JP5352204B2 - Surface-treated aluminum material for vacuum equipment - Google Patents

Surface-treated aluminum material for vacuum equipment Download PDF

Info

Publication number
JP5352204B2
JP5352204B2 JP2008299747A JP2008299747A JP5352204B2 JP 5352204 B2 JP5352204 B2 JP 5352204B2 JP 2008299747 A JP2008299747 A JP 2008299747A JP 2008299747 A JP2008299747 A JP 2008299747A JP 5352204 B2 JP5352204 B2 JP 5352204B2
Authority
JP
Japan
Prior art keywords
anodic oxide
oxide film
nonporous
aluminum material
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008299747A
Other languages
Japanese (ja)
Other versions
JP2010126739A (en
Inventor
恵太郎 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Aluminum Co Ltd
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2008299747A priority Critical patent/JP5352204B2/en
Publication of JP2010126739A publication Critical patent/JP2010126739A/en
Application granted granted Critical
Publication of JP5352204B2 publication Critical patent/JP5352204B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

この発明は、分子線エピタキシー装置、ドライエッチング装置、CVD装置、イオンプレーティング装置、プラズマCVD装置、スパッタリング装置のような真空機器用として好適な真空機器用表面処理アルミニウム材の製造方法に関するものである。   The present invention relates to a method for producing a surface-treated aluminum material for vacuum equipment suitable for vacuum equipment such as molecular beam epitaxy equipment, dry etching equipment, CVD equipment, ion plating equipment, plasma CVD equipment, and sputtering equipment. .

CVDなどの真空機器では、機器を構成する材料からガス放出があると真空特性を害するため、比較的ガス放出が少なく、部材の軽量化を図ることができるアルミニウム材料が広く利用されている。しかし、アルミニウム材料は真空機器中に導入される反応ガスなどにより腐食する問題があるため、一般には、陽極酸化皮膜、特に無孔質陽極酸化皮膜(バリヤー型陽極酸化皮膜)を形成することにより耐食性を向上させている。該陽極酸化皮膜は、アルミニウム材料を電解質溶液中で電解処理することでアルミニウム材料表面に形成される(例えば特許文献1)。
特許第3152960号公報
In vacuum equipment such as CVD, since the vacuum characteristics are impaired when gas is released from the materials constituting the equipment, aluminum materials that are relatively low in gas emission and can reduce the weight of members are widely used. However, since aluminum materials have a problem of corrosion due to reaction gas introduced into vacuum equipment, in general, an anodized film, particularly a non-porous anodized film (barrier type anodized film) is formed to provide corrosion resistance. Has improved. The anodic oxide film is formed on the surface of an aluminum material by electrolytic treatment of the aluminum material in an electrolyte solution (for example, Patent Document 1).
Japanese Patent No. 3152960

最近では、真空機器、例えば半導体製膜装置における生産性を向上するために、該真空機器に用いられる部材には、より高い耐食性と真空特性が求められている。特に、真空特性や耐食性に直接影響する内面部材には、無孔質陽極酸化皮膜形成などの表面処理が行われている。無孔質陽極酸化皮膜は、一般的な陽極酸化皮膜に対し格段に耐食性が優れているが、無孔質陽極酸化皮膜を真空機器内面部材に形成するときに、欠陥のある皮膜が形成される場合がある。   Recently, in order to improve productivity in vacuum equipment, for example, a semiconductor film forming apparatus, members used in the vacuum equipment are required to have higher corrosion resistance and vacuum characteristics. In particular, surface treatment such as formation of a nonporous anodic oxide film is performed on the inner surface member that directly affects vacuum characteristics and corrosion resistance. Non-porous anodic oxide film has much better corrosion resistance than general anodic oxide film, but when non-porous anodic oxide film is formed on the inner surface of vacuum equipment, a defective film is formed. There is a case.

一般に、真空機器に用いられているアルミニウム合金はJIS5052およびJIS6061であるが、前記アルミニウム合金中にはAlFe系、MgSi系、AlMg系、AlCu系、AlCr系等の金属間化合物が多く含まれている。
本発明者らによる鋭意研究によれば、該アルミニウム合金中に含まれ、該アルミニウム合金の表面層に存在する金属間化合物が、前記無孔質陽極酸化皮膜の形成に際し皮膜欠陥の原因となっていることがわかった。
In general, aluminum alloys used in the vacuum device is a JIS5052 and JIS6061, AlFe system in said aluminum alloy, Mg 2 Si type, AlMg system, AlCu system, contains many intermetallic compounds AlCr system or the like ing.
According to intensive studies by the present inventors, intermetallic compounds contained in the aluminum alloy and present in the surface layer of the aluminum alloy cause film defects when the nonporous anodic oxide film is formed. I found out.

