JP2012201950A - METHOD FOR PRODUCING STAINLESS STEEL SHEET WITH FINELY ROUGHENED SURFACE AND THIN FILM Si SOLAR CELL - Google Patents

METHOD FOR PRODUCING STAINLESS STEEL SHEET WITH FINELY ROUGHENED SURFACE AND THIN FILM Si SOLAR CELL Download PDF

Info

Publication number
JP2012201950A
JP2012201950A JP2011069008A JP2011069008A JP2012201950A JP 2012201950 A JP2012201950 A JP 2012201950A JP 2011069008 A JP2011069008 A JP 2011069008A JP 2011069008 A JP2011069008 A JP 2011069008A JP 2012201950 A JP2012201950 A JP 2012201950A
Authority
JP
Japan
Prior art keywords
stainless steel
film
fine
steel sheet
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011069008A
Other languages
Japanese (ja)
Inventor
Yoshikazu Morita
芳和 守田
Shoichi Matsuo
正一 松尾
Takahiro Fujii
孝浩 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2011069008A priority Critical patent/JP2012201950A/en
Publication of JP2012201950A publication Critical patent/JP2012201950A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide technology that allows uniform formation of finely roughened surface texture on the surface of a stainless steel sheet, and especially technology suitable for a substrate of a thin film Si solar cell.SOLUTION: A method for producing a stainless steel sheet with finely roughened surface includes: a step (cathode electrolysis step) of allowing a film thickness of a passivation film to be 4.0 nm or less by performing cathode electrolysis of a ferritic stainless steel sheet in an aqueous solution having pH of 11.0 or more at electric potential of -0.5 to -2.2 Vvs.SCE; and a step (etching step) of allowing a projected area ratio (pit occupied area ratio) to be 40% or more and average surface roughness SPa to be 0.05 or more and less than 0.30 μm in a pit generation portion covering the surface by immersing the steel sheet which completed the cathode electrolysis step in a mixed aqueous solution of ferric chloride and hydrochloric acid having FeClconcentration of 2-50 mass% and HCl concentration of 0.1-20 mass% and generating pits on the surface.

Description

本発明は、表面に微細なテクスチャーを形成した粗面化ステンレス鋼板の製造法、およびその粗面化ステンレス鋼板からなる薄膜Si太陽電池用基板、並びに前記粗面化ステンレス鋼板を用いた薄膜Si太陽電池の製造法に関する。   The present invention relates to a method for producing a roughened stainless steel plate having a fine texture formed on the surface, a substrate for a thin film Si solar cell comprising the roughened stainless steel plate, and a thin film Si solar using the roughened stainless steel plate. The present invention relates to a battery manufacturing method.

薄膜Si太陽電池基板には、その上に形成される光吸収層の光路を長くして効率を向上させるために、微細な凹凸を形成することが試みられている。また、フレキシブル化に対応するために、ステンレス鋼板を初めとした金属材料の適用が試みられている。金属製の基板を適用することでロール・ツウ・ロールによる製造が可能となり、生産性が大幅に向上する。   Attempts have been made to form fine irregularities on the thin-film Si solar cell substrate in order to improve the efficiency by lengthening the optical path of the light absorption layer formed thereon. Further, in order to cope with flexibility, application of metal materials such as stainless steel plates has been attempted. By applying a metal substrate, it is possible to manufacture by roll-to-roll, and productivity is greatly improved.

ステンレス鋼表面に凹凸を形成させる方法として、従来一般的に行われている電解エッチング法や機械研磨法では微細な凹凸を均一に形成することが難しい。
ショットブラストやホーニングによる粗面化処理は比較的アンカー効果の大きな表面を形成することが可能であるが、微細な凹凸を安価で形成することには適していない。また、粉塵が発生するという環境問題があり作業性が悪い。後工程に悪影響を及ぼさないよう、ブラスト処理して削除した基材の粉を落とすための処理も必要となり、そのぶん作業効率が低下する。さらに板厚0.5mm以下の薄板の場合は反りが発生しやすいという問題もある。
ダルロール圧延による粗面化は圧延ロールに形成した凹凸を圧延時に転写するものであり、微細なピッチを持った凹凸を形成することは難しい。
硝フッ酸などの酸溶液による酸洗は、脆弱になった表面層の除去には効果的であるが、微細な凹凸テクスチャーを形成させる手段としては適していない。
As a method for forming irregularities on the surface of stainless steel, it is difficult to form fine irregularities uniformly by an electrolytic etching method or a mechanical polishing method that is generally performed conventionally.
Surface roughening by shot blasting or honing can form a surface having a relatively large anchor effect, but is not suitable for forming fine irregularities at low cost. In addition, there is an environmental problem that dust is generated, and workability is poor. In order not to adversely affect the subsequent process, a process for removing the powder of the base material removed by blasting is also required, and the work efficiency is reduced. Furthermore, in the case of a thin plate having a thickness of 0.5 mm or less, there is a problem that warpage is likely to occur.
Roughening by dull roll rolling is to transfer the irregularities formed on the rolling roll during rolling, and it is difficult to form irregularities with a fine pitch.
Pickling with an acid solution such as nitric hydrofluoric acid is effective for removing a weakened surface layer, but is not suitable as a means for forming a fine uneven texture.

塩化第二鉄水溶液中への浸漬あるいは塩化第二鉄水溶液をスプレーすることによるエッチングは比較的簡便な方法であるが、本来これらの方法は貫通孔を開けたりハーフエッチングして模様をつけたりする目的で大容量のエッチングを行うのに適したものである。これらの方法では、サイドエッチを防ぐためにもなるべくエッチング面が粗面とならないようにエッチングし表面を平滑に仕上げることが慣例であるため、微細な凹凸を形成するための手法としては適していない。   Etching by immersing in ferric chloride aqueous solution or spraying ferric chloride aqueous solution is a relatively simple method, but these methods are originally intended to make patterns by opening through holes or half-etching It is suitable for performing large volume etching. In these methods, in order to prevent side etching, it is customary to perform etching so that the etched surface is not rough as much as possible to finish the surface smoothly. Therefore, these methods are not suitable as a method for forming fine irregularities.

酸溶液や塩化第二鉄水溶液中での電解による粗面化処理はアンカー効果の高い表面を形成することが可能であるが、処理時間が長時間におよび生産性に劣ることや設備費が高くなるといった問題点がある。   Surface roughening by electrolysis in an acid solution or ferric chloride aqueous solution can form a surface with a high anchoring effect, but the processing time is long, productivity is low, and equipment costs are high. There is a problem that becomes.

電解を用いたステンレス鋼表面の粗面化技術として、特許文献1には、0.02〜2.0重量%塩化ナトリウム水溶液中でステンレス鋼を陽極として20〜100mA/cm2の電流密度の直流で電解した後、さらに0.02〜20重量%の塩化ナトリウムおよび0.03〜3.0重量%の塩酸を含む水溶液中で再びステンレス鋼を陽極として20〜100mA/cm2の電流密度の直流で電解してステンレス鋼表面を孔食し、その後化学的表面腐食法または機械的表面研磨法により未孔食部表面を粗くするか、あるいは各種高温雰囲気中短時間加熱法により表層に薄い酸化皮膜層を形成させる手法が開示されている。しかし、この方法では目的とする形態を得るために40分間もの電解処理を行っており、生産性が低い。 As a technique for roughening the surface of stainless steel using electrolysis, Patent Document 1 discloses a direct current having a current density of 20 to 100 mA / cm 2 using stainless steel as an anode in a 0.02 to 2.0 wt% sodium chloride aqueous solution. In the aqueous solution further containing 0.02 to 20% by weight of sodium chloride and 0.03 to 3.0% by weight of hydrochloric acid, the direct current having a current density of 20 to 100 mA / cm 2 is obtained again using stainless steel as an anode. The surface of the non-pitting portion is roughened by chemical surface corrosion or mechanical surface polishing, or a thin oxide film layer on the surface by short-time heating in various high-temperature atmospheres. A method for forming the film is disclosed. However, in this method, electrolytic treatment is performed for 40 minutes in order to obtain a target form, and productivity is low.

