JP5613125B2 - Method for producing aluminum anodic oxide film having high withstand voltage and excellent productivity - Google Patents

Method for producing aluminum anodic oxide film having high withstand voltage and excellent productivity Download PDF

Info

Publication number
JP5613125B2
JP5613125B2 JP2011188722A JP2011188722A JP5613125B2 JP 5613125 B2 JP5613125 B2 JP 5613125B2 JP 2011188722 A JP2011188722 A JP 2011188722A JP 2011188722 A JP2011188722 A JP 2011188722A JP 5613125 B2 JP5613125 B2 JP 5613125B2
Authority
JP
Japan
Prior art keywords
treatment
withstand voltage
crystallized
film
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011188722A
Other languages
Japanese (ja)
Other versions
JP2013049903A (en
Inventor
高田 悟
悟 高田
護 細川
護 細川
浩司 和田
浩司 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011188722A priority Critical patent/JP5613125B2/en
Publication of JP2013049903A publication Critical patent/JP2013049903A/en
Application granted granted Critical
Publication of JP5613125B2 publication Critical patent/JP5613125B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、高耐電圧性を必要とする陽極酸化皮膜部材に適用することができるアルミニウム陽極酸化皮膜の製造方法に関するものである。本発明の製造方法によって得られたアルミニウム陽極酸化皮膜は、例えば、ドライエッチング装置、CVD(Chemical Vapor Deposition)装置、イオン注入装置、スパッタリング装置等のように、半導体や液晶の製造設備等の真空チャンバーや、その真空チャンバーの内部に設けられる部品の素材として有用なアルミニウム合金を基材とした陽極酸化皮膜を有するアルミニウム部材や、パワーデバイスモジュール用絶縁部材用または絶縁部用陽極酸化皮膜を有するアルミニウム部材などに好適に用いられる。   The present invention relates to a method for producing an aluminum anodized film that can be applied to an anodized film member that requires high voltage resistance. The aluminum anodic oxide film obtained by the production method of the present invention is a vacuum chamber such as a semiconductor or liquid crystal production facility such as a dry etching device, a CVD (Chemical Vapor Deposition) device, an ion implantation device, a sputtering device, etc. Also, an aluminum member having an anodized film based on an aluminum alloy that is useful as a material for components provided in the vacuum chamber, and an aluminum member having an anodized film for an insulating member for power device modules or an insulating portion For example, it is suitably used.

アルミニウムやアルミニウム合金等を基材とした部材の表面に陽極酸化皮膜を形成して、その基材に耐プラズマ性や耐ガス腐食性を付与した陽極酸化処理は従来から広く行なわれている。   An anodizing treatment in which an anodized film is formed on the surface of a member made of aluminum or an aluminum alloy as a base material and plasma resistance or gas corrosion resistance is imparted to the base material has been widely performed.

例えば、半導体製造設備のプラズマ処理装置に用いられる真空チャンバーや、その真空チャンバーの内部に設けられる各種部品は、アルミニウム合金を用いて構成されることが一般的である。しかしながら、そのアルミニウム合金を何らかの処理をしないまま(無垢のまま)で使用すれば、耐プラズマ性や耐ガス腐食性等を維持することができない。こうしたことから、アルミニウム合金によって構成された部材の表面に、陽極酸化皮膜を形成することによって、耐プラズマ性や耐ガス腐食性等を付与することが行なわれている。   For example, a vacuum chamber used in a plasma processing apparatus of a semiconductor manufacturing facility and various parts provided in the vacuum chamber are generally configured using an aluminum alloy. However, if the aluminum alloy is used without any treatment (innocent), plasma resistance, gas corrosion resistance, etc. cannot be maintained. For these reasons, plasma resistance, gas corrosion resistance, and the like are imparted by forming an anodized film on the surface of a member made of an aluminum alloy.

一方、近年では配線幅の微細化に起因して、プラズマの高密度化に伴い、プラズマを生成させるために投入する電力が増加しており、従来の陽極酸化皮膜では、高電力投入時に発生する高電圧によって、皮膜が絶縁破壊を引き起こすことがある。こうした絶縁破壊が生じた部分では電気特性が変化するために、エッチング均一性や、成膜均一性が劣化することから、陽極酸化皮膜の高耐電圧性化が望まれている。   On the other hand, in recent years, due to the miniaturization of the wiring width, with the increase in plasma density, the power input to generate plasma is increasing, and in the conventional anodic oxide film, it occurs when high power is input. High voltage can cause dielectric breakdown in the coating. Since the electrical characteristics change in the portion where such dielectric breakdown occurs, the etching uniformity and the film formation uniformity are deteriorated. Therefore, it is desired to increase the voltage resistance of the anodized film.

陽極酸化皮膜を高耐電圧性化するための技術は、これまでにも様々提案されている。例えば、特許文献1では、シュウ酸と蟻酸の混合溶液中で陽極酸化皮膜を形成した後に、ホウ酸アルカリ中で再度陽極酸化処理する方法が提案されている。しかしながら、この方法では、ホウ酸アルカリ中で陽極酸化処理するためには数百V以上の高電圧に対応した高価な整流器が必要となり、設備コストの点で問題がある。   Various techniques for increasing the voltage resistance of the anodized film have been proposed so far. For example, Patent Document 1 proposes a method in which an anodized film is formed in a mixed solution of oxalic acid and formic acid and then anodized again in an alkali borate. However, in this method, an anodizing treatment in an alkali borate requires an expensive rectifier corresponding to a high voltage of several hundred volts or more, and there is a problem in terms of equipment cost.

また、特許文献2には、陽極酸化皮膜上に、ポリイミド前駆体を用いて形成されたポリイミド皮膜で陽極酸化皮膜を被覆する方法が提案されている。しかしながら、この技術では、ポリイミド前駆体を電着させる等の設備が別途必要となる。   Patent Document 2 proposes a method of coating an anodic oxide film on a anodic oxide film with a polyimide film formed using a polyimide precursor. However, this technique requires additional equipment such as electrodeposition of a polyimide precursor.

また、特許文献3には、アルコール性水酸基を有する溶媒に、無機酸の塩を溶解した電解液を用いて高耐電圧性のバリア型陽極酸化皮膜を形成する方法が提案されている。しかしながら、この技術においても、陽極酸化処理による電解液体中のアルコールの濃度変化の管理が煩雑となるという問題がある。   Patent Document 3 proposes a method for forming a high voltage endurance barrier type anodic oxide film using an electrolytic solution in which a salt of an inorganic acid is dissolved in a solvent having an alcoholic hydroxyl group. However, even in this technique, there is a problem that the management of the change in the concentration of alcohol in the electrolytic liquid due to the anodizing treatment becomes complicated.

一方、特許文献4には、硫黄(S)を含有する陽極酸化皮膜であって、表面側にS含有量の大きい第1皮膜と、基材側にS含有量の小さな第2皮膜とからなる、S濃度が異なる陽極酸化皮膜を形成する方法が提案されている。上記公報には、耐電圧性を一層高めるため、第1皮膜形成工程前の事前処理として、カソード電解処理を行なう方法も提案されているが、例えば、試験No.3aでは、デスマット処理に加え、カソード電解処理を別途施しているため、生産性が低下するなど改善の余地がある。   On the other hand, Patent Document 4 is an anodized film containing sulfur (S), and includes a first film having a large S content on the surface side and a second film having a small S content on the substrate side. A method for forming anodic oxide films having different S concentrations has been proposed. In the above publication, in order to further improve the voltage resistance, a method of performing a cathode electrolytic treatment as a pretreatment before the first film forming step is also proposed. In 3a, in addition to the desmut treatment, the cathode electrolytic treatment is separately performed, so there is room for improvement such as a reduction in productivity.

