JP5369083B2 - Surface-treated aluminum member having high withstand voltage and method for producing the same - Google Patents

Surface-treated aluminum member having high withstand voltage and method for producing the same Download PDF

Info

Publication number
JP5369083B2
JP5369083B2 JP2010274026A JP2010274026A JP5369083B2 JP 5369083 B2 JP5369083 B2 JP 5369083B2 JP 2010274026 A JP2010274026 A JP 2010274026A JP 2010274026 A JP2010274026 A JP 2010274026A JP 5369083 B2 JP5369083 B2 JP 5369083B2
Authority
JP
Japan
Prior art keywords
film
thickness
anodized
ratio
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010274026A
Other languages
Japanese (ja)
Other versions
JP2011157624A (en
Inventor
護 細川
浩司 和田
隆之 坪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2010274026A priority Critical patent/JP5369083B2/en
Publication of JP2011157624A publication Critical patent/JP2011157624A/en
Application granted granted Critical
Publication of JP5369083B2 publication Critical patent/JP5369083B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-treated aluminum member having an anode oxide film with excellent voltage resistance per unit film thickness while it can be easily manufactured. <P>SOLUTION: The surface-treated aluminum member has a base material consisting of aluminum or an aluminum alloy, and an anode oxide film formed on the surface of the base material, and is used for a voltage application part. The anode oxide film has a first film formed on the surface side, and a second film formed on the base material side. The mass ratio (S/Al) of the S(Sulfur) content to the Al (Aluminum) content in the first film is 0.10-0.15. The mass ratio (S/Al) of the S content to the Al content in the second film is 0-0.04. The ratio (the first film thickness/the total film thickness) of the thickness of the first film to the total film thickness is &ge;0.33, and the ratio (the second film thickness/the total film thickness) of the thickness of the second film to the total film thickness is &ge;0.25. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、ドライエッチング装置、CVD(Chemical Vapor Deposition)装置、イオン注入装置、スパッタリング装置等のように、半導体や液晶の製造設備等の真空チャンバーや、その真空チャンバーの内部に設けられる部品の素材として有用な、アルミニウムやアルミニウム合金を基材とし、その表面が陽極酸化処理された表面処理アルミニウム部材およびその製造方法に関するものである。   The present invention relates to a vacuum chamber of a semiconductor or liquid crystal manufacturing facility, such as a dry etching apparatus, a CVD (Chemical Vapor Deposition) apparatus, an ion implantation apparatus, or a sputtering apparatus, and a material for components provided in the vacuum chamber. In particular, the present invention relates to a surface-treated aluminum member whose surface is anodized using aluminum or an aluminum alloy as a base material and a method for producing the same.

アルミニウムやアルミニウム合金等を基材とした部材の表面に陽極酸化皮膜を形成して、その基材に耐プラズマ性や耐ガス腐食性を付与した陽極酸化処理は従来から広く行なわれている。   An anodizing treatment in which an anodized film is formed on the surface of a member made of aluminum or an aluminum alloy as a base material and plasma resistance or gas corrosion resistance is imparted to the base material has been widely performed.

例えば、半導体製造設備のプラズマ処理装置に用いられる真空チャンバーや、その真空チャンバーの内部に設けられる各種部品は、アルミニウム合金を用いて構成されることが一般的である。しかしながら、そのアルミニウム合金を何らかの処理をしないまま(無垢のまま)で使用すれば、耐プラズマ性や耐ガス腐食性等を維持することができない。こうしたことから、アルミニウム合金によって構成された部材の表面に、陽極酸化皮膜を形成することによって、耐プラズマ性や耐ガス腐食性等を付与することが行なわれている。   For example, a vacuum chamber used in a plasma processing apparatus of a semiconductor manufacturing facility and various parts provided in the vacuum chamber are generally configured using an aluminum alloy. However, if the aluminum alloy is used without any treatment (innocent), plasma resistance, gas corrosion resistance, etc. cannot be maintained. For these reasons, plasma resistance, gas corrosion resistance, and the like are imparted by forming an anodized film on the surface of a member made of an aluminum alloy.

一方、近年では配線幅の微細化に起因して、プラズマの高密度化に伴い、プラズマを生成させるために投入する電力が増加しており、従来の陽極酸化皮膜では、高電力投入時に発生する高電圧によって、皮膜が絶縁破壊を引き起こすことがある。こうした絶縁破壊が生じた部分では電気特性が変化するために、エッチング均一性や、成膜均一性が劣化することから、陽極酸化皮膜の高耐電圧化が望まれている。   On the other hand, in recent years, due to the miniaturization of the wiring width, with the increase in plasma density, the power input to generate plasma is increasing, and in the conventional anodic oxide film, it occurs when high power is input. High voltage can cause dielectric breakdown in the coating. Since the electrical characteristics change in the portion where such dielectric breakdown occurs, the etching uniformity and the film formation uniformity are deteriorated. Therefore, it is desired to increase the withstand voltage of the anodized film.

陽極酸化皮膜を高耐電圧化するための技術は、これまでにも様々提案されている。例えば、特許文献1では、シュウ酸と蟻酸の混合溶液中で陽極酸化皮膜を形成した後に、ホウ酸アルカリ中で再度陽極酸化処理する方法が提案されている。しかしながら、この方法では、ホウ酸アルカリ中で陽極酸化処理するためには数百V以上の高電圧に対応した高価な整流器が必要となり、設備コストの点で問題がある。   Various techniques for increasing the withstand voltage of the anodized film have been proposed so far. For example, Patent Document 1 proposes a method in which an anodized film is formed in a mixed solution of oxalic acid and formic acid and then anodized again in an alkali borate. However, in this method, an anodizing treatment in an alkali borate requires an expensive rectifier corresponding to a high voltage of several hundred volts or more, and there is a problem in terms of equipment cost.

また、特許文献2には、陽極酸化皮膜上に、ポリイミド前駆体を用いて形成されたポリイミド皮膜で陽極酸化皮膜を被覆する方法が提案されている。しかしながら、この技術では、ポリイミド前駆体を電着させる等の設備が別途必要となる。   Patent Document 2 proposes a method of coating an anodic oxide film on a anodic oxide film with a polyimide film formed using a polyimide precursor. However, this technique requires additional equipment such as electrodeposition of a polyimide precursor.

一方、特許文献3には、アルコール性水酸基を有する溶媒に、無機酸の塩を溶解した電解液を用いて高耐電圧のバリア型陽極酸化皮膜を形成する方法が提案されている。しかしながら、この技術においても、陽極酸化処理による電解液体中のアルコールの濃度変化の管理が煩雑となるという問題がある。   On the other hand, Patent Document 3 proposes a method of forming a high withstand voltage barrier type anodic oxide film using an electrolytic solution in which a salt of an inorganic acid is dissolved in a solvent having an alcoholic hydroxyl group. However, even in this technique, there is a problem that the management of the change in the concentration of alcohol in the electrolytic liquid due to the anodizing treatment becomes complicated.

特開昭60−204897号公報JP-A-60-204897 特開2004−59997号公報JP 2004-59997 A 特開平11−229157号公報JP 11-229157 A

従来、陽極酸化皮膜を高耐電圧化した表面処理部材や、そのような表面処理部材を得るための製造方法が種々提案されているが、製造工程の煩雑さ、製造コスト等の観点から改良の余地があった。また、高耐電圧化を図るために硫黄を高濃度に含有させた陽極酸化皮膜では、通常では耐電圧性に優れるものの、高温下では皮膜にクラックが発生して耐電圧性が低下するという問題があった。   Conventionally, various surface treatment members with a high withstand voltage of anodized films and production methods for obtaining such surface treatment members have been proposed, but improvements have been made in view of the complexity of the production process and production costs. There was room. In addition, anodized films containing a high concentration of sulfur to increase the withstand voltage are usually excellent in withstand voltage, but cracks occur in the film at high temperatures and the withstand voltage decreases. was there.

本発明は上記のような事情に着目してなされたものであって、より容易に製造できることを前提とし、単位膜厚当たりの耐電圧性に優れた陽極酸化皮膜、特に高温下でも耐電圧性に優れた陽極酸化皮膜を有する表面処理アルミニウム部材を提供することを目的とする。また、本発明は、高耐電圧を有する表面処理アルミニウム部材を容易に製造し得る製造方法を提供することも目的とする。   The present invention has been made by paying attention to the above-mentioned circumstances, and is based on the premise that it can be manufactured more easily, and is excellent in voltage resistance per unit film thickness, particularly withstand voltage even at high temperatures. An object of the present invention is to provide a surface-treated aluminum member having an excellent anodized film. Another object of the present invention is to provide a manufacturing method that can easily manufacture a surface-treated aluminum member having a high withstand voltage.

陽極酸化皮膜は絶縁体であるが、電圧印加時には陽極酸化皮膜にリーク電流が流れることになる。陽極酸化皮膜における絶縁破壊現象は、電圧印加時に陽極酸化皮膜を流れるリーク電流によって発生するジュール熱が、リーク電流の経路となる陽極酸化皮膜の体積の溶解に必要な熱量を上回った場合に、陽極酸化皮膜が溶解して、皮膜に欠陥が生成される現象と考えられる。   Although the anodized film is an insulator, a leak current flows through the anodized film when a voltage is applied. The dielectric breakdown phenomenon in the anodized film occurs when the Joule heat generated by the leak current flowing through the anodized film when a voltage is applied exceeds the amount of heat necessary to dissolve the volume of the anodized film that is the path of the leak current. It is considered that the oxide film dissolves and defects are generated in the film.

ここで、陽極酸化処理液として硫酸水溶液を用いると、形成される陽極酸化皮膜には、硫酸水溶液に起因する硫黄が含有される。硫黄を含有する陽極酸化皮膜では、皮膜中の硫黄がリーク電流に何らかの作用を及ぼすことにより、耐電圧特性が向上する。しかしながら、硫黄含有量の大きい陽極酸化皮膜は、300℃以上の高温に曝されると、陽極酸化皮膜にその表面から基材アルミニウム合金まで貫通するクラック或いは非貫通の微細なクラックが発生してしまい、陽極酸化皮膜が脆弱化してしまう。そのため、硫酸水溶液のみで形成した陽極酸化皮膜では、常温での耐電圧特性には優れるものの、高温下での耐電圧性が劣ることとなる。   Here, when a sulfuric acid aqueous solution is used as the anodizing treatment liquid, the resulting anodic oxide film contains sulfur resulting from the sulfuric acid aqueous solution. In the anodized film containing sulfur, the withstand voltage characteristic is improved by sulfur in the film having some effect on the leakage current. However, when the anodized film having a large sulfur content is exposed to a high temperature of 300 ° C. or higher, cracks penetrating from the surface to the base aluminum alloy or non-penetrating fine cracks are generated in the anodized film. The anodized film becomes brittle. For this reason, an anodic oxide film formed only with an aqueous sulfuric acid solution is excellent in withstand voltage characteristics at room temperature, but is inferior in withstand voltage at high temperatures.