特許文献2には、ステンレス鋼に硝酸溶液中で陽極電解または陽極電解+陰極電解処理を施すことで、硝酸による不動態化と陽極電解による過不動態溶解、あるいはさらに陰極電解による活性溶解によって粗面を形成する方法が開示されている。しかし、鋼種や表面状態によって活性域、不動態域および過不動態域の範囲が異なることから、精度良く粗面化形態をコントロールするためには個々の素材に合った電位や電解電流の設定を厳密に行う必要があり、処理が煩雑となる。このため、この手法も工業的には必ずしも実施しやすいとは言えない。   Patent Document 2 discloses that stainless steel is subjected to anodic electrolysis or anodic electrolysis + cathodic electrolysis in a nitric acid solution, so that it is coarsened by passivation with nitric acid and overpassive dissolution by anodic electrolysis, or further active dissolution by cathodic electrolysis. A method of forming a surface is disclosed. However, since the active region, passive region, and hyperpassive region are different depending on the steel type and surface condition, the potential and electrolytic current must be set according to the individual materials in order to control the roughening form with high accuracy. It is necessary to perform strictly, and the process becomes complicated. For this reason, this method is not always easy to implement industrially.

特許文献3には、アルカリ電解による前処理の陰極電解によって水酸化物皮膜中のFeの還元が促進され、水酸化物皮膜中のCr濃度が増加することが記載されている。ただし、陰極電解の後に酸溶液中で粗面化処理することについては記載がない。   Patent Document 3 describes that the reduction of Fe in the hydroxide film is promoted by the cathode electrolysis by pretreatment by alkaline electrolysis, and the Cr concentration in the hydroxide film increases. However, there is no description about roughening treatment in an acid solution after cathodic electrolysis.

特許文献4には、化学的または電気的に粗面化した表面に、アルカリ溶液中で陰極電解を施すという記載がある。この手法により粗面化後の塗膜密着性が改善されるという。しかし、このような手順では微細な粗面化テクスチャーを得ることは困難である。   Patent Document 4 describes that cathodic electrolysis is performed in an alkaline solution on a chemically or electrically roughened surface. This method is said to improve the adhesion of the coated film after roughening. However, it is difficult to obtain a fine roughened texture by such a procedure.

特許文献5には、電気化学的エッチングや化学的エッチングによって粗面化されたアルミニウム基板の表面にアモルファスシリコン層、透明電極層が順次形成させたアモルファスシリコン太陽電池が示されている。しかし、ステンレス鋼板に対する凹凸の形成条件は記載されていない。   Patent Document 5 discloses an amorphous silicon solar cell in which an amorphous silicon layer and a transparent electrode layer are sequentially formed on the surface of an aluminum substrate roughened by electrochemical etching or chemical etching. However, the conditions for forming irregularities on the stainless steel plate are not described.

特開昭56−77400号公報JP 56-77400 A 特開平6−136600号公報JP-A-6-136600 特開2002−275685号公報JP 2002-275658 A 特開2005−42130号公報JP 2005-42130 A 特開昭59−14682号公報JP 59-14682 A

本発明は、ステンレス鋼板の表面に微細な粗面化テクスチャーを均一に形成させる技術であって、特に薄膜Si太陽電池の基板に好適な技術を提供しようというものである。   The present invention is a technique for uniformly forming a fine roughened texture on the surface of a stainless steel plate, and is intended to provide a technique particularly suitable for a substrate of a thin-film Si solar cell.

上記目的は、質量%で、C:0.0001〜0.15%、Si:0.001〜1.2%、Mn:0.01〜2.0%、P:0.001〜0.050%、S:0.0005〜0.030%、Ni:0〜2.0%、Cu:0〜1.0%、Cr:11.0〜32.0%、Mo:0〜3.0%、Al:0〜1.0%、Nb:0〜1.0%、Ti:0〜1.0%、N:0〜0.0025%、B:0〜0.01%、V:0〜0.5%、W:0〜0.3%、Ca、Mg、Y、REM(希土類元素)の合計:0〜0.1%、残部Feおよび不可避的不純物からなる組成を有し、最表面に不動態皮膜をもつフェライト系ステンレス鋼板を、pHが11.0以上の水溶液中で−0.5〜−2.2Vvs.SCEの電位で陰極電解することにより、AESによる最表面から深さ方向への元素プロファイルにおける1/2酸素濃度位置のSiO2換算深さにより定まる不動態皮膜の膜厚を4.0nm以下とする工程(陰極電解工程)、
前記陰極電解工程を終えた鋼板を、FeCl3濃度2〜50質量%、HCl濃度0.1〜20質量%の塩化第二鉄+塩酸混合水溶液中に浸漬することにより表面にピットを発生させ、表面に占めるピット発生部分の投影面積の割合(ピット占有面積率)を40%以上、かつ平均面粗さSPaを0.05〜0.30μm未満とする工程(エッチング工程)、
を有する微細粗面化ステンレス鋼板の製造法によって達成される。
The purpose is mass%, C: 0.0001 to 0.15%, Si: 0.001 to 1.2%, Mn: 0.01 to 2.0%, P: 0.001 to 0.050. %, S: 0.0005 to 0.030%, Ni: 0 to 2.0%, Cu: 0 to 1.0%, Cr: 11.0 to 32.0%, Mo: 0 to 3.0% , Al: 0 to 1.0%, Nb: 0 to 1.0%, Ti: 0 to 1.0%, N: 0 to 0.0025%, B: 0 to 0.01%, V: 0 0.5%, W: 0 to 0.3%, Ca, Mg, Y, REM (rare earth element) total: 0 to 0.1%, balance Fe and unavoidable impurity composition, outermost surface A ferritic stainless steel sheet having a passive film on the surface is subjected to cathodic electrolysis in an aqueous solution having a pH of 11.0 or more at a potential of -0.5 to -2.2 V vs. SCE, whereby the depth direction from the outermost surface by AES Elemental profile to Takes half the oxygen concentration position of SiO 2 in terms depth by determined step of less 4.0nm thickness of the passivation film (cathode electrolysis step),
The steel plate that has undergone the cathodic electrolysis step is dipped in a mixed aqueous solution of ferric chloride and hydrochloric acid having an FeCl 3 concentration of 2 to 50% by mass and an HCl concentration of 0.1 to 20% by mass to generate pits on the surface, A step (etching step) of setting the ratio of the projected area of the pit generation portion on the surface (pit occupation area ratio) to 40% or more and the average surface roughness SPa to less than 0.05 to 0.30 μm;
It is achieved by a method for producing a fine-roughened stainless steel sheet having

また本発明では、上記製造法によって得られる微細粗面化ステンレス鋼板からなる薄膜Si太陽電池用基板が提供される。その場合、特に前記エッチング工程においてピット占有面積率を85%以上、平均面粗さSPaを0.05〜0.20μmとすることが好ましい。
また、上記の製造法により微細粗面化ステンレス鋼板を製造し、その鋼板を基板として微細粗面化表面上に光電変換用の成膜を施す薄膜Si太陽電池の製造法が提供される。
Moreover, in this invention, the board | substrate for thin film Si solar cells which consists of a fine-roughened stainless steel plate obtained by the said manufacturing method is provided. In that case, it is particularly preferable that the pit occupation area ratio is 85% or more and the average surface roughness SPa is 0.05 to 0.20 μm in the etching step.
Moreover, the manufacturing method of the thin film Si solar cell which manufactures a fine roughening stainless steel plate with said manufacturing method, and forms the film for photoelectric conversion on the fine roughening surface by using the steel plate as a board | substrate is provided.

