JP5373745B2 - Method for producing aluminum material for electrolytic capacitor electrode having excellent etching characteristics, electrode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor - Google Patents

Method for producing aluminum material for electrolytic capacitor electrode having excellent etching characteristics, electrode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor Download PDF

Info

Publication number
JP5373745B2
JP5373745B2 JP2010249003A JP2010249003A JP5373745B2 JP 5373745 B2 JP5373745 B2 JP 5373745B2 JP 2010249003 A JP2010249003 A JP 2010249003A JP 2010249003 A JP2010249003 A JP 2010249003A JP 5373745 B2 JP5373745 B2 JP 5373745B2
Authority
JP
Japan
Prior art keywords
aluminum
electrolytic capacitor
aluminum material
etching
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010249003A
Other languages
Japanese (ja)
Other versions
JP2011063887A (en
Inventor
幸子 小野
英孝 阿相
雅司 坂口
智明 山ノ井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2010249003A priority Critical patent/JP5373745B2/en
Publication of JP2011063887A publication Critical patent/JP2011063887A/en
Application granted granted Critical
Publication of JP5373745B2 publication Critical patent/JP5373745B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • ing And Chemical Polishing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an aluminum electrode material for an electrolytic capacitor excellent in switching characteristics, which can surely increase the expanded surface rate to increase the electrostatic capacitance by forming uniform etched pits in a high density and starting the deep etching from these pits to make coupling hard within a tunnel. <P>SOLUTION: The method for producing the aluminum electrode material includes the steps of: anodizing an aluminum material 1 in such a state as to align the resin spheres 2 on the surface of the aluminum material 1; and exposing outside, the aluminum base material 5 of the fine recessed bottom in which the resin spheres have existed by sequentially or simultaneously removing the resin spheres 2 and the anodized film 3 after anodization and making a peripheral anodized film remain. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

この発明は、静電容量が高く耐折強度に優れた電極材として好適に用いられる、エッチング特性に優れた電解コンデンサ電極用アルミニウム材の製造方法、アルミニウム電解コンデンサ用電極材ならびにアルミニウム電解コンデンサに関する。   The present invention relates to a method for producing an aluminum material for an electrolytic capacitor electrode excellent in etching characteristics, an electrode material for an aluminum electrolytic capacitor, and an aluminum electrolytic capacitor, which are suitably used as an electrode material having a high capacitance and excellent bending strength.

なお、この明細書において「アルミニウム」の語はその合金を含む意味で用い、アルミニウム材とは箔と板およびこれらを用いた成形体が含まれる。   In this specification, the term “aluminum” is used to include the alloy thereof, and the aluminum material includes a foil, a plate, and a molded body using these.

通常、電解コンデンサ用電極材に使用されるアルミニウム材は、拡面率を高めて静電容量を向上させるためにエッチング処理される。そして、エッチング処理により形成されるエッチピットの数が多いほど、また長いほど拡面率が高くなるため、エッチング特性を改善すべく、エッチング処理の前工程としてアルミニウム材に様々な処理が行われている。   Usually, the aluminum material used for the electrode material for electrolytic capacitors is subjected to an etching process in order to increase the surface expansion ratio and improve the capacitance. And, as the number of etch pits formed by the etching process increases, the surface expansion ratio increases as the number of etch pits increases, so that various processes are performed on the aluminum material as a pre-process of the etching process in order to improve the etching characteristics. Yes.

例えば、(100)結晶方位の制御、アルミニウム材へのCuやPbなどの微量元素の添加、最終焼鈍前の脱脂洗浄、最終焼鈍での結晶性酸化膜の形成処理、等である(非特許文献1,特許文献1〜3)。   For example, control of (100) crystal orientation, addition of trace elements such as Cu and Pb to an aluminum material, degreasing cleaning before final annealing, formation treatment of a crystalline oxide film by final annealing, etc. (non-patent document) 1, patent documents 1-3).

また、静電容量向上に向けて、過去に異物質の付着や機械的に欠陥を形成する試みも行われてきた(特許文献4〜7)。   In addition, attempts have been made in the past to attach foreign substances or mechanically form defects to improve electrostatic capacity (Patent Documents 4 to 7).

また、特許文献8には、金属粉末を含むインクを塗布することが記載されている。   Patent Document 8 describes applying ink containing metal powder.

また、樹脂球を利用してエッチピットの均一化を狙った例として、特許文献9には、樹脂球を静電気により付着させ、熱圧着等で固定した後エッチングする方法が開示されている。   Further, as an example aiming at uniform etch pits using a resin ball, Patent Document 9 discloses a method of etching after a resin ball is attached by static electricity and fixed by thermocompression bonding or the like.

また、樹脂球を利用して、陽極酸化処理により凹凸を付与し、樹脂球を取り除く例が、特許文献10に開示されている。   Further, Patent Document 10 discloses an example in which unevenness is imparted by anodizing using resin balls and the resin balls are removed.

さらに、アルミニウム表面にアルミニウムとは異なる金属元素を付与し、エッチピットの分布を制御する方法として、特許文献11には、圧延用潤滑油にCuが結合された有機分子を混合して圧延によりアルミニウム表面に付着する方法が記載され、特許文献12には、網点印刷により金属化合物を規則的に付着させる方法が記載されている。   Furthermore, as a method for imparting a metal element different from aluminum to the aluminum surface and controlling the distribution of etch pits, Patent Document 11 discloses that aluminum is mixed by rolling and mixed with organic molecules bonded with Cu in a lubricating oil for rolling. A method of attaching to the surface is described, and Patent Document 12 describes a method of regularly attaching a metal compound by dot printing.

山口謙四郎:軽金属,35(1985),P365Kenshiro Yamaguchi: Light Metal, 35 (1985), P365 特開2002−239773号公報JP 2002-239773 A 特公昭58−34925号公報Japanese Patent Publication No. 58-34925 特開平3−122260号公報Japanese Patent Laid-Open No. 3-122260 特公平5−28486号公報Japanese Patent Publication No. 5-28486 特開昭63−157882号公報Japanese Unexamined Patent Publication No. 63-157882 特許2545429号公報Japanese Patent No. 2545429 特公平7−19732号公報Japanese Patent Publication No.7-19732 特公平7−109036号公報Japanese Patent Publication No. 7-109036 特開平8−138977号公報Japanese Patent Laid-Open No. 8-138977 特開昭63ー220512号公報Japanese Unexamined Patent Publication No. 63-220512 特開平8−269601号公報JP-A-8-269601 特開2004−266024号公報JP 2004-266024 A

しかしながら、単に各エッチピットの数や長さだけでは容量向上の限界に近づいている。アルミニウム材の拡面率を向上させるためには局部エッチング、未エッチング、表面溶解を少なくして、エッチピットをエッチング面で均一に、かつ高密度に発生させる必要があるが、前述した非特許文献1、特許文献1〜3に記載の方法では、高密度かつ均一にエッチピットを発生させる点で十分でなく、ますます増大しつつある静電容量への要望に応えうるものではない。   However, simply increasing the number and length of each etch pit is approaching the limit of capacity improvement. In order to improve the surface expansion ratio of the aluminum material, it is necessary to reduce local etching, non-etching, and surface dissolution, and to generate etch pits uniformly and densely on the etched surface. 1. The methods described in Patent Documents 1 to 3 are not sufficient in that etch pits are uniformly generated at high density, and cannot meet the increasing demand for capacitance.

現在のアルミニウム材は、エッチング過程での孔食ピットの分布を制御できないため、エッチピットのトンネルが結合し、拡面率が理想状態に到達しない。そのため、現状の静電容量は、理想容量に対し50〜65%に留まっている。   Since the current aluminum material cannot control the distribution of pitting pits during the etching process, the tunnels of the etch pits are combined and the surface expansion ratio does not reach the ideal state. For this reason, the current capacitance remains at 50 to 65% of the ideal capacitance.

また、異物質を付着したり機械的に欠陥を形成する特許文献4〜7に記載された技術では、均一な核形成を実現するには至らず、高静電容量化は実現されていない。   In addition, in the techniques described in Patent Documents 4 to 7 in which foreign substances are attached or mechanical defects are formed, uniform nucleation cannot be realized, and high capacitance is not realized.

また、特許文献8のように、金属粉末を含むインクを塗布する方法では、金属元素表面に強固な酸化膜が形成され、アルミニウムへの拡散が進行しなかったり、アルミニウムと金属粉末との間にエッチピット発生のトリガーとなるために必要な電位差を確保することができないため、十分な効果を上げることができなかった。   In addition, as in Patent Document 8, in the method of applying ink containing metal powder, a strong oxide film is formed on the surface of the metal element, and diffusion to aluminum does not proceed, or between aluminum and metal powder. Since the potential difference required for triggering the generation of etch pits cannot be secured, a sufficient effect cannot be achieved.

