 85 nm or less. It was experimentally found that characteristics can be obtained.

このように、本実施例によれば、特殊品である太陽電池用ステンレス基板を用いずとも、例えば表面仕上げ記号がBAや2Bの通常に市販されており一般に入手可能なステンレス基板をそのままを用いて、前者(特殊品)を用いた場合と同様な素子特性の化合物系薄膜太陽電池を製造することができる。   Thus, according to the present embodiment, without using a special stainless steel substrate for solar cells, for example, a generally available stainless steel substrate with a surface finish symbol of BA or 2B is used as it is. Thus, a compound-based thin-film solar cell having the same device characteristics as when the former (special product) is used can be manufactured.

以上、好ましい実施の形態及び実施例について詳説したが、上述した実施の形態及び実施例に制限されることはなく、特許請求の範囲に記載された範囲を逸脱することなく、上述した実施の形態及び実施例に種々の変形及び置換を加えることができる。   The preferred embodiments and examples have been described in detail above, but the present invention is not limited to the above-described embodiments and examples, and the above-described embodiments are not deviated from the scope described in the claims. Various modifications and substitutions can be made to the embodiments.

10 化合物系薄膜太陽電池
11 基板
12 絶縁層
13 第1の電極層
14 光吸収層
15 第2の電極層
DESCRIPTION OF SYMBOLS 10 Compound type thin film solar cell 11 Board | substrate 12 Insulating layer 13 1st electrode layer 14 Light absorption layer 15 2nd electrode layer

Claims (5)

ステンレス基板と、
前記ステンレス基板の所定の面に製膜された絶縁層と、
前記絶縁層上に製膜された第1の電極層と、
前記第1の電極層上に製膜された化合物系光吸収層と、
前記化合物系光吸収層上に製膜された第2の電極層と、を有し、
前記所定の面の平均粗さRaが85nm以下である化合物系薄膜太陽電池。
A stainless steel substrate,
An insulating layer formed on a predetermined surface of the stainless steel substrate;
A first electrode layer formed on the insulating layer;
A compound light-absorbing layer formed on the first electrode layer;
A second electrode layer formed on the compound light absorption layer,
A compound-based thin film solar cell having an average roughness Ra of the predetermined surface of 85 nm or less.
前記ステンレス基板はフェライト系ステンレス基板である請求項1記載の化合物系薄膜太陽電池。   The compound thin film solar cell according to claim 1, wherein the stainless steel substrate is a ferritic stainless steel substrate. 前記所定の面の平均粗さRaが32nm以上かつ62nm以下である請求項1又は2記載の化合物系薄膜太陽電池。   The compound-based thin film solar cell according to claim 1 or 2, wherein the predetermined surface has an average roughness Ra of 32 nm or more and 62 nm or less. 前記絶縁層がガラスである請求項1乃至3の何れか一項記載の化合物系薄膜太陽電池。   The compound-based thin film solar cell according to any one of claims 1 to 3, wherein the insulating layer is glass. 前記絶縁層の厚さが10μm以上かつ50μm以下である請求項1乃至4の何れか一項記載の化合物系薄膜太陽電池。   5. The compound-based thin film solar cell according to claim 1, wherein the insulating layer has a thickness of 10 μm to 50 μm.
JP2012261515A 2012-11-29 2012-11-29 Compound thin film solar cell Active JP6104576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012261515A JP6104576B2 (en) 2012-11-29 2012-11-29 Compound thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012261515A JP6104576B2 (en) 2012-11-29 2012-11-29 Compound thin film solar cell

Publications (2)

Publication Number Publication Date
JP2014107510A true JP2014107510A (en) 2014-06-09
JP6104576B2 JP6104576B2 (en) 2017-03-29

Family

ID=51028717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012261515A Active JP6104576B2 (en) 2012-11-29 2012-11-29 Compound thin film solar cell

Country Status (1)