ここで、「最表面に不動態皮膜をもつフェライト系ステンレス鋼板」とは、塗膜その他の各種被覆層や熱処理によって形成されるような酸化スケールで被覆されていないものを意味する。例えば酸洗肌を有するものや、酸洗後に冷間圧延で仕上げられた表面肌を有するものなどが対象となる。
「1/2酸素濃度位置」は、AES(オージェ電子分光法)による最表面から深さ方向への元素プロファイルにおいて、酸素の検出量が初めて最大値の1/2となる深さ位置を意味する。
Here, the “ferritic stainless steel sheet having a passive film on the outermost surface” means one that is not coated with a coating film or other various coating layers or oxide scales formed by heat treatment. For example, those having pickled skin and those having surface skin finished by cold rolling after pickling are targeted.
“1/2 oxygen concentration position” means a depth position at which the oxygen detection amount becomes 1/2 of the maximum value for the first time in an element profile from the outermost surface to the depth direction by AES (Auger electron spectroscopy). .

「面粗さSPa」は、JIS B0601−2001に規定される断面曲線の算術平均高さPaを一定面積の表面領域について測定し、その平均値をとったものである。具体的には、SPaは走査型共焦点レーザー顕微鏡により測定される三次元表面プロファイルのデータを解析することにより求まる面粗さパラメータの1つであり、断面曲面の平均面に対する断面曲面の標高の絶対値の平均値を意味する。三次元表面プロファイルを測定する表面領域は、一辺が50μmの矩形の表面領域とすればよい。走査型共焦点レーザー顕微鏡の深さ方向分解能は0.01μm以下とすることが望ましい。一方、JISに規定されている触針式の粗さ計では、触針の先端径が5μmであり、本願のような微細な凹凸を形成した表面においては触針の先端が凹部に入っていかないため面の粗さ測定には適していない。   “Surface roughness SPa” is obtained by measuring the arithmetic average height Pa of the cross-sectional curve defined in JIS B0601-2001 for a surface area of a certain area and taking the average value. Specifically, SPa is one of the surface roughness parameters obtained by analyzing the data of the three-dimensional surface profile measured by the scanning confocal laser microscope, and the elevation of the cross-sectional curved surface relative to the average surface of the cross-sectional curved surface. Means the average of absolute values. The surface area for measuring the three-dimensional surface profile may be a rectangular surface area having a side of 50 μm. It is desirable that the resolution in the depth direction of the scanning confocal laser microscope is 0.01 μm or less. On the other hand, in the stylus type roughness meter defined in JIS, the tip diameter of the stylus is 5 μm, and the tip of the stylus does not enter the recess on the surface where the fine irregularities are formed as in the present application. Therefore, it is not suitable for surface roughness measurement.

本発明によれば、微細な粗面化テクスチャーを表面に持つステンレス鋼板を効率的に生産することが可能となった。本発明に従う陰極電解では、鋼種により異なる自然電位や耐腐食性によって液濃度や電解条件をシビアに選択する必要がなく、種々のフェライト系ステンレス鋼種に幅広く適用しやすい。また、得られた粗面化表面は微細かつ均一なテクスチャーを有するものであり、特に薄膜Si太陽電池の基板としてこれを用いることによって、光電変換効率の向上を図ることができる。   According to the present invention, it is possible to efficiently produce a stainless steel plate having a fine roughened texture on the surface. Cathodic electrolysis according to the present invention does not require severe selection of the liquid concentration and electrolysis conditions depending on the natural potential and corrosion resistance which vary depending on the steel type, and is easy to apply widely to various ferritic stainless steel types. Further, the obtained roughened surface has a fine and uniform texture, and the photoelectric conversion efficiency can be improved by using this as a substrate for a thin film Si solar cell.

本発明に従って得られた微細凹凸テクスチャーを有するステンレス鋼板表面のSEM写真。The SEM photograph of the stainless steel plate surface which has the fine unevenness | corrugation texture obtained according to this invention.

ステンレス鋼の表面に均一化された微細な凹凸テクスチャーを形成する手法について、発明者らは研究を重ねてきた。その結果、塩化第二鉄と塩酸の混合水溶液による化学エッチングに先立ち、予めステンレス鋼の不動態皮膜を改質しておくことが極めて有効であることを知見した。この不動態皮膜の改質工程は、化学エッチングの前処理ともいうべき工程であり、具体的にはアルカリ性の水溶液中で陰極電解処理をするというものである。   The inventors have conducted research on a method for forming a uniform uneven texture on the surface of stainless steel. As a result, it was found that it is extremely effective to modify the passive film of stainless steel in advance before chemical etching with a mixed aqueous solution of ferric chloride and hydrochloric acid. This modification process of the passive film is a process that should be referred to as a pretreatment for chemical etching, and specifically, cathodic electrolysis is performed in an alkaline aqueous solution.

ステンレス鋼の不動態皮膜を構成する主要な元素であるFe,Crについて、それぞれ水溶液中での電位−pHの関係を見ると、高pH域においては、Fe酸化物は低電位側ほど不安定になるが、Cr酸化物については低電位域にも依然として安定である領域が存在する。そのような、Cr酸化物に比べFe酸化物が不安定となる領域にステンレス鋼の表面を保持すると、不動態皮膜をCr酸化物リッチの薄い皮膜に改質することができる。具体的には、後述する組成範囲のフェライト系ステンレス鋼に対しては、電位:−0.5Vvs.SCE以下、pH:11.0以上の領域に保持することによりCr酸化物リッチの薄膜化された不動態皮膜を形成させることができる。あまり低電位とすると水素が多量発生して不経済となるので、電位の下限は−2.2Vvs.SCEとすることが望ましい。   Regarding Fe and Cr, which are the main elements constituting the passive film of stainless steel, the potential-pH relationship in the aqueous solution is seen. In the high pH range, the Fe oxide becomes unstable at the lower potential side. However, for Cr oxide, there is a region that is still stable even in the low potential region. If the surface of the stainless steel is held in such a region where the Fe oxide becomes unstable compared with the Cr oxide, the passive film can be modified to a thin film rich in Cr oxide. Specifically, for a ferritic stainless steel having a composition range to be described later, a Cr oxide-rich thin film is formed by holding in a region of potential: −0.5 V vs. SCE or lower and pH: 11.0 or higher. A passive film can be formed. If the potential is too low, a large amount of hydrogen is generated, which is uneconomical. Therefore, the lower limit of the potential is desirably -2.2 V vs. SCE.