また、樹脂球を利用してエッチピットの均一化を狙った特許文献9の方法では、エッチピットの分布を制御するためのマスキングが十分ではなかった。   Further, in the method of Patent Document 9 aiming at uniform etch pits using resin balls, masking for controlling the distribution of etch pits is not sufficient.

また、樹脂球を利用して、陽極酸化処理により凹凸を付与し、樹脂球を取り除く特許文献10の方法では、樹脂球とアルミニウムが接触する部分の自然酸化皮膜、または、接触部に回り込んだ陽極酸化皮膜がエッチングの障害となり、かえって不均一なエッチピット発生分布となるという問題点があった。   In addition, in the method of Patent Document 10 in which unevenness is imparted by anodizing treatment using a resin sphere and the resin sphere is removed, a natural oxide film at a portion where the resin sphere and aluminum are in contact with each other or a contact portion is wrapped around. There was a problem that the anodized film became an obstacle to etching, and on the contrary, an uneven distribution of etch pits was generated.

さらに、アルミニウム表面にアルミニウムとは異なる金属元素を付与し、エッチピットの分布を制御する特許文献11や特許文献12の方法では、前者は規則的な分布を持たないため、エッチピットの密度制御は可能になってもその分布を変えることはできず、また、後者は金属元素付着部以外の部分は、積極的にはマスクされていないため、いずれもエッチピット核の制御としては、不十分であった。   Further, in the methods of Patent Document 11 and Patent Document 12 in which a metal element different from aluminum is applied to the aluminum surface and the distribution of etch pits is controlled, the former does not have a regular distribution. Even if it becomes possible, the distribution cannot be changed, and since the latter part is not actively masked except for the metal element adhesion part, both are insufficient for controlling the etch pit nuclei. there were.

本発明は、このような技術背景に鑑みてなされたものであって、エッチピットを高密度かつ均一に形成させ、このエッチピットを起点に深くかつトンネル内で結合が起こりにくくエッチングすることで確実に拡面率を高め、静電容量の更なる増大を図ることができる、エッチング特性に優れた電解コンデンサ電極用アルミニウム材の製造方法、アルミニウム電解コンデンサ用電極材ならびにアルミニウム電解コンデンサを提供することを目的とする。   The present invention has been made in view of such a technical background, and etch pits are formed with high density and uniformity, and the etching pits are deeply formed from the starting point and are reliably etched by being less likely to cause bonding in the tunnel. To provide a method for producing an aluminum material for an electrolytic capacitor electrode excellent in etching characteristics, an electrode material for an aluminum electrolytic capacitor, and an aluminum electrolytic capacitor capable of further increasing the surface expansion ratio and further increasing the capacitance. Objective.

上記課題に鑑み、鋭意検討した結果、本発明者らは、電解エッチングを施すアルミニウム材について、アルミニウム材の表面に樹脂球を配した状態で陽極酸化することにより、規則的な凹凸を有する陽極酸化皮膜を形成させ、その後樹脂球を除去して陽極酸化皮膜に微細凹部を形成させたのち、皮膜を順次溶解してもとの樹脂球の底部相当部位にアルミニウム素地の露出部を形成し、その周囲の陽極酸化皮膜は残存させることで、エッチピットの開始点となる核を有効に形成せしめることを可能にし、本発明を完成した。   As a result of intensive studies in view of the above problems, the present inventors have made anodization with regular irregularities by anodizing an aluminum material subjected to electrolytic etching in a state where resin balls are arranged on the surface of the aluminum material. After forming the film and then removing the resin spheres to form fine recesses in the anodic oxide film, an exposed portion of the aluminum base is formed at the portion corresponding to the bottom of the original resin sphere even if the film is sequentially dissolved. By leaving the surrounding anodic oxide film, it becomes possible to effectively form nuclei as starting points of etch pits, thus completing the present invention.

即ち、前記課題は以下の手段によって解決される。
(1)アルミニウム材の表面に樹脂球を配列させた状態で陽極酸化処理する工程と、陽極酸化処理後、前記樹脂球と陽極酸化皮膜とを順次的にまたは同時に除去して、樹脂球が存在していた微細凹部の底部のアルミニウム素地を露出させ、周囲の陽極酸化皮膜を残存させる工程と、を含むことを特徴とするエッチング特性に優れた電解コンデンサ電極用アルミニウム材の製造方法。
(2)陽極酸化皮膜の形成厚さが、樹脂球直径の0.3層分から3層分である前項1に記載のエッチング特性に優れた電解コンデンサ電極用アルミニウム材の製造方法。
(3)陽極酸化皮膜の除去方法が、酸またはアルカリによる湿式のエッチング、またはドライエッチングによる方法である請求項1または2に記載のエッチング特性に優れた電解コンデンサ電極用アルミニウム材の製造方法。
(4)前記露出させたアルミニウム素地に、アルミニウムとは異なる金属、溶媒可溶性の金属化合物及び金属錯体の少なくとも何れかを付着させる工程をさらに含む前項1〜3のいずれかに記載のエッチング特性に優れた電解コンデンサ電極用アルミニウム材の製造方法。
(5)露出させたアルミニウム素地に付着させた金属がアルミニウムより貴な金属である前項4に記載のエッチング特性に優れた電解コンデンサ電極用アルミニウム材の製造方法。
(6)露出させたアルミニウム素地に金属、溶媒可溶性の金属化合物及び金属錯体のうちの少なくとも何れかを付着させ、その後の加熱処理により、アルミニウム素地の表面からアルミニウム材の内部に金属元素を拡散させる前項4に記載のエッチング特性に優れた電解コンデンサ電極用アルミニウム材の製造方法。
(7)樹脂球の平均直径が0.2μm以上5μm以下である前項1〜6のいずれかに記載のエッチング特性に優れた電解コンデンサ電極用アルミニウム材の製造方法。
(8)樹脂球を利用して形成した陽極酸化皮膜の一部から露出したアルミニウム材のアルミニウム素地に、直接にあるいはそこに付着または拡散させた異種金属をトリガーとして利用することにより、電気化学的手法にて規則配列させた多数のエッチピットが形成され、これらのエッチピットの50%以上が、円相当径0.4〜10μmの範囲に規定されている特徴とするアルミニウム電解コンデンサ用電極材。
(9)アルミニウム材の純度が99.9質量%以上である前項8に記載のアルミニウム電解コンデンサ用電極材。
(10)前項8または9に記載の電解コンデンサ用電極材が用いられているアルミニウム電解コンデンサ。
That is, the said subject is solved by the following means.
(1) The step of anodizing the resin spheres arranged on the surface of the aluminum material, and after the anodizing treatment, the resin spheres and the anodized film are removed sequentially or simultaneously so that the resin spheres are present. A method for producing an aluminum material for an electrolytic capacitor electrode excellent in etching characteristics, comprising: exposing an aluminum base at the bottom of a fine recess, and leaving a surrounding anodic oxide film.
(2) The method for producing an aluminum material for electrolytic capacitor electrodes according to item 1 above, wherein the formation thickness of the anodized film is from 0.3 to 3 layers of the resin sphere diameter.
(3) The method for producing an aluminum material for an electrolytic capacitor electrode according to claim 1 or 2, wherein the method for removing the anodic oxide film is a wet etching method using acid or alkali, or a dry etching method.
(4) The etching characteristics according to any one of items 1 to 3, further comprising a step of attaching at least one of a metal different from aluminum, a solvent-soluble metal compound, and a metal complex to the exposed aluminum substrate. The manufacturing method of the aluminum material for electrolytic capacitor electrodes.
(5) The method for producing an aluminum material for an electrolytic capacitor electrode according to item 4, wherein the metal adhered to the exposed aluminum substrate is a metal nobler than aluminum.
(6) At least one of a metal, a solvent-soluble metal compound, and a metal complex is attached to the exposed aluminum substrate, and then the metal element is diffused from the surface of the aluminum substrate to the inside of the aluminum material by heat treatment. 5. A method for producing an aluminum material for electrolytic capacitor electrodes having excellent etching characteristics as described in 4 above.
(7) The method for producing an aluminum material for electrolytic capacitor electrodes excellent in etching characteristics according to any one of items 1 to 6 above, wherein the average diameter of the resin spheres is 0.2 μm or more and 5 μm or less.
(8) By using as a trigger a dissimilar metal directly or adhering or diffusing to an aluminum base material of an aluminum material exposed from a part of an anodized film formed using a resin ball, An electrode material for an aluminum electrolytic capacitor, characterized in that a large number of etch pits regularly arranged by a technique are formed, and 50% or more of these etch pits are defined in a circle equivalent diameter range of 0.4 to 10 μm.
(9) The electrode material for an aluminum electrolytic capacitor as described in 8 above, wherein the purity of the aluminum material is 99.9% by mass or more.
(10) An aluminum electrolytic capacitor in which the electrode material for an electrolytic capacitor as described in 8 or 9 above is used.