本発明者らは、このような知見をもとに、陽極酸化皮膜中の硫黄含有量について検討を行ったところ、陽極酸化皮膜に硫黄を含有させつつ、皮膜の基材側における硫黄含有量を小さくすることにより、高温下においても高い耐電圧特性を得られることを見出し、本発明を完成した。   Based on such knowledge, the present inventors have examined the sulfur content in the anodized film. While the sulfur was contained in the anodized film, the sulfur content on the substrate side of the film was determined. The inventors have found that a high withstand voltage characteristic can be obtained even at high temperatures by reducing the size, and the present invention has been completed.

すなわち、本発明の表面処理アルミニウム部材は、アルミニウムまたはアルミニウム合金からなる基材と、該基材表面に形成された陽極酸化皮膜とを有し、電圧印加部に用いられる表面処理アルミニウム部材であって、前記陽極酸化皮膜は、表面側に形成された第1皮膜と基材側に形成された第2皮膜とを有し、前記第1皮膜中のS(硫黄)含有量とAl(アルミニウム)含有量との質量比(S/Al)が0.10〜0.15、前記第2皮膜中のS含有量とAl含有量との質量比(S/Al)が0〜0.04であり、前記第1皮膜の厚さの全体膜厚に対する割合(第1皮膜/全体膜厚)が0.33以上であり、前記第2皮膜の厚さの全体膜厚に対する割合(第2皮膜/全体膜厚)が0.25以上であることを特徴とする。このような構成とすることにより、第1皮膜が硫黄を含有しているため、この硫黄がリーク電流に作用を及ぼすことにより、耐電圧特性が向上する。また、第2皮膜はS含有量が小さいため、高温に曝された場合でも第2皮膜にはクラックが発生せず、加熱による陽極酸化皮膜の脆弱化を抑制できる。従って、本発明の表面処理アルミニウム部材は、高温下においても耐電圧特性に優れることとなる。   That is, the surface-treated aluminum member of the present invention is a surface-treated aluminum member that has a base material made of aluminum or an aluminum alloy and an anodized film formed on the surface of the base material, and is used for a voltage application unit. The anodized film has a first film formed on the surface side and a second film formed on the substrate side, and contains S (sulfur) content and Al (aluminum) content in the first film. The mass ratio (S / Al) to the amount is 0.10 to 0.15, and the mass ratio (S / Al) between the S content and the Al content in the second coating is 0 to 0.04, The ratio of the thickness of the first film to the total film thickness (first film / total film thickness) is 0.33 or more, and the ratio of the thickness of the second film to the total film thickness (second film / total film) (Thickness) is 0.25 or more. By setting it as such a structure, since the 1st membrane | film | coat contains sulfur, a withstand voltage characteristic improves because this sulfur acts on a leakage current. Further, since the second film has a small S content, cracks do not occur in the second film even when exposed to high temperatures, and weakening of the anodized film due to heating can be suppressed. Therefore, the surface-treated aluminum member of the present invention has excellent withstand voltage characteristics even at high temperatures.

前記陽極酸化皮膜のポーラス層において、表面のポア間固体部の平均厚さ(d1)と、基材側のポア間固体部の平均厚さ(D1)との比(d1/D1)は0.80以下であることが好ましい。このような構成とすることにより、表面処理アルミニウム部材の耐電圧性をより向上させることができる。また、前記陽極酸化皮膜の厚さは5μm超であることが好ましい。   In the porous layer of the anodized film, the ratio (d1 / D1) between the average thickness (d1) of the solid portion between pores on the surface and the average thickness (D1) of the solid portion between pores on the substrate side is 0. It is preferable that it is 80 or less. By setting it as such a structure, the withstand voltage property of a surface treatment aluminum member can be improved more. The thickness of the anodized film is preferably more than 5 μm.

本発明には、硫酸濃度が100g/L〜200g/Lの水溶液中で、陽極酸化皮膜の設定膜厚全体に対する割合が0.33〜0.75の膜厚を処理する第1皮膜形成工程、および、液温が10℃〜30℃で、シュウ酸濃度が20g/L〜40g/L、硫酸濃度が0g/L〜4g/Lの水溶液中で陽極酸化皮膜の設定膜厚の残りの部分を処理する第2皮膜形成工程を有することを特徴とする製造方法も含まれる。   In the present invention, in an aqueous solution having a sulfuric acid concentration of 100 g / L to 200 g / L, a first film forming step of treating a film thickness of 0.33 to 0.75 relative to the entire set film thickness of the anodized film, And the remaining part of the set film thickness of the anodized film in an aqueous solution having a liquid temperature of 10 ° C. to 30 ° C., an oxalic acid concentration of 20 g / L to 40 g / L, and a sulfuric acid concentration of 0 g / L to 4 g / L. The manufacturing method characterized by having the 2nd film formation process to process is also contained.

前記製造方法においては、陽極酸化皮膜のポーラス層における、表面のポア間固体部の平均厚さ(d1)と、基材側のポア間固体部の平均厚さ(D1)との比(d1/D1)を0.80以下とすることが好ましい。前記陽極酸化皮膜の設定膜厚を5μm超とすることが好ましい。また、前記第1皮膜形成工程の前に、アルミニウムまたはアルミニウム合金からなる基材を酸に浸けて、前記第1皮膜形成工程とは逆向きの電流を流す工程を有することも好ましい態様である。   In the manufacturing method, in the porous layer of the anodized film, the ratio (d1 /) between the average thickness (d1) of the solid portion between pores on the surface and the average thickness (D1) of the solid portion between pores on the substrate side D1) is preferably 0.80 or less. The set film thickness of the anodized film is preferably more than 5 μm. Moreover, it is also a preferable aspect to have a step of immersing a base material made of aluminum or an aluminum alloy in an acid and flowing an electric current in a direction opposite to that of the first coating forming step before the first coating forming step.

本発明によれば、陽極酸化皮膜中のS(硫黄)含有量を制御することにより、耐電圧性に優れた表面処理アルミニウム部材が得られる。また、本発明製法によれば、耐電圧性に優れた表面処理アルミニウム部材を容易に作製することができる。   According to the present invention, a surface-treated aluminum member having excellent voltage resistance can be obtained by controlling the S (sulfur) content in the anodized film. Moreover, according to the manufacturing method of this invention, the surface treatment aluminum member excellent in the voltage endurance can be produced easily.

本発明の表面処理部材における陽極酸化皮膜の膜構造を模式的に示した断面図である。It is sectional drawing which showed typically the film | membrane structure of the anodic oxide film in the surface treatment member of this invention. 本発明の表面処理部材における陽極酸化皮膜の膜構造を模式的に示した平面図である。It is the top view which showed typically the film | membrane structure of the anodic oxide film in the surface treatment member of this invention.

本発明の表面処理アルミニウム部材について説明する。本発明の表面処理部材は、アルミニウムまたはアルミニウム合金(以下、「アルミニウム合金」で代表することがある)からなる基材と、その基材の表面に形成される陽極酸化皮膜より構成されるものである。本発明で用いるアルミニウム合金としては、特殊な化学成分組成のアルミニウム合金である必要はなく、市販のアルミニウム合金、例えばJIS H 4000に規定される6061、5052等のアルミニウム合金を基材として用いることができる。   The surface-treated aluminum member of the present invention will be described. The surface treatment member of the present invention is composed of a base material made of aluminum or an aluminum alloy (hereinafter may be represented by “aluminum alloy”) and an anodized film formed on the surface of the base material. is there. The aluminum alloy used in the present invention does not need to be an aluminum alloy having a special chemical composition, and a commercially available aluminum alloy, for example, an aluminum alloy such as 6061 and 5052 defined in JIS H 4000 is used as a base material. it can.

本発明の表面処理アルミニウム部材は、陽極酸化皮膜が、S含有量の大きな第1皮膜とS含有量の小さな第2皮膜とから形成されているところに要旨を有する。このような構成とすることにより、第1皮膜が硫黄を含有しているため、この硫黄がリーク電流に作用を及ぼすことにより、耐電圧特性が向上する。また、第2皮膜はS含有量が小さいため、高温に曝された場合でも第2皮膜にはクラックが発生せず、加熱による陽極酸化皮膜の脆弱化を抑制できる。従って、本発明の表面処理アルミニウム部材は、高温下においても耐電圧特性に優れることとなる。   The surface-treated aluminum member of the present invention is characterized in that the anodized film is formed from a first film having a large S content and a second film having a small S content. By setting it as such a structure, since the 1st membrane | film | coat contains sulfur, a withstand voltage characteristic improves because this sulfur acts on a leakage current. Further, since the second film has a small S content, cracks do not occur in the second film even when exposed to high temperatures, and weakening of the anodized film due to heating can be suppressed. Therefore, the surface-treated aluminum member of the present invention has excellent withstand voltage characteristics even at high temperatures.

前記第1皮膜は、陽極酸化皮膜の表面側に形成される。前記第1皮膜中のS含有量とAl含有量との質量比(S/Al)は、0.10〜0.15である。前記質量比(S/Al)が0.10未満では、耐電圧性の向上効果が得られない。一方、前記質量比(S/Al)が0.15を超えても、耐電圧性の向上効果は飽和となり経済的でない。なお、前記第1皮膜中の質量比(S/Al)は、耐電圧性をより向上させるために0.12以上が好ましく、経済性の観点から0.14以下が好ましい。   The first film is formed on the surface side of the anodized film. The mass ratio (S / Al) between the S content and the Al content in the first film is 0.10 to 0.15. When the mass ratio (S / Al) is less than 0.10, the effect of improving the voltage resistance cannot be obtained. On the other hand, even if the mass ratio (S / Al) exceeds 0.15, the effect of improving the voltage resistance is saturated and is not economical. The mass ratio (S / Al) in the first coating is preferably 0.12 or more in order to further improve the voltage resistance, and is preferably 0.14 or less from the viewpoint of economy.