上記の陰極電解によって不動態皮膜をCr酸化物リッチの薄い皮膜に改質したフェライト系ステンレス鋼板を、塩化第二鉄+塩酸混合水溶液中に浸漬する化学エッチング処理に供することにより、微細ピットが均一に分布する微細凹凸テクスチャーを短時間で形成させることができるのである。そのメカニズムについては現時点で必ずしも明確でないが、以下のようなことが考えられる。ステンレス鋼の通常の不動態皮膜では特に表面欠陥が存在する部分にFe酸化物が多く存在し、Fe酸化物の分布が不均一となっている。これに対し上記の陰極電解によって改質された皮膜では、存在していたFe酸化物の多くが除去され、皮膜中の成分分布がより均一化されている。このためエッチング液によって皮膜表面の多くの箇所から同時発生的に多数のピット(孔食)が生成する。それらのピットは開口部を拡げながら深さ方向に成長し、個々のピットの開口径は隣接するピット同士の開口部がぶつかることにより拡大を終える。このようにしてステンレス鋼板の表面は開口径の割りには深さの深い微細なピットに覆われるものと推察される。また、不動態皮膜が薄くなっていることから鋼素地の溶解が迅速に始まるので、短時間で微細凹凸テクスチャーが形成される。この微細凹凸テクスチャーは、例えば薄膜Si太陽電池の基板として用いた場合に光電変換効率の向上をもたらすものであることが確認されている。   Fine ferritic pits are uniformed by subjecting the ferritic stainless steel plate, in which the passive film is modified to a thin film rich in Cr oxide by cathodic electrolysis, to a chemical etching process in which it is immersed in a mixed aqueous solution of ferric chloride and hydrochloric acid Thus, the fine uneven texture distributed on the surface can be formed in a short time. Although the mechanism is not necessarily clear at present, the following may be considered. In the ordinary passive film of stainless steel, there are many Fe oxides particularly in the portions where surface defects are present, and the distribution of Fe oxides is non-uniform. On the other hand, in the film modified by the cathodic electrolysis, much of the existing Fe oxide is removed, and the component distribution in the film is made more uniform. Therefore, a large number of pits (pitting corrosion) are generated simultaneously from many locations on the surface of the film by the etching solution. These pits grow in the depth direction while expanding the openings, and the opening diameter of each pit ends when the openings of adjacent pits collide with each other. In this way, it is assumed that the surface of the stainless steel plate is covered with fine pits that are deep with respect to the opening diameter. Also, since the passive film is thin, the steel substrate starts to dissolve quickly, so that a fine uneven texture can be formed in a short time. This fine asperity texture has been confirmed to bring about an improvement in photoelectric conversion efficiency when used as a substrate of a thin film Si solar cell, for example.

以下、本発明を特定するための事項について説明する。
〔ステンレス鋼の化学組成〕
本発明では、鋼のなかでも熱膨張係数が比較的低いフェライト系ステンレス鋼を対象とする。要求される特性に応じて、以下の組成範囲にある様々なステンレス鋼種が広く適用可能である。その中には公知の多くの規格鋼種が含まれる。
組成範囲;
質量%で、C:0.0001〜0.15%、Si:0.001〜1.2%、Mn:0.01〜2.0%、P:0.001〜0.050%、S:0.0005〜0.030%、Ni:0〜2.0%、Cu:0〜1.0%、Cr:11.0〜32.0%、Mo:0〜3.0%、Al:0〜1.0%、Nb:0〜1.0%、Ti:0〜1.0%、N:0〜0.0025%、B:0〜0.01%、V:0〜0.5%、W:0〜0.3%、Ca、Mg、Y、REM(希土類元素)の合計:0〜0.1%、残部Feおよび不可避的不純物
Hereinafter, matters for specifying the present invention will be described.
[Chemical composition of stainless steel]
In the present invention, a ferritic stainless steel having a relatively low thermal expansion coefficient among steels is targeted. Depending on the required properties, various stainless steel types in the following composition ranges are widely applicable. Among them, many known standard steel types are included.
Composition range;
By mass%, C: 0.0001 to 0.15%, Si: 0.001 to 1.2%, Mn: 0.01 to 2.0%, P: 0.001 to 0.050%, S: 0.0005 to 0.030%, Ni: 0 to 2.0%, Cu: 0 to 1.0%, Cr: 11.0 to 32.0%, Mo: 0 to 3.0%, Al: 0 -1.0%, Nb: 0-1.0%, Ti: 0-1.0%, N: 0-0.0025%, B: 0-0.01%, V: 0-0.5% , W: 0 to 0.3%, Ca, Mg, Y, REM (rare earth elements) total: 0 to 0.1%, balance Fe and inevitable impurities

〔陰極電解工程〕
上述のとおり、本発明ではエッチング工程に先立ち、ステンレス鋼の不動態皮膜を改質するためにアルカリ性水溶液中での陰極電解を実施する。その際、電解液のpHを11.0以上とすることが重要である。それよりpHが低い電解液ではFe酸化物の還元を十分に進行させながらCr酸化物の安定化を図ることのできる電位条件が狭くなる。pHが11.0以上になると上記組成範囲の鋼種において適正な電位および電解時間の設定自由度が拡がり、工業的生産に適する。ただし、過度に高いpHにする必要はなく、通常、pH13.0以下の範囲とすればよい。
[Cathode electrolysis process]
As described above, in the present invention, prior to the etching step, cathodic electrolysis in an alkaline aqueous solution is performed in order to modify the passive film of stainless steel. At that time, it is important that the pH of the electrolytic solution is 11.0 or more. In an electrolytic solution having a lower pH than that, the potential condition that can stabilize the Cr oxide while sufficiently reducing the Fe oxide is narrowed. When the pH is 11.0 or more, the degree of freedom in setting an appropriate potential and electrolysis time is expanded in the steel types having the above composition range, which is suitable for industrial production. However, it is not necessary to set the pH to an excessively high level, and it may be usually in the range of pH 13.0 or less.

陰極電解の電位は−0.5〜−2.2Vvs.SCEの範囲とする。−0.5Vvs.SCEより高電位側ではFe酸化物の除去が不十分となりやすい。一方、−2.2Vvs.SCEより低電位側では水素の発生が激しくなり、工業的には適さない。   The potential of cathodic electrolysis is in the range of −0.5 to −2.2 V vs. SCE. Fe oxide is likely to be insufficiently removed on a higher potential side than −0.5 V vs. SCE. On the other hand, generation of hydrogen is intense on a lower potential side than −2.2 V vs. SCE, which is not industrially suitable.

電解液はpHが11.0以上であれば特に限定されないが、例えば水酸化ナトリウム含有水溶液、ケイ酸ナトリウム含有水溶液、炭酸ナトリウム含有水溶液や、それらの物質の2種以上を含有した混合水溶液などが好適な対象となる。電解中の液温は20〜90℃の範囲とすることが望ましく、電解電流密度は2〜10A/dm2の範囲とすることが望ましい。 The electrolytic solution is not particularly limited as long as the pH is 11.0 or higher, and examples thereof include a sodium hydroxide-containing aqueous solution, a sodium silicate-containing aqueous solution, a sodium carbonate-containing aqueous solution, and a mixed aqueous solution containing two or more of these substances. Suitable target. The liquid temperature during electrolysis is preferably in the range of 20 to 90 ° C., and the electrolysis current density is preferably in the range of 2 to 10 A / dm 2 .

それらの条件に応じて、陰極電解後の不動態皮膜の膜厚が4.0nm以下となる電解時間で電解を終了させることが重要である。ここでいう膜厚は1/2酸素濃度位置のSiO2換算深さにより定まる膜厚(上述)を意味する。膜厚が4.0nmを超えて厚い状態ではFe酸化物の除去がまだ不十分であり、後工程のエッチングでピットの発生が不均一となり、微細な粗面化テクスチャーの形成が難しくなる。ただし、あまり過度に薄膜化することは生産性を損なう要因となるので、膜厚2.0〜4.0nmとなるように電解を終了することが望ましい。このような薄膜化に伴って皮膜組成はCr酸化物リッチに推移する。皮膜中のCr/Feモル比を1.0以上とすることが望ましく、1.0〜3.0の範囲であることがより好ましい。なお、鋼種に応じて所定の膜厚の不動態皮膜が形成される電解条件の範囲は、予め予備実験において把握しておくことができる。 Depending on these conditions, it is important to terminate the electrolysis in an electrolysis time when the thickness of the passive film after cathodic electrolysis is 4.0 nm or less. The film thickness here means the film thickness (described above) determined by the SiO 2 equivalent depth at the 1/2 oxygen concentration position. When the film thickness exceeds 4.0 nm, the removal of Fe oxide is still insufficient, and the generation of pits becomes non-uniform in the subsequent etching, making it difficult to form a fine roughened texture. However, too thin a film is a factor that impairs productivity, so it is desirable to end electrolysis so that the film thickness becomes 2.0 to 4.0 nm. With such thinning, the coating composition changes to Cr oxide rich. The molar ratio of Cr / Fe in the film is preferably 1.0 or more, and more preferably in the range of 1.0 to 3.0. In addition, the range of the electrolysis conditions in which the passive film with a predetermined film thickness is formed according to the steel type can be grasped in advance in a preliminary experiment.