前項(1)に記載の発明によれば、エッチングにより、高密度に分散したアルミニウム素地の露出部分にエッチピットを高密度かつ均一に形成することができ、耐折強度及び拡面率を高めて静電容量の増大を図ることができる電解コンデンサ電極用アルミニウム材を製造することができる。   According to the invention described in the preceding item (1), etch pits can be formed with high density and uniformity on the exposed portion of the aluminum base material dispersed at high density by etching, and the bending strength and the surface expansion ratio are increased. An aluminum material for an electrolytic capacitor electrode that can increase the capacitance can be manufactured.

前項(2)に記載の発明によれば、陽極酸化皮膜の形成厚さが、樹脂球直径の0.3層分から3層分であるから、アルミニウム素地露出部以外を無駄なく確実に被覆して、アルミニウム素地露出部分以外の部位にエッチピットが形成されるのを防止することができ、ひいてはアルミニウム素地の露出部分に確実にエッチピットを形成させることができる。   According to the invention described in (2) above, since the formation thickness of the anodized film is from 0.3 to 3 layers of the resin sphere diameter, it is possible to reliably cover other than the aluminum base exposed portion without waste. Etch pits can be prevented from being formed at portions other than the exposed portion of the aluminum substrate, so that etch pits can be reliably formed at the exposed portion of the aluminum substrate.

前項(3)に記載の発明によれば、陽極酸化皮膜の除去方法が、酸またはアルカリによる湿式のエッチング、またはドライエッチングによる除去方法であるから、アルミニウム素地露出部分を容易に形成することができる。   According to the invention described in item (3) above, since the method for removing the anodic oxide film is a wet etching method using acid or alkali, or a removing method using dry etching, the aluminum substrate exposed portion can be easily formed. .

前項(4)に記載の発明によれば、露出したアルミニウム素地に、アルミニウムとは異なる金属、溶媒可溶性の金属化合物及び金属錯体を付着させることにより、この付着部分をトリガーとしてエッチピットを形成することができるから、さらに確実にかつ均一にエッチピットを形成しうるアルミニウム材を製造することができる。   According to the invention described in the preceding item (4), by forming a metal different from aluminum, a solvent-soluble metal compound and a metal complex on the exposed aluminum base, an etch pit is formed using this adhesion portion as a trigger. Therefore, an aluminum material that can form etch pits more reliably and uniformly can be manufactured.

前項(5)に記載の発明によれば、アルミニウム素地に付着させた金属がアルミニウムより貴な金属であるから、エッチピット形成のトリガー効果をより確実に発揮させることができるアルミニウム材の製造が可能となる。   According to the invention described in the preceding item (5), since the metal adhered to the aluminum substrate is a noble metal than aluminum, it is possible to produce an aluminum material that can more reliably exhibit the trigger effect of etch pit formation. It becomes.

前項(6)に記載の発明によれば、アルミニウム素地に金属、溶媒可溶性の金属化合物及び金属錯体の少なくとも何れかを付着させ、その後の加熱処理により、アルミニウム素地の表面からアルミニウム材の内部に金属元素を拡散させるから、この拡散部分をトリガーとしてエッチピットをさらに確実にかつ均一に形成することができるアルミニウム材の製造が可能となる。   According to the invention described in the preceding item (6), at least one of a metal, a solvent-soluble metal compound, and a metal complex is attached to the aluminum substrate, and then the metal is introduced from the surface of the aluminum substrate to the inside of the aluminum material by heat treatment. Since the element is diffused, it is possible to produce an aluminum material that can form etch pits more reliably and uniformly using this diffusion portion as a trigger.

前項(7)に記載の発明によれば、樹脂球の平均直径が0.2μm以上5μm以下であるから、この樹脂球の元の配列位置に相当するアルミニウム素地露出部分を高密度にかつ均一に形成でき、ひいてはエッチピットを高密度にかつ均一に形成できるアルミニウム材の製造が可能となる。   According to the invention described in item (7) above, since the average diameter of the resin spheres is 0.2 μm or more and 5 μm or less, the exposed aluminum substrate corresponding to the original arrangement position of the resin spheres is made dense and uniform. It is possible to manufacture an aluminum material that can be formed, and consequently etch pits can be formed with high density and uniformity.

前項(8)に記載の発明によれば、樹脂球を利用して形成した陽極酸化皮膜の一部から露出したアルミニウム材のアルミニウム素地に、直接にあるいはそこに付着または拡散させた異種金属をトリガーとして利用することにより、電気化学的手法にて規則配列させた多数のエッチピットが形成され、これらのエッチピットの50%以上が、円相当径0.4〜10μmの範囲に規定されているから、均一に分散した多数のエッチピットを有して静電容量の高いアルミニウム電解コンデンサ用電極材となし得る。   According to the invention described in the preceding item (8), a foreign metal adhering or diffusing directly or on an aluminum substrate exposed from a part of an anodized film formed by using a resin ball is triggered. As a result, a large number of etch pits regularly arranged by an electrochemical method are formed, and 50% or more of these etch pits are defined in a circle equivalent diameter range of 0.4 to 10 μm. The electrode material for an aluminum electrolytic capacitor having a high electrostatic capacity having a large number of uniformly distributed etch pits can be obtained.

前項(9)に記載の発明によれば、アルミニウム材の純度が99.9質量%以上であるから、エッチング後に化成皮膜を形成する場合は、欠陥の少ない化成皮膜を形成することができる。   According to the invention described in item (9) above, since the purity of the aluminum material is 99.9% by mass or more, a chemical conversion film with few defects can be formed when the chemical conversion film is formed after etching.

前項(10)に記載の発明によれば、静電容量の大きなアルミニウム電解コンデンサとなしうる。   According to the invention described in item (10) above, an aluminum electrolytic capacitor having a large capacitance can be obtained.

この発明の一実施形態に係るアルミニウム材の製造方法を説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the manufacturing method of the aluminum material which concerns on one Embodiment of this invention.

次に、本発明の構成とその理由について述べる。
[アルミニウム材について]
本発明で使用するアルミニウム材は、トンネルピットの形成が可能なものであればよい。例えば、厚みについてはエッチング後のアルミニウム箔の強度が十分確保できる範囲であれば良く、0.005〜0.6mm、好ましくは0.006〜0.25mm、さらに好ましくは0.007〜0.18mmである。
Next, the configuration of the present invention and the reason thereof will be described.
[About aluminum materials]
The aluminum material used in the present invention only needs to be capable of forming tunnel pits. For example, the thickness may be within a range that can sufficiently ensure the strength of the aluminum foil after etching, and is 0.005 to 0.6 mm, preferably 0.006 to 0.25 mm, and more preferably 0.007 to 0.18 mm. It is.

アルミニウム材中の微量元素としては、Si、Fe、Cu、Mn、Mg、Zn、Ti、V、GaおよびZrなどがあるが、本発明においては、元素の種類や量について特に限定しない。ただし、化成皮膜欠陥の防止のためには、出来るだけ微量元素が少ない方がよく、99.9質量%以上の純度のアルミニウム材を使用することが望ましい。また、電解コンデンサ用アルミニウム材には、エッチング特性を向上させる元素として、Cu、Mg、Zn、Pb、Sn、Sb等の添加が、従来より提案されている。本発明においても、これらの元素は上記化成皮膜欠陥とならない範囲で添加することは、何ら問題はない。   Examples of the trace element in the aluminum material include Si, Fe, Cu, Mn, Mg, Zn, Ti, V, Ga, and Zr. However, in the present invention, the type and amount of the element are not particularly limited. However, in order to prevent chemical conversion film defects, it is better to have as few trace elements as possible, and it is desirable to use an aluminum material having a purity of 99.9% by mass or more. In addition, the addition of Cu, Mg, Zn, Pb, Sn, Sb and the like as elements for improving the etching characteristics has been conventionally proposed for aluminum materials for electrolytic capacitors. Also in the present invention, there is no problem in adding these elements within a range not causing the above-mentioned chemical conversion film defects.

また、後述するように、金属元素を拡散させる場合のアルミニウム材の熱処理については、従来より提唱されている高い立方体集合組織を形成させるのに必要な450〜600℃での高温焼鈍と兼用することもでき、もちろんFeやSiの析出によるエッチング時の異常溶解等を生じない範囲で、熱拡散に必要な300℃以上の拡散処理を別々に施しても良い。熱処理の具体的条件については、たとえば、拡散させる金属元素がCuである場合は500℃×1〜8h、Pbである場合は480℃×0.5〜2h、Feである場合は、550℃×10〜30h等の条件を挙げることができる。むろん、この条件以外でも目的は達成される。   In addition, as will be described later, the heat treatment of the aluminum material in the case of diffusing the metal element is combined with the high-temperature annealing at 450 to 600 ° C. necessary for forming a high cubic texture which has been conventionally proposed. Of course, diffusion treatment at 300 ° C. or higher necessary for thermal diffusion may be performed separately within a range that does not cause abnormal dissolution during etching due to precipitation of Fe or Si. Specific conditions for the heat treatment are, for example, 500 ° C. × 1-8 h when the metal element to be diffused is Cu, 480 ° C. × 0.5-2 h when Pb is used, and 550 ° C. × when Fe is used. Conditions such as 10 to 30 h can be given. Of course, other than these conditions, the objective can be achieved.