特開昭60−204897号公報JP-A-60-204897 特開2004−59997号公報JP 2004-59997 A 特開平11−229157号公報JP 11-229157 A 特開2011−157624号公報JP 2011-157624 A

従来、陽極酸化皮膜を高耐電圧性化した表面処理部材や、そのような表面処理部材を得るための製造方法が種々提案されているが、製造工程の煩雑さ、製造コスト、生産性の低下等の観点から改良の余地があった。   Conventionally, various surface treatment members with high voltage resistance of anodized films and production methods for obtaining such surface treatment members have been proposed, but the complexity of the production process, production cost, and productivity are reduced. There was room for improvement from the viewpoint of the above.

本発明は上記のような事情に着目してなされたものであって、本発明の目的は、製造工程数を増やすことなく、且つ、全処理時間を短縮でき、生産性をより向上させることを前提とし、耐電圧性に一層優れた陽極酸化皮膜の製造方法を提供することにある。   The present invention has been made paying attention to the above-mentioned circumstances, and the object of the present invention is to increase the productivity without increasing the number of manufacturing steps and reducing the total processing time. The premise is to provide a method for producing an anodized film that is more excellent in voltage resistance.

本発明者らは、陽極酸化皮膜の耐電圧性を支配する主要因の一つが、アルミニウム合金基材表面に存在する晶出物(FeAl3系やCuAl3系などの金属間化合物)であり、上記晶出物のサイズが耐電圧性と密接に相関しており、上記晶出物を効率よく除去できれば耐電圧性が向上することを突き止めた。そして、この晶出物を効率よく除去するための方法について鋭意検討した結果、上記晶出物のサイズが適切に制御された基材に対し、陽極酸化皮膜処理の前処理として一般的に行なわれるデスマット処理(電解電圧を印加することなく硝酸溶液などの酸性溶液への浸漬処理)の替わりに、所定の積算電気量でカソード電解処理を行なえば良く、これにより、カソード電解処理を行なわない場合に比べて陽極酸化皮膜の耐電圧向上率(例えば後記する実施例に示すように、ある基材(晶出物サイズ)での、(カソード電解前処理した陽極酸化皮膜耐電圧−硝酸デスマット前処理した陽極酸化皮膜耐電圧)÷硝酸デスマット前処理した陽極酸化皮膜耐電圧)が約10%以上向上し、所望とする耐電圧性を得るための膜厚を低減できることを見出した。更に、その後の陽極酸化皮膜において、少なくともシュウ酸を含む陽極酸化処理液を用いて陽極酸化皮膜を形成すれば、高耐電圧性を維持しつつ、クラックの少ない陽極酸化皮膜が得られることも見出し、本発明を完成した。また、この皮膜に湿式での耐酸性を向上させるために、この陽極酸化膜に封孔処理を施すことも可能である。 The present inventors are one of the main factors governing the voltage resistance of the anodized film is a crystallized substance (intermetallic compound such as FeAl 3 or CuAl 3 ) existing on the surface of the aluminum alloy substrate, The size of the crystallized product was closely correlated with the voltage resistance, and it was found that the voltage resistance was improved if the crystallized product could be removed efficiently. As a result of intensive investigations on a method for efficiently removing the crystallized substance, the base material in which the size of the crystallized substance is appropriately controlled is generally performed as a pretreatment for the anodic oxide film treatment. Instead of desmut treatment (immersion treatment in an acidic solution such as nitric acid solution without applying electrolysis voltage), the cathode electrolysis treatment may be performed with a predetermined integrated electric quantity. In comparison with the anodized film withstand voltage improvement rate (for example, as shown in the examples described later, with a certain base material (crystallized material size) (cathode electrolysis pretreated anodized film withstand voltage-nitric acid desmut pretreated Anodized film withstand voltage) ÷ Nitrate desmut pre-treated anodized film withstand voltage) is improved by about 10% or more, and it is found that the film thickness for obtaining the desired withstand voltage can be reduced. . Furthermore, in the subsequent anodized film, it was also found that if an anodized film is formed using an anodizing solution containing at least oxalic acid, an anodized film with few cracks can be obtained while maintaining high withstand voltage. The present invention has been completed. Further, in order to improve the wet acid resistance of the film, it is possible to subject the anodized film to a sealing treatment.

すなわち、本発明に係るアルミニウム陽極酸化皮膜の製造方法は、晶出物サイズ(長軸と短軸の平均)が3μm以上の晶出物が表面に露出したアルミニウム合金基材をアルカリ溶液で脱脂した後、デスマット処理することなく前記脱脂した基材の表面に5000C/dm2以上の積算電気量でカソード電解処理を施し、次いで、少なくともシュウ酸を含む陽極酸化処理液を用いて前記カソード電解処理を施した基材表面に陽極酸化皮膜を形成するところに要旨を有するものである。 That is, in the method for producing an aluminum anodic oxide film according to the present invention, an aluminum alloy base material on which crystallized matter having a crystallized size (average of major axis and minor axis) of 3 μm or more is exposed is degreased with an alkaline solution. Thereafter, the surface of the degreased base material is subjected to cathodic electrolysis with an accumulated electric quantity of 5000 C / dm 2 or more without desmutting, and then the cathodic electrolysis using an anodizing solution containing at least oxalic acid. The main point is that an anodized film is formed on the surface of the applied substrate.

本発明によれば、陽極酸化皮膜の耐電圧性を支配する主要因の一つである基材表面の晶出物を効率よく除去できるように、ある一定以上のサイズの晶出物が表面に露出した基材に対し、陽極酸化皮膜処理の前に、一般的に行なわれるデスマット処理の替わりに所定の積算電気量でカソード電解処理を行なっているため、製造工程数を増やさなくても、陽極酸化処理時間を短縮化して全処理時間を短縮でき、生産性に優れた、高耐電圧性を有するアルミニウム陽極酸化皮膜を容易に製造することができる。かつ、本発明によれば、上記のカソード電解処理後、少なくともシュウ酸を含む陽極酸化処理液を用いて陽極酸化皮膜を形成しているため、高い耐電圧性を維持しつつ、クラックの少ない皮膜が得られる。   According to the present invention, a crystallized material having a certain size or more is formed on the surface so that the crystallized material on the substrate surface, which is one of the main factors governing the voltage resistance of the anodized film, can be efficiently removed. The exposed base material is subjected to a cathode electrolytic treatment with a predetermined integrated electric quantity instead of the generally performed desmutting treatment before the anodic oxide film treatment, so that the anode can be processed without increasing the number of manufacturing steps. By shortening the oxidation treatment time, the total treatment time can be shortened, and an aluminum anodic oxide film having excellent productivity and high voltage resistance can be easily produced. In addition, according to the present invention, since the anodized film is formed using the anodizing solution containing at least oxalic acid after the cathode electrolytic treatment, a film with few cracks while maintaining high voltage resistance. Is obtained.