前記第1皮膜中のS含有量は、皮膜全体にわたって均一でもよいし、膜厚方向に濃度勾配をもっていてもよい。なお、第1皮膜中のS含有量は、皮膜全体にわたって前記質量比(S/Al)0.10〜0.15を満足する必要がある。   The S content in the first film may be uniform throughout the film, or may have a concentration gradient in the film thickness direction. In addition, S content in a 1st membrane | film | coat needs to satisfy the said mass ratio (S / Al) 0.10-0.15 over the whole membrane | film | coat.

前記第1皮膜の厚さは、陽極酸化皮膜の全体膜厚に対する割合(第1皮膜/全体膜厚)が、0.33(1/3)〜0.75(3/4)である。前記第1皮膜の厚さの割合が0.33未満では、第1皮膜による耐電圧性の向上効果が得られない。一方、前記第1皮膜の厚さの割合が0.75を超えると、相対的に第2皮膜が薄くなりすぎる。そのため、高温下で第1皮膜に発生したクラックが伝播し、第2皮膜にまでクラックが発生してしまうこととなり、高温下での耐電圧性の向上効果が得られない。前記第1皮膜の厚さの割合は、0.40以上が好ましく、0.70以下が好ましい。   As for the thickness of the first film, the ratio (first film / total film thickness) to the total film thickness of the anodized film is 0.33 (1/3) to 0.75 (3/4). When the thickness ratio of the first film is less than 0.33, the effect of improving the voltage resistance by the first film cannot be obtained. On the other hand, when the ratio of the thickness of the first film exceeds 0.75, the second film becomes relatively thin. Therefore, the crack generated in the first film propagates at a high temperature, and the crack occurs in the second film, so that the effect of improving the voltage resistance at a high temperature cannot be obtained. The ratio of the thickness of the first film is preferably 0.40 or more, and preferably 0.70 or less.

前記第2皮膜は、陽極酸化皮膜の基材側に形成される。前記第2皮膜中のS含有量とAl含有量との質量比(S/Al)は、0〜0.04である。前記質量比(S/Al)が0.04を超えると、高温に曝された際に、第2皮膜にもクラックが発生してしまい、高温下での耐電圧性の向上効果が得られない。なお、第2皮膜中の質量比(S/Al)は、高温下での耐電圧性をより向上させるために0.02以下が好ましく、0が最も好ましい。   The second film is formed on the base material side of the anodized film. The mass ratio (S / Al) between the S content and the Al content in the second film is 0 to 0.04. When the mass ratio (S / Al) exceeds 0.04, the second coating also cracks when exposed to high temperatures, and the effect of improving the voltage resistance at high temperatures cannot be obtained. . The mass ratio (S / Al) in the second film is preferably 0.02 or less, and most preferably 0 in order to further improve the voltage resistance at high temperatures.

前記第2皮膜の厚さは、陽極酸化皮膜の全体膜厚に対する割合(第2皮膜/全体膜厚)が、0.25(1/4)〜0.67(2/3)であることが好ましい。前記第2皮膜の厚さの割合を0.25以上とすることで、第1皮膜のクラックが第2皮膜にまで伝播することがより抑制され、加熱後の耐電圧がより向上する。一方、前記第1皮膜の厚さを確保するために、第2皮膜の厚さの割合は0.67以下とする。前記第2皮膜の厚さの割合は、0.30以上が好ましく、0.60以下が好ましい。   The ratio of the thickness of the second film to the total film thickness of the anodized film (second film / total film thickness) is 0.25 (1/4) to 0.67 (2/3). preferable. By setting the ratio of the thickness of the second coating to 0.25 or more, the crack of the first coating is further suppressed to propagate to the second coating, and the withstand voltage after heating is further improved. On the other hand, in order to ensure the thickness of the first film, the ratio of the thickness of the second film is set to 0.67 or less. The thickness ratio of the second film is preferably 0.30 or more, and preferably 0.60 or less.

前記陽極酸化皮膜の厚さは5μm超であることが好ましく、より好ましくは15μm以上、さらに好ましくは30μm以上である。陽極酸化皮膜の厚みが5μm超であれば、表面処理アルミニウム部材の耐電圧性がより向上する。一方、陽極酸化皮膜の膜厚が厚くなり過ぎると皮膜の熱伝導率が低下することになる。ここで、半導体や液晶の製造設備等の真空チャンバー内部は、高温のプロセス温度に調節されるため、表面処理アルミニウム部材には高い熱電導率が要求される。そのため、陽極酸化皮膜の膜厚は薄い方が好ましい。なお、陽極酸化皮膜の膜厚は、要求される熱伝導率、すなわち成膜プロセスに対応した温度や部材形状に応じて適宜設定すればよいが、120μm以下であることが好ましく、より好ましくは90μm以下である。第1皮膜、第2皮膜及び陽極酸化皮膜の全体膜厚は、渦電流式膜厚計、皮膜断面のSEM(走査型電子顕微鏡)観察などにより測定すればよい。   The thickness of the anodic oxide film is preferably more than 5 μm, more preferably 15 μm or more, and further preferably 30 μm or more. When the thickness of the anodized film exceeds 5 μm, the voltage resistance of the surface-treated aluminum member is further improved. On the other hand, if the film thickness of the anodized film becomes too thick, the thermal conductivity of the film will decrease. Here, since the inside of a vacuum chamber such as a semiconductor or liquid crystal manufacturing facility is adjusted to a high process temperature, a high thermal conductivity is required for the surface-treated aluminum member. Therefore, it is preferable that the anodized film is thin. The film thickness of the anodized film may be appropriately set according to the required thermal conductivity, that is, the temperature and member shape corresponding to the film forming process, but is preferably 120 μm or less, more preferably 90 μm. It is as follows. The total film thickness of the first film, the second film, and the anodized film may be measured by an eddy current film thickness meter, SEM (scanning electron microscope) observation of the film cross section, or the like.

なお、本発明の表面処理アルミニウム部材は、陽極酸化皮膜が前記第1皮膜と第2皮膜とを有することを特徴とするが、これらの間に、前記質量比(S/Al)が0.04超0.10未満の皮膜を有していてもよい。ただし、本発明の表面アルミニウム部材は、陽極酸化皮膜が前記第1皮膜と第2皮膜のみからなることが好ましい。   The surface-treated aluminum member of the present invention is characterized in that the anodized film has the first film and the second film, and the mass ratio (S / Al) is 0.04 between them. You may have a super-less than 0.10 film. However, in the surface aluminum member of the present invention, the anodized film is preferably composed only of the first film and the second film.

また、前記陽極酸化皮膜は、ポーラス層において、表面のポア間固体部の平均厚さ(d1)と、基材側のポア間固体部の平均厚さ(D1)との比(d1/D1)が0.80以下であることが好ましい。このような構成とすることにより、リーク電流の流れの経路を分散し、電流の集中を抑制できるため、発生するジュール熱を分散させることができる。さらに、リーク電流の経路となる皮膜の体積が増加するため、発生するジュール熱が皮膜の溶解に必要な熱量を上回ることを抑制することができる。よって、表面処理アルミニウム部材の耐電圧性をより向上させることができる。前記比(d1/D1)は0.50以下がより好ましく、0.30以下がさらに好ましい。   In the porous layer, the ratio of the average thickness (d1) of the solid portion between pores on the surface to the average thickness (D1) of the solid portion between pores on the substrate side (d1 / D1) Is preferably 0.80 or less. By adopting such a configuration, it is possible to disperse the flow path of the leak current and suppress the concentration of the current, so that the generated Joule heat can be dispersed. Furthermore, since the volume of the film serving as a leakage current path increases, it is possible to suppress the generated Joule heat from exceeding the amount of heat necessary for dissolving the film. Therefore, the voltage resistance of the surface-treated aluminum member can be further improved. The ratio (d1 / D1) is more preferably 0.50 or less, and further preferably 0.30 or less.

前記表面のポア間固体部の平均厚さ(d1)、基材側のポア間固体部の平均厚さ(D1)について、図1および図2を参照して説明する。図1は、本発明の表面処理部材における陽極酸化皮膜の膜構造を模式的に示した断面図であり、図2は平面図である。図1、2において、1は基材、2はセル部、3(および3a〜3c)はポア、4はポーラス層(ポアが形成された部分)、5はバリア層(ポーラス層4と基材1との間に介在してポア3のない層)、6はセル同士の境界部を夫々示す。   The average thickness (d1) of the solid portion between pores on the surface and the average thickness (D1) of the solid portion between pores on the substrate side will be described with reference to FIGS. FIG. 1 is a cross-sectional view schematically showing the film structure of the anodized film in the surface treatment member of the present invention, and FIG. 2 is a plan view. 1 and 2, 1 is a base material, 2 is a cell portion, 3 (and 3a to 3c) are pores, 4 is a porous layer (portion-formed portion), and 5 is a barrier layer (porous layer 4 and base material). (Layer without pore 3 interposed between 1 and 1), 6 indicates the boundary between cells.

前記平均厚さd1は、陽極酸化皮膜の表面等を走査型電子顕微鏡(SEM)で観察したとき(図2参照)の近接する10以上のポア3について、夫々最近接(隣接)したポア3間の最短距離(セル部2の最小厚さ:図中d0で示す)を測定し、その測定値を平均化したものである。例えば、図2において、表面の固体部の最小厚さd0は、隣接したポア3a,3b間の最短距離を意味し、隣接していないポア3a,3c間の距離を含まないものである。前記平均厚さd1は、特に限定されるものではないが、機械的強度の観点から10nm以上が好ましく、より好ましくは25nm以上である。 The average thickness d1 is the distance between the adjacent pores 3 that are closest (adjacent) to 10 or more adjacent pores 3 when the surface of the anodized film is observed with a scanning electron microscope (SEM) (see FIG. 2). The shortest distance (minimum thickness of the cell portion 2: indicated by d 0 in the figure) is measured, and the measured values are averaged. For example, in FIG. 2, the minimum thickness d 0 of the solid portion on the surface means the shortest distance between the adjacent pores 3a and 3b and does not include the distance between the non-adjacent pores 3a and 3c. The average thickness d1 is not particularly limited, but is preferably 10 nm or more, more preferably 25 nm or more from the viewpoint of mechanical strength.