Country Link
JP (1) JP6104576B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110265508A (en) * 2019-07-23 2019-09-20 绵阳金能移动能源有限公司 A kind of high water resistant flexibility intraconnected CIGS solar battery and preparation method thereof
CN112071946A (en) * 2019-05-21 2020-12-11 北京铂阳顶荣光伏科技有限公司 Preparation method of thin-film solar cell
US20240063319A1 (en) * 2021-01-12 2024-02-22 Baoshan Iron & Steel Co., Ltd. Coated steel plate suitable for inline thin-film photovoltaic module and manufacturing method therefor

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62276883A (en) * 1986-05-26 1987-12-01 Nippon Mining Co Ltd Manufacture of enamel substrate for solar cell
JPH02126686A (en) * 1988-11-05 1990-05-15 Taiyo Yuden Co Ltd Amorphous semiconductor solar cell
JP2004327849A (en) * 2003-04-25 2004-11-18 Matsushita Electric Ind Co Ltd Solar cell and its manufacturing method
JP2005248191A (en) * 2004-03-01 2005-09-15 Sumitomo Metal Ind Ltd Ferritic stainless steel sheet having superior seizure resistance, and manufacturing method therefor
JP2006080370A (en) * 2004-09-10 2006-03-23 Matsushita Electric Ind Co Ltd Solar cell
JP2008142970A (en) * 2006-12-07 2008-06-26 Nippon Steel Materials Co Ltd Insulation-coated metal foil for manufacturing electronic device
JP2009094239A (en) * 2007-10-05 2009-04-30 Dow Corning Toray Co Ltd Method of forming ceramic silicon-oxide coating, method of manufacturing inorganic base material having ceramic silicon oxide coating, ceramic silicon oxide coat forming agent, and semiconductor device
WO2009139495A1 (en) * 2008-05-16 2009-11-19 新日鉄マテリアルズ株式会社 Stainless steel foil for a flexible display
US20090308454A1 (en) * 2008-06-12 2009-12-17 General Electric Company, A New York Corporation Insulating coating, methods of manufacture thereof and articles comprising the same
JP2011204723A (en) * 2010-03-24 2011-10-13 Nisshin Steel Co Ltd Stainless steel plate for use of solar cell substrate material, and method of manufacturing the same
JP2011222779A (en) * 2010-04-09 2011-11-04 Dainippon Printing Co Ltd Method of manufacturing substrate for thin film element, method of manufacturing thin film element, method for thin film transistor
JP2012043848A (en) * 2010-08-13 2012-03-01 Hitachi Ltd Substrate for photovoltaic element and photovoltaic element
JP2012097341A (en) * 2010-11-05 2012-05-24 Jfe Steel Corp Chromium-containing ferritic steel sheet for solar cell substrate
JP2012201950A (en) * 2011-03-25 2012-10-22 Nisshin Steel Co Ltd METHOD FOR PRODUCING STAINLESS STEEL SHEET WITH FINELY ROUGHENED SURFACE AND THIN FILM Si SOLAR CELL

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62276883A (en) * 1986-05-26 1987-12-01 Nippon Mining Co Ltd Manufacture of enamel substrate for solar cell
JPH02126686A (en) * 1988-11-05 1990-05-15 Taiyo Yuden Co Ltd Amorphous semiconductor solar cell
JP2004327849A (en) * 2003-04-25 2004-11-18 Matsushita Electric Ind Co Ltd Solar cell and its manufacturing method
JP2005248191A (en) * 2004-03-01 2005-09-15 Sumitomo Metal Ind Ltd Ferritic stainless steel sheet having superior seizure resistance, and manufacturing method therefor
JP2006080370A (en) * 2004-09-10 2006-03-23 Matsushita Electric Ind Co Ltd Solar cell
JP2008142970A (en) * 2006-12-07 2008-06-26 Nippon Steel Materials Co Ltd Insulation-coated metal foil for manufacturing electronic device
JP2009094239A (en) * 2007-10-05 2009-04-30 Dow Corning Toray Co Ltd Method of forming ceramic silicon-oxide coating, method of manufacturing inorganic base material having ceramic silicon oxide coating, ceramic silicon oxide coat forming agent, and semiconductor device
WO2009139495A1 (en) * 2008-05-16 2009-11-19 新日鉄マテリアルズ株式会社 Stainless steel foil for a flexible display
US20090308454A1 (en) * 2008-06-12 2009-12-17 General Electric Company, A New York Corporation Insulating coating, methods of manufacture thereof and articles comprising the same
JP2011204723A (en) * 2010-03-24 2011-10-13 Nisshin Steel Co Ltd Stainless steel plate for use of solar cell substrate material, and method of manufacturing the same
JP2011222779A (en) * 2010-04-09 2011-11-04 Dainippon Printing Co Ltd Method of manufacturing substrate for thin film element, method of manufacturing thin film element, method for thin film transistor
JP2012043848A (en) * 2010-08-13 2012-03-01 Hitachi Ltd Substrate for photovoltaic element and photovoltaic element
JP2012097341A (en) * 2010-11-05 2012-05-24 Jfe Steel Corp Chromium-containing ferritic steel sheet for solar cell substrate
JP2012201950A (en) * 2011-03-25 2012-10-22 Nisshin Steel Co Ltd METHOD FOR PRODUCING STAINLESS STEEL SHEET WITH FINELY ROUGHENED SURFACE AND THIN FILM Si SOLAR CELL