本発明の特徴部分は、陽極酸化皮膜処理の前処理として、表面に露出した晶出物のサイズが3μm以上のものを含む基材に対し、デスマット処理の替わりに所定の積算電気量でカソード電解処理を行なう点にある。本発明によれば、従来のデスマット処理を省略しても高耐電圧性のアルミニウム陽極酸化皮膜が容易に得られるため、生産性が一層向上する。また、所定のカソード電解処理を施すことにより、所望とする耐電圧性を得るための陽極酸化皮膜の膜厚を薄くすることができるため、耐電圧性を低下させる因子であるクラックを防止するうえでも有効である。更に、上記カソード電解処理後の陽極酸化皮膜処理において、少なくともシュウ酸を含む陽極酸化処理液を用いて陽極酸化処理を行なうことにより、優れた高耐電圧性を維持しつつ、クラックの一層少ないアルミニウム陽極酸化皮膜を、生産性良く製造することができる。   The characteristic feature of the present invention is that, as a pretreatment for the anodic oxide film treatment, the cathode electrolysis is performed with a predetermined integrated electric quantity instead of the desmut treatment on a substrate including a crystallized substance exposed on the surface having a size of 3 μm or more. It is in the point of processing. According to the present invention, a high voltage endurance aluminum anodic oxide film can be easily obtained even if the conventional desmutting treatment is omitted, so that the productivity is further improved. Moreover, since the thickness of the anodized film for obtaining a desired withstand voltage can be reduced by applying a predetermined cathode electrolytic treatment, it is possible to prevent cracks that are factors that reduce the withstand voltage. But it is effective. Furthermore, in the anodic oxide film treatment after the cathode electrolytic treatment, anodization is performed using an anodizing solution containing at least oxalic acid, thereby maintaining aluminum with less cracks while maintaining excellent high voltage resistance. An anodized film can be produced with high productivity.

本明細書において「デスマット処理することなく」とは、(ア)アルカリ溶液による脱脂処理の後であって、(イ)カソード電解処理の前に、スマットを除去するために通常行なわれるデスマット処理を行なわないという意味である。なお、上記(ア)と(イ)の間に、通常行なわれる水洗処理を行なっても良いし(後記する実施例を参照)、あるいは、必要に応じて行なわれる軽度の酸洗処理(スマットを除去する程度には至らないが、カソード電解処理の前に行なわれる予備処理など)などの前処理を行なっても良く、このような態様も勿論、本発明の範囲内に包含される。   In this specification, “without desmut treatment” means (a) after degreasing treatment with an alkaline solution, and (b) prior to cathodic electrolysis treatment, which is usually performed to remove smut. It means not to do it. In addition, between the above (a) and (b), a usual water washing process may be performed (see the examples described later), or a mild pickling process (smut is performed if necessary). Although it does not reach the extent of removal, a pretreatment such as a pretreatment performed before the cathode electrolytic treatment may be performed, and such a mode is of course included in the scope of the present invention.

以下、本発明に到達した経緯について説明する。   Hereinafter, the process of reaching the present invention will be described.

まず本発明者らは、陽極酸化皮膜の耐電圧性を支配する主要因の一つが、アルミニウム合金基材表面に存在する晶出物であり、カソード電解処理した基材に陽極酸化処理を行った陽極酸化皮膜の耐電圧向上率(ある基材(晶出物サイズ)での、(カソード電解前処理した陽極酸化皮膜耐電圧−硝酸デスマット前処理した陽極酸化皮膜耐電圧)÷硝酸デスマット前処理した陽極酸化皮膜耐電圧)は上記晶出物のサイズが大きいほど高くなることを見出した。この晶出物は、アルミニウム合金に含まれる導電性の成分や導電性の不純物(鉄、クロム、銅など)がアルミニウムと結合した、FeAl3系やCuAl3系の金属間化合物などであり、短絡の原因となり、耐電圧性が低下する。上記晶出物を取り除くための手段の一つとして、前述した特許文献4にはカソード電解処理が提案されており、カソード電解処理により晶出物を除去でき、その結果、晶出物による悪影響を受けることなく陽極酸化処理を行なえるため、アルミニウム部材の耐電圧性がより向上すると記載されており、実施例には、陽極酸化処理の前に、脱脂→デスマット処理→カソード電解処理を行なった例が開示されている。 First, one of the main factors governing the voltage resistance of the anodized film was the crystallized material present on the surface of the aluminum alloy substrate, and the anodizing treatment was performed on the cathode electrolytically treated substrate. Anodized film withstand voltage improvement rate (anodized film withstand voltage pre-treated with cathode electrolysis-anodized film withstand voltage with nitric acid desmut pretreated) ÷ treated with nitric acid desmut pretreated with a certain substrate (crystal size) It has been found that the anodized film withstand voltage increases as the size of the crystallized substance increases. This crystallized product is a FeAl 3 or CuAl 3 intermetallic compound in which a conductive component or conductive impurity (iron, chromium, copper, etc.) contained in an aluminum alloy is bonded to aluminum, and is short-circuited. As a result, the voltage resistance decreases. As one of the means for removing the crystallized substance, the above-mentioned Patent Document 4 proposes a cathode electrolytic treatment, and the crystallized substance can be removed by the cathode electrolytic treatment. It is described that the withstand voltage of the aluminum member is further improved because the anodizing treatment can be performed without receiving, and in the examples, degreasing → desmut treatment → cathode electrolytic treatment is performed before the anodization treatment. Is disclosed.

しかしながら、本発明者らのその後の検討結果によれば、カソード電解処理はアルミニウム合金基材の表面に露出した晶出物のみを除去することができるため、サイズが小さい晶出物を含む基材では、カソード電解処理による晶出物除去効果が小さいことが判明した。そして、晶出物のサイズと、カソード電解処理後の陽極酸化皮膜の耐電圧性向上作用との関係について詳しく調べた結果、晶出物サイズ(長軸と短軸の平均)が3μm以上の大きな晶出物を含む基材に対し、所定の積算電気量でカソード電解処理を行なうと、カソード電解処理を行なわない場合に比べ、約10%以上耐電圧性を向上でき、所定の耐電圧性を得るための膜厚を低減できることを見出した。しかも、このカソード電解処理は、陽極酸化皮膜処理の前に通常行なわれる前処理の一つであるデスマット処理に代替して行なうことが可能であり、脱脂→デスマット処理の一般的な前処理工程において、デスマット処理の替わりに上記のカソード電解処理を行い、その後に陽極酸化処理を行なえば、所望とする耐電圧性向上作用が得られる。すなわち、本発明の方法は、陽極酸化皮膜処理の前処理として、脱脂→(デスマット処理を省略)→カソード電解処理を行なうものであり、カソード電解処理による製造工程数の増加といった問題もない。このように本発明の方法によれば、デスマット処理を省略できる点で、従来どおりにデスマット処理を必須として採用している前述した特許文献4の上記実施例とは、製造工程が相違している。更に、上記方法によれば、陽極酸化処理時間の短縮が可能なことから、全処理時間を短縮でき、生産性が一層高められる。   However, according to the results of subsequent studies by the present inventors, the cathode electrolytic treatment can remove only the crystallized material exposed on the surface of the aluminum alloy base material, and therefore the base material containing a crystallized material having a small size. Then, it was found that the effect of removing the crystallized substance by the cathode electrolytic treatment was small. As a result of examining in detail the relationship between the size of the crystallized product and the voltage resistance improvement effect of the anodized film after the cathode electrolytic treatment, the crystallized product size (average of the major axis and the minor axis) is larger than 3 μm. When the cathode electrolysis treatment is performed on the base material containing the crystallized substance with a predetermined integrated electric quantity, the withstand voltage can be improved by about 10% or more compared with the case where the cathodic electrolysis treatment is not performed. It has been found that the film thickness for obtaining can be reduced. Moreover, this cathode electrolytic treatment can be performed in place of the desmut treatment which is one of the pretreatments usually performed before the anodic oxide film treatment. In the general pretreatment process of degreasing → desmut treatment. If the cathode electrolysis treatment is performed instead of the desmut treatment, and then the anodization treatment is performed, a desired withstand voltage improving effect can be obtained. That is, the method of the present invention performs degreasing → (desmut treatment is omitted) → cathode electrolytic treatment as a pretreatment of the anodic oxide film treatment, and there is no problem of an increase in the number of manufacturing steps due to the cathode electrolytic treatment. As described above, according to the method of the present invention, the desmut process can be omitted, and the manufacturing process is different from the above-described embodiment of Patent Document 4 that adopts the desmut process as an essential element as in the past. . Furthermore, according to the above method, since the anodizing time can be shortened, the total treating time can be shortened and the productivity is further enhanced.