また、アルミニウム材の形状は、コイル状に巻かれたものでも良いし、裁断されたシートでも良いし、何ら限定されない。
[製造方法]
本発明においては、図1(a)に示すように、アルミニウム材1の表面に樹脂球2を配列させた状態で陽極酸化処理する工程と、陽極酸化処理後、図1(b)(c)に示すように、前記樹脂球2と陽極酸化皮膜3とを順次的にまたは同時に除去して、樹脂球2が存在していた微細凹部4の底部のアルミニウム素地を露出させ、周囲の陽極酸化皮膜3を残存させる工程を実施する。
Further, the shape of the aluminum material may be a coiled shape or a cut sheet, and is not limited at all.
[Production method]
In the present invention, as shown in FIG. 1 (a), the step of anodizing with the resin balls 2 arranged on the surface of the aluminum material 1, and after the anodizing treatment, FIG. 1 (b) (c) As shown in FIG. 4, the resin sphere 2 and the anodic oxide film 3 are removed sequentially or simultaneously to expose the aluminum base at the bottom of the fine recess 4 where the resin sphere 2 was present, and the surrounding anodic oxide film 3 is performed.

前記樹脂球2については、特に限定されるものではなく、アルミニウム材1の表面に配列させることができ、かつ陽極酸化処理、洗浄処理において溶解、溶出、膨潤等の変化を起こさないものであればよい。一例としては、PS(ポリスチレン)、PP(ポリプロピレン)等を挙げることができる。   The resin sphere 2 is not particularly limited as long as it can be arranged on the surface of the aluminum material 1 and does not cause changes such as dissolution, elution, and swelling in the anodizing treatment and cleaning treatment. Good. As an example, PS (polystyrene), PP (polypropylene), etc. can be mentioned.

樹脂球2の平均直径は0.2μm以上5μm以下とするのが良い。0.2μm未満では、その後に形成させるエッチピットの間隔が狭くなりすぎてエッチピットどうしの合体が多くなり、静電容量が却って低下する場合がある。一方、5μmを超えると、エッチピットの密度が低くなりすぎて、静電容量が低下する場合がある。特に好ましい樹脂球2の平均直径は0.5〜3μmである。   The average diameter of the resin spheres 2 is preferably 0.2 μm or more and 5 μm or less. If it is less than 0.2 μm, the interval between etch pits to be formed thereafter becomes too narrow, and the coalescence of the etch pits increases, and the capacitance may decrease instead. On the other hand, if the thickness exceeds 5 μm, the density of etch pits may become too low, and the capacitance may decrease. A particularly preferable average diameter of the resin spheres 2 is 0.5 to 3 μm.

樹脂球2は、接着、融着、溶着などの人工的な接合力を伴うことなく、アルミニウム材1の表面に自然的に載置することにより配列させればよい。   The resin balls 2 may be arranged by being naturally placed on the surface of the aluminum material 1 without an artificial joining force such as adhesion, fusion, or welding.

また、陽極酸化処理の前処理として、圧延により形成された圧延筋による凹凸を軽減し、樹脂球2のアルミニウム材1の表面への密着性を高める目的で、電解研磨、化学研磨、機械研磨等による平滑化処理を施しても良い。   In addition, as a pretreatment for the anodizing treatment, electrolytic polishing, chemical polishing, mechanical polishing, etc. are performed for the purpose of reducing unevenness due to rolling streaks formed by rolling and improving the adhesion of the resin balls 2 to the surface of the aluminum material 1. You may perform the smoothing process by.

陽極酸化処理の種類や条件も特に限定されることはなく、公知の処理方法や処理条件を採用すればよい。この陽極酸化皮膜3は、樹脂球2の存在していた部位を除いてアルミニウム素地の露出を防止する役割を果たすものである。このために、陽極酸化皮膜3の厚さは樹脂球2の直径の0.3層分から3層までの厚さとするのがよい。0.3層分未満では、皮膜厚さが薄すぎて、その後の皮膜除去処理により、樹脂球配置部位以外の部位でアルミニウム素地が露出する恐れがある。また、3層分を越える厚さに形成しても、アルミニウム素地の露出防止効果は飽和し、無駄な処理となる。   The type and conditions of the anodizing treatment are not particularly limited, and a known treatment method and treatment conditions may be adopted. The anodized film 3 plays a role of preventing the aluminum base from being exposed except for the portion where the resin spheres 2 were present. For this purpose, the thickness of the anodic oxide film 3 is preferably set to a thickness of 0.3 to 3 layers of the diameter of the resin sphere 2. If it is less than 0.3 layers, the film thickness is too thin, and there is a possibility that the aluminum substrate is exposed at a part other than the resin ball arrangement part by the subsequent film removal process. Even if the thickness exceeds three layers, the effect of preventing the exposure of the aluminum substrate is saturated, resulting in a wasteful treatment.

樹脂球2の除去は、一般的には樹脂球2を溶解させることにより行えばよい。溶解液は樹脂球2の種類によって適宜選択すればよい。例えば、樹脂球がPS(ポリスチレン)製の場合には、トルエンなどを用いればよい。この樹脂球2の除去によって、陽極酸化皮膜3には、図1(b)のように、多数の微細凹部4が形成された状態となる。   The removal of the resin sphere 2 may be generally performed by dissolving the resin sphere 2. The solution may be appropriately selected depending on the type of the resin sphere 2. For example, when the resin sphere is made of PS (polystyrene), toluene or the like may be used. By removing the resin sphere 2, a large number of fine recesses 4 are formed in the anodized film 3 as shown in FIG.

次に、陽極酸化皮膜3を厚さ方向に順次除去するが、除去方法としては、酸やアルカリ性溶液を用いた化学的あるいは電気化学的な方法で溶解する方法、または、ドライエッチングのような乾式法により除去する方法を例示することができる。アルミニウム材1の表面全体にわたって厚さ方向に均一に陽極酸化皮膜3の除去処理を施すことにより、陽極酸化皮膜3の厚さの薄い微細凹部4の底部において、陽極酸化皮膜3が早期に消失し、アルミニウム素地の露出部5が形成されると共に、露出部5の周囲は陽極酸化皮膜3が残存した状態となる。   Next, the anodic oxide film 3 is sequentially removed in the thickness direction. As a removal method, a chemical or electrochemical method using an acid or an alkaline solution or a dry method such as dry etching is used. A method of removing by the method can be exemplified. By removing the anodized film 3 uniformly in the thickness direction over the entire surface of the aluminum material 1, the anodized film 3 disappears at an early stage at the bottom of the fine concave portion 4 having a thin thickness. The exposed portion 5 of the aluminum substrate is formed, and the anodic oxide film 3 remains around the exposed portion 5.

なお、ドライエッチングにより、樹脂球2の除去と陽極酸化皮膜3の除去及びアルミニウム素地の露出を、同一工程で行っても良い。   In addition, you may perform the removal of the resin ball | bowl 2, the removal of the anodic oxide film 3, and the exposure of an aluminum substrate by the same process by dry etching.

アルミニウム素地の露出部5は、円相当で直径0.05〜2.5μmの大きさとするのが良く、また露出部5のアルミニウム材1の表面に対する合計面積比率は10〜50%とするのがよい。露出部5の合計面積比率が10%未満では、露出部5が粗な状態に分散し、エッチピットの数が少なくなってしまう場合がある。また、50%を超える面積比率では、エッチピットの数が逆に増えすぎて、エッチピットによるトンネルが結合してしまい、充分な拡面率が得られない恐れがある。アルミニウム素地の露出部5の特に好ましい合計面積比率は、15〜40%である。   The exposed portion 5 of the aluminum base is preferably equivalent to a circle and has a diameter of 0.05 to 2.5 μm, and the total area ratio of the exposed portion 5 to the surface of the aluminum material 1 is 10 to 50%. Good. If the total area ratio of the exposed portions 5 is less than 10%, the exposed portions 5 may be dispersed in a rough state, and the number of etch pits may be reduced. On the other hand, when the area ratio exceeds 50%, the number of etch pits increases excessively, and tunnels due to the etch pits are combined, so that there is a possibility that a sufficient area expansion rate cannot be obtained. A particularly preferable total area ratio of the exposed portion 5 of the aluminum base is 15 to 40%.