前記平均厚さD1は、走査型電子顕微鏡(SEM)で観察した皮膜の破断面(図1参照)において、セル部2同士の境界部6が基材1と接する部分でのポア間固体部厚さをD0とし、近接する10以上のD0を平均化したものである。なお、陽極酸化皮膜は最近接(隣接)したポアを結んで破壊するため、D0についてもd0と同様に、ポア間の最短距離が重要となる。すなわち、D0においても隣接していないポア間の距離は含まない。前記平均厚さD1は、特に限定されるものではないが、機械的強度を維持し、前記比(d1/D1)を0.8以下とするため、12.5nm以上が好ましく、より好ましくは30nm以上である。 The average thickness D1 is the thickness of the solid portion between pores at the portion where the boundary portion 6 between the cell portions 2 is in contact with the base material 1 in the fractured surface (see FIG. 1) of the film observed with a scanning electron microscope (SEM). in which the D 0, averaged over 10 D 0 adjacent a of. Since the anodic oxide film breaks by connecting the nearest (adjacent) pores, the shortest distance between the pores is important for D 0 as well as d 0 . That is, the distance between pores that are not adjacent to each other in D 0 is not included. The average thickness D1 is not particularly limited, but is preferably 12.5 nm or more, more preferably 30 nm in order to maintain mechanical strength and make the ratio (d1 / D1) 0.8 or less. That's it.

なお、リーク電流は、ポア間固体部を経路とするので、ポア3の径(ポア径)に依存しないものである。例えば、表面側のポア径が基材側のポア径よりも大きい場合であっても(前記図1参照)、上記比(d1/D1)が0.80以下を満足することによって、高耐電圧性がより向上する。また、前記図1では、ポーラス層4におけるポア間固体部2の厚さd0、D0が、連続的に変化する(d0→D0につれて増加する)場合について示したが、ポア間固体部厚さd0、D0が、深さ方向任意の区間で非連続的に変化する(増加する)場合であっても良い。 Note that the leakage current does not depend on the diameter of the pore 3 (pore diameter) because the path is the solid portion between the pores. For example, even when the pore diameter on the surface side is larger than the pore diameter on the base material side (see FIG. 1), the above-mentioned ratio (d1 / D1) satisfies 0.80 or less, thereby increasing the high withstand voltage. More improved. FIG. 1 shows the case where the thicknesses d 0 and D 0 of the inter-pore solid part 2 in the porous layer 4 continuously change (increases as d 0 → D 0 ). The thicknesses d 0 and D 0 may change (increase) discontinuously in an arbitrary section in the depth direction.

前記陽極酸化皮膜は、硫酸水溶液、シュウ酸水溶液、リン酸水溶液などの陽極酸化処理液、またはこれらの混合溶液にアルミニウム合金からなる基材を浸漬して陽極とし、電解処理を行うことにより形成できる。なお、陽極酸化処理液の濃度、陽極酸化処理を行う際の処理温度(液温)、電解電圧、処理時間は、所望の陽極処理酸化皮膜に応じて、適宜調節すればよい。   The anodized film can be formed by performing an electrolytic treatment by immersing a base material made of an aluminum alloy in an anodizing solution such as a sulfuric acid aqueous solution, an oxalic acid aqueous solution, or a phosphoric acid aqueous solution, or a mixed solution thereof. . In addition, what is necessary is just to adjust suitably the density | concentration of an anodizing process liquid, the process temperature (liquid temperature) at the time of anodizing process, an electrolysis voltage, and processing time according to a desired anodized oxide film.

以下、本発明の表面処理アルミニウム部材の製造方法の一例を具体的に説明する。   Hereinafter, an example of the manufacturing method of the surface treatment aluminum member of this invention is demonstrated concretely.

本発明の表面アルミニウム部材の製造方法は、硫酸濃度が100g/L〜200g/Lの水溶液中で、陽極酸化皮膜の設定膜厚全体に対する割合が0.33〜0.75の膜厚を処理する第1皮膜形成工程、および、液温が10℃〜30℃で、シュウ酸濃度が20g/L〜40g/L、硫酸濃度が0g/L〜4g/Lの水溶液中で陽極酸化皮膜の設定膜厚の残りの部分を処理する第2皮膜形成工程を有することが好ましい。このように、第1皮膜と第2皮膜とを、それぞれ異なる陽極酸化処理液を用いて形成することにより、陽極酸化皮膜中のS含有量を容易に調節することができる。   The manufacturing method of the surface aluminum member of this invention processes the film thickness whose ratio with respect to the whole setting film thickness of an anodic oxide film is 0.33-0.75 in the aqueous solution whose sulfuric acid concentration is 100 g / L-200 g / L. First film formation step and setting film for anodized film in aqueous solution having a liquid temperature of 10 ° C. to 30 ° C., an oxalic acid concentration of 20 g / L to 40 g / L, and a sulfuric acid concentration of 0 g / L to 4 g / L It is preferable to have the 2nd film formation process which processes the remaining part of thickness. Thus, the S content in the anodized film can be easily adjusted by forming the first film and the second film using different anodizing treatment liquids.

前記第1皮膜形成工程では、陽極酸化皮膜を構成する第1皮膜を形成する。
第1皮膜形成工程では、陽極酸化処理液として硫酸濃度が100g/L〜200g/Lの水溶液を用いることが好ましい。陽極酸化処理液中の硫酸濃度が100g/L未満では、形成される第1皮膜中のS含有量が小さ過ぎ、得られる表面処理アルミニウム部材の耐電圧性が劣るおそれがある。一方、陽極酸化処理液中の硫酸濃度が200g/Lを超えても、耐電圧向上効果は飽和し、経済的でない。前記陽極酸化処理液中の硫酸濃度は、120g/L以上、170g/L以下がより好ましい。
In the first film formation step, a first film constituting the anodized film is formed.
In the first film forming step, an aqueous solution having a sulfuric acid concentration of 100 g / L to 200 g / L is preferably used as the anodizing treatment liquid. If the sulfuric acid concentration in the anodizing solution is less than 100 g / L, the S content in the first film to be formed is too small, and the resulting surface-treated aluminum member may have poor voltage resistance. On the other hand, even if the sulfuric acid concentration in the anodizing solution exceeds 200 g / L, the withstand voltage improvement effect is saturated and is not economical. The sulfuric acid concentration in the anodizing solution is more preferably 120 g / L or more and 170 g / L or less.

なお、第1皮膜形成工程で用いる陽極酸化処理液は、含有される硫酸濃度が重要であり、本発明の効果を損なわない程度であれば、陽極酸化処理液に使用される他の成分を含有してもよい。他の成分としては、シュウ酸、ギ酸などの有機酸;リン酸、クロム酸などの無機酸が挙げられる。   Note that the concentration of sulfuric acid contained in the anodizing treatment liquid used in the first film formation step is important, and other components used in the anodizing treatment liquid are contained as long as the effects of the present invention are not impaired. May be. Examples of other components include organic acids such as oxalic acid and formic acid; inorganic acids such as phosphoric acid and chromic acid.

陽極酸化処理を行う温度(液温)は、特に限定されないが、−5℃〜20℃で行えばよい。また、電解電圧(表面皮膜形成電圧)については、電解電圧が低いと電流密度が小さくなり成膜速度が遅くなり、一方、電解電圧が高過ぎると大電流による皮膜の溶解によって陽極酸化皮膜が形成されなくなる傾向がある。電解電圧による影響は、処理液の組成や陽極酸化処理を行う温度にも関係するため、適宜設定すればよい。なお、後述するようにポーラス層の構造を制御する場合には、その点も考慮して電解電圧を設定すればよい。   Although the temperature (liquid temperature) which performs an anodizing process is not specifically limited, What is necessary is just to perform at -5 degreeC-20 degreeC. As for the electrolysis voltage (surface film formation voltage), if the electrolysis voltage is low, the current density becomes small and the film formation speed is slow. On the other hand, if the electrolysis voltage is too high, an anodized film is formed by dissolution of the film by a large current. There is a tendency not to be. Since the influence of the electrolytic voltage is related to the composition of the treatment liquid and the temperature at which the anodizing treatment is performed, it may be set as appropriate. In addition, when controlling the structure of a porous layer so that it may mention later, the electrolysis voltage should just be set also considering the point.

そして、第1皮膜形成工程では、陽極酸化皮膜の設定膜厚全体に対する割合が0.33〜0.75の膜厚を処理する。すなわち、第1皮膜の厚さの全体膜厚に対する割合(第1皮膜/全体膜厚)が0.33〜0.75となるように陽極酸化処理を行う必要がある。ここで、得られる表面処理アルミニウム部材の耐電圧性をより向上させるために、陽極酸化皮膜の全体膜厚の設定膜厚は5μm超とすることが好ましい。なお、膜厚については、実施する陽極酸化処理条件(陽極酸化処理液の組成、液温、電解電圧など)において、あらかじめ処理時間と形成される膜厚との関係を調査しておき、この関係をもとに処理時間を調整し、所望の膜厚とすればよい。   And in a 1st membrane | film | coat formation process, the ratio with respect to the whole set film thickness of an anodic oxide film processes 0.33-0.75. That is, it is necessary to perform the anodic oxidation treatment so that the ratio of the thickness of the first film to the total film thickness (first film / total film thickness) is 0.33 to 0.75. Here, in order to further improve the voltage resistance of the obtained surface-treated aluminum member, it is preferable that the set film thickness of the total film thickness of the anodized film is more than 5 μm. Regarding the film thickness, the relationship between the treatment time and the film thickness to be formed is investigated in advance under the anodizing conditions to be performed (composition of the anodizing solution, liquid temperature, electrolytic voltage, etc.). The processing time may be adjusted to obtain a desired film thickness.

硫酸水溶液中での処理後、硫酸水溶液から取り出したアルミニウム合金は、十分に水洗し、第2皮膜形成工程で使用する陽極酸化処理液に硫酸を持ち込まないようにすることが好ましい。なお、アルミニウム合金を水洗する方法としては、シャワー洗浄や、水中での超音波洗浄が好適である。   After the treatment in the sulfuric acid aqueous solution, it is preferable that the aluminum alloy taken out from the sulfuric acid aqueous solution is sufficiently washed so that sulfuric acid is not brought into the anodizing treatment solution used in the second film forming step. As a method for washing the aluminum alloy with water, shower washing or ultrasonic washing in water is suitable.