なお、耐電圧性向上に悪影響を及ぼす上記晶出物を取り除く方法としては、カソード電解処理の他に、例えば晶出物のない基材を作製する方法や、晶出物を極小化させる方法なども考えられるが、これらは現実的な方法でない。すなわち、アルミニウム合金において晶出物は自然の産物であり、アルミニウム合金基材を用いる限り、晶出物の生成は避けられず、前者の方法は実現が困難である。後者の方法として、晶出物を極小にするためには、例えば圧延率を高める必要があるが、その場合、アルミニウム合金基材の板厚が薄くなって、所望とする陽極酸化皮膜を形成させる程度の所定の厚みを確保することができない。また、所定厚みのアルミニウム合金基材を得ようとすると、板厚の大きい板から圧延を行なう必要があり、そのために大掛かりな装置が必要となると共に、製造工程が煩雑となり、製造コストが高くなる。そこで本発明では、アルミニウム合金基材表面から晶出物を効率よく除去する方法として、カソード電解処理に着目したのである。   In addition, as a method for removing the crystallized substance that adversely affects the withstand voltage improvement, in addition to the cathode electrolytic treatment, for example, a method for producing a substrate without crystallized substance, a method for minimizing the crystallized substance, etc. However, these are not realistic methods. That is, the crystallized product is a natural product in the aluminum alloy, and as long as an aluminum alloy base material is used, the generation of crystallized product is inevitable, and the former method is difficult to realize. As the latter method, in order to minimize the crystallized product, for example, it is necessary to increase the rolling rate. In this case, the plate thickness of the aluminum alloy substrate is reduced to form a desired anodic oxide film. It is not possible to ensure a predetermined thickness. In addition, when trying to obtain an aluminum alloy base material having a predetermined thickness, it is necessary to perform rolling from a plate having a large thickness, which necessitates a large-scale apparatus and a complicated manufacturing process, resulting in an increase in manufacturing cost. . Therefore, in the present invention, attention was paid to cathode electrolytic treatment as a method for efficiently removing crystallized substances from the surface of the aluminum alloy substrate.

このように陽極酸化皮膜処理の前処理として、晶出物サイズが3μm以上の晶出物を含む晶出物が表面に露出したアルミニウム合金基材に対して、脱脂の後、デスマット処理を行なうことなく所定のカソード電解処理を行うことにより、カソード電解処理による晶出物除去作用が効率よく発揮されるようになる。その結果、アルミニウム合金基材を得る際に圧延率を高める必要もなく、陽極酸化皮膜の耐電圧性が向上し、所望とする耐電圧性を得るための陽極酸化皮膜厚を薄くでき、しかもこのような陽極酸化皮膜を、安価に製造することが可能となる。また、本発明によれば、一般に陽極酸化皮膜作製前に行なわれる、アルカリ溶液を用いた脱脂処理とそれに続くデスマット処理において、デスマット処理の替わりにカソード処理をおこなうことができるため、製造工程数を増やすことなく、且つ、陽極酸化処理時間の短縮が可能なため全処理時間を短縮でき、その結果、生産性を一層向上させることができる。   Thus, as a pretreatment for the anodic oxide film treatment, desmut treatment is performed after degreasing the aluminum alloy base material on which the crystallized material including the crystallized material having a crystallized size of 3 μm or more is exposed on the surface. By performing a predetermined cathode electrolytic treatment instead, the action of removing a crystallized substance by the cathode electrolytic treatment can be efficiently exhibited. As a result, there is no need to increase the rolling rate when obtaining an aluminum alloy substrate, the voltage resistance of the anodized film is improved, and the thickness of the anodized film for obtaining the desired voltage resistance can be reduced. Such an anodized film can be manufactured at low cost. Further, according to the present invention, in the degreasing treatment using an alkaline solution and the subsequent desmutting treatment that are generally performed before the preparation of the anodic oxide film, the cathode treatment can be performed instead of the desmutting treatment. Since the anodizing time can be shortened without increasing, the total processing time can be shortened, and as a result, the productivity can be further improved.

また、所定のカソード電解処理を施すことにより、所望の耐電圧性を得るための陽極酸化皮膜の膜厚を薄くすることができるが、これは、耐電圧性を低下させる因子であるクラックを防止するうえでも有効である。   In addition, by applying a predetermined cathode electrolytic treatment, the thickness of the anodized film for obtaining a desired withstand voltage can be reduced, but this prevents cracks, which are factors that lower the withstand voltage. It is also effective in doing.

更に本発明では、カソード電解処理後の陽極酸化皮膜処理において、少なくともシュウ酸を含む陽極酸化処理液を用いているため、高い耐電圧性を維持したままで、耐クラック性も一層高められる。   Furthermore, in the present invention, since an anodizing solution containing at least oxalic acid is used in the anodized film treatment after the cathode electrolytic treatment, the crack resistance is further enhanced while maintaining high voltage resistance.

以下、本発明の製造方法について、工程順に詳しく説明する。   Hereinafter, the production method of the present invention will be described in detail in the order of steps.

まず、晶出物サイズ(長軸と短軸の平均)が3μm以上の晶出物を含む晶出物が表面に露出したアルミニウム合金基材(以下、アルミニウム合金基材で代表させる場合がある。)を用意する。   First, an aluminum alloy base material (hereinafter, referred to as an aluminum alloy base material) in which a crystallized product containing a crystallized product having a crystallized size (average of major axis and minor axis) of 3 μm or more is exposed may be used. ).

なお、晶出物サイズが3μm未満のアルミニウム合金基材を用いて同様の処理を行なったとしても、耐電圧性の向上率の点で、それほど顕著な効果が認められなかった(後記する実施例を参照)。晶出物サイズが5μm以上等の大きな晶出物でも顕著な効果が認められる。耐電圧率向上の観点からは、晶出物のサイズは大きい程、優れた効果を発揮するが、大きすぎると耐電圧自体が下がりすぎ、カソード電解前処理をおこなっても、所定の耐電圧を得るための陽極酸化皮膜に時間が掛かり、生産性が低下するため、晶出物のサイズは40μm以下にすることが好ましく、20μm以下であることがより好ましい。   In addition, even when the same treatment was performed using an aluminum alloy substrate having a crystallized size of less than 3 μm, a remarkable effect was not recognized in terms of the improvement rate of withstand voltage (Examples described later) See). A significant effect is observed even with a large crystallized product having a crystallized size of 5 μm or more. From the standpoint of improving the withstand voltage rate, the larger the size of the crystallized substance, the better the effect.However, if it is too large, the withstand voltage itself decreases too much. Since the anodized film for obtaining takes time and productivity is lowered, the size of the crystallized product is preferably 40 μm or less, and more preferably 20 μm or less.

本発明では、基材として、アルミニウム合金を用いる。上記アルミニウム合金は、陽極酸化皮膜の形成に通常用いられるものであれば特に限定されず、例えば、JIS H 4000に規定される6061、5052等のアルミニウム合金を用いることができる。上記アルミニウム合金は、市販のアルミニウム合金を用いることもできる。   In the present invention, an aluminum alloy is used as the base material. The said aluminum alloy will not be specifically limited if it is normally used for formation of an anodic oxide film, For example, aluminum alloys, such as 6061 and 5052 prescribed | regulated to JISH4000, can be used. A commercially available aluminum alloy can also be used as the aluminum alloy.