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112071946A (en) * 2019-05-21 2020-12-11 北京铂阳顶荣光伏科技有限公司 Preparation method of thin-film solar cell
CN110265508A (en) * 2019-07-23 2019-09-20 绵阳金能移动能源有限公司 A kind of high water resistant flexibility intraconnected CIGS solar battery and preparation method thereof
CN110265508B (en) * 2019-07-23 2024-01-30 绵阳皓华光电科技有限公司 High-water-resistance flexible inline CIGS solar cell and preparation method thereof
US20240063319A1 (en) * 2021-01-12 2024-02-22 Baoshan Iron & Steel Co., Ltd. Coated steel plate suitable for inline thin-film photovoltaic module and manufacturing method therefor

Also Published As

Publication number Publication date
JP6104576B2 (en) 2017-03-29

Similar Documents

Publication Publication Date Title
JP5229901B2 (en) Photoelectric conversion element and solar cell
JP4629151B2 (en) Photoelectric conversion element, solar cell, and method for manufacturing photoelectric conversion element
Kessler et al. Technological aspects of flexible CIGS solar cells and modules
JP6096790B2 (en) Conductive substrate for photovoltaic cells
US9812593B2 (en) Solar cell and preparing method of the same
JP5928612B2 (en) Compound semiconductor solar cell
CN102652368A (en) Cu-In-Zn-Sn-(Se,S)-based thin film for solar cell and preparation method thereof
CN102576758A (en) Solar power generation apparatus and manufacturing method thereof
JP2011155146A (en) Solar cell and method of manufacturing the same
JP2011176287A (en) Photoelectric conversion element, thin film solar cell, and method of manufacturing photoelectric conversion element
JP2010212336A (en) Photoelectric converting element and method of manufacturing the same, and solar cell
JP2011176285A (en) Photoelectric conversion element, thin film solar cell, and method of manufacturing photoelectric conversion element
JP6104576B2 (en) Compound thin film solar cell
JP2004047860A (en) Thin film solar cell and its manufacture
KR101241708B1 (en) Solar cell apparatus and method of fabricating the same
WO2014162899A1 (en) Thin-film solar cell
JP2017059828A (en) Photoelectric conversion device and solar cell
JP2011159796A (en) Substrate with insulating layer, and thin-film solar cell
EP2733747A2 (en) Solar cell
WO2014103669A1 (en) Compound thin-film solar cell and production method for same
JP2010232427A (en) Photoelectric conversion device, method for manufacturing the same, anodic oxidation substrate for use therein, and solar cell
JP5512219B2 (en) Solar cell
TWI430466B (en) Device structure for high efficiency cdte thin-film solar cell
JP5997044B2 (en) Method for producing compound thin film solar cell
JP6104579B2 (en) Method for manufacturing thin film solar cell

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20141030

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170301

R150 Certificate of patent or registration of utility model

Ref document number: 6104576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250