前記第2皮膜形成工程では、陽極酸化皮膜を構成する第2皮膜を形成する。
第2皮膜形成工程では、陽極酸化処理液として、硫酸濃度が0g/L〜4g/Lの水溶液を用いることが好ましい。第2皮膜形成工程で用いる陽極酸化処理液は硫酸を含んでいなくてもよい。なお、陽極酸化処理液に硫酸を添加することにより、成膜速度が向上し生産性の観点で有利である。しかし、陽極酸化処理液中の硫酸濃度が4g/Lを超えると、形成される第2皮膜中のS含有量が大きくなり、得られる表面処理アルミニウム部材の高温下での耐電圧性が劣る。前記陽極酸化処理液中の硫酸濃度は、2g/L以下がより好ましい。
In the second film formation step, a second film constituting the anodized film is formed.
In the second film forming step, an aqueous solution having a sulfuric acid concentration of 0 g / L to 4 g / L is preferably used as the anodizing treatment liquid. The anodizing treatment liquid used in the second film forming step may not contain sulfuric acid. Note that the addition of sulfuric acid to the anodizing solution is advantageous in terms of productivity because the film formation rate is improved. However, when the sulfuric acid concentration in the anodizing solution exceeds 4 g / L, the S content in the formed second film increases, and the resulting surface-treated aluminum member has poor voltage resistance at high temperatures. The sulfuric acid concentration in the anodizing solution is more preferably 2 g / L or less.

なお、第2皮膜形成工程で用いる陽極酸化処理液には、シュウ酸、ギ酸などの有機酸;リン酸、クロム酸などの無機酸が使用できる。これらの中でも、シュウ酸を用いることが好ましい。シュウ酸を用いる場合には、陽極酸化処理液中のシュウ酸濃度は特に限定されないが、20g/L〜40g/Lとすればよい。   In addition, organic acids, such as oxalic acid and formic acid; inorganic acids, such as phosphoric acid and chromic acid, can be used for the anodizing treatment liquid used in the second film forming step. Among these, it is preferable to use oxalic acid. When oxalic acid is used, the oxalic acid concentration in the anodizing solution is not particularly limited, but may be 20 g / L to 40 g / L.

第2皮膜形成工程では、陽極酸化処理を行う温度(液温)は、10℃〜30℃とすることが好ましい。処理温度が10℃未満であると、電流密度が小さくなって成膜速度が非常に遅くなり生産性が悪くなるおそれがある。一方、処理温度が30℃を超えると、皮膜の化学溶解によって第1皮膜が溶解してしまい、所望の陽極酸化皮膜を形成することができない。処理温度は15℃以上、25℃以下がより好ましい。   In the second film formation step, the temperature (liquid temperature) at which the anodic oxidation treatment is performed is preferably 10 ° C to 30 ° C. If the processing temperature is less than 10 ° C., the current density becomes small, the film formation rate becomes very slow, and the productivity may be deteriorated. On the other hand, when the treatment temperature exceeds 30 ° C., the first film is dissolved by chemical dissolution of the film, and a desired anodic oxide film cannot be formed. The treatment temperature is more preferably 15 ° C. or more and 25 ° C. or less.

電解電圧(表面皮膜形成電圧)については、電解電圧が低いと電流密度が小さくなり成膜速度が遅くなり、一方、電解電圧が高過ぎると大電流による皮膜の溶解によって陽極酸化皮膜が形成されなくなる傾向がある。電解電圧による影響は、処理液の組成、陽極酸化処理を行う温度および第1皮膜の膜厚にも関係するため、適宜設定すればよい。なお、後述するようにポーラス層の構造を制御する場合には、その点も考慮して電解電圧を設定すればよい。   With respect to the electrolysis voltage (surface film formation voltage), when the electrolysis voltage is low, the current density is reduced and the film formation rate is slow. Tend. The influence of the electrolytic voltage is related to the composition of the treatment liquid, the temperature at which the anodic oxidation treatment is performed, and the thickness of the first film, and therefore may be set as appropriate. In addition, when controlling the structure of a porous layer so that it may mention later, the electrolysis voltage should just be set also considering the point.

なお、膜厚については、前記第1皮膜形成工程と同様に、実施する陽極酸化処理条件(陽極酸化処理液の組成、液温、電解電圧など)において、あらかじめ処理時間と形成される膜厚との関係を調査しておき、この関係をもとに処理時間を調整すればよい。   As for the film thickness, in the same manner as in the first film forming step, the processing time and the film thickness formed in advance under the conditions of the anodizing treatment to be performed (composition of the anodizing solution, liquid temperature, electrolytic voltage, etc.) The processing time may be adjusted based on this relationship.

また、本発明の表面処理アルミニウム部材の製造方法においては、前記陽極酸化皮膜のポーラス層における、表面のポア間固体部の平均厚さ(d1)と、基材側のポア間固体部の平均厚さ(D1)との比(d1/D1)を0.80以下に制御することが好ましい。前記比(d1/D1)を制御する方法としては、例えば、(I)電解電圧を調節する;(II)陽極酸化皮膜を、酸等に浸漬して化学的に溶解させる;等の方法が挙げられる。   Moreover, in the manufacturing method of the surface treatment aluminum member of this invention, in the porous layer of the said anodized film, the average thickness (d1) of the solid part between the pores on the surface, and the average thickness of the solid part between the pores on the substrate side The ratio (d1 / D1) to the thickness (D1) is preferably controlled to 0.80 or less. Examples of the method for controlling the ratio (d1 / D1) include: (I) adjusting the electrolysis voltage; (II) chemically dissolving the anodic oxide film by immersing it in an acid or the like; It is done.

前記(I)の方法は、陽極酸化皮膜におけるポア間固体部厚さ(障壁厚さ)が、処理液の処理電圧や温度等によって変化することを利用する。すなわち、低電圧で処理すると、ポア間の障壁厚さは小さくなり、高電圧で処理するとポア間の障壁厚さは大きくなる。従って、陽極酸化皮膜のポーラス層における前記比(d1/D1)を0.80以下にするためには、第1皮膜形成工程の電解電圧を低く、第2皮膜形成工程の電解電圧を高くなるように制御すれば良い。この場合、第1皮膜形成工程の電解電圧と第2皮膜形成工程の電解電圧との比(第1皮膜形成工程/第2皮膜形成工程)を0.05以上が好ましく、より好ましくは0.15以上であり、0.80以下、好ましくは0.50以下、より好ましくは0.30以下である。   The method (I) utilizes the fact that the inter-pore solid part thickness (barrier thickness) in the anodized film varies depending on the processing voltage, temperature, etc. of the processing liquid. That is, when processing at a low voltage, the barrier thickness between pores decreases, and when processing at a high voltage, the barrier thickness between pores increases. Therefore, in order to reduce the ratio (d1 / D1) in the porous layer of the anodized film to 0.80 or less, the electrolytic voltage in the first film forming process is lowered and the electrolytic voltage in the second film forming process is raised. It is sufficient to control. In this case, the ratio of the electrolysis voltage in the first film formation step to the electrolysis voltage in the second film formation step (first film formation step / second film formation step) is preferably 0.05 or more, more preferably 0.15. The above is 0.80 or less, preferably 0.50 or less, and more preferably 0.30 or less.

また、前記(II)の方法は、通常の陽極酸化処理条件にて作製した陽極酸化皮膜を、酸等に浸漬して化学的に溶解させ、表層側のポア間固体部厚さを小さくし、表層側と基材側のポア間固体部厚さの比(d1/D1)を制御する。陽極酸化皮膜を、例えば、フッ酸水溶液や緩衝フッ酸溶液(HFとNH4Fの混合溶液)等のフッ素を含む水溶液中に浸漬し、その陽極酸化皮膜の表層近傍を溶解させることによって、前記比(d1/D1)を制御できる。 In the method (II), an anodized film prepared under normal anodizing treatment conditions is immersed in an acid or the like to be chemically dissolved, and the solid portion thickness between pores on the surface layer side is reduced. The ratio (d1 / D1) of the solid portion thickness between the pores on the surface layer side and the substrate side is controlled. By immersing the anodized film in an aqueous solution containing fluorine, such as a hydrofluoric acid aqueous solution or a buffered hydrofluoric acid solution (mixed solution of HF and NH 4 F), and dissolving the vicinity of the surface layer of the anodized film, The ratio (d1 / D1) can be controlled.

なお、フッ素を含む水溶液としては、そのフッ素濃度が高く、また温度(液温)がより高温である方が、処理溶液による陽極酸化皮膜表面の化学溶解が起こりやすく、表層側のポア間固体部厚さ(d0)を短時間で小さくするのに有効である。しかしながら、その一方で、化学的な溶解が大きくなり過ぎると、膜厚が薄くなって陽極酸化皮膜を形成する目的が達成されなくなる可能性がある。こうしたことから、適宜その条件を適切な範囲に設定する必要がある。その条件は、陽極酸化皮膜の種類によっても異なるが、例えば、室温(25℃)で、0.5〜1.0mol/Lのフッ酸水溶液に5〜10分程度浸漬することが好ましい。 As an aqueous solution containing fluorine, the higher the fluorine concentration and the higher the temperature (liquid temperature), the easier the chemical dissolution of the surface of the anodized film by the treatment solution occurs, and the solid portion between pores on the surface layer side This is effective for reducing the thickness (d 0 ) in a short time. On the other hand, however, if the chemical dissolution becomes too large, the film thickness may be reduced and the purpose of forming the anodized film may not be achieved. For these reasons, it is necessary to appropriately set the conditions within an appropriate range. Although the conditions vary depending on the type of the anodic oxide film, for example, it is preferable to immerse in a 0.5 to 1.0 mol / L hydrofluoric acid aqueous solution at room temperature (25 ° C.) for about 5 to 10 minutes.