次に、上記のアルミニウム合金基材をアルカリ溶液中に浸漬し、脱脂を主な目的とし、10μm以下のエッチングを行う。脱脂処理は、アルミニウム部材の加工時に付いた加工油等を除去するため、陽極酸化皮膜処理の前に通常用いられる方法であり、本発明では、アルカリ溶液として、例えば水酸化ナトリウムや水酸化カリウムなどを用いることが好ましい。上記アルカリ溶液の濃度は、所望の除去作用が得られるように、アルミニウム部材の表面性状などに基づいて適宜適切に制御すれば良いが、おおむね、1〜30質量%とすることが好ましい。また、アルカリ溶液の浸漬温度(処理温度)は、おおむね、15〜70℃に制御することが好ましく、アルカリ溶液によるエッチングを効率よく進めるためには、おおむね、30〜50℃に制御することがより好ましい。アルカリ溶液による処理時間は、生産性やエッチング量などの観点から適切に制御すれば良いが、おおむね、1〜10分程度が好ましい。   Next, the aluminum alloy base material is immersed in an alkaline solution, and etching of 10 μm or less is performed mainly for degreasing. The degreasing treatment is a method that is usually used before the anodic oxide film treatment in order to remove processing oil or the like attached during the processing of the aluminum member. In the present invention, as the alkaline solution, for example, sodium hydroxide, potassium hydroxide, etc. Is preferably used. The concentration of the alkali solution may be appropriately controlled based on the surface properties of the aluminum member so that a desired removal action can be obtained, but is preferably about 1 to 30% by mass. Moreover, it is preferable to control the immersion temperature (treatment temperature) of the alkaline solution to approximately 15 to 70 ° C. In order to efficiently carry out the etching with the alkaline solution, it is more preferably controlled to approximately 30 to 50 ° C. preferable. The treatment time with the alkaline solution may be appropriately controlled from the viewpoints of productivity, etching amount, etc., but is generally preferably about 1 to 10 minutes.

上記脱脂処理後のアルミニウム合金は、十分に水洗することが好ましい。なお、アルミニウム合金を水洗する方法としては、シャワー洗浄や、水中での超音波洗浄が好適である。また、必要に応じて、酸洗処理などの予備処理を行なっても良い。   The aluminum alloy after the degreasing treatment is preferably sufficiently washed with water. As a method for washing the aluminum alloy with water, shower washing or ultrasonic washing in water is suitable. Moreover, you may perform preliminary processes, such as a pickling process, as needed.

次に、脱脂後のアルミニウム合金基材を、デスマット処理することなく、5000C/dm2以上の積算電気量でカソード電解処理を施す。カソード電解処理とは、アルミニウム合金基材を酸に浸漬し、電解電圧を印加してアルミニウム部材が負極となるように電流を流して該部材を処理することを意味する。これに対し、陽極酸化皮膜処理は、電解電圧を印加してアルミニウム部材が陽極となるように電流を流して該部材を酸化処理するものであり、カソード電解処理とは、逆向きの方向となる処理を行なう点で相違する。 Next, the aluminum alloy base material after degreasing is subjected to cathodic electrolysis with an accumulated electric quantity of 5000 C / dm 2 or more without desmut treatment. Cathodic electrolytic treatment means that the aluminum alloy substrate is immersed in an acid, and an electrolytic voltage is applied to flow the current so that the aluminum member becomes a negative electrode, thereby treating the member. On the other hand, in the anodic oxide film treatment, an electrolytic voltage is applied to flow an electric current so that the aluminum member becomes an anode to oxidize the member, which is in a direction opposite to the cathode electrolytic treatment. It differs in that it performs processing.

上記カソード電解処理に用いられる酸としては、例えば、硫酸、硝酸、シュウ酸等の各種酸溶液が挙げられる。これらの酸は単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、硝酸が好適である。上記酸として硝酸水溶液を用いる場合、濃度は1質量%以上(より好ましくは10質量%以上、さらに好ましくは15質量%以上)が好ましく、50質量%以下(より好ましくは40質量%以下、さらに好ましくは30質量%以下)が好ましい。   Examples of the acid used for the cathode electrolytic treatment include various acid solutions such as sulfuric acid, nitric acid, and oxalic acid. These acids may be used alone or in combination of two or more. Of these, nitric acid is preferred. When an aqueous nitric acid solution is used as the acid, the concentration is preferably 1% by mass or more (more preferably 10% by mass or more, more preferably 15% by mass or more), and 50% by mass or less (more preferably 40% by mass or less, further preferably Is preferably 30% by mass or less).

上記カソード電解処理を行う温度(液温)は、5℃以上(より好ましくは15℃以上)が好ましい。処理温度が高いほど、晶出物の除去に要する時間を短縮することができ、より生産性が向上する。液温が高いほど晶出物の除去に要する時間を短縮することができるが、通常、60℃以下(より好ましくは50℃以下)が好ましい。   The temperature (liquid temperature) at which the cathode electrolytic treatment is performed is preferably 5 ° C. or higher (more preferably 15 ° C. or higher). The higher the treatment temperature, the shorter the time required to remove the crystallized product, and the productivity is further improved. The higher the liquid temperature, the shorter the time required for removing the crystallized product. However, it is usually preferably 60 ° C. or lower (more preferably 50 ° C. or lower).

上記カソード電解処理時に流す電流の電流密度は、1A/dm2以上(より好ましくは3A/dm2以上、さらに好ましくは5A/dm2以上)が好ましく、100A/dm2以下(より好ましくは50A/dm2以下、さらに好ましくは20A/dm2以下)が好ましい。上記範囲のなかでも、電流密度が特に50A/dm2以下であれば、高価な設備を用いることなく、晶出物を短時間で取り除くことができる。更に電流密度が5〜20A/dm2であれば、晶出物の除去に要する時間を短縮することができる。 The current density of the current that flows during the cathode electrolytic treatment is preferably 1 A / dm 2 or more (more preferably 3 A / dm 2 or more, and even more preferably 5 A / dm 2 or more), and 100 A / dm 2 or less (more preferably 50 A / dm 2 or less, more preferably 20 A / dm 2 or less). Within the above range, if the current density is 50 A / dm 2 or less, the crystallized product can be removed in a short time without using expensive equipment. Further, when the current density is 5 to 20 A / dm 2 , the time required for removing the crystallized substance can be shortened.

本発明では、上記カソード電解処理の処理時間(通電時間)は、積算電気量[電流密度(C/dm2)×時間(秒)]で5000C/dm2以上とすることが重要である。後記する実施例に示すように、カソード電解処理での積算電気量が5000C/dm2未満の場合、晶出物を十分除去することができず、所望とする耐電圧性向上作用が得られなかった。カソード電解処理での好ましい積算電気量は、10000C/dm2以上である。なお、その上限は特に限定されないが、生産性などを考慮すると、おおむね、30000C/dm2以下に制御することが好ましい。 In the present invention, it is important that the treatment time (energization time) of the cathode electrolytic treatment is 5000 C / dm 2 or more in terms of accumulated electric quantity [current density (C / dm 2 ) × time (seconds)]. As shown in the examples described later, when the cumulative amount of electricity in the cathodic electrolysis is less than 5000 C / dm 2 , the crystallized product cannot be sufficiently removed, and the desired withstand voltage improvement effect cannot be obtained. It was. A preferable integrated quantity of electricity in the cathode electrolytic treatment is 10,000 C / dm 2 or more. In addition, although the upper limit is not specifically limited, when productivity etc. are considered, it is preferable to control to 30000 C / dm < 2 > or less in general.