上記により、アルミニウム素地の露出部5を形成した後、望ましくは図1(d)に示すように、アルミニウム素地露出部5にアルミニウムとは異なる金属、金属化合物あるいは金属錯体からなるエッチピット発生用のトリガー物質6を付着させるのがよい。金属化合物については、塩化物、硫化物、フッ化物等の単体元素との化合物の他、硫酸塩、硝酸塩やキレート化合物が挙げられる。また、水酸化物であっても良い。これらは、加熱昇温中に分解し、金属元素を遊離させ、アルミニウム中に拡散することで、その後に施されるエッチング処理時のエッチピット発生のトリガーとすることができる。   After forming the exposed portion 5 of the aluminum base as described above, preferably, as shown in FIG. 1D, the aluminum base exposed portion 5 is used for generating an etch pit made of a metal, a metal compound, or a metal complex different from aluminum. The trigger substance 6 is preferably attached. Examples of the metal compound include sulfates, nitrates, and chelate compounds in addition to compounds with simple elements such as chlorides, sulfides, and fluorides. Moreover, a hydroxide may be sufficient. These can be decomposed during heating and heating to liberate metal elements and diffuse into aluminum, thereby triggering the generation of etch pits during the subsequent etching process.

また、前記金属については、基本的には、単体金属としてアルミニウムとの電位差を生ぜしめる元素であれば良い。アルミニウムより電気的に貴な元素、たとえば、Fe、Ni、In、Sn、Pb、Cu、Agや逆にアルミニウムより卑な元素、たとえばMg、Li等を挙げることができる。電位差は、標準電極電位で100mV以上あれば良い。   Further, the metal may be basically an element that causes a potential difference from aluminum as a single metal. Elements that are more noble than aluminum, such as Fe, Ni, In, Sn, Pb, Cu, and Ag, and conversely elements that are lower than aluminum, such as Mg and Li, can be used. The potential difference may be 100 mV or more at the standard electrode potential.

これらの元素は、アルミニウム材1の表面にそのまま付着した状態でも効果を発現するが、前述したように加熱処理を施すことでアルミニウム材1中に拡散し、図1(e)に示すように、表面に濃化層7を形成する。これにより、エッチピットの不均一発生を抑止して、よりエッチピットの分散性の制御効果を高めることができる。その際、貴な元素はアルミニウムとの境界域においてエッチピットの発生を促進する効果があり,また、卑な元素は境界域あるいはそれ自体がエッチピット発生の起点となりやすい傾向がある。本発明はこの原理を利用し、エッチピットの分布を更に積極的に制御することも狙いとしている。
[電解エッチング処理]
上記により製造したアルミニウム材の拡面化にあたっては、塩素イオンを含む水溶液中にリン酸、硫酸、硝酸等を添加した電解液中で電解エッチング処理する。基本的にはトンネルエッチングされる直流エッチングを施すのが望ましいが、初期のエッチング核形成についてはこの限りではない。すなわち、拡散した金属を有効な核とするための初期エッチングとその後のトンネルピット形成のためのエッチングを別々に行うことは、何ら問題なく、むしろ積極的に推奨されるべきものである。
These elements exhibit an effect even when attached to the surface of the aluminum material 1 as it is, but are diffused in the aluminum material 1 by performing the heat treatment as described above, and as shown in FIG. A concentrated layer 7 is formed on the surface. As a result, the occurrence of non-uniformity of etch pits can be suppressed and the effect of controlling the dispersibility of etch pits can be further enhanced. At that time, the noble element has an effect of promoting the generation of etch pits in the boundary area with aluminum, and the base element tends to be the starting point of the etch pit generation in the boundary area or itself. The present invention uses this principle and aims to more actively control the distribution of etch pits.
[Electrolytic etching]
In expanding the surface of the aluminum material manufactured as described above, an electrolytic etching treatment is performed in an electrolytic solution in which phosphoric acid, sulfuric acid, nitric acid, or the like is added to an aqueous solution containing chlorine ions. Basically, it is desirable to perform direct current etching that is tunnel-etched, but this is not limited to the initial etching nucleation. That is, the initial etching for using the diffused metal as effective nuclei and the subsequent etching for forming tunnel pits should be performed without any problem and should be positively recommended.

エッチングで得られるエッチピット径は、円相当径0.4〜10μmの範囲に規定されているのが望ましいが、適正なエッチピット径は、化成電圧によって異なる。中圧(化成電圧200−500V)の場合のエッチピット径は、円相当径で0.7〜1.5μmが好ましく、間隔はエッチピット中心間距離で1〜4μmが好ましい。高圧(化成電圧500V以上)の場合のエッチピット径は、円相当径で2〜3μmが好ましく、間隔はエッチピット中心間距離で3〜15μmが好ましい。   The etch pit diameter obtained by etching is preferably defined in the range of the equivalent circle diameter of 0.4 to 10 μm, but the appropriate etch pit diameter varies depending on the formation voltage. The etch pit diameter at medium pressure (formation voltage 200-500V) is preferably 0.7 to 1.5 [mu] m in terms of equivalent circle diameter, and the distance is preferably 1 to 4 [mu] m in the distance between etch pit centers. In the case of a high voltage (formation voltage of 500 V or more), the etch pit diameter is preferably 2 to 3 μm in terms of the equivalent circle diameter, and the distance is preferably 3 to 15 μm in terms of the distance between the etch pit centers.

なお、上記のエッチピット径、間隔は平均的な値を示し、全エッチピットの50%以上がこの範囲に入っていればよく、一部はこの範囲外のものも存在する。
[化成処理]
陽極材として用いられる場合には、化成処理が施される。化成処理は種々の方法によって行なうことができるが、化成処理の条件は特に限定されるものではない。例えば修酸、アジピン酸、ホウ酸、リン酸、珪酸ナトリウム等の少なくとも1種を含む電解液を用い、その電解液濃度が0.05質量%〜20質量%、温度が0℃〜90℃、電流密度が0.1mA/cm2〜1A/cm2、電圧は処理するアルミニウム材の化成電圧に応じた条件とする。さらに好ましくは、前記電解液濃度が0.1質量%〜15質量%、温度が20℃〜70℃、電流密度が1mA/cm2〜100mA/cm2、化成時間が30分以内の範囲内で条件を選定するのが良い。
The above-mentioned etch pit diameter and interval show average values, and it is sufficient that 50% or more of all etch pits are within this range, and some of them are outside this range.
[Chemical conversion treatment]
When used as an anode material, a chemical conversion treatment is performed. The chemical conversion treatment can be performed by various methods, but the conditions for the chemical conversion treatment are not particularly limited. For example, using an electrolytic solution containing at least one of oxalic acid, adipic acid, boric acid, phosphoric acid, sodium silicate, etc., the electrolytic solution concentration is 0.05 mass% to 20 mass%, the temperature is 0 ° C to 90 ° C, The current density is 0.1 mA / cm 2 to 1 A / cm 2 , and the voltage is set in accordance with the conversion voltage of the aluminum material to be processed. More preferably, the electrolyte concentration is 0.1 wt% to 15 wt%, temperature of 20 ° C. to 70 ° C., a current density of 1mA / cm 2 ~100mA / cm 2 , the chemical conversion time is in the range of 30 minutes It is better to select the conditions.

化成処理後に、必要に応じて、例えば耐水性の向上のためのリン酸浸漬処理、皮膜強化のための熱処理または沸騰水への浸漬処理等を行なうことができる。   After the chemical conversion treatment, for example, a phosphoric acid immersion treatment for improving water resistance, a heat treatment for strengthening the film, or an immersion treatment in boiling water can be performed as necessary.

Figure 0005373745
Figure 0005373745

(実施例1)
アルミニウム材の調整
常法により作製した表1(1)に示す組成の厚さ150μmの高純度アルミニウム軟質箔材の表面に、平均直径1μmのPS製の樹脂球を配列させ、0.5mol/lホウ酸−0.05mol/lホウ砂水溶液を用い、液温20℃、電流密度10A/m2の定電流電解法にて、陽極酸化処理を実施し、2μmの陽極酸化皮膜を被覆形成した。
Example 1
Preparation of aluminum material PS resin balls having an average diameter of 1 μm are arranged on the surface of a 150 μm-thick high-purity aluminum soft foil material having the composition shown in Table 1 (1) prepared by a conventional method, and 0.5 mol / l Using an aqueous boric acid-0.05 mol / l borax solution, anodization was performed by a constant current electrolysis method at a liquid temperature of 20 ° C. and a current density of 10 A / m 2 to form a 2 μm anodic oxide coating.

次に、PS製の樹脂球をトルエンを用いて溶解除去し、微細凹部を有する皮膜としたのち、1質量%Na0H水溶液、50℃にて所定の時間浸漬し、皮膜を順次溶解して樹脂球が存在していた微細凹部の底部のアルミニウム素地を露出させた。   Next, the resin balls made of PS are dissolved and removed using toluene to form a film having fine recesses, and then immersed in a 1% by mass Na0H aqueous solution at 50 ° C. for a predetermined time. The aluminum base at the bottom of the fine recess where the slag was present was exposed.