本発明の表面処理アルミニウム部材の製造方法においては、前記第1皮膜形成工程の前に、基材を酸に浸けて、前記第1皮膜形成工程とは逆向きの電流を流しておくこと(以下、このような操作を「カソード処理」と称することがある。)が好ましい。具体的には、前記第1皮膜形成工程において、電解電圧(表面皮膜形成電圧)を印加してアルミニウム部材が陽極となるように電流を流して該部材を酸化処理するのに先立って、これとは逆向きの方向となるように(アルミニウム部材が負極となるように)電流を流しておく。これにより、基材表面に存在する晶出物(FeAl3系、CuAl3系金属間化合物等)や、自然に形成された酸化皮膜を除去できる。その結果、短絡の原因となり得る晶出物が除去されるため耐電圧が向上する。また、晶出物に悪影響を受けることなく陽極酸化処理を行えるため、より均質な陽極酸化皮膜を形成でき、得られるアルミニウム部材の耐電圧性がより向上する。 In the method for producing a surface-treated aluminum member of the present invention, before the first film forming step, the substrate is immersed in an acid, and an electric current in the direction opposite to that of the first film forming step is allowed to flow (hereinafter referred to as the first film forming step) Such an operation is sometimes referred to as “cathode treatment”). Specifically, in the first film forming step, an electrolytic voltage (surface film forming voltage) is applied, and an electric current is passed so that the aluminum member becomes an anode to oxidize the member. Is allowed to flow in the opposite direction (so that the aluminum member becomes the negative electrode). Thus, crystallized substances (FeAl 3 system, CuAl 3 based intermetallic compounds) present on the substrate surface and can be removed the oxide film formed naturally. As a result, the withstand voltage is improved because a crystallized substance that may cause a short circuit is removed. Further, since the anodic oxidation treatment can be performed without being adversely affected by the crystallized substance, a more uniform anodic oxide film can be formed, and the voltage resistance of the resulting aluminum member is further improved.

前記カソード処理に用いる酸としては、例えば、硫酸、硝酸、シュウ酸等の各種酸溶液が挙げられる。これらの酸は単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、硝酸が好適である。前記酸として硝酸水溶液を用いる場合、濃度は1質量%以上(より好ましくは10質量%以上、さらに好ましくは15質量%以上)が好ましく、50質量%以下(より好ましくは40質量%以下、さらに好ましくは30質量%以下)が好ましい。   Examples of the acid used for the cathode treatment include various acid solutions such as sulfuric acid, nitric acid, and oxalic acid. These acids may be used alone or in combination of two or more. Of these, nitric acid is preferred. When an aqueous nitric acid solution is used as the acid, the concentration is preferably 1% by mass or more (more preferably 10% by mass or more, more preferably 15% by mass or more), and 50% by mass or less (more preferably 40% by mass or less, further preferably). Is preferably 30% by mass or less).

カソード処理を行う温度(液温)は、5℃以上(より好ましくは15℃以上)が好ましい。処理温度が高いほど、晶出物の除去に要する時間を短縮することができ、より生産性が向上する。液温が高いほど晶出物の除去に要する時間を短縮することができるが、通常、60℃以下(より好ましくは40℃以下)が好ましい。   The temperature (liquid temperature) for performing the cathode treatment is preferably 5 ° C. or higher (more preferably 15 ° C. or higher). The higher the treatment temperature, the shorter the time required to remove the crystallized product, and the productivity is further improved. The higher the liquid temperature, the shorter the time required for removal of the crystallized matter, but usually 60 ° C. or lower (more preferably 40 ° C. or lower) is preferable.

また、カソード処理時に流す電流(第1皮膜形成工程とは逆向きの電流)の電流密度は、0.1A/dm2以上(より好ましくは0.5A/dm2以上、さらに好ましくは1.0A/dm2以上)が好ましく、100A/dm2以下(より好ましくは50A/dm2以下、さらに好ましくは20A/dm2以下)が好ましい。電流密度が0.1A/dm2以上であれば、晶出物の除去に要する時間を短縮することができ、より生産性が向上し、100A/dm2以下であれば、高価な設備を用いる必要もなく、晶出物を短時間で取り除ける。カソード処理の処理時間(通電時間)は、電流密度に応じて適宜調節すればよいが、通常、1〜180min程度が好ましい。 In addition, the current density of the current that flows during the cathode treatment (current opposite to the first film forming step) is 0.1 A / dm 2 or more (more preferably 0.5 A / dm 2 or more, more preferably 1.0 A). / Dm 2 or more), preferably 100 A / dm 2 or less (more preferably 50 A / dm 2 or less, and even more preferably 20 A / dm 2 or less). If the current density is 0.1 A / dm 2 or more, the time required for removing the crystallized product can be shortened, and the productivity is further improved. If the current density is 100 A / dm 2 or less, expensive equipment is used. There is no need and the crystallized material can be removed in a short time. The treatment time (energization time) of the cathode treatment may be appropriately adjusted according to the current density, but is usually preferably about 1 to 180 minutes.

カソード処理後、硝酸水溶液から取り出したアルミニウム合金は、十分に水洗することが好ましい。なお、アルミニウム合金を水洗する方法としては、シャワー洗浄や、水中での超音波洗浄が好適である。   After the cathode treatment, the aluminum alloy taken out from the nitric acid aqueous solution is preferably sufficiently washed with water. As a method for washing the aluminum alloy with water, shower washing or ultrasonic washing in water is suitable.

本発明の表面処理アルミニウム部材は、高温下での耐電圧性に優れているため、例えば、半導体や液晶の製造設備等の真空チャンバー部材や、真空チャンバー内部に配されるクランパー、シャワーヘッド、サセプターなどに好適に使用できる。   Since the surface-treated aluminum member of the present invention is excellent in withstand voltage at high temperatures, for example, vacuum chamber members such as semiconductor and liquid crystal manufacturing equipment, clampers, shower heads, and susceptors disposed inside the vacuum chamber. It can use suitably for.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は以下の実施例によって制限を受けるものではなく、上記・下記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, and appropriate modifications are made within a range that can meet the above and the following purposes. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

アルミニウム合金鋳塊を溶製(サイズ:220mmW×250mmL×100mmt、冷却速度:15〜10℃/秒)し、その鋳塊を切断して面削(サイズ:220mmW×150mmL×60mmt)した後、均熱処理(540℃×4時間)を施した。 An aluminum ingot is melted (size: 220 mm W × 250 mm L × 100 mm t , cooling rate: 15 to 10 ° C./second), the ingot is cut and faced (size: 220 mm W × 150 mm L × 60 mm) t ), and then subjected to soaking (540 ° C. × 4 hours).

均熱処理後、60mm厚の素材を熱間圧延によって6mmの厚さの板材に圧延し、切断(サイズ:220mmW×450mmL×6mmt)した後、溶体化処理(510〜520℃×30分)を施した。溶体化処理後、水焼入れし、時効処理(160〜180℃×8時間)を施して、供試合金板を得た。このとき用いたアルミニウム合金の化学成分組成は、JIS H 4000に規定される6061合金に相当するものである。 After soaking, the 60 mm thick material is rolled into a 6 mm thick plate by hot rolling and cut (size: 220 mm W × 450 mm L × 6 mm t ), followed by solution treatment (510-520 ° C. × 30 minutes). ). After solution treatment, water quenching was performed, and an aging treatment (160 to 180 ° C. × 8 hours) was performed to obtain a game metal plate. The chemical component composition of the aluminum alloy used at this time corresponds to 6061 alloy defined in JIS H4000.

得られた供試合金板から、サイズ:25mm×35mm(圧延方向)×3mmtの試験片を切り出し、その表面を面削加工した。次いで、60℃−10wt%NaOH水溶液中に2分間浸漬した後に水洗し、更に30℃−20wt%HNO3水溶液中に2分間浸漬した後水洗して表面を清浄化した後、下記表1に示す条件[陽極酸化処理液、処理液温度、皮膜形成電圧]にて陽極酸化処理を施して試験片の表面に各種陽極酸化皮膜を形成した。 A test piece of size: 25 mm × 35 mm (rolling direction) × 3 mm t was cut out from the resulting game metal plate, and the surface thereof was subjected to face machining. Next, after immersing in a 60 ° C.-10 wt% NaOH aqueous solution for 2 minutes and then washing with water, further immersing in a 30 ° C.-20 wt% HNO 3 aqueous solution for 2 minutes and then washing with water to clean the surface, the results are shown in Table 1 below. Various anodized films were formed on the surface of the test piece by anodizing under the conditions [anodizing solution, treating solution temperature, film forming voltage].

なお、試験No.3aについては、第1皮膜工程に供する前に、アルミニウム合金についてカソード処理を行った。カソード処理条件は、処理液として25℃−20wt%HNO3水溶液を用い、電流密度を3A/dm2とし、処理時間(通電時間)を100minとした。 In addition, Test No. For 3a, the aluminum alloy was subjected to cathode treatment before being subjected to the first coating step. Cathode treatment conditions were a 25 ° C.-20 wt% HNO 3 aqueous solution as a treatment solution, a current density of 3 A / dm 2 , and a treatment time (energization time) of 100 min.

上記で得られた各試験片について、第1皮膜および第2皮膜の膜厚、皮膜中のS(硫黄)含有量とAl(アルミニウム)含有量との質量比(S/Al)、並びに、陽極酸化皮膜のポーラス層における表面のポア間固体部の平均厚さ(d1)と、基材側のポア間固体部の平均厚さ(D1)を測定し、また加熱後の耐電圧性を評価した。観察方法および評価方法は以下のように行った。   About each test piece obtained above, the film thickness of the first film and the second film, the mass ratio (S / Al) of the S (sulfur) content and the Al (aluminum) content in the film, and the anode The average thickness (d1) of the solid portion between pores on the surface of the porous layer of the oxide film and the average thickness (D1) of the solid portion between pores on the substrate side were measured, and the withstand voltage after heating was evaluated. . The observation method and the evaluation method were performed as follows.

1.第1皮膜および第2皮膜の膜厚
第1皮膜を形成した後、陽極酸化処理液から取り出したアルミニウム合金を十分に水洗して、渦電流式膜厚計を用いて第1皮膜の膜厚を測定した。続いて、第2皮膜を形成した後、陽極酸化処理液から取り出したアルミニウム合金を十分に水洗して、渦電流式膜厚計を用いて陽極酸化皮膜の全体膜厚を測定した。そして、全体膜厚から第1皮膜の膜厚を差し引くことで第2皮膜の膜厚を求めた。
1. After forming the first film, the aluminum alloy taken out from the anodizing solution is sufficiently washed with water, and the film thickness of the first film is determined using an eddy current film thickness meter. It was measured. Then, after forming the 2nd membrane | film | coat, the aluminum alloy taken out from the anodic oxidation process liquid was fully washed, and the whole film thickness of the anodic oxide membrane was measured using the eddy current type film thickness meter. And the film thickness of the 2nd film | membrane was calculated | required by subtracting the film thickness of the 1st film | membrane from the whole film thickness.