〔エッチング工程〕
次に、上記の陰極電解工程を終えた鋼板を、塩化第二鉄+塩酸混合水溶液中に浸漬する手法により化学的にエッチングする。
塩化第二鉄はステンレス鋼表面に孔食を発生させる作用を有し、塩酸はステンレス鋼表面を全面的に溶解させる作用を有する。これら2種類の物質をバランス良く混合した水溶液中にフェライト系ステンレス鋼板を浸漬する方法によれば、従来の塩化第二鉄の水溶液に浸漬する場合に比べ微細な凹凸を表面に均一に形成することが可能である。エッチング液に浸漬した直後に鋼板表面全面に微細なピットが生成し、時間とともに鋼板表面に生じたピットの内壁がエッチングされていき、開口径の割りに深いピットが形成される。ピットの成長に伴って隣り合うピットの壁面同士がぶつかり、その結果、境界はエッジ状となる。
[Etching process]
Next, the steel plate that has undergone the cathodic electrolysis step is chemically etched by a method of immersing it in a ferric chloride + hydrochloric acid mixed aqueous solution.
Ferric chloride has the action of generating pitting corrosion on the stainless steel surface, and hydrochloric acid has the action of completely dissolving the stainless steel surface. According to the method of immersing a ferritic stainless steel sheet in an aqueous solution in which these two substances are mixed in a well-balanced manner, fine irregularities can be uniformly formed on the surface as compared with the case of immersing in a conventional aqueous solution of ferric chloride. Is possible. Immediately after being immersed in the etching solution, fine pits are generated on the entire surface of the steel sheet, and the inner walls of the pits generated on the steel sheet surface are etched with time, and deep pits are formed with respect to the opening diameter. As the pit grows, the wall surfaces of adjacent pits collide with each other, and as a result, the boundary becomes an edge shape.

エッチング液中の塩化第二鉄の混合量が少ない場合は、表面全面がエッチングされるものの、十分なSPaや面積増加率を得ることができず、例えば薄膜Si太陽電池の基板に用いた場合に光電変換効率を向上させる効果が少なくなる。塩酸の混合量が少ない場合は、表面に孔食は形成されるものの、ピット未発生部分が多く残り、この場合も光電変換効率を向上させる効果が少なくなる。発明者らの詳細な検討によれば、塩化第二鉄+塩酸混合水溶液の組成をFeCl3濃度2〜50質量%、HCl濃度0.1〜20質量%の範囲で調整することによって、表面に占めるピット発生部分の投影面積の割合(ピット占有面積率)が40%以上、かつ平均面粗さSPaが0.05〜0.30μm未満好ましくは0.05〜0.25μmである粗面化テクスチャーを得ることができる。このような微細な粗面化テクスチャーは、従来一般的な粗面化手法では得られなかったものである。上記組成範囲のフェライト系鋼種ではFeCl3濃度10〜20質量%、HCl濃度1〜10質量%の範囲で最適条件を見出しやすい。薄膜Si太陽電池の基板として使用する場合には、特にピット占有面積率を85%以上、平均面粗さSPaを0.05〜0.20μmとすることが望ましい。エッチング液の温度は10〜90℃の範囲とすることが望ましい。浸漬時間は、用途に応じてピット占有面積率およびSPaが所定の範囲となるように調整する。 When the mixing amount of ferric chloride in the etching solution is small, the entire surface is etched, but sufficient SPa and area increase rate cannot be obtained. For example, when used for a substrate of a thin film Si solar cell The effect of improving the photoelectric conversion efficiency is reduced. When the mixing amount of hydrochloric acid is small, pitting corrosion is formed on the surface, but many pit non-occurrence portions remain, and also in this case, the effect of improving the photoelectric conversion efficiency is reduced. According to the inventors' detailed study, the composition of the ferric chloride + hydrochloric acid mixed aqueous solution was adjusted to the surface by adjusting the FeCl 3 concentration in the range of 2 to 50% by mass and the HCl concentration in the range of 0.1 to 20% by mass. Roughened texture having a projected area ratio (pit occupied area ratio) of 40% or more and an average surface roughness SPa of less than 0.05 to 0.30 μm, preferably 0.05 to 0.25 μm. Can be obtained. Such a fine roughening texture has not been obtained by conventional general roughening techniques. It is easy to find optimum conditions in the range of FeCl 3 concentration of 10 to 20% by mass and HCl concentration of 1 to 10% by mass in the ferritic steel types having the above composition range. When used as a substrate for a thin-film Si solar cell, it is particularly desirable that the pit occupation area ratio is 85% or more and the average surface roughness SPa is 0.05 to 0.20 μm. The temperature of the etching solution is desirably in the range of 10 to 90 ° C. The immersion time is adjusted so that the pit occupying area ratio and SPa are in a predetermined range according to the application.

表1に示す組成を有する板厚0.2mmのフェライト系ステンレス鋼板(光輝焼鈍材)を用意した。   A ferritic stainless steel sheet (bright annealing material) having a thickness of 0.2 mm having the composition shown in Table 1 was prepared.

各ステンレス鋼板に、種々のpHに調整された電解液を用いて、種々の電位にて陰極電解を施した。電流密度は2〜10A/dm2の範囲とした。電解液の種類、電解条件は表2中に記載してある。陰極電解処理後の鋼板について、不動態皮膜の膜厚測定および組成分析を以下の手法にて行った。 Each stainless steel plate was subjected to cathodic electrolysis at various potentials using electrolytic solutions adjusted to various pHs. The current density was in the range of 2 to 10 A / dm2. The type of electrolytic solution and electrolysis conditions are listed in Table 2. For the steel sheet after the cathodic electrolysis treatment, the film thickness measurement and composition analysis of the passive film were carried out by the following methods.

〔不動態皮膜の膜厚測定〕
AESにより皮膜の最表面から深さ方向への元素プロファイルを採取することにより膜厚を求めた。装置は日本電子製;JAMP−9500を使用した。SiO2換算で酸素プロファイルがピークの1/2となったスパッタ時間により、SiO2換算による膜厚を決定した。結果を表2に示す。
[Measurement of Passive Film Thickness]
The film thickness was determined by collecting the element profile from the outermost surface of the coating in the depth direction by AES. The apparatus used was JEMP; JAMP-9500. The film thickness in terms of SiO 2 was determined by the sputtering time in which the oxygen profile in terms of SiO 2 was ½ of the peak. The results are shown in Table 2.

〔不動態皮膜の組成分析〕
上記の電解処理後に、水洗、乾燥した直後の試料について、不動態皮膜の組成をXPS(X線光電子分光法)により調査した。装置はクレイトス社製;AXIS−NOVAを使用し、AlKα(単色化)の励起線を用い、光電子取出し角を90°に設定し、皮膜最表面をスパッタなしで分析した。使用した分析装置の分析による深さ方向の情報量は約5nmであり、不動態皮膜全体の情報を取り込んでいるものと判断できる。不動態皮膜の組成は、皮膜中に存在するCrとFeのモル比(Cr/Feモル比)で示した。結果を表2に示す。
[Composition analysis of passive film]
After the above electrolytic treatment, the composition of the passive film was investigated by XPS (X-ray photoelectron spectroscopy) for the sample immediately after being washed with water and dried. The apparatus was manufactured by Kratos; AXIS-NOVA was used, the excitation line of AlKα (single color) was used, the photoelectron extraction angle was set to 90 °, and the outermost surface of the coating was analyzed without sputtering. The amount of information in the depth direction by the analysis of the analyzer used is about 5 nm, and it can be determined that the information of the entire passive film is taken in. The composition of the passive film was indicated by the molar ratio of Cr and Fe existing in the film (Cr / Fe molar ratio). The results are shown in Table 2.