上記カソード電解処理時に用いられる電極としては、一般的に例えば、白金、炭素系、チタン等の電極が挙げられるが、高耐電圧性、低コスト、高寿命などの観点から勘案すると、ガラス状炭素のような緻密なアモルファスカーボンの電極を用いることが好ましい。ガラス状炭素には、カーボンファイバーなども含まれる。すなわち、チタン電極では、陽極酸化膜の生成時に電極の抵抗、更には電圧が上昇するなどし、生産管理に適していない。また、白金電極は高価であり、コストの観点から不適当である。また、炭素系電極としては黒鉛系の電極が一般に用いられるが、カソード電解処理時に電極内部に溶液が染み込み、電極内部でガスが発生し、このときの体積膨張による力で電極から黒鉛材料が粉体として剥離するため、体積減少が大きく、寿命が短い。これに対し、ガラス状カーボンの電極を用いれば、上述した問題点をすべて解消することができ、高耐電圧性、且つ高寿命の陽極酸化皮膜を、低いコストで製造することができる。   Examples of the electrode used at the time of the cathode electrolytic treatment generally include electrodes such as platinum, carbon-based, and titanium. From the viewpoint of high voltage resistance, low cost, long life, and the like, glassy carbon It is preferable to use a dense amorphous carbon electrode as described above. Glassy carbon includes carbon fiber and the like. That is, the titanium electrode is not suitable for production management because the resistance of the electrode and further the voltage increase when the anodic oxide film is formed. In addition, the platinum electrode is expensive and inappropriate from the viewpoint of cost. In addition, a graphite-based electrode is generally used as the carbon-based electrode, but the solution soaks into the electrode during cathode electrolytic treatment, and gas is generated inside the electrode. The graphite material is pulverized from the electrode by the force due to volume expansion at this time. Since it peels as a body, volume reduction is large and life is short. On the other hand, if a glassy carbon electrode is used, all the above-mentioned problems can be solved, and an anodic oxide film having a high withstand voltage and a long life can be produced at a low cost.

上記カソード電解処理後のアルミニウム合金は、十分に水洗することが好ましい。なお、アルミニウム合金を水洗する方法としては、シャワー洗浄や、水中での超音波洗浄が好適である。   The aluminum alloy after the cathode electrolytic treatment is preferably sufficiently washed with water. As a method for washing the aluminum alloy with water, shower washing or ultrasonic washing in water is suitable.

以上の前処理(アルカリ溶液による脱脂工程、およびカソード電解処理)により、アルミニウム合金基材表面から、耐電圧性向上に悪影響を及ぼす晶出物が有効に除去される。   By the above pretreatment (degreasing step with an alkaline solution and cathodic electrolysis treatment), crystallized substances that adversely affect the voltage resistance are effectively removed from the surface of the aluminum alloy substrate.

次いで、カソード電解処理を施した基材を、少なくともシュウ酸を含む陽極酸化処理液に浸漬して陽極とし、電解処理を行なうことにより、基材表面に陽極酸化皮膜を形成する。   Next, the substrate subjected to the cathode electrolytic treatment is immersed in an anodizing solution containing at least oxalic acid to form an anode, and an electrolytic treatment is performed to form an anodized film on the surface of the substrate.

本発明では、陽極酸化処理液として、少なくともシュウ酸を含む陽極酸化処理液を用いることが重要である。陽極酸化皮膜の耐電圧性を支配する因子は、前述した晶出物に加え、皮膜中のクラックであり、陽極酸化皮膜中のクラックを著しく低減して耐電圧性を一層高めるためには、シュウ酸系の皮膜を施すことが好ましいからである。   In the present invention, it is important to use an anodizing solution containing at least oxalic acid as the anodizing solution. The factors governing the voltage resistance of the anodic oxide film are cracks in the film in addition to the crystallized substances described above. In order to significantly reduce the cracks in the anodic oxide film and further increase the voltage resistance, This is because it is preferable to apply an acid film.

すなわち、一般的な陽極酸化処理液として、シュウ酸、ギ酸などの有機酸;リン酸、クロム酸、硫酸などの無機酸が挙げられるが、クラックの発生を著しく低減させつつ耐電圧性を向上させるという観点からすれば、少なくともシュウ酸を含む処理液を用いることが必要である。陽極酸化処理液中のシュウ酸濃度は、所望とする作用効果を有効に発揮することができるように適宜適切に制御すれば良いが、おおむね、20g/L〜40g/Lの範囲に制御することが好ましい。   That is, as a general anodizing treatment liquid, organic acids such as oxalic acid and formic acid; inorganic acids such as phosphoric acid, chromic acid, and sulfuric acid can be mentioned, but the withstand voltage is improved while significantly reducing the occurrence of cracks. From this point of view, it is necessary to use a treatment liquid containing at least oxalic acid. The oxalic acid concentration in the anodizing solution may be appropriately controlled so that the desired effect can be effectively exhibited, but is generally controlled in the range of 20 g / L to 40 g / L. Is preferred.

本発明では、陽極酸化処理液として、少なくともシュウ酸を含んでいれば良く、所望の作用効果を阻害しない限り、シュウ酸以外の、通常用いられる他の陽極酸化処理液をシュウ酸と混合した混酸とすることもできる。本発明に用いられる、他の陽極酸化処理液としては、例えば蟻酸、リン酸、クロム酸、硫酸などが挙げられ、これらを単独で、または2種以上混合して用いることができる。これらの酸は、おおむね、0g/L〜4g/Lの範囲で用いることが好ましい。   In the present invention, the anodic oxidation treatment liquid only needs to contain at least oxalic acid. Unless the desired effect is hindered, a mixed acid obtained by mixing other commonly used anodic oxidation treatment liquid other than oxalic acid with oxalic acid. It can also be. Examples of other anodizing treatment liquid used in the present invention include formic acid, phosphoric acid, chromic acid, sulfuric acid and the like, and these can be used alone or in combination of two or more. These acids are preferably used generally in the range of 0 g / L to 4 g / L.

陽極酸化処理を行う温度(液温)は、おおむね、10℃〜35℃とすることが好ましい。処理温度が10℃未満であると、電流密度が小さくなって成膜速度が非常に遅くなり生産性が悪くなる恐れがある。一方、処理温度が35℃を超えると、アルミニウム合金基材の形状によっては皮膜の化学的反応により溶解する恐れがある。より好ましい処理温度は15℃以上、25℃以下である。   The temperature (liquid temperature) at which the anodizing treatment is performed is preferably about 10 ° C to 35 ° C. If the processing temperature is less than 10 ° C., the current density becomes small, the film forming speed becomes very slow, and the productivity may be deteriorated. On the other hand, when the treatment temperature exceeds 35 ° C., there is a risk of dissolution due to chemical reaction of the film depending on the shape of the aluminum alloy substrate. A more preferable treatment temperature is 15 ° C. or more and 25 ° C. or less.

なお、陽極酸化処理を行うときの電解電圧(表面皮膜形成電圧)および処理時間は、所望の陽極処理酸化皮膜が得られるように、適宜適切に調節すればよい。例えば、電解電圧については、電解電圧が低いと電流密度が小さくなり成膜速度が遅くなり、一方、電解電圧が高過ぎると大電流による皮膜の溶解によって陽極酸化皮膜が形成されなくなる傾向がある。電解電圧による影響は、使用する電解処理液の組成や、陽極酸化処理を行う温度などにも関係するため、適宜設定すればよい。   In addition, what is necessary is just to adjust suitably the electrolytic voltage (surface film formation voltage) and processing time when performing anodizing process suitably so that a desired anodized oxide film may be obtained. For example, regarding the electrolysis voltage, if the electrolysis voltage is low, the current density becomes small and the film formation rate becomes slow. On the other hand, if the electrolysis voltage is too high, the anodized film tends not to be formed due to dissolution of the film by a large current. Since the influence of the electrolysis voltage is related to the composition of the electrolytic treatment solution to be used, the temperature at which the anodizing treatment is performed, and the like, it may be set as appropriate.