本発明は、上記事情を背景としてなされたものであり、無孔質陽極酸化皮膜の欠陥が少なくて真空特性および耐食性に優れた真空機器用表面処理アルミニウム材の製造方法を提供することを目的とする。   The present invention has been made against the background of the above circumstances, and an object thereof is to provide a method for producing a surface-treated aluminum material for vacuum equipment that has few defects in a nonporous anodized film and is excellent in vacuum characteristics and corrosion resistance. To do.

すなわち、本発明の真空機器用表面処理アルミニウム材の製造方法のうち、第1の本発明は、電解によって表面に無孔質陽極酸化皮膜が形成されたアルミニウム材を用意し、該アルミニウム材の前記無孔質陽極酸化皮膜を剥離した後、再度、電解によって、前記アルミニウム材の表面に無孔質陽極酸化皮膜を形成することを特徴とする。   That is, among the methods for producing a surface-treated aluminum material for vacuum equipment of the present invention, the first present invention provides an aluminum material having a nonporous anodized film formed on the surface by electrolysis, After the nonporous anodized film is peeled off, a nonporous anodized film is formed on the surface of the aluminum material again by electrolysis.

本発明によれば、一旦、電解によって表面に無孔質陽極酸化皮膜が形成されたアルミニウム材を対象にして、前記無孔質陽極酸化皮膜を剥離することにより、該無孔質陽極酸化皮膜中および前記アルミニウム材表面層に存在する金属間化合物が除去される。次いで、無孔質陽極酸化皮膜の剥離を行った該アルミニウム材に対し、再度、電解によって無孔質陽極酸化皮膜を形成することにより、金属間化合物による皮膜欠陥の発生を招くことなく均質な無孔質陽極酸化皮膜が得られる。該無孔質陽極酸化皮膜の形成によって、優れた真空特性と耐食性とが得られる。   According to the present invention, once the nonporous anodic oxide film is peeled off for an aluminum material having a nonporous anodic oxide film formed on the surface by electrolysis, the nonporous anodic oxide film And the intermetallic compound which exists in the said aluminum material surface layer is removed. Next, a nonporous anodized film is formed again by electrolysis on the aluminum material from which the nonporous anodized film has been peeled off, so that no homogeneous defects are caused without causing film defects due to intermetallic compounds. A porous anodic oxide film is obtained. By forming the nonporous anodic oxide film, excellent vacuum characteristics and corrosion resistance can be obtained.

本発明の真空機器用表面処理アルミニウム材の製造方法のうち、第2の本発明は、請求項1において、前記剥離の対象となる無孔質陽極酸化皮膜が、前記再度の電解によって形成される無孔質陽極酸化皮膜の膜厚Aに対して、A/3〜Aの膜厚を有することを特徴とする。   Of the method for producing a surface-treated aluminum material for vacuum equipment according to the present invention, the second invention is the method according to claim 1, wherein the nonporous anodized film to be peeled is formed by the second electrolysis. The film thickness is A / 3 to A with respect to the film thickness A of the nonporous anodized film.