2.皮膜中のS(硫黄)含有量とAl(アルミニウム)含有量との質量比(S/Al)
陽極酸化皮膜の断面について、任意の部位を膜厚方向全体にわたってX線マイクロアナライザ(EPMA:Electron Probe Micro Analyzer)(スポット径;1μm)にて化学組成分析し、Sの重量化学組成とAlの重量化学組成の比を求めた。
2. Mass ratio of S (sulfur) content and Al (aluminum) content in the coating (S / Al)
With regard to the cross section of the anodized film, a chemical composition analysis was performed on an arbitrary part over the entire film thickness direction by using an X-ray microanalyzer (EPMA: Electron Probe Micro Analyzer) (spot diameter: 1 μm). The chemical composition ratio was determined.

3.陽極酸化皮膜のポーラス層の構造
表面のポア間固体部の平均厚さ(d1)は、陽極酸化皮膜の表面を走査型電子顕微鏡(SEM)で観察し、近接する10個のポアについて、それぞれ最も近接(隣接)したポアとの最短距離(固体部の最小厚さ)を測定し、その測定値を平均化した。
基材側のポア間固体部の平均厚さ(D1)は、陽極酸化皮膜の破断面を走査型電子顕微鏡(SEM)で観察し、セル同士の境界部が基材と接する部分でのポア間固体部厚さをD0とし、近接する10個のD0を平均化した。
3. The structure of the porous layer of the anodic oxide film The average thickness (d1) of the solid part between the pores on the surface was observed with a scanning electron microscope (SEM). The shortest distance (minimum thickness of the solid part) between adjacent (adjacent) pores was measured, and the measured values were averaged.
The average thickness (D1) of the solid portion between the pores on the base material side is determined by observing the fracture surface of the anodized film with a scanning electron microscope (SEM). The solid part thickness was D 0, and 10 adjacent D 0s were averaged.

4.加熱後の耐電圧性
陽極酸化皮膜を形成した試験片を、オーブン中で、大気雰囲気下、400℃で4時間加熱処理を行った。
加熱処理後の試験片について、耐電圧試験器(「TOS5050A」 菊水電子工業株式会社製)を用い、+端子を針型のプローブに接続し、陽極酸化皮膜上に接触させ、−端子をアルミニウム合金基材に接続し、電圧を印加し、絶縁破壊電圧(この電圧を「耐電圧」と呼ぶ)によって耐電圧性を評価した。また、単位膜厚当りの耐電圧についても計算した。
4). Voltage resistance after heating The test piece on which the anodized film was formed was heat-treated in an oven at 400 ° C. for 4 hours in an air atmosphere.
For the test piece after the heat treatment, a withstand voltage tester (“TOS5050A” manufactured by Kikusui Electronics Co., Ltd.) is used, the + terminal is connected to a needle-shaped probe, and is brought into contact with the anodized film, and the − terminal is an aluminum alloy. A withstand voltage was evaluated by connecting to a substrate, applying a voltage, and a dielectric breakdown voltage (this voltage is referred to as “withstand voltage”). The withstand voltage per unit film thickness was also calculated.

上記の結果より、製造方法について、次のように考察できる。No.1,24,27,29,33,35のように、硫酸を含有しない陽極酸化処理液を用いた場合、得られる皮膜には硫黄が含有されない。また、No.4,31のように、第1皮膜形成工程で用いる陽極酸化処理液中の硫酸濃度が100g/L未満では、得られる第1皮膜中のS含有量が小さく、所望のS含有量が達成できない。一方、No.7のように、第1皮膜形成工程で用いる陽極酸化処理液中の硫酸濃度が200g/Lを超えると、得られる第1皮膜中のS含有量が大きくなりすぎる。   From the above results, the manufacturing method can be considered as follows. No. When an anodizing solution that does not contain sulfuric acid is used, such as 1, 24, 27, 29, 33, and 35, the resulting film does not contain sulfur. No. When the sulfuric acid concentration in the anodizing solution used in the first film formation step is less than 100 g / L as in No. 4 and 31, the S content in the obtained first film is small and the desired S content cannot be achieved. . On the other hand, no. As shown in FIG. 7, when the sulfuric acid concentration in the anodizing solution used in the first film forming step exceeds 200 g / L, the S content in the obtained first film becomes too large.

また、No.14のように、第2皮膜形成工程において、処理温度(液温)が10℃未満では、所望の膜厚を得るために非常に長時間を要し、生産性が悪くなる。一方、No.17のように、第2皮膜形成工程において、処理温度(液温)が30℃を超えると、皮膜が溶解してしまい所望の膜厚が得られない。なお、No.18〜20のように、陽極酸化処理液に硫酸を添加すると、No.3に比べて処理時間が短縮できることがわかる。しかしながら、No.20のように、陽極酸化処理液中の硫酸濃度が5g/Lでは、得られる第2皮膜中のS含有量が大きくなりすぎる。   No. As shown in FIG. 14, in the second film forming step, when the processing temperature (liquid temperature) is less than 10 ° C., it takes a very long time to obtain a desired film thickness, and the productivity is deteriorated. On the other hand, no. As in 17, when the processing temperature (liquid temperature) exceeds 30 ° C. in the second film forming step, the film is dissolved and a desired film thickness cannot be obtained. In addition, No. When sulfuric acid is added to the anodizing solution as in Nos. 18 to 20, No. 18 is obtained. It can be seen that the processing time can be shortened compared to 3. However, no. When the sulfuric acid concentration in the anodizing solution is 5 g / L as in 20, the S content in the obtained second film becomes too large.

また、上記の結果より、表面処理アルミニウム部材について次のように考察できる。No.1は陽極酸化皮膜が硫酸を含有しない場合、No.2は陽極酸化皮膜全体にわたりS含有量が大きい場合、No.3は陽極酸化皮膜がS含有量の大きな第1皮膜とS含有量の小さな第2皮膜とから形成されている場合である。これらを比較すると、本発明の要件を満足するNo.3のものが、No.1,2に比べて加熱後の耐電圧性に優れていることがわかる。   From the above results, the surface-treated aluminum member can be considered as follows. No. No. 1 is No. when the anodized film does not contain sulfuric acid. No. 2 is No. when the S content is large throughout the anodized film. 3 is a case where the anodized film is formed of a first film having a large S content and a second film having a small S content. When these are compared, No. 1 satisfying the requirements of the present invention. No. 3 is No. 3. It can be seen that the withstand voltage after heating is superior to those of 1 and 2.

No.4〜7は第1皮膜中のS含有量を変化させたものである。これらとNo.3とを比較すると、No.4のようにS含有量が小さいと耐電圧性が向上しないことがわかる。No.5〜7のように、質量比(S/Al)が0.10以上であれば耐電圧性が向上している。なお、No.6とNo.7を比較すると、耐電圧性向上効果が同程度であることから、S含有量を質量比(S/Al)0.15以上としても、硫黄添加による耐電圧向上効果は飽和となることがわかる。   No. 4-7 change S content in a 1st membrane | film | coat. These and No. 3 and No. 3 It can be seen that the voltage resistance is not improved when the S content is small as shown in FIG. No. If the mass ratio (S / Al) is 0.10 or more as in 5-7, the voltage resistance is improved. In addition, No. 6 and no. 7 shows that the withstand voltage improvement effect is comparable, and therefore the withstand voltage improvement effect by addition of sulfur is saturated even when the S content is 0.15 or more by mass ratio (S / Al). .

No.8〜13は第1皮膜の全体膜厚に対する割合を変化させたものである。これらの結果より、第1皮膜の割合が0.30では、第1皮膜による耐電圧性向上効果が得られないことがわかる、一方、第1皮膜の割合が0.75を超えると、相対的に第2皮膜が薄くなりすぎ(0.25未満)、加熱後の耐電圧性が低下することがわかる。   No. 8-13 change the ratio with respect to the whole film thickness of a 1st membrane | film | coat. From these results, it can be seen that when the ratio of the first film is 0.30, the effect of improving the voltage resistance by the first film cannot be obtained, whereas when the ratio of the first film exceeds 0.75, the relative It can be seen that the second film becomes too thin (less than 0.25), and the withstand voltage after heating decreases.

No.18〜20は第2皮膜中のS含有量を変化させたものである。No.3,4のように第2皮膜中の質量比(S/Al)が0.04以下であれば耐電圧性が向上している。しかし、No.20のように第2皮膜中の質量比(S/Al)が0.04を超えると、加熱により第2皮膜にもクラックが生じるため加熱後の耐電圧性が劣る。   No. 18-20 change S content in a 2nd membrane | film | coat. No. If the mass ratio (S / Al) in the second film is 0.04 or less as in 3 and 4, the voltage resistance is improved. However, no. When the mass ratio (S / Al) in the second coating exceeds 0.04 as in 20, cracking occurs in the second coating by heating, resulting in poor voltage resistance after heating.

No.21〜23は、ポーラス層における平均厚さ(d1)と平均厚さ(D1)との比(d1/D1)を変化させたものである。これらの結果より、比(d1/D1)を0.80以下に制御することにより、加熱後の耐電圧性がより向上することがわかる。なお、No.24,25は、陽極酸化皮膜の全体膜厚が5μmである場合であるが、本発明の要件を満足することにより加熱後の耐電圧性が向上しているが、その向上効果が小さくなっている。   No. 21-23 change the ratio (d1 / D1) of the average thickness (d1) and average thickness (D1) in a porous layer. From these results, it is understood that the withstand voltage after heating is further improved by controlling the ratio (d1 / D1) to 0.80 or less. In addition, No. 24 and 25 are cases where the total thickness of the anodic oxide film is 5 μm, but the withstand voltage after heating is improved by satisfying the requirements of the present invention, but the improvement effect is reduced. Yes.

No.26〜35は、膜厚やS含有量などを変化させたものであるが、これらの結果からも本発明の要件を満足する表面処理アルミニウム部材は、加熱後の耐電圧性に優れていることがわかる。   No. Nos. 26 to 35 are obtained by changing the film thickness, the S content, and the like. Also from these results, the surface-treated aluminum member that satisfies the requirements of the present invention is excellent in withstand voltage after heating. I understand.

No.3aは、基材にカソード処理を施した後、No.3と同様の第1皮膜形成処理、第2皮膜形成処理を行ったものである。このNo.3aでは、カソード処理を施していないNo.3に比べて、加熱後の耐電圧が一層向上していることがわかる。   No. In No. 3a, after cathodic treatment of the base material, The first film formation process and the second film formation process similar to 3 are performed. This No. In No. 3a, no. Compared to 3, it can be seen that the withstand voltage after heating is further improved.