以上、本発明に係る陽極酸化皮膜の製造方法について説明した。   In the above, the manufacturing method of the anodic oxide film concerning this invention was demonstrated.

本発明の製造方法によって得られる陽極酸化皮膜は、耐電圧性に優れると共に、クラックの発生も著しく低減されるため、例えば、半導体や液晶の製造設備等の真空チャンバーや、真空チャンバー内部に設けられるクランパー、シャワーヘッド、サセプターなどに好適に使用することができる。   The anodized film obtained by the production method of the present invention is excellent in voltage resistance and significantly reduces the occurrence of cracks. For example, it is provided in a vacuum chamber of a semiconductor or liquid crystal production facility, or in a vacuum chamber. It can be suitably used for a clamper, a shower head, a susceptor and the like.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は以下の実施例によって制限されず、上記・下記の趣旨に適合し得る範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, and can be implemented with modifications within a range that can meet the above and the following purposes. These are all included in the technical scope of the present invention.

実施例1
(アルミニウム合金基材の調製)
本実施例では、アルミニウム合金基材として、JIS H 4000に規定される6061合金の圧延材(母材)を用い、サイズ:25mm×35mm(圧延方向)×1mmtの試験片を切り出し、その表面を面削加工した試料を複数用いた。具体的には、表1に示す4種類の晶出物サイズを有する基材は、圧延率の異なる母材とその母材の表面部分や中心部分から所定の基材を作製し、晶出物サイズを測定することで、4種類の基材を得た。切り出しに当たっては、母材表面からの距離が等しくなるように切り出し、このようにして切り出された試料は、同一基材とした。
Example 1
(Preparation of aluminum alloy substrate)
In this example, a rolled material (base material) of 6061 alloy defined in JIS H 4000 was used as the aluminum alloy base material, and a test piece of size: 25 mm × 35 mm (rolling direction) × 1 mm t was cut out and its surface A plurality of samples that were subjected to chamfering were used. Specifically, the base materials having four types of crystallized material sizes shown in Table 1 are prepared from a base material having a different rolling rate and a surface portion and a center portion of the base material, By measuring the size, four types of substrates were obtained. In the cutting, the samples were cut so that the distances from the surface of the base material were equal, and the samples cut in this way were used as the same substrate.

上記基材表面の晶出物サイズは、以下のようにして測定した。まず、上記基材を樹脂(アクリル樹脂)に埋め込んで表面を研磨した。このときの基材表面の研磨量は極力小さくなるようにした。次いで、SEMで基材表面を観察し、180μm×230μmの視野中に観察される晶出物のうち、大きな晶出物の順に3個選択した。晶出物の大きさは、各晶出物の長軸(晶出物で一番長い箇所)と短軸(当該長軸に対して直角な方向で一番長い箇所)の平均をとり、晶出物の大きさとし、このSEM観察をランダムに3箇所行い、合計9個の晶出物の平均サイズを、この基材での晶出物サイズとした。   The size of the crystallized material on the surface of the substrate was measured as follows. First, the substrate was embedded in a resin (acrylic resin) and the surface was polished. At this time, the polishing amount of the substrate surface was made as small as possible. Next, the surface of the substrate was observed with SEM, and among the crystallized substances observed in the field of view of 180 μm × 230 μm, three were selected in the order of large crystallized substances. The size of the crystallized product is the average of the major axis (the longest part of the crystallized substance) and the minor axis (the longest part in the direction perpendicular to the major axis) of each crystallized substance. The SEM observation was performed at three random locations, and the average size of a total of 9 crystallized products was defined as the crystallized product size of the substrate.

(脱脂工程)
次に、上記のようにして切り出した試料を、50℃−15wt%NaOH水溶液中に2分間浸漬した後、水洗して表面を清浄化した。
(Degreasing process)
Next, the sample cut out as described above was immersed in a 50 ° C.-15 wt% NaOH aqueous solution for 2 minutes and then washed with water to clean the surface.

(カソード電解処理工程)
次に、陽極にガラス状カーボン電極、カソード電解処理液として硝酸溶液を用い、表1に示す条件でカソード電解処理を行なった後、水洗して表面を清浄化した試料を用意した(脱脂→カソード電解処理)。
(Cathode electrolysis process)
Next, a glassy carbon electrode was used for the anode, a nitric acid solution was used as the cathode electrolytic treatment solution, and the cathode electrolytic treatment was performed under the conditions shown in Table 1, followed by washing with water to prepare a sample whose surface was cleaned (degreasing → cathode Electrolytic treatment).

なお、比較のため、上記カソード電解処理の替わりに、デスマット工程として、40℃−20wt%HNO溶液中に2分間浸漬する処理を行なった後、水洗して表面を清浄化した試料を用意した(脱脂→デスマット処理)。   For comparison, a sample whose surface was cleaned by washing with water after being immersed in a 40 ° C.-20 wt% HNO solution for 2 minutes as a desmutting step instead of the cathode electrolysis treatment was prepared ( Degreasing → desmut treatment).

(陽極酸化工程)
次いで、上記の各試料に対し、陽極酸化処理液として、シュウ酸溶液25g/Lと硫酸0.1g/Lとの混酸を用い、液温15℃、80Vの一定電圧で陽極酸化処理を行った後、水洗し、表2に示す膜厚の陽極酸化皮膜を作製した。また、陽極酸化処理中の電流値を、陽極酸化処理時間と共に記録した。
(Anodizing process)
Next, each sample was anodized at a liquid temperature of 15 ° C. and a constant voltage of 80 V using a mixed acid of oxalic acid solution 25 g / L and sulfuric acid 0.1 g / L as an anodizing solution. Then, it washed with water and produced the anodic oxide film of the film thickness shown in Table 2. Further, the current value during the anodizing treatment was recorded together with the anodizing time.

(陽極酸化皮膜の膜厚測定)
各試料における陽極酸化皮膜の膜厚は、渦電流式膜厚計を用いて測定した。測定は、同一部位を5回測定し、その平均値を当該部位の膜厚とすると共に、試料全面における膜厚を評価できるように、他の部位についても同様の操作を行ない、合計5箇所の部位における膜厚の平均を、陽極酸化皮膜の膜厚とした(いずれの試料もおおむね、約50μm)。
(Measurement of anodized film thickness)
The film thickness of the anodized film in each sample was measured using an eddy current film thickness meter. The measurement is performed five times on the same part, and the average value is set as the film thickness of the part, and the same operation is performed on other parts so that the film thickness on the entire surface of the sample can be evaluated. The average film thickness at the part was defined as the film thickness of the anodized film (all samples were approximately 50 μm).

(耐電圧測定)
各試料の耐電圧は、耐電圧試験器(「TOS5051A」、菊水電子工業株式会社製)を用い、+端子を針型のプローブに接続し、陽極酸化皮膜上に接触させ、−端子をアルミニウム合金基材に接続し、電圧を印加し、1mA以上の電流が流れた時点での電圧を耐電圧とした。なお、耐電圧性の評価は最小耐電圧で行った。何故なら、半導体製造装置の場合、基材のなかで耐電圧が最も低いところで絶縁破壊を起こすため、耐電圧が最小値となるところで評価することが好ましいからである。最小低電圧の算出に当たっては、上記のようにして耐電圧性を1個の試料につき10箇所測定し、合計2個の試料(10箇所/試料×2試料=20箇所)について測定し、その平均値および標準偏差を求め、平均値−2×標準偏差を、最小耐電圧と定めた。
(Withstand voltage measurement)
With respect to the withstand voltage of each sample, a withstand voltage tester (“TOS5051A”, manufactured by Kikusui Electronics Co., Ltd.) is used, the + terminal is connected to a needle-shaped probe, and is brought into contact with the anodized film, and the − terminal is an aluminum alloy A voltage was applied to the substrate and a voltage when a current of 1 mA or more flowed was defined as a withstand voltage. Note that the evaluation of the withstand voltage was performed at the minimum withstand voltage. This is because, in the case of a semiconductor manufacturing apparatus, since dielectric breakdown occurs at the lowest withstand voltage in the substrate, it is preferable to evaluate at the minimum withstand voltage. In calculating the minimum low voltage, the voltage resistance was measured at 10 locations per sample as described above, and a total of 2 samples (10 locations / sample × 2 samples = 20 locations) were measured. Values and standard deviations were determined, and the average value −2 × standard deviation was determined as the minimum withstand voltage.