無孔質陽極酸化皮膜の形成において、膜厚A以上の大きさを有する金属間化合物がアルミニウム材表面層に存在すると、欠陥のある皮膜となる。特に、無孔質陽極酸化皮膜の膜厚として好ましく用いられる100〜700nmの範囲では、膜厚に相当する大きさを有する金属間化合物がアルミニウム材料中に多く存在するため、これを確実に除去することが望ましい(700nmを超える大きさの金属間化合物は割合が少ない)。
前記剥離の対象とされる無孔質陽極酸化皮膜は、あまりに膜厚が小さいと、剥離に際して金属間化合物の除去が効果的になされない。したがって、その膜厚は前記再度の電解によって形成される無孔質陽極酸化皮膜の膜厚Aに対してA/3以上とするのが望ましい。
また、剥離の対象とされる無孔質陽極酸化皮膜の膜厚に上限はないが、電解によって再度形成される無孔質陽極酸化皮膜の膜厚を超えた膜厚とすると、前記無孔質陽極酸化皮膜の除去に手間がかかり効率的でない。また、膜厚が大きすぎて前記無孔質陽極酸化皮膜の剥離が十分できないと前記金属間化合物の除去が不十分となる。このため、前記剥離の対象となる無孔質陽極酸化皮膜は、前記再度の電解によって形成される無孔質陽極酸化皮膜の膜厚A以下の膜厚を有することが望ましい。さらには、膜厚の上限を8A/10とすることがより望ましい。
In the formation of the nonporous anodic oxide film, if an intermetallic compound having a thickness equal to or larger than the film thickness A is present in the aluminum material surface layer, a defective film is formed. In particular, in the range of 100 to 700 nm, which is preferably used as the film thickness of the nonporous anodic oxide film, since many intermetallic compounds having a size corresponding to the film thickness are present in the aluminum material, this is surely removed. It is desirable (the proportion of intermetallic compounds having a size exceeding 700 nm is small).
If the nonporous anodic oxide film to be peeled is too thin, the intermetallic compound is not effectively removed during the peeling. Therefore, the film thickness is desirably A / 3 or more with respect to the film thickness A of the nonporous anodic oxide film formed by the second electrolysis.
Further, there is no upper limit to the film thickness of the nonporous anodic oxide film to be peeled off, but if the film thickness exceeds the film thickness of the nonporous anodic oxide film formed again by electrolysis, the nonporous Removal of the anodized film takes time and is not efficient. Moreover, when the film thickness is too large and the nonporous anodic oxide film cannot be sufficiently peeled, the removal of the intermetallic compound becomes insufficient. For this reason, it is desirable that the nonporous anodic oxide film to be peeled has a film thickness A or less of the nonporous anodic oxide film formed by the second electrolysis. Furthermore, it is more desirable that the upper limit of the film thickness be 8A / 10.

本発明の真空機器用表面処理アルミニウム材の製造方法のうち、第3の本発明は、請求項1または請求項2において、前記無孔質陽極酸化皮膜の剥離が、アルカリまたは酸による前記無孔質陽極酸化皮膜の溶解によって行われることを特徴とする。   Of the method for producing a surface-treated aluminum material for vacuum equipment according to the present invention, a third aspect of the present invention is the method according to claim 1 or 2, wherein the nonporous anodic oxide film is peeled off by alkali or acid. It is characterized by the fact that it is carried out by dissolving a anodic oxide film.

前記無孔質陽極酸化皮膜の剥離方法は、特定のものに限定されるものではないが、アルカリまたは酸による方法が簡易かつ効率的である。例えば苛性ソーダ、クロム酸を好適に用いることができる。その他に物理的なエッチングなどの方法により剥離することも可能である。   The method for removing the nonporous anodic oxide film is not limited to a specific one, but an alkali or acid method is simple and efficient. For example, caustic soda and chromic acid can be preferably used. In addition, it can be peeled off by a method such as physical etching.

本発明の真空機器用表面処理アルミニウムの製造方法によれば、電解によって表面に無孔質陽極酸化皮膜が形成されたアルミニウム材を用意し、該アルミニウム材の無孔質陽極酸化皮膜を剥離した後、再度、電解によって、該アルミニウム材の表面に無孔質陽極酸化皮膜を形成することによって、金属間化合物による皮膜欠陥の発生を招くことなく均質な無孔質陽極酸化皮膜が得られ、優れた真空特性と耐食性とが得られる。   According to the method for producing surface-treated aluminum for vacuum equipment of the present invention, after preparing an aluminum material having a nonporous anodic oxide film formed on the surface by electrolysis and peeling off the nonporous anodic oxide film of the aluminum material Again, by forming a non-porous anodic oxide film on the surface of the aluminum material by electrolysis, a homogeneous non-porous anodic oxide film can be obtained without causing film defects due to intermetallic compounds. Vacuum characteristics and corrosion resistance can be obtained.