表2に示されるように、所定のpH域にて陰極電解を施すことにより、不動態皮膜の膜厚を4.0nm以下、かつCr/Feモル比を1.0以上に調整することが可能であった。表2中のNo.13,33,53はそれぞれ電解処理を施す前のステンレス鋼板表面を測定したものであるが、発明対象例のものは陰極電解によって不動態皮膜はCr酸化物リッチの薄膜化された皮膜に改質されていることがわかる。   As shown in Table 2, it is possible to adjust the film thickness of the passive film to 4.0 nm or less and the Cr / Fe molar ratio to 1.0 or more by cathodic electrolysis in a predetermined pH range. Met. Nos. 13, 33, and 53 in Table 2 are obtained by measuring the surface of the stainless steel plate before electrolytic treatment. In the example of the subject of the invention, the passive film is made thin with a Cr oxide-rich film by cathodic electrolysis. It can be seen that the film has been modified.

これに対し、No.2,22,42は電解時間が不足のため不動態皮膜の改質が不十分であった。No.5,11,12,25,31,32,45,51,52は電解液のpHが低すぎ、またNo.8,28,48は電解電位が高すぎたことにより、これらはいずれも不動態皮膜が改質されていない。   On the other hand, Nos. 2, 22, and 42 had insufficient modification of the passive film due to insufficient electrolysis time. Nos. 5, 11, 12, 25, 31, 32, 45, 51, and 52 have electrolyte pH too low, and Nos. 8, 28, and 48 have electrolysis potentials too high. Passive film is not modified.

次に、実施例1で得られた一部の試料を用いて、塩化第二鉄+塩酸混合水溶液に浸漬するエッチング処理を実施し、微細粗面化表面の形成を試みた。エッチング条件は表3中に記載してある。エッチング後の試料について、表面の平均面粗さSPa、表面積増加率、ピット占有面積率を求めた。また、エッチング後の鋼板を基板に用いた薄膜Si太陽電池を作製し、光電変換効率を測定して性能を評価した。これらの実験方法は以下のとおりである。   Next, by using a part of the sample obtained in Example 1, an etching process was performed by immersing in a mixed aqueous solution of ferric chloride and hydrochloric acid to try to form a fine roughened surface. Etching conditions are listed in Table 3. For the sample after etching, the average surface roughness SPa, the surface area increase rate, and the pit occupation area rate were determined. Moreover, the thin film Si solar cell which used the steel plate after an etching for the board | substrate was produced, the photoelectric conversion efficiency was measured, and the performance was evaluated. These experimental methods are as follows.

〔平均面粗さSPaの測定〕
走査型共焦点レーザー顕微鏡(オリンパス社製;OLS1200)により粗面化表面を観察し、50μm×50μmの矩形領域の表面プロファイルを深さ方向の分解能0.01μmで取り込み、画像処理として孤立点除去1回および画像輝度平均化1回を行った後、平均面粗さSPaを算出させた。その結果を表3に示す。
[Measurement of average surface roughness SPa]
The roughened surface is observed with a scanning confocal laser microscope (Olympus; OLS1200), the surface profile of a rectangular region of 50 μm × 50 μm is captured with a resolution of 0.01 μm in the depth direction, and isolated points are removed as image processing 1 The average surface roughness SPa was calculated after performing the image averaging and the image luminance averaging once. The results are shown in Table 3.

〔表面積増加率の測定〕
上述の走査型共焦点レーザー顕微鏡により、50μm×50μmの矩形領域内の表面積を測定し、その値を投影面積で除することにより面積増加率を求めた。その結果を表3に示す。
[Measurement of surface area increase rate]
The surface area in a rectangular area of 50 μm × 50 μm was measured with the above-described scanning confocal laser microscope, and the area increase rate was determined by dividing the value by the projected area. The results are shown in Table 3.

〔ピット占有面積率の測定〕
走査型電子顕微鏡により倍率2000倍の視野で粗面化表面を観察することにより、投影画像中に占めるピット発生部分(ピット開口部の存在する部分)の面積を求め、これをピット占有面積率(%)とした。結果を表3に示す。
[Measurement of pit occupation area ratio]
By observing the roughened surface with a scanning electron microscope at a magnification of 2000 times, the area of the pit occurrence portion (portion where the pit opening exists) in the projected image is obtained, and this is calculated as the pit occupation area ratio ( %). The results are shown in Table 3.

〔薄膜Si太陽電池の作製〕
エッチング後の鋼板を基板として、その粗面化表面上に直流マグネトロンスパッタリング法により基板加熱なしで下部電極層となる0.3μm厚のAg層を形成し、さらにその上に50nm厚のZnO層を形成した。その後、基板をプラズマCVD装置に入れ、1.5×10-5Paまで減圧した状態で基板温度を200℃とし、水素ガスおよびモノシランガスを用いて0.3μm厚のn型Si薄膜を形成した。その上に基板温度200℃にて1μm厚のi型Si薄膜を形成した。さらにその上に0.3μm厚のp型Si薄膜を形成した。次に、高周波マグネトロンスパッタリング法により、50nm厚のITO層を基板温度180℃にて形成した。その後、大気に取り出し、櫛歯状のマスクを装着し、基板加熱なしで直流マグネトロンスパッタリング法により500nmのAg薄膜を形成することにより薄膜Si太陽電池を構築した。
[Production of thin-film Si solar cells]
Using a steel plate after etching as a substrate, a 0.3 μm thick Ag layer is formed on the roughened surface by DC magnetron sputtering without heating the substrate, and a 50 nm thick ZnO layer is further formed thereon. Formed. Thereafter, the substrate was put in a plasma CVD apparatus, the substrate temperature was set to 200 ° C. under a reduced pressure of 1.5 × 10 −5 Pa, and an n-type Si thin film having a thickness of 0.3 μm was formed using hydrogen gas and monosilane gas. An i-type Si thin film having a thickness of 1 μm was formed thereon at a substrate temperature of 200 ° C. Further, a p-type Si thin film having a thickness of 0.3 μm was formed thereon. Next, an ITO layer having a thickness of 50 nm was formed at a substrate temperature of 180 ° C. by high-frequency magnetron sputtering. Thereafter, the film was taken out into the atmosphere, a comb-like mask was attached, and a thin film Si solar cell was constructed by forming a 500 nm Ag thin film by DC magnetron sputtering without heating the substrate.