(耐電圧性および生産性の評価)
耐電圧性の評価は、50μmでの耐電圧向上率が10%以上であるものを合格(○)とし、10%未満のものを不合格(×)とした。
(Evaluation of voltage resistance and productivity)
In the evaluation of the withstand voltage, a case where the withstand voltage improvement rate at 50 μm was 10% or more was determined to be acceptable (◯), and a value less than 10% was determined to be unacceptable (×).

また、生産性の評価は、以下のようにして行なった。すなわち、上記のようにして得られた陽極酸化皮膜(膜厚:約50μm)を有する各試料(脱脂→カソード電解処理→陽極酸化皮膜処理、または脱脂→デスマット処理→陽極酸化皮膜処理)に対して、最小耐電圧をそれぞれ求め、最小耐電圧が2000Vに達していない場合は、狙い皮膜厚を80μm[もとの膜厚(約50μm)+30μm]に変更し、再度、同じ条件で陽極酸化皮膜を作製して最小耐電圧を測定した(例えば表2のNo.3)。   Further, productivity was evaluated as follows. That is, for each sample (degreasing → cathode electrolytic treatment → anodic oxide film treatment or degreasing → desmut treatment → anodic oxide film treatment) having the anodized film (film thickness: about 50 μm) obtained as described above. The minimum withstand voltage is obtained, and if the minimum withstand voltage does not reach 2000V, the target film thickness is changed to 80 μm [original film thickness (about 50 μm) +30 μm], and the anodized film is again applied under the same conditions. The minimum withstand voltage was manufactured and measured (for example, No. 3 in Table 2).

一方、各試料における陽極酸化皮膜(膜厚:約50μm)の最小耐電圧が2000Vに達している場合は、狙い皮膜厚を20μm[もとの膜厚(約50μm)−30μm]とし、再度、同じ条件で陽極酸化皮膜を作製し、最小耐電圧を測定した(例えば表2のNo.1、2、4、5)。   On the other hand, when the minimum withstand voltage of the anodic oxide film (film thickness: about 50 μm) in each sample reaches 2000 V, the target film thickness is set to 20 μm [original film thickness (about 50 μm) −30 μm], An anodized film was prepared under the same conditions, and the minimum withstand voltage was measured (for example, No. 1, 2, 4, 5 in Table 2).

各試料について、上記のようにして求めた2点の最小耐電圧および膜厚から、最小耐電圧が2000Vとなる膜厚を比例計算により算出すると共に、当該膜厚となる陽極酸化処理時間、およびカソード電解処理時間(またはデスマット処理時間)を、予め実験により算出しておいた電流と時間のプロファイルデータから求めた。   For each sample, from the two minimum withstand voltages and film thicknesses obtained as described above, the film thickness at which the minimum withstand voltage is 2000 V is calculated by proportional calculation, and the anodizing treatment time at which the film thickness is obtained, and The cathodic electrolysis time (or desmutting time) was determined from current and time profile data calculated in advance by experiments.

そして、上記のようにして測定した耐電圧(最小耐電圧)が2000Vとなるのに必要な陽極酸化皮膜の膜厚を作製するのに必要な処理時間の合計(カソード電解工程および陽極酸化処理工程における処理時間の合計、表2中のB)が、カソード電解処理の替わりにデスマット処理を行なったときの処理時間の合計(デスマット工程および陽極酸化処理工程における処理時間の合計、表2中のA)よりも短くなる場合(A>B)を合格(○)とし、同じであるか長くなる場合(A≦B)を不合格(×)とした。   Then, the total processing time (cathode electrolysis process and anodization process) required to produce the anodized film thickness necessary for the withstand voltage (minimum withstand voltage) measured as described above to be 2000V. The total processing time in Table 2, B) in Table 2 is the total processing time when the desmutting treatment was performed instead of the cathode electrolytic treatment (the total processing time in the desmutting step and anodizing step, A in Table 2). ) (A> B) was determined to be acceptable (O), and the same or longer (A ≦ B) was determined to be unacceptable (X).

表2の最右欄には「判定」の欄を設け、50μmでの耐電圧向上率が10%以上であり、且つ、処理時間の差(表2中、A−B)がプラス(>0)のものを、合格(○)とし、いずれか一方を満足しないものを不合格(×)と判定した。ここで、表2中、Aとは、「脱脂→デスマット処理→陽極酸化処理」(比較例)の合計処理時間であり、Bとは、「脱脂→カソード電解処理→陽極酸化処理」の合計処理時間である。   In the rightmost column of Table 2, a “judgment” column is provided, the withstand voltage improvement rate at 50 μm is 10% or more, and the difference in processing time (AB in Table 2) is positive (> 0) ) Was determined to be acceptable (O), and those not satisfying either one were determined to be unacceptable (x). Here, in Table 2, A is the total processing time of “Degreasing → Desmutting → Anodizing” (comparative example), and B is the total processing of “Degreasing → Cathode electrolysis → Anodizing”. It's time.

これらの結果を表2に併記する。   These results are also shown in Table 2.

Figure 0005613125
Figure 0005613125

Figure 0005613125
Figure 0005613125

これらの結果から、以下のように考察することができる。   From these results, it can be considered as follows.

まずNo.1〜3は、本発明の製造条件を採用した例であり、晶出物サイズが3μm以上の晶出物を含む晶出物が表面に露出した基材に対し、脱脂後、カソード電解処理での積算電気量が5000C/dm2以上の条件でカソード電解処理を行なった後、陽極酸化処理を行なったため、表2に示すように50μm厚での耐電圧向上率が10%以上を達成できた。また、本発明のように脱脂→カソード電解処理→陽極酸化処理を行なったときの、最小耐電圧が2000Vとなるときの合計処理時間(表2のBを参照)は、カソード電解処理を行なわずにデスマット処理を行なったとき(脱脂→デスマット処理→陽極酸化処理)の合計処理時間(表2のAを参照)に比べて短くなった。これは、本発明の方法により、各工程の処理時間をそれぞれ、短縮できたためであり、本発明によれば、生産性が著しく向上することが確認された。 First, no. 1 to 3 are examples in which the production conditions of the present invention are adopted, and a base material on which a crystallized product including a crystallized product having a crystallized size of 3 μm or more is exposed is subjected to cathodic electrolytic treatment after degreasing. As shown in Table 2, the withstand voltage improvement rate at a thickness of 50 μm was 10% or more because the anodization was performed after the cathode electrolytic treatment was performed under the condition that the cumulative amount of electricity was 5000 C / dm 2 or more. . Further, the total treatment time (see B in Table 2) when the minimum withstand voltage is 2000 V when degreasing → cathode electrolysis treatment → anodic oxidation treatment as in the present invention is not performed. The total processing time (see A in Table 2) when the desmut treatment was performed (degreasing → desmut treatment → anodizing treatment) was shortened. This is because the processing time of each step can be shortened by the method of the present invention, and according to the present invention, it has been confirmed that the productivity is remarkably improved.

これに対し、No.4は、晶出物のサイズが3μm未満(3μm以上の晶出物を含まない)の基材を用いた例であり、50μmでの耐