以下に、本発明の一実施形態を図1に基いて説明する。
図1(a)は、真空機器に用いられるアルミニウム材表面層の断面を示しており、前記アルミニウム材1には、その組成成分によって金属間化合物2が生成されている。前記アルミニウム材1には、図1(b)に示すように、無孔質陽極酸化皮膜3が形成される。
前記電解における無孔質陽極酸化皮膜3の形成においては、ホウ酸又はホウ酸アンモニウムを電解質として含む水溶液を用いるのが好ましい。これらの電解質を用いた皮膜生成によれば、孔が極めて形成され難いためであり、また、厚い無孔質陽極酸化皮膜の形成に適している。ただし、本発明においては、電解液の種別が特定のものに限定されるものではない。また、電解に際しては、溶液濃度は1〜30質量%が望ましい。電解温度は50℃以上が耐クラック性から好ましく、皮膜の真空特性から上限は95℃(酸化膜が水和反応を開始)が好ましい。
Below, one Embodiment of this invention is described based on FIG.
FIG. 1A shows a cross section of a surface layer of an aluminum material used for vacuum equipment, and an intermetallic compound 2 is generated in the aluminum material 1 due to its composition components. A nonporous anodic oxide film 3 is formed on the aluminum material 1 as shown in FIG.
In the formation of the nonporous anodic oxide film 3 in the electrolysis, it is preferable to use an aqueous solution containing boric acid or ammonium borate as an electrolyte. This is because the formation of a film using these electrolytes is extremely difficult to form pores, and is suitable for forming a thick nonporous anodic oxide film. However, in the present invention, the type of the electrolytic solution is not limited to a specific type. In electrolysis, the solution concentration is preferably 1 to 30% by mass. The electrolysis temperature is preferably 50 ° C. or more from crack resistance, and the upper limit is preferably 95 ° C. (the oxide film starts a hydration reaction) from the vacuum characteristics of the film.

前記アルミニウム材1の材質としては、JIS5000系、JIS6000系のアルミニウム合金からなるものを用いることができる。ただし、本発明としては、無孔質陽極酸化皮膜が形成されるアルミニウム材の組成が、特定の成分系に限定されるものではない。なお、前記剥離の対象とされる無孔質陽極酸化皮膜3の膜厚は、再度の電解によって形成される無孔質陽極酸化皮膜の膜厚Aに対してA/3以上を有するのが望ましい。また、前記再度の電解によって形成される無孔質陽極酸化皮膜の膜厚A以下の膜厚であることが望ましく。さらには、膜厚の上限を8A/10とすることがより望ましい。   As the material of the aluminum material 1, a material made of a JIS 5000 series or JIS 6000 series aluminum alloy can be used. However, in the present invention, the composition of the aluminum material on which the nonporous anodic oxide film is formed is not limited to a specific component system. The nonporous anodic oxide film 3 to be peeled preferably has a film thickness A / 3 or more with respect to the film thickness A of the nonporous anodic oxide film formed by re-electrolysis. . Moreover, it is desirable that it is a film thickness A or less of the nonporous anodic oxide film formed by the second electrolysis. Furthermore, it is more desirable that the upper limit of the film thickness be 8A / 10.

ここで、無孔質陽極酸化皮膜とは、皮膜が均一に形成された部位の断面観察において、皮膜表面からアルミニウム素地に向けて、規則的に形成される孔(通常開口部は5〜30nmで皮膜厚さに対して60%以上の深さを有する)が存在しないか、5%(表面から見た孔の総面積の比率)以下の無孔質な皮膜である。
但し、図1(b)に示すように、前記無孔質陽極酸化皮膜3は前記金属間化合物2を内部に取り込んでしまい、その結果、欠陥を有した状態となっている。このため、一旦生成された無孔質陽極酸化皮膜3を剥離して、再度、電解によって該アルミニウム材1の表面に無孔質陽極酸化皮膜4を形成する。
なお、先に行う無孔質陽極酸化皮膜3の形成から剥離、再度の電解による無孔質陽極酸化皮膜4の形成は一連の工程として行っても良いが、すでに前記無孔質陽極酸化皮膜3が形成されたアルミニウム材に対し、以降の剥離と再度の電解を行うようにしてもよい。また、前記無孔質陽極酸化皮膜3の剥離と前記再度の無孔質陽極酸化皮膜4の形成は、繰り返して二回以上行うこともできる。
Here, the nonporous anodic oxide film refers to pores that are regularly formed from the surface of the film to the aluminum substrate (normally the opening is 5 to 30 nm) in the cross-sectional observation of the site where the film is uniformly formed. It is a non-porous film having a depth of 60% or more with respect to the film thickness, or 5% (ratio of the total area of the holes viewed from the surface) or less.
However, as shown in FIG. 1 (b), the nonporous anodic oxide film 3 takes in the intermetallic compound 2 inside, and as a result, has a defect. For this reason, the once produced nonporous anodic oxide film 3 is peeled off, and the nonporous anodic oxide film 4 is formed again on the surface of the aluminum material 1 by electrolysis.
The formation of the nonporous anodic oxide film 4 after the previous formation of the nonporous anodic oxide film 3 and re-electrolysis may be performed as a series of steps. Subsequent peeling and re-electrolysis may be performed on the aluminum material on which is formed. Further, the peeling of the nonporous anodic oxide film 3 and the formation of the nonporous anodic oxide film 4 again can be repeated twice or more.