全露出部のアルミニウム材表面に対する面積比率は、表2の通りであった。なお、面積比率は、走査型電子顕微鏡にて組成像観察を行い、二値化処理を行うことにより測定した。
エッチング処理工程
上記で得られたアルミニウム材を、1.0mol/lのHC1と3.5mol/lのH2S04の混合液を用い、液温75℃で30secの浸漬処理を施した後、電流密度0.2A/cm2で120secの一次電解処理を施した。
Table 2 shows the area ratio of all exposed portions to the surface of the aluminum material. The area ratio was measured by observing the composition image with a scanning electron microscope and performing binarization.
Etching treatment process The aluminum material obtained above was subjected to a 30 sec immersion treatment at a liquid temperature of 75 ° C. using a mixture of 1.0 mol / l HC1 and 3.5 mol / l H 2 SO 4 , Primary electrolytic treatment was performed at a current density of 0.2 A / cm 2 for 120 seconds.

更に同組成の液にて、90℃で900secのケミカルエッチングを施し、水洗、乾燥してエッチングを完了した。   Furthermore, chemical etching was performed at 90 ° C. for 900 seconds with the liquid having the same composition, washed with water and dried to complete the etching.

次いで、硼酸浴500Vで化成処理を行い、静電容量を測定した。その結果を表2に示す。静電容量は、比較例を100として相対的に評価した。   Next, chemical conversion treatment was performed in a boric acid bath 500 V, and the capacitance was measured. The results are shown in Table 2. The electrostatic capacity was relatively evaluated based on 100 as a comparative example.

なお、エッチピット径、エッチピット間隔、エッチピット密度は、エッチド箔表面を約5μm電解研磨したのち、表面を走査型電子顕微鏡にて観察し、画像解析を実施して測定した。
(実施例2)
アルミニウム材の調整
常法により作製した表1(2)に示す組成の厚さ150μmの高純度アルミニウム軟質箔材の表面に、平均直径1μmのPS製の樹脂球を配列させ、0.5mol/lホウ酸−0.05mol/lホウ砂水溶液を用い、液温20℃、電流密度10A/m2の定電流電解法にて、陽極酸化処理を実施し、2μmの陽極酸化皮膜を被覆形成した。
The etch pit diameter, etch pit interval, and etch pit density were measured by electropolishing the etched foil surface by about 5 μm, observing the surface with a scanning electron microscope, and performing image analysis.
(Example 2)
Preparation of aluminum material PS resin balls having an average diameter of 1 μm are arranged on the surface of a 150 μm thick high-purity aluminum soft foil material having the composition shown in Table 1 (2) prepared by a conventional method, and 0.5 mol / l Using an aqueous boric acid-0.05 mol / l borax solution, anodization was performed by a constant current electrolysis method at a liquid temperature of 20 ° C. and a current density of 10 A / m 2 to form a 2 μm anodic oxide coating.

次に、トルエンにてPS製の樹脂球を溶解除去し、微細凹部を有する皮膜としたのち、5質量%リン酸水溶液を用い、浴温30℃で所定の時間浸漬し、陽極酸化皮膜を順次溶解して樹脂球が存在していた微細凹部の底部のアルミニウム素地を露出させた。全露出部のアルミニウム材表面に対する面積比率は、表2の通りであった。   Next, the resin balls made of PS are dissolved and removed with toluene to form a film having fine recesses, and then immersed in a 5% by mass phosphoric acid aqueous solution at a bath temperature of 30 ° C. for a predetermined time to sequentially form the anodized film. It melt | dissolved and the aluminum base | substrate of the bottom part of the fine recessed part in which the resin ball existed was exposed. Table 2 shows the area ratio of all exposed portions to the surface of the aluminum material.

次に、硫酸銅を5g/lの割合で含有させた水溶液に浸漬し、水洗後、200℃に加熱した電気炉にて10sec保持し、乾燥した。
エッチング処理工程
上記で得られたアルミニウム材を、1.0mol/lのHC1と3.5mol/lのH2S04の混合液を用い、液温75℃で30secの浸漬処理を施した後、電流密度0.2A/cm2で120secの一次電解処理を施した。
Next, it was immersed in an aqueous solution containing copper sulfate at a rate of 5 g / l, washed with water, held for 10 seconds in an electric furnace heated to 200 ° C., and dried.
Etching treatment process The aluminum material obtained above was subjected to a 30 sec immersion treatment at a liquid temperature of 75 ° C. using a mixture of 1.0 mol / l HC1 and 3.5 mol / l H 2 SO 4 , Primary electrolytic treatment was performed at a current density of 0.2 A / cm 2 for 120 seconds.

更に同組成の液にて、90℃で900secのケミカルエッチングを施し、水洗、乾燥してエッチングを完了した。   Furthermore, chemical etching was performed at 90 ° C. for 900 seconds with the liquid having the same composition, washed with water and dried to complete the etching.

次いで、硼酸浴500Vで化成処理を行い、静電容量を測定した。その結果を表2に示す。静電容量は、比較例を100として相対的に評価した。
(実施例3)
アルミニウム材の調整
常法により作製した表1(3)に示す組成の厚さ150μmの高純度アルミニウム軟質箔材の表面に、平均直径2μmのPS製の樹脂球を配列させ、0.5mol/lホウ酸−0.05mol/lホウ砂水溶液を用い、液温20℃、電流密度10A/m2の定電流電解法にて、陽極酸化処理を実施し、5μmの陽極酸化皮膜を被覆形成した。
Next, chemical conversion treatment was performed in a boric acid bath 500 V, and the capacitance was measured. The results are shown in Table 2. The electrostatic capacity was relatively evaluated based on 100 as a comparative example.
(Example 3)
Preparation of aluminum material PS resin balls having an average diameter of 2 μm are arrayed on the surface of a 150 μm thick high-purity aluminum soft foil material having the composition shown in Table 1 (3) prepared by a conventional method, and 0.5 mol / l Using an aqueous boric acid-0.05 mol / l borax solution, anodization was performed by a constant current electrolysis method at a liquid temperature of 20 ° C. and a current density of 10 A / m 2 to form a 5 μm anodic oxide film.

次に、トルエンにてPS製の樹脂球を溶解除去し、微細凹部を有する皮膜としたのち、1質量%NaOH水溶液を用い、50℃にて所定の時間浸漬し、陽極酸化皮膜を順次溶解して樹脂球が存在していた微細凹部の底部のアルミニウム素地を露出させた。全露出部のアルミニウム材表面に対する面積比率は、表2の通りであった。   Next, the resin balls made of PS are dissolved and removed with toluene to form a film having fine recesses, and then immersed in a 1% by weight NaOH aqueous solution at 50 ° C. for a predetermined time to sequentially dissolve the anodized film. Thus, the aluminum base at the bottom of the fine concave portion where the resin ball was present was exposed. Table 2 shows the area ratio of all exposed portions to the surface of the aluminum material.

次に、硫酸銅を5g/lの割合で含有させた水溶液に浸漬した後、200℃に加熱した電気炉にて10sec保持し、乾燥したのち、窒素雰囲気中で、昇温速度80℃/h、保持温度500℃、保持時間30分の加熱処理を実施した。
エッチング処理工程
上記で得られたアルミニウム材を、1.0mol/lのHC1と3.5mol/lのH2S04の混合液を用い、液温75℃で30secの浸漬処理を施した後、電流密度0.2A/cm2で120secの一次電解処理を施した。
Next, after being immersed in an aqueous solution containing copper sulfate at a rate of 5 g / l, it was held in an electric furnace heated to 200 ° C. for 10 seconds, dried, and then heated in a nitrogen atmosphere at a rate of temperature increase of 80 ° C./h. Then, a heat treatment was performed at a holding temperature of 500 ° C. and a holding time of 30 minutes.
Etching treatment process The aluminum material obtained above was subjected to a 30 sec immersion treatment at a liquid temperature of 75 ° C. using a mixture of 1.0 mol / l HC1 and 3.5 mol / l H 2 SO 4 , Primary electrolytic treatment was performed at a current density of 0.2 A / cm 2 for 120 seconds.

更に同組成の液にて、90℃で900secのケミカルエッチングを施し、水洗、乾燥してエッチングを完了した。   Furthermore, chemical etching was performed at 90 ° C. for 900 seconds with the liquid having the same composition, washed with water and dried to complete the etching.