〔変換効率の測定〕
得られた太陽電池について、山下電装社製「ソーラーシュミレーター;YSS−100」を用いてAM1.5,100mW/cm2の模擬太陽光を照射しながら、KEITHLEY社製「2400型ソースメータ」によりI−V特性を測定して、短絡電流密度Jsc,開放電圧Voc,形状因子FFの値を得た。これらの値から下記(1)式により光電変換効率ηの値を求めた。
光電変換効率η(%)=短絡電流密度Jsc(mA/cm2)×開放電圧Voc(V)×{形状因子FF/入射光100(mW/cm2)}×100 …(1)
粗面化していないフラットな従来タイプの基板を用いた同様構造の太陽電池における光電変換効率η0を標準として、η0に対する各薄膜Si太陽電池の光電変換効率ηの比率η/η0の値(「変換効率比」という)を求めた。その結果を表3に示す。
[Measurement of conversion efficiency]
The obtained solar cell was irradiated with simulated solar light of AM 1.5, 100 mW / cm 2 using “Solar simulator; YSS-100” manufactured by Yamashita Denso Co., Ltd. The -V characteristic was measured, and the values of short circuit current density Jsc, open circuit voltage Voc, and form factor FF were obtained. From these values, the value of photoelectric conversion efficiency η was determined by the following formula (1).
Photoelectric conversion efficiency η (%) = short circuit current density Jsc (mA / cm 2 ) × open circuit voltage Voc (V) × {form factor FF / incident light 100 (mW / cm 2 )} × 100 (1)
The photoelectric conversion efficiency eta 0 in the solar cell of the same structure using a flat conventional type substrate not roughened as a standard, the ratio eta / eta 0 value of photoelectric conversion efficiency eta of the thin film Si solar cell for eta 0 (Referred to as “conversion efficiency ratio”). The results are shown in Table 3.

表3に見られるように、本発明に従えばステンレス鋼板表面にSPa,ピット占有面積率,面積増加率が適正にコントロールされた微細凹凸テクスチャーを形成することができ、それを基板に用いた薄膜Si太陽電池では変換効率比が明らかに1.00を上回り、光電変換効率の向上が認められた。面積増加率は1.20以上とすることが好ましい。   As can be seen from Table 3, according to the present invention, a fine uneven texture in which SPa, pit occupying area ratio, and area increase rate are appropriately controlled can be formed on the surface of the stainless steel plate, and a thin film using it as a substrate. In the Si solar cell, the conversion efficiency ratio clearly exceeded 1.00, and an improvement in photoelectric conversion efficiency was observed. The area increase rate is preferably 1.20 or more.

これに対し、No.2−9,2−17は前処理である陰極電解を施さずに塩化第二鉄+塩酸混合水溶液によるエッチングに供したものであり、SPaが大きくなって短絡を起こした。No.2−2,2−10,2−18はエッチングでの浸漬時間が短かったことによりピット占有面積率が小さくなり、またNo.2−6,2−14,2−22はエッチングでの浸漬時間が長かったことによりSPaが低下し、これらはいずれも光電変換効率の向上は認められないか、あるいは不十分なレベルにとどまった。   On the other hand, Nos. 2-9 and 2-17 were subjected to etching with a mixed aqueous solution of ferric chloride and hydrochloric acid without performing the cathodic electrolysis, which was a pretreatment, and the SPa increased to cause a short circuit. . Nos. 2-2, 2-10, and 2-18 have a small pit occupation area ratio due to a short immersion time in etching, and Nos. 2-6, 2-14, and 2-22 Since the immersion time was long, SPa was lowered, and any of these showed no improvement in photoelectric conversion efficiency or remained at an insufficient level.

参考のため、図1に本発明に従って得られた微細凹凸テクスチャーを有するステンレス鋼板表面のSEM写真を例示する(表3、No.2−12の例)。   For reference, FIG. 1 illustrates an SEM photograph of the surface of a stainless steel plate having a fine uneven texture obtained according to the present invention (Example of Table 3, No. 2-12).

Claims (4)

質量%で、C:0.0001〜0.15%、Si:0.001〜1.2%、Mn:0.01〜2.0%、P:0.001〜0.050%、S:0.0005〜0.030%、Ni:0〜2.0%、Cu:0〜1.0%、Cr:11.0〜32.0%、Mo:0〜3.0%、Al:0〜1.0%、Nb:0〜1.0%、Ti:0〜1.0%、N:0〜0.0025%、B:0〜0.01%、V:0〜0.5%、W:0〜0.3%、Ca、Mg、Y、REM(希土類元素)の合計:0〜0.1%、残部Feおよび不可避的不純物からなる組成を有し、最表面に不動態皮膜をもつフェライト系ステンレス鋼板を、pHが11.0以上の水溶液中で−0.5〜−2.2Vvs.SCEの電位で陰極電解することにより、AESによる最表面から深さ方向への元素プロファイルにおける1/2酸素濃度位置のSiO2換算深さにより定まる不動態皮膜の膜厚を4.0nm以下とする工程(陰極電解工程)、
前記陰極電解工程を終えた鋼板を、FeCl3濃度2〜50質量%、HCl濃度0.1〜20質量%の塩化第二鉄+塩酸混合水溶液中に浸漬することにより表面にピットを発生させ、表面に占めるピット発生部分の投影面積の割合(ピット占有面積率)を40%以上、かつ平均面粗さSPaを0.05〜0.30μm未満とする工程(エッチング工程)、
を有する微細粗面化ステンレス鋼板の製造法。
By mass%, C: 0.0001 to 0.15%, Si: 0.001 to 1.2%, Mn: 0.01 to 2.0%, P: 0.001 to 0.050%, S: 0.0005 to 0.030%, Ni: 0 to 2.0%, Cu: 0 to 1.0%, Cr: 11.0 to 32.0%, Mo: 0 to 3.0%, Al: 0 -1.0%, Nb: 0-1.0%, Ti: 0-1.0%, N: 0-0.0025%, B: 0-0.01%, V: 0-0.5% , W: 0 to 0.3%, Ca, Mg, Y, REM (rare earth elements) total: 0 to 0.1%, remaining Fe and unavoidable impurities, composition on the outermost surface Elemental profile from the outermost surface to the depth direction by AES by cathodic electrolysis of a ferritic stainless steel plate having a pH of −0.5 to −2.2 V vs. SCE in an aqueous solution having a pH of 11.0 or more 1/2 in The step of the thickness of passive film determined by SiO 2 conversion depth of iodine concentration position than 4.0 nm (cathodic process),
The steel plate that has undergone the cathodic electrolysis step is dipped in a mixed aqueous solution of ferric chloride and hydrochloric acid having an FeCl 3 concentration of 2 to 50% by mass and an HCl concentration of 0.1 to 20% by mass to generate pits on the surface, A step (etching step) of setting the ratio of the projected area of the pit generation portion on the surface (pit occupation area ratio) to 40% or more and the average surface roughness SPa to less than 0.05 to 0.30 μm;
A method for producing a fine-roughened stainless steel sheet having
前記エッチング工程においてピット占有面積率を85%以上、平均面粗さSPaを0.05〜0.20μmとする請求項1に記載の微細粗面化ステンレス鋼板の製造法。   The method for producing a fine-roughened stainless steel sheet according to claim 1, wherein the pit occupation area ratio is 85% or more and the average surface roughness SPa is 0.05 to 0.20 µm in the etching step. 請求項1または2に記載の製造法によって得られる微細粗面化ステンレス鋼板からなる薄膜Si太陽電池用基板。   A thin film Si solar cell substrate made of a fine-roughened stainless steel plate obtained by the production method according to claim 1. 請求項1または2に記載の製造法により微細粗面化ステンレス鋼板を製造し、その鋼板を基板として微細粗面化表面上に光電変換用の成膜を施す薄膜Si太陽電池の製造法。   A method for producing a thin-film Si solar cell, wherein a fine-roughened stainless steel plate is produced by the production method according to claim 1 or 2, and a film for photoelectric conversion is formed on the fine-roughened surface using the steel plate as a substrate.
JP2011069008A 2011-03-25 2011-03-25 METHOD FOR PRODUCING STAINLESS STEEL SHEET WITH FINELY ROUGHENED SURFACE AND THIN FILM Si SOLAR CELL Withdrawn JP2012201950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011069008A JP2012201950A (en) 2011-03-25 2011-03-25 METHOD FOR PRODUCING STAINLESS STEEL SHEET WITH FINELY ROUGHENED SURFACE AND THIN FILM Si SOLAR CELL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011069008A JP2012201950A (en) 2011-03-25 2011-03-25 METHOD FOR PRODUCING STAINLESS STEEL SHEET WITH FINELY ROUGHENED SURFACE AND THIN FILM Si SOLAR CELL