次に、前記無孔質陽極酸化皮膜3の剥離について説明する。
前記無孔質陽極酸化皮膜3の剥離は、好適にはアルカリまたは酸による方法で行うものとし、例えば苛性ソーダ、クロム酸を好適に用いることができる。また、エッチングなどの物理的な方法により剥離することも可能であり、該物理的方法と前記アルカリまたは酸による化学的方法とを併用することもできる。前記無孔質陽極酸化皮膜3の剥離にともなって、前記アルミニウム材1から前記金属間化合物2が除去され、図1(c)に示すように、電解による再度の無孔質陽極酸化皮膜形成に好適なアルミニウム材が得られる。
Next, peeling of the nonporous anodic oxide film 3 will be described.
The nonporous anodic oxide film 3 is preferably peeled off by an alkali or acid method. For example, caustic soda or chromic acid can be preferably used. It can also be peeled off by a physical method such as etching, and the physical method and the chemical method using an alkali or acid can be used in combination. As the nonporous anodic oxide film 3 is peeled off, the intermetallic compound 2 is removed from the aluminum material 1, and as shown in FIG. 1 (c), a nonporous anodic oxide film is formed again by electrolysis. A suitable aluminum material is obtained.

次いで、図1(d)に示すとおり、アルミニウム材1の表面に、再度、電解によって無孔質陽極酸化皮膜4を形成する。この無孔質陽極酸化皮膜4の形成においても、前記した電解による無孔質陽極酸化皮膜3の形成と同様に、ホウ酸又はホウ酸アンモニウムを電解質として含む水溶液を用いるのが好ましい。これらの電解質を用いた皮膜生成によれば、孔が極めて形成され難いためであり、また、厚い無孔質陽極酸化皮膜の形成に適している。ただし、本発明においては、電解液の種別が特定のものに限定されるものではない。また、電解に際しては、溶液濃度は1〜30質量%が望ましい。電解温度は50℃以上が耐クラック性から好ましく、皮膜の真空特性から上限は95℃(酸化膜が水和反応を開始)が好ましい。   Subsequently, as shown in FIG.1 (d), the nonporous anodic oxide film 4 is again formed in the surface of the aluminum material 1 by electrolysis. Also in the formation of the nonporous anodic oxide coating 4, it is preferable to use an aqueous solution containing boric acid or ammonium borate as an electrolyte, as in the formation of the nonporous anodic oxide coating 3 by electrolysis. This is because the formation of a film using these electrolytes is extremely difficult to form pores, and is suitable for forming a thick nonporous anodic oxide film. However, in the present invention, the type of the electrolytic solution is not limited to a specific type. In electrolysis, the solution concentration is preferably 1 to 30% by mass. The electrolysis temperature is preferably 50 ° C. or more from crack resistance, and the upper limit is preferably 95 ° C. (the oxide film starts a hydration reaction) from the vacuum characteristics of the film.

上記により得られた表面処理アルミニウム材は、金属間化合物による皮膜欠陥の発生を招くことなく均質な無孔質陽極酸化皮膜4が形成されており、優れた真空特性と耐食性とを有している。該表面処理アルミニウム材は、分子線エピタキシー装置、ドライエッチング装置、CVD装置、イオンプレーティング装置、プラズマCVD装置、スパッタリング装置のような真空機器用に好適に用いることができ、特に加熱を受ける熱CVDのガス拡散板やチャンバー、バルブ類などに好適である。   The surface-treated aluminum material obtained as described above has a uniform nonporous anodic oxide film 4 formed without causing film defects due to intermetallic compounds, and has excellent vacuum characteristics and corrosion resistance. . The surface-treated aluminum material can be suitably used for a vacuum apparatus such as a molecular beam epitaxy apparatus, a dry etching apparatus, a CVD apparatus, an ion plating apparatus, a plasma CVD apparatus, or a sputtering apparatus. It is suitable for gas diffusion plates, chambers, valves and the like.