1:基材
2:セル部
3:ポア
4:ポーラス層
5:バリア層
6:境界部
1: Base material 2: Cell part 3: Pore 4: Porous layer 5: Barrier layer 6: Boundary part

Claims (7)

アルミニウムまたはアルミニウム合金からなる基材と、該基材表面に形成された陽極酸化皮膜とを有し、電圧印加部に用いられる表面処理アルミニウム部材であって、
前記陽極酸化皮膜は、表面側に形成された第1皮膜と基材側に形成された第2皮膜とを有し、
前記第1皮膜中のS(硫黄)含有量とAl(アルミニウム)含有量との質量比(S/Al)が0.10〜0.15、前記第2皮膜中のS含有量とAl含有量との質量比(S/Al)が0〜0.04であり、
前記第1皮膜の厚さの全体膜厚に対する割合(第1皮膜/全体膜厚)が0.33以上であり、前記第2皮膜の厚さの全体膜厚に対する割合(第2皮膜/全体膜厚)が0.25以上であることを特徴とする、プラズマ装置に用いられる真空チャンバ用または真空チャンバ内の部品用表面処理アルミニウム部材。
A surface-treated aluminum member having a base material made of aluminum or an aluminum alloy and an anodized film formed on the surface of the base material, and used for a voltage application unit,
The anodized film has a first film formed on the surface side and a second film formed on the substrate side,
The mass ratio (S / Al) of S (sulfur) content and Al (aluminum) content in the first film is 0.10 to 0.15, S content and Al content in the second film And the mass ratio (S / Al) is 0 to 0.04,
The ratio of the thickness of the first film to the total film thickness (first film / total film thickness) is 0.33 or more, and the ratio of the thickness of the second film to the total film thickness (second film / total film) A surface-treated aluminum member for a vacuum chamber or a component in a vacuum chamber used in a plasma apparatus, wherein the thickness is 0.25 or more.
前記陽極酸化皮膜のポーラス層において、表面のポア間固体部の平均厚さ(d1)と、基材側のポア間固体部の平均厚さ(D1)との比(d1/D1)が0.80以下である請求項1に記載の表面処理アルミニウム部材。   In the porous layer of the anodized film, the ratio (d1 / D1) between the average thickness (d1) of the solid portion between pores on the surface and the average thickness (D1) of the solid portion between pores on the substrate side is 0. The surface-treated aluminum member according to claim 1, which is 80 or less. 前記陽極酸化皮膜の厚さが5μm超である請求項1または2に記載の表面処理アルミニウム部材。   The surface-treated aluminum member according to claim 1 or 2, wherein the anodized film has a thickness of more than 5 µm. アルミニウムまたはアルミニウム合金からなる基材と、該基材表面に形成された陽極酸化皮膜とを有し、電圧印加部に用いられる表面処理アルミニウム部材の製造方法であって、
硫酸濃度が100g/L〜200g/Lの水溶液中で、陽極酸化皮膜の設定膜厚全体に対する割合が0.33〜0.75の膜厚に処理する第1皮膜形成工程、および、
液温が10℃〜30℃で、シュウ酸濃度が20g/L〜40g/L、硫酸濃度が0g/L〜4g/Lの水溶液中で陽極酸化皮膜の設定膜厚の残りの部分を処理する第2皮膜形成工程を有することを特徴とする、プラズマ装置に用いられる真空チャンバ用または真空チャンバ内の部品用表面処理アルミニウム部材の製造方法。
A method for producing a surface-treated aluminum member having a base material made of aluminum or an aluminum alloy and an anodized film formed on the surface of the base material and used for a voltage application unit,
A first film forming step in which the ratio of the anodized film to the entire set film thickness is 0.33 to 0.75 in an aqueous solution having a sulfuric acid concentration of 100 g / L to 200 g / L; and
The remaining part of the set film thickness of the anodized film is treated in an aqueous solution having a liquid temperature of 10 ° C. to 30 ° C., an oxalic acid concentration of 20 g / L to 40 g / L, and a sulfuric acid concentration of 0 g / L to 4 g / L. A method for producing a surface-treated aluminum member for a vacuum chamber or a component in a vacuum chamber used in a plasma apparatus, comprising a second film forming step.
前記陽極酸化皮膜のポーラス層における、表面のポア間固体部の平均厚さ(d1)と、基材側のポア間固体部の平均厚さ(D1)との比(d1/D1)を0.80以下とする請求項4に記載の製造方法。   In the porous layer of the anodized film, the ratio (d1 / D1) of the average thickness (d1) of the solid portion between pores on the surface and the average thickness (D1) of the solid portion between pores on the substrate side is set to 0. The manufacturing method of Claim 4 which shall be 80 or less. 前記陽極酸化皮膜の設定膜厚が5μm超である請求項4または5に記載の製造方法。   The manufacturing method according to claim 4 or 5, wherein a set film thickness of the anodized film is more than 5 µm. 前記第1皮膜形成工程の前に、アルミニウムまたはアルミニウム合金からなる基材を酸に浸けて、前記第1皮膜形成工程とは逆向きの電流を流す工程を有する請求項4〜6のいずれか一項に記載の製造方法。   7. The method according to claim 4, further comprising a step of immersing a base material made of aluminum or an aluminum alloy in an acid and applying a current in a direction opposite to that of the first film forming step before the first film forming step. The production method according to item.
JP2010274026A 2010-01-07 2010-12-08 Surface-treated aluminum member having high withstand voltage and method for producing the same Active JP5369083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010274026A JP5369083B2 (en) 2010-01-07 2010-12-08 Surface-treated aluminum member having high withstand voltage and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010002255 2010-01-07
JP2010002255 2010-01-07
JP2010274026A JP5369083B2 (en) 2010-01-07 2010-12-08 Surface-treated aluminum member having high withstand voltage and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011157624A JP2011157624A (en) 2011-08-18
JP5369083B2 true JP5369083B2 (en) 2013-12-18

Family

ID=44589817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010274026A Active JP5369083B2 (en) 2010-01-07 2010-12-08 Surface-treated aluminum member having high withstand voltage and method for producing the same

Country Status (1)

Country Link
JP (1) JP5369083B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5613125B2 (en) * 2011-08-31 2014-10-22 株式会社神戸製鋼所 Method for producing aluminum anodic oxide film having high withstand voltage and excellent productivity
JP5937937B2 (en) * 2012-09-26 2016-06-22 株式会社神戸製鋼所 Aluminum anodized film
CN104087997A (en) * 2014-06-16 2014-10-08 北京工业大学 Method for preparing regular small-aperture anodized aluminum template through mixed acid variable pressure two-stage oxidation
JP7140329B2 (en) * 2018-08-10 2022-09-21 地方独立行政法人山口県産業技術センター Anodized titanium material and its manufacturing method
JP6585863B1 (en) * 2019-01-23 2019-10-02 株式会社Uacj Aluminum member and manufacturing method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS536625B2 (en) * 1972-07-10 1978-03-09
JPS5462132A (en) * 1977-10-26 1979-05-18 Sankyo Aruminiumu Kougiyou Kk Electrolytic etching of aluminium
JPS62278294A (en) * 1986-05-28 1987-12-03 Showa Denko Kk Production of substrate for magnetic recording medium
JPH0754791B2 (en) * 1986-10-07 1995-06-07 松下電器産業株式会社 Aluminum electrolytic capacitor manufacturing method
JPH0799000B2 (en) * 1987-02-07 1995-10-25 株式会社豊田中央研究所 Method for forming insulating film on aluminum alloy
JP3032570B2 (en) * 1990-11-30 2000-04-17 日本軽金属株式会社 Electrode foil for aluminum electrolytic capacitor and method of manufacturing the same
JP3917032B2 (en) * 2001-07-23 2007-05-23 三菱アルミニウム株式会社 Surface treatment aluminum plate material
JP4796464B2 (en) * 2005-11-17 2011-10-19 株式会社神戸製鋼所 Aluminum alloy member with excellent corrosion resistance

Also Published As

Publication number Publication date
JP2011157624A (en) 2011-08-18

Similar Documents

Publication Publication Date Title
JP5833987B2 (en) Aluminum alloy excellent in anodizing property and anodized aluminum alloy member
WO2006123736A1 (en) Corrosion resistance treatment method for aluminum or aluminum alloy
TWI248991B (en) Aluminum alloy member superior in corrosion resistance and plasma resistance
JP5369083B2 (en) Surface-treated aluminum member having high withstand voltage and method for producing the same
TW200408010A (en) Halogen-resistant, anodized aluminum for use in semiconductor processing apparatus
EP3147390B1 (en) Method for producing a metal coating
TWI424096B (en) Method for forming anodic oxide film
CN107604342B (en) Metal member, method for manufacturing the same, and processing chamber having the same
TW202020237A (en) Anodized titanium material and production method therefor
JP5613125B2 (en) Method for producing aluminum anodic oxide film having high withstand voltage and excellent productivity
JP5438485B2 (en) Surface treatment member
JP5937937B2 (en) Aluminum anodized film
JP5452034B2 (en) Surface treatment member for semiconductor manufacturing apparatus and method for manufacturing the same
JP5352204B2 (en) Surface-treated aluminum material for vacuum equipment
JP2016020519A (en) Surface-treated aluminum material and production method thereof
JP5416436B2 (en) Aluminum alloy member excellent in crack resistance and corrosion resistance, method for confirming crack resistance and corrosion resistance of porous anodic oxide film, and conditions for forming porous anodic oxide film excellent in crack resistance and corrosion resistance Setting method
JP5397884B2 (en) Method for producing surface-treated aluminum material for vacuum equipment
KR101709602B1 (en) Method of Aluminium Coating Layer with Anti-oxidation Using Micro arc Electrolytic Oxidation
JP2020084262A (en) Method for manufacturing chromium plated component
JP5370984B2 (en) Aluminum alloy material for vacuum equipment and manufacturing method thereof
KR20170009759A (en) Metal component and process chamber having the same
KR101333408B1 (en) Manufacturing Method of Conductive Magnesium Oxide Thin Layer
WO2023033120A1 (en) Aluminum member for semiconductor manufacturing devices and method for producing said aluminum member
JP5419066B2 (en) Method for producing surface-treated aluminum material for vacuum equipment
JP5352203B2 (en) Method for producing surface-treated aluminum material for vacuum equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130913

R150 Certificate of patent or registration of utility model

Ref document number: 5369083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150