Publications (1)

Publication Number Publication Date
JP2012201950A true JP2012201950A (en) 2012-10-22

Family

ID=47183259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011069008A Withdrawn JP2012201950A (en) 2011-03-25 2011-03-25 METHOD FOR PRODUCING STAINLESS STEEL SHEET WITH FINELY ROUGHENED SURFACE AND THIN FILM Si SOLAR CELL

Country Status (1)

Country Link
JP (1) JP2012201950A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014107510A (en) * 2012-11-29 2014-06-09 Showa Shell Sekiyu Kk Compound thin film solar cell
WO2017043025A1 (en) * 2015-09-07 2017-03-16 Jfeスチール株式会社 Substrate for photoelectric conversion elements
CN108922943A (en) * 2018-06-25 2018-11-30 东方日升新能源股份有限公司 A kind of effectively control black undesirable method of silicon cell EL of diamond wire wet-chemical
CN109599458A (en) * 2018-11-01 2019-04-09 北京师范大学 Crystal silicon chip surface pyramid flannelette preparation method
WO2019138869A1 (en) * 2018-01-12 2019-07-18 新日鐵住金ステンレス株式会社 Austenitic stainless steel and production method therefor
CN111263996A (en) * 2017-10-25 2020-06-09 杰富意钢铁株式会社 Method for producing stainless steel sheet for separator of fuel cell
CN114574759A (en) * 2022-02-21 2022-06-03 山东产研先进材料研究院有限公司 Ferritic stainless steel for fuel cell bipolar plates, method for controlling surface roughness, method for forming passive film and use
JP7151950B1 (en) * 2021-09-02 2022-10-12 Jfeスチール株式会社 Ferritic stainless steel sheet and manufacturing method thereof
WO2023032377A1 (en) * 2021-09-02 2023-03-09 Jfeスチール株式会社 Ferritic stainless steel sheet and method for producing same

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014107510A (en) * 2012-11-29 2014-06-09 Showa Shell Sekiyu Kk Compound thin film solar cell
US10636985B2 (en) * 2015-09-07 2020-04-28 Jfe Steel Corporation Substrate for photoelectric conversion element
WO2017043025A1 (en) * 2015-09-07 2017-03-16 Jfeスチール株式会社 Substrate for photoelectric conversion elements
JPWO2017043025A1 (en) * 2015-09-07 2017-09-07 Jfeスチール株式会社 Substrate for photoelectric conversion element
KR20180021181A (en) * 2015-09-07 2018-02-28 제이에프이 스틸 가부시키가이샤 Substrate for photoelectric conversion element
CN107851721A (en) * 2015-09-07 2018-03-27 杰富意钢铁株式会社 Photo-electric conversion element substrate
EP3349266A4 (en) * 2015-09-07 2018-09-05 JFE Steel Corporation Substrate for photoelectric conversion elements
US20180358565A1 (en) * 2015-09-07 2018-12-13 Jfe Steel Corporation Substrate for photoelectric conversion element
KR102122192B1 (en) * 2015-09-07 2020-06-12 제이에프이 스틸 가부시키가이샤 Substrate for photoelectric conversion element
US20200248332A1 (en) * 2017-10-25 2020-08-06 Jfe Steel Corporation Production method for stainless steel sheet for fuel cell separators
CN111263996A (en) * 2017-10-25 2020-06-09 杰富意钢铁株式会社 Method for producing stainless steel sheet for separator of fuel cell
US11618967B2 (en) * 2017-10-25 2023-04-04 Jfe Steel Corporation Production method for stainless steel sheet for fuel cell separators
JP2019123895A (en) * 2018-01-12 2019-07-25 日鉄ステンレス株式会社 Austenitic stainless steel and manufacturing method therefor
WO2019138869A1 (en) * 2018-01-12 2019-07-18 新日鐵住金ステンレス株式会社 Austenitic stainless steel and production method therefor
KR20200047631A (en) * 2018-01-12 2020-05-07 닛테츠 스테인레스 가부시키가이샤 Austenitic stainless steel and its manufacturing method
KR102379904B1 (en) 2018-01-12 2022-04-01 닛테츠 스테인레스 가부시키가이샤 Austenitic stainless steel and manufacturing method thereof
CN108922943A (en) * 2018-06-25 2018-11-30 东方日升新能源股份有限公司 A kind of effectively control black undesirable method of silicon cell EL of diamond wire wet-chemical
CN109599458A (en) * 2018-11-01 2019-04-09 北京师范大学 Crystal silicon chip surface pyramid flannelette preparation method
JP7151950B1 (en) * 2021-09-02 2022-10-12 Jfeスチール株式会社 Ferritic stainless steel sheet and manufacturing method thereof
WO2023032377A1 (en) * 2021-09-02 2023-03-09 Jfeスチール株式会社 Ferritic stainless steel sheet and method for producing same
CN114574759A (en) * 2022-02-21 2022-06-03 山东产研先进材料研究院有限公司 Ferritic stainless steel for fuel cell bipolar plates, method for controlling surface roughness, method for forming passive film and use

Similar Documents

Publication Publication Date Title
JP2012201950A (en) METHOD FOR PRODUCING STAINLESS STEEL SHEET WITH FINELY ROUGHENED SURFACE AND THIN FILM Si SOLAR CELL
JP5831670B1 (en) Titanium material or titanium alloy material having surface conductivity, manufacturing method thereof, and fuel cell separator and fuel cell using the same
US5545262A (en) Method of preparing a metal substrate of improved surface morphology
JP5094172B2 (en) Aluminum base material for etching and aluminum electrode material for electrolytic capacitor using the same
JPWO2018198685A1 (en) Stainless steel plate for fuel cell separator and method of manufacturing the same
JP5790906B1 (en) Titanium material or titanium alloy material having surface conductivity, fuel cell separator and fuel cell using the same
CN108570703A (en) Preparation method of tungsten/copper laminated composite material based on tungsten sheet surface nanocrystallization
Ono et al. Pit growth behaviour of aluminium under galvanostatic control
Lee et al. Essential anti-corrosive behavior of anodized Al alloy by applied current density
JP2721739B2 (en) Method for producing an improved anode
JP2012201951A (en) Method for producing stainless steel sheet with coarsely roughened surface and dye sensitized solar cell
CN107012488B (en) Surface treated steel plate, cartridge and battery case
US5167788A (en) Metal substrate of improved surface morphology
JP4705181B2 (en) Method for producing aluminum foil for electrolytic capacitor electrode
JP5081570B2 (en) Titanium material and titanium material manufacturing method
US5262040A (en) Method of using a metal substrate of improved surface morphology
CN103911645A (en) Magnesium alloy anode oxidation method
Ono et al. Effect of sulfuric acid on pit propagation behaviour of aluminium under AC etch process
JP3818723B2 (en) Roughening method for stainless steel plate surface
JP5569259B2 (en) Method for producing surface-modified conductive material
JP5373745B2 (en) Method for producing aluminum material for electrolytic capacitor electrode having excellent etching characteristics, electrode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
US6921443B1 (en) Process for producing stainless steel with improved surface properties
JP4763363B2 (en) Aluminum material for electrolytic capacitor electrode having excellent etching characteristics and method for producing the same, electrode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP5891845B2 (en) Manufacturing method of surface-treated steel sheet
JP4421701B2 (en) Aluminum foil for electrolytic capacitor electrode

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603