以下に、本発明の実施例を説明する。
基材として、JIS6061アルミニウム合金(Si0.60wt%、Fe0.70wt%、Cu0.30wt%、Mn0.15wt%、Mg1.0wt%、Cr0.20wt%、残部Alと不可避不純物)からなり、100mm長×100mm幅×7.0mm厚みの板材を用意し、厚さ方向の両面の各1.0mmをフライスで切削加工した。前記板材に対し、アセトンで拭き取り油分を除去した後、中性から弱アルカリ性の脱脂剤による脱脂、または、有機溶剤による油分の除去を行った。つぎに、5%苛性ソーダ50℃で1分間エッチング処理し、その後、10%硝酸に室温で3分間浸漬して中和処理を行った。
Examples of the present invention will be described below.
As a base material, it is made of JIS6061 aluminum alloy (Si 0.60 wt%, Fe 0.70 wt%, Cu 0.30 wt%, Mn 0.15 wt%, Mg 1.0 wt%, Cr 0.20 wt%, the balance Al and inevitable impurities), 100 mm long × A plate material having a width of 100 mm and a thickness of 7.0 mm was prepared, and each 1.0 mm on both sides in the thickness direction was cut with a mill. The plate material was wiped off with acetone and the oil was removed, followed by degreasing with a neutral to weak alkaline degreasing agent or removing the oil with an organic solvent. Next, etching was performed for 1 minute at 50 ° C. with 5% caustic soda, and then neutralized by immersing in 10% nitric acid at room temperature for 3 minutes.

前記アルミニウム材を表1に示す電解液中に浸漬し、対極をカーボンとして、プラスの直流電流を1A/dmで付与し、表1に示す所定膜厚の無孔質陽極酸化皮膜の形成を行った。この電解では、形成される無孔質陽極酸化皮膜の膜厚と電圧の関係が1.4nm/Vとなるように電圧を設定した。
前記電解を開始後、設定電圧に電圧が到達した時点から、さらに陽極酸化を5分間継続し、その後、電解を停止した。前記アルミニウム材を水洗、乾燥して、無孔質陽極酸化皮膜が形成されたアルミニウム材を得た。
The aluminum material is immersed in an electrolytic solution shown in Table 1, a counter electrode is carbon, a positive direct current is applied at 1 A / dm 2 , and a nonporous anodized film having a predetermined thickness shown in Table 1 is formed. went. In this electrolysis, the voltage was set such that the relationship between the film thickness of the nonporous anodic oxide film to be formed and the voltage was 1.4 nm / V.
After the start of electrolysis, anodization was continued for 5 minutes after the voltage reached the set voltage, and then electrolysis was stopped. The aluminum material was washed with water and dried to obtain an aluminum material on which a nonporous anodized film was formed.

次いで、該アルミニウム材の表面に形成された無孔質陽極酸化皮膜の剥離処理を行った。該剥離処理で表中に記した剥離液に浸漬し、前記無孔質陽極酸化皮膜が完全に剥離されたことを目視にて確認するまで前記浸漬を継続した。無孔質陽極酸化皮膜が剥離された前記アルミニウム材を水洗、乾燥した後、再度、電解による無孔質陽極酸化皮膜形成を行った。再度の電解による無孔質陽極酸化皮膜の形成では、前記した電解処理と同様に、電解液中にアルミニウム材を浸漬し、対極をカーボンとして、プラスの直流電流を1A/dmで付与して、表1に示す所定膜厚の無孔質陽極酸化皮膜を形成した。
この電解においても、形成される無孔質陽極酸化皮膜の膜厚と電圧の関係が1.4nm/Vとなるように電圧を設定した。また、電圧が所定の電圧に到達した時点から、陽極酸化を5分間継続した。その後、電解を停止し、前記アルミニウム材を水洗、乾燥し、供試材とした。
Subsequently, the nonporous anodic oxide film formed on the surface of the aluminum material was peeled off. It was immersed in the stripping solution described in the table by the stripping treatment, and the above immersion was continued until it was visually confirmed that the nonporous anodic oxide film was completely stripped. The aluminum material from which the nonporous anodized film was peeled off was washed with water and dried, and then a nonporous anodized film was formed again by electrolysis. In the formation of the non-porous anodic oxide film by electrolysis again, as in the above-described electrolytic treatment, an aluminum material is immersed in the electrolytic solution, the counter electrode is carbon, and a positive direct current is applied at 1 A / dm 2. A nonporous anodic oxide film having a predetermined film thickness shown in Table 1 was formed.
Also in this electrolysis, the voltage was set so that the relationship between the thickness of the nonporous anodic oxide film to be formed and the voltage was 1.4 nm / V. Moreover, the anodic oxidation was continued for 5 minutes from the time when the voltage reached a predetermined voltage. Thereafter, electrolysis was stopped, and the aluminum material was washed with water and dried to obtain a test material.