次いで、硼酸浴500Vで化成処理を行い、静電容量を測定した。その結果を表2に示す。静電容量は、比較例を100として相対的に評価した。
(実施例4)
アルミニウム材の調整
常法により作製した表1(4)に示す組成の厚さ150μmの高純度アルミニウム軟質箔材の表面に、平均直径2μmのPS製の樹脂球を配列させ、0.5mol/lホウ酸−0.05mol/lホウ砂水溶液を用い、液温20℃、電流密度10A/m2の定電流電解法にて、陽極酸化処理を実施し、0.5μmの陽極酸化皮膜を被覆形成した。
Next, chemical conversion treatment was performed in a boric acid bath 500 V, and the capacitance was measured. The results are shown in Table 2. The electrostatic capacity was relatively evaluated based on 100 as a comparative example.
Example 4
Preparation of aluminum material PS resin balls having an average diameter of 2 μm are arranged on the surface of a 150 μm thick high-purity aluminum soft foil material having the composition shown in Table 1 (4) prepared by a conventional method, and 0.5 mol / l Using an aqueous borate-0.05 mol / l borax solution, anodizing was performed by a constant current electrolysis method at a liquid temperature of 20 ° C. and a current density of 10 A / m 2 , and a 0.5 μm anodic oxide film was formed. did.

次に、アルゴンスパッタ法にてドライエッチング処理を施し、PS樹脂球ならびに皮膜の一部を除去して樹脂球底部のアルミニウム素地を露出させた。全露出部のアルミニウム材表面に対する面積比率は、表2の通りであった。
エッチング処理工程
上記で得られたアルミニウム箔を、1.0mol/lのHC1と3.5mol/lのH2S04の混合液を用い、液温75℃で30secの浸漬処理を施した後、電流密度0.2A/cm2で120secの一次電解処理を施した。
Next, dry etching treatment was performed by an argon sputtering method, and the PS resin sphere and a part of the film were removed to expose the aluminum base at the bottom of the resin sphere. Table 2 shows the area ratio of all exposed portions to the surface of the aluminum material.
Etching treatment process The aluminum foil obtained above was subjected to a 30 sec dipping treatment at a liquid temperature of 75 ° C. using a mixture of 1.0 mol / l HC1 and 3.5 mol / l H 2 SO 4 , Primary electrolytic treatment was performed at a current density of 0.2 A / cm 2 for 120 seconds.

更に同組成の液にて、90℃で900secのケミカルエッチングを施し、水洗、乾燥してエッチングを完了した。   Furthermore, chemical etching was performed at 90 ° C. for 900 seconds with the liquid having the same composition, washed with water and dried to complete the etching.

次いで、硼酸浴500Vで化成処理を行い、静電容量を測定した。その結果を表2に示す。静電容量は、比較例を100として相対的に評価した。
(実施例5)
アルミニウム材の調整
常法により作製した表1(1)に示す組成の厚さ150μmの高純度アルミニウム軟質箔材の表面に、平均直径2μmのPS製の樹脂球を配列させ、0.5mol/lホウ酸−0.05mol/lホウ砂水溶液を用い、液温20℃で、電流密度10A/m2の定電流電解法にて、陽極酸化処理を実施し、1μmの陽極酸化皮膜を被覆形成した。
Next, chemical conversion treatment was performed in a boric acid bath 500 V, and the capacitance was measured. The results are shown in Table 2. The electrostatic capacity was relatively evaluated based on 100 as a comparative example.
(Example 5)
Preparation of aluminum material PS resin balls having an average diameter of 2 μm are arranged on the surface of a 150 μm-thick high-purity aluminum soft foil material having the composition shown in Table 1 (1) prepared by a conventional method, and 0.5 mol / l Using an aqueous borate-0.05 mol / l borax solution, anodization was performed by a constant current electrolysis method at a liquid temperature of 20 ° C. and a current density of 10 A / m 2 to form a 1 μm anodic oxide coating. .

次に、トルエンにてPS製の樹脂球を溶解除去し、微細凹部を有する皮膜としたのち、1質量%NaOH水溶液を用い、50℃にて所定の時間浸漬し、陽極酸化皮膜を順次溶解して樹脂球が存在していた微細凹部の底部のアルミニウム素地を露出させた。全露出部のアルミニウム材表面に対する面積比率は、表2の通りであった。   Next, the resin balls made of PS are dissolved and removed with toluene to form a film having fine recesses, and then immersed in a 1% by weight NaOH aqueous solution at 50 ° C. for a predetermined time to sequentially dissolve the anodized film. Thus, the aluminum base at the bottom of the fine concave portion where the resin ball was present was exposed. Table 2 shows the area ratio of all exposed portions to the surface of the aluminum material.

次に、銅フタロシアニンテトラスルホン酸四ナトリウム(C3212CuN8Na4124)を6g/lの割合で含有させた水溶液に浸漬した後、200℃に加熱した電気炉にて10sec保持し、乾燥したのち、窒素雰囲気中で、昇温速度80℃/h、保持温度500℃、保持時間30分の加熱処理を実施した。
エッチング処理工程
上記で得られたアルミニウム材を、1.0mol/lのHC1と3.5mol/lのH2S04の混合液を用い、液温75℃で30secの浸漬処理を施した後、電流密度0.2A/cm2で120secの一次電解処理を施した。
Next, it was immersed in an aqueous solution containing copper phthalocyanine tetrasulfonate tetrasodium (C 32 H 12 CuN 8 Na 4 O 12 S 4 ) at a rate of 6 g / l, and then 10 sec in an electric furnace heated to 200 ° C. After holding and drying, a heat treatment was performed in a nitrogen atmosphere at a heating rate of 80 ° C./h, a holding temperature of 500 ° C., and a holding time of 30 minutes.
Etching treatment process The aluminum material obtained above was subjected to a 30 sec immersion treatment at a liquid temperature of 75 ° C. using a mixture of 1.0 mol / l HC1 and 3.5 mol / l H 2 SO 4 , Primary electrolytic treatment was performed at a current density of 0.2 A / cm 2 for 120 seconds.

更に同組成の液にて、90℃で900secのケミカルエッチングを施し、水洗、乾燥してエッチングを完了した。   Furthermore, chemical etching was performed at 90 ° C. for 900 seconds with the liquid having the same composition, washed with water and dried to complete the etching.

次いで、硼酸浴500Vで化成処理を行い、静電容量を測定した。その結果を表2に示す。静電容量は、比較例を100として相対的に評価した。
(比較例)
エッチング処理工程
常法により作製した表1(1)に示す組成のアルミニウム硬質箔(150μm)を窒素雰囲気中で、昇温速度80℃/h、保持温度500℃、保持時間5hの加熱処理を実施し、軟質箔とした。
Next, chemical conversion treatment was performed in a boric acid bath 500 V, and the capacitance was measured. The results are shown in Table 2. The electrostatic capacity was relatively evaluated based on 100 as a comparative example.
(Comparative example)
Etching process The aluminum hard foil (150 μm) having the composition shown in Table 1 (1) prepared by a conventional method is heated in a nitrogen atmosphere at a heating rate of 80 ° C./h, a holding temperature of 500 ° C., and a holding time of 5 hours. And it was set as the soft foil.

その後、1.0mol/lのHC1と3.5mol/lのH2S04の混合液を用い、液温75℃で30secの浸漬処理を施した後、電流密度0.2A/cm2で120secの一次電解処理を施した。 Then, after using a mixed solution of 1.0 mol / l HC1 and 3.5 mol / l H 2 SO 4 for 30 sec at a liquid temperature of 75 ° C., 120 sec at a current density of 0.2 A / cm 2 . The primary electrolytic treatment was performed.

更に同組成の液にて、90℃で900secのケミカルエッチングを施し、水洗、乾燥してエッチングを完了した。   Furthermore, chemical etching was performed at 90 ° C. for 900 seconds with the liquid having the same composition, washed with water and dried to complete the etching.

次いで、硼酸浴500Vで化成処理を行い、静電容量を測定し、比較例とした。その結果を静電容量を100として表2に示す。   Next, chemical conversion treatment was performed in a boric acid bath 500 V, and the capacitance was measured to obtain a comparative example. The results are shown in Table 2 with the electrostatic capacity being 100.

Figure 0005373745
Figure 0005373745

表2より、実施例1〜5は比較例よりエッチピットの分布が均一化され、かつトンネルピット密度が高くなって、化成後の静電容量が向上していることが判る。   From Table 2, it can be seen that in Examples 1 to 5, the distribution of etch pits is made more uniform and the tunnel pit density is higher than in the comparative example, and the capacitance after formation is improved.