得られた供試材に対し、以下の方法で性能評価を行った。
(耐食性評価)
供試材に対し、CFプラズマ、500W、100時間照射後、500倍(視野は0.1mm×0.1mm)で任意の30箇所をSEM(Scanning Electron Microscope:走査型電子顕微鏡)観察し、素地アルミニウムが観察された部位数がゼロのものを◎、1〜3を○、4〜10を△、11以上を×と評価した。評価結果を表1に示した。
Performance evaluation was performed on the obtained specimens by the following method.
(Corrosion resistance evaluation)
After irradiating the test material with CF 4 plasma, 500 W, 100 hours, an arbitrary 30 locations were observed with SEM (Scanning Electron Microscope) at 500 times (field of view: 0.1 mm × 0.1 mm), The case where the number of parts where the base aluminum was observed was evaluated as ◎, 1-3 as ◯, 4-10 as △, and 11 or more as ×. The evaluation results are shown in Table 1.

(真空特性評価)
供試材を400℃まで加熱した際のガス放出量(Pa・m)を測定した。1Pa・m未満を◎、1〜3Pa・mを○、4〜10Pa・mを△、11Pa・m以上を×とした。評価結果を表1に示した。
(Vacuum characteristics evaluation)
The amount of gas released (Pa · m) when the test material was heated to 400 ° C. was measured. Less than 1 Pa · m was evaluated as ◎, 1-3 Pa · m as ◯, 4 to 10 Pa · m as Δ, and 11 Pa · m or more as ×. The evaluation results are shown in Table 1.

Figure 0005352204
Figure 0005352204

表1に示すように、アルミニウム材表面に形成された無孔質陽極酸化皮膜を剥離した後、再度、無孔質陽極酸化皮膜を形成した本願発明法(実施例No.1〜7)では、真空特性、耐食性とも優れた結果が得られた。一方、無孔質陽極酸化皮膜の剥離、再形成を行っていない比較例No.1〜4は、真空特性、耐食性ともに劣っていることが明らかになった。   As shown in Table 1, after peeling the nonporous anodic oxide film formed on the surface of the aluminum material, the present invention method (Example Nos. 1 to 7) in which the nonporous anodic oxide film was formed again was used. Excellent results were obtained in both vacuum characteristics and corrosion resistance. On the other hand, Comparative Example No. in which the nonporous anodic oxide film was not peeled off or reformed. 1 to 4 were found to be inferior in both vacuum characteristics and corrosion resistance.

本発明の無孔質陽極酸化皮膜形成を示す工程図である。It is process drawing which shows nonporous anodic oxide film formation of this invention.

符号の説明Explanation of symbols

1 アルミニウム材
2 金属間化合物
3 無孔質陽極酸化皮膜
4 無孔質陽極酸化皮膜
1 Aluminum material 2 Intermetallic compound 3 Nonporous anodized film 4 Nonporous anodized film

Claims (3)

電解によって表面に無孔質陽極酸化皮膜が形成されたアルミニウム材を用意し、該アルミニウム材の前記無孔質陽極酸化皮膜を剥離した後、再度、電解によって、前記アルミニウム材の表面に無孔質陽極酸化皮膜を形成することを特徴とする真空機器用表面処理アルミニウム材の製造方法。   An aluminum material having a nonporous anodized film formed on the surface by electrolysis is prepared, and after the nonporous anodized film of the aluminum material is peeled off, the nonporous material is formed on the surface of the aluminum material by electrolysis again. A method for producing a surface-treated aluminum material for vacuum equipment, comprising forming an anodized film. 前記剥離の対象となる無孔質陽極酸化皮膜が、前記再度の電解によって形成される無孔質陽極酸化皮膜の膜厚Aに対して、A/3〜Aの膜厚を有することを特徴とする請求項1記載の真空機器用表面処理アルミニウム材の製造方法。   The nonporous anodic oxide film to be peeled has a thickness of A / 3 to A with respect to the film thickness A of the nonporous anodic oxide film formed by the second electrolysis. The manufacturing method of the surface treatment aluminum material for vacuum devices of Claim 1. 前記無孔質陽極酸化皮膜の剥離は、アルカリまたは酸による前記無孔質陽極酸化皮膜の溶解によって行われることを特徴とする請求項1または請求項2記載の真空機器用表面処理アルミニウム材の製造方法。   The production of the surface-treated aluminum material for vacuum equipment according to claim 1 or 2, wherein the nonporous anodic oxide film is peeled by dissolution of the nonporous anodic oxide film with an alkali or an acid. Method.
JP2008299747A 2008-11-25 2008-11-25 Surface-treated aluminum material for vacuum equipment Active JP5352204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008299747A JP5352204B2 (en) 2008-11-25 2008-11-25 Surface-treated aluminum material for vacuum equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008299747A JP5352204B2 (en) 2008-11-25 2008-11-25 Surface-treated aluminum material for vacuum equipment

Publications (2)

Publication Number Publication Date
JP2010126739A JP2010126739A (en) 2010-06-10
JP5352204B2 true JP5352204B2 (en) 2013-11-27

Family

ID=42327333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008299747A Active JP5352204B2 (en) 2008-11-25 2008-11-25 Surface-treated aluminum material for vacuum equipment

Country Status (1)

Country Link
JP (1) JP5352204B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101362438B1 (en) 2013-10-02 2014-02-13 (주)아인스 Method for eliminating aluminum oxide film on aluminum surface and method for regenerating alumimum oxide film including the same
CN105463547B (en) * 2014-09-30 2018-10-12 苹果公司 Assembled integral plastic components on anodic oxidation mobile device shell
US9518333B2 (en) * 2014-09-30 2016-12-13 Apple Inc. Assembled integral plastic elements on an anodized mobile device enclosure

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5989795A (en) * 1982-11-12 1984-05-24 Hitachi Condenser Co Ltd Manufacture of aluminum foil for electrolytic capacitor
JPH01282813A (en) * 1988-05-09 1989-11-14 Showa Alum Corp Manufacture of aluminum material for electrolytic capacitor electrode
JPH08311692A (en) * 1995-05-17 1996-11-26 Kobe Steel Ltd Parts for vacuum chamber and production thereof
JP3705898B2 (en) * 1997-06-27 2005-10-12 三菱アルミニウム株式会社 Surface-treated aluminum components for vacuum equipment and manufacturing method thereof
JP4653687B2 (en) * 2006-03-31 2011-03-16 ニチコン株式会社 Method for producing electrode foil for electrolytic capacitor
JP2008238048A (en) * 2007-03-27 2008-10-09 Fujifilm Corp Precision filter unit

Also Published As

Publication number Publication date
JP2010126739A (en) 2010-06-10

Similar Documents

Publication Publication Date Title
JP4716779B2 (en) Corrosion-resistant treatment method for aluminum or aluminum alloy
US20110253556A1 (en) Solution system for electrolytically removing titanium carbide coating and method for same
JP4656405B2 (en) Surface treatment method of aluminum or its alloy
JP5352204B2 (en) Surface-treated aluminum material for vacuum equipment
JP5614671B2 (en) Oxide film and method for forming the same
JP5369083B2 (en) Surface-treated aluminum member having high withstand voltage and method for producing the same
KR100664900B1 (en) ANODIZED Al OR Al ALLOY MEMBER HAVING GOOD THERMAL CRACKING-RESISTANCE AND THE METHOD FOR MANUFACTURING THE MEMBER
JP2005105300A (en) Surface treatment method of aluminum or aluminum alloy used for vacuum device and its components, and vacuum device and its components
JP5613125B2 (en) Method for producing aluminum anodic oxide film having high withstand voltage and excellent productivity
JPH09184094A (en) Surface treated aluminum material and its production
JPH0525694A (en) Production of aluminum or aluminum alloy for vacuum equipment
KR101765005B1 (en) Preparing method of aluminium alloy hybrid oxide coating layers
JP5334125B2 (en) Method for producing surface-treated aluminum material for vacuum equipment
JP5397884B2 (en) Method for producing surface-treated aluminum material for vacuum equipment
JP4587875B2 (en) Corrosion-resistant treatment method for aluminum or aluminum alloy
JP5149591B2 (en) Method for producing surface-treated aluminum material
JP5419066B2 (en) Method for producing surface-treated aluminum material for vacuum equipment
JP5370984B2 (en) Aluminum alloy material for vacuum equipment and manufacturing method thereof
JP6352087B2 (en) Surface-treated aluminum material and method for producing the same
JP5352203B2 (en) Method for producing surface-treated aluminum material for vacuum equipment
JP5086688B2 (en) Method for producing surface-treated aluminum
KR20180131280A (en) Method of desmut treatment of aluminum alloy
TWI247826B (en) Pre-treatment for plating on casting aluminum alloy
JP2008282994A (en) Method of manufacturing electrode foil for aluminum electrolytic capacitor
JP5014781B2 (en) Method for producing surface-treated aluminum material and apparatus for producing surface-treated aluminum material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130826

R150 Certificate of patent or registration of utility model

Ref document number: 5352204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250