1 アルミニウム材
2 樹脂球
3 陽極酸化皮膜
4 微細凹部
5 アルミニウム素地露出部
6 トリガー物質
7 濃化層
DESCRIPTION OF SYMBOLS 1 Aluminum material 2 Resin sphere 3 Anodized film 4 Fine recessed part 5 Aluminum base exposed part 6 Trigger substance 7 Concentrated layer

Claims (10)

アルミニウム材の表面に樹脂球を自然的に載置することにより配列させた状態で陽極酸化処理する工程と、
陽極酸化処理後、前記樹脂球と陽極酸化皮膜とを順次的にまたは同時に除去して、樹脂球が存在していた微細凹部の底部のアルミニウム素地を露出させ、周囲の陽極酸化皮膜を残存させる工程と、
を含むことを特徴とするエッチング特性に優れた電解コンデンサ電極用アルミニウム材の製造方法。
A step of anodizing in a state where resin balls are naturally placed on the surface of the aluminum material; and
After the anodizing treatment, the resin balls and the anodized film are removed sequentially or simultaneously to expose the aluminum base at the bottom of the fine recesses where the resin balls existed, and the surrounding anodized film remains. When,
The manufacturing method of the aluminum material for electrolytic capacitor electrodes excellent in the etching characteristic characterized by including this.
陽極酸化皮膜の形成厚さが、樹脂球の平均直径の0.3から3倍までの厚さである請求項1に記載のエッチング特性に優れた電解コンデンサ電極用アルミニウム材の製造方法。 Formation thickness of the anodized film, a manufacturing method of excellent etching characteristics of claim 1 has a thickness from 0.3 times the average diameter of the resin ball up to three times electrolytic capacitor electrodes for aluminum material. 陽極酸化皮膜の除去方法が、酸またはアルカリによる湿式のエッチング、またはドライエッチングによる方法である請求項1または2に記載のエッチング特性に優れた電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes with excellent etching characteristics according to claim 1 or 2, wherein the method for removing the anodized film is a wet etching method using acid or alkali, or a dry etching method. 前記露出させたアルミニウム素地に、アルミニウムとは異なる金属、溶媒可溶性の金属化合物及び金属錯体の少なくとも何れかからなるエッチピット発生用のトリガー物質を付着させる工程をさらに含む請求項1〜3のいずれかに記載のエッチング特性に優れた電解コンデンサ電極用アルミニウム材の製造方法。 4. The method according to claim 1, further comprising a step of attaching a trigger substance for generating etch pits made of at least one of a metal different from aluminum, a solvent-soluble metal compound, and a metal complex to the exposed aluminum base. The manufacturing method of the aluminum material for electrolytic capacitor electrodes excellent in the etching characteristic of description. 露出させたアルミニウム素地に付着させた前記金属からなるトリガー物質がアルミニウムより貴な金属からなるトリガー物質である請求項4に記載のエッチング特性に優れた電解コンデンサ電極用アルミニウム材の製造方法。 Method of manufacturing an electrolytic capacitor electrode aluminum material having excellent etching characteristics of claim 4 trigger substance composed of the metal deposited on the aluminum base material which is exposed is a trigger substance consisting of noble metal than aluminum. 露出させたアルミニウム素地に金属、溶媒可溶性の金属化合物及び金属錯体のうちの少なくとも何れかを付着させ、その後の加熱処理により、アルミニウム素地の表面からアルミニウム材の内部に金属元素を拡散させる請求項4に記載のエッチング特性に優れた電解コンデンサ電極用アルミニウム材の製造方法。   5. The metal element is diffused from the surface of the aluminum base to the inside of the aluminum material by attaching at least one of a metal, a solvent-soluble metal compound, and a metal complex to the exposed aluminum base, and then performing a heat treatment. The manufacturing method of the aluminum material for electrolytic capacitor electrodes excellent in the etching characteristic of description. 樹脂球の平均直径が0.2μm以上5μm以下である請求項1〜6のいずれかに記載のエッチング特性に優れた電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes having excellent etching characteristics according to any one of claims 1 to 6, wherein an average diameter of the resin spheres is 0.2 µm or more and 5 µm or less. 請求項1〜請求項7のいずれかに記載の製造方法により製造された電解コンデンサ電極用アルミニウム材に電解エッチング処理を実施することにより製造された、アルミニウム材の表面に規則配列させた多数のエッチピットが形成され、これらのエッチピットの50%以上が、円相当径0.4〜10μmの範囲に規定されている特徴とするアルミニウム電解コンデンサ用電極材。 A large number of etches regularly arranged on the surface of an aluminum material produced by performing an electrolytic etching process on the aluminum material for an electrolytic capacitor electrode produced by the production method according to claim 1. An electrode material for an aluminum electrolytic capacitor characterized in that pits are formed, and 50% or more of these etch pits are defined in a circle equivalent diameter of 0.4 to 10 μm. アルミニウム材の純度が99.9質量%以上である請求項8に記載のアルミニウム電解コンデンサ用電極材。   The electrode material for an aluminum electrolytic capacitor according to claim 8, wherein the purity of the aluminum material is 99.9% by mass or more. 請求項8または9に記載の電解コンデンサ用電極材が用いられているアルミニウム電解コンデンサ。   An aluminum electrolytic capacitor in which the electrode material for an electrolytic capacitor according to claim 8 or 9 is used.
JP2010249003A 2010-11-05 2010-11-05 Method for producing aluminum material for electrolytic capacitor electrode having excellent etching characteristics, electrode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor Active JP5373745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010249003A JP5373745B2 (en) 2010-11-05 2010-11-05 Method for producing aluminum material for electrolytic capacitor electrode having excellent etching characteristics, electrode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010249003A JP5373745B2 (en) 2010-11-05 2010-11-05 Method for producing aluminum material for electrolytic capacitor electrode having excellent etching characteristics, electrode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005196234A Division JP4763363B2 (en) 2005-07-05 2005-07-05 Aluminum material for electrolytic capacitor electrode having excellent etching characteristics and method for producing the same, electrode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2011063887A JP2011063887A (en) 2011-03-31
JP5373745B2 true JP5373745B2 (en) 2013-12-18

Family

ID=43950412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010249003A Active JP5373745B2 (en) 2010-11-05 2010-11-05 Method for producing aluminum material for electrolytic capacitor electrode having excellent etching characteristics, electrode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP5373745B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013077676A (en) * 2011-09-30 2013-04-25 Toyo Aluminium Kk Manufacturing method of electrode structure, electrode structure and capacitor
US20180142373A1 (en) * 2015-05-26 2018-05-24 Metalmembranes.Com B.V. Method to produce electrically isolated or insulated areas in a metal, and a product comprising such area

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328027A (en) * 1986-07-22 1988-02-05 松下電器産業株式会社 Electrode foil for electrolytic capacitor and manufacture of the same
JPH01316924A (en) * 1988-06-16 1989-12-21 Showa Alum Corp Aluminum material for electrolytic capacitor electrode and manufacture thereof

Also Published As

Publication number Publication date
JP2011063887A (en) 2011-03-31

Similar Documents

Publication Publication Date Title
JP6004181B2 (en) Anodized film and method for producing the same
JP7224068B2 (en) Method for producing anodic oxide film of 5000 series aluminum alloy having hydrophobic surface of pillar-on-pore structure
WO2010095661A1 (en) Metal member
CA2930769C (en) Composition and method for inhibiting corrosion of an anodized material
US20090229989A1 (en) Method for the preparation of nanostructures and nanowires
JP2012201950A (en) METHOD FOR PRODUCING STAINLESS STEEL SHEET WITH FINELY ROUGHENED SURFACE AND THIN FILM Si SOLAR CELL
JP4986267B2 (en) Electrode manufacturing method
US3939046A (en) Method of electroforming on a metal substrate
JP2007247015A (en) Method for manufacturing fine structural body and fine structural body
JP5373745B2 (en) Method for producing aluminum material for electrolytic capacitor electrode having excellent etching characteristics, electrode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
CN113201738B (en) Electrochemical surface treatment method for selectively laser melting AlSi10Mg formed workpiece
JP4763363B2 (en) Aluminum material for electrolytic capacitor electrode having excellent etching characteristics and method for producing the same, electrode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
KR102180260B1 (en) Method for producing an aluminum member for an electrode and an aluminum member for an electrode
KR101681537B1 (en) Manufacturing method for dimensionally stable electrode and dimensionally stable electrode manufactured by the same
JP2008166602A (en) Aluminum material for electrolytic capacitor electrode, its manufacturing method, electrode material for aluminum electrolytic capacitor and aluminum electrolytic capacitor
JP2012201951A (en) Method for producing stainless steel sheet with coarsely roughened surface and dye sensitized solar cell
JP5274097B2 (en) Fine structure and manufacturing method thereof
JP5352204B2 (en) Surface-treated aluminum material for vacuum equipment
JP5329686B2 (en) Aluminum material for electrolytic capacitor electrode and manufacturing method thereof, electrode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
CN111235579A (en) Metal polishing method
TWI247826B (en) Pre-treatment for plating on casting aluminum alloy
WO2011034008A1 (en) Microstructure and method for producing same
JP2004266024A (en) Aluminum electrode material for electrolytic capacitor and method of manufacturing the same
KR100895415B1 (en) Magnesium product, method of manufacturing magnesium product and composition for oxidizing magnesium
JP4308556B2 (en) Aluminum material for electrolytic capacitor electrode, method for producing electrolytic capacitor electrode material, and electrolytic capacitor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130919

R150 Certificate of patent or registration of utility model

Ref document number: 5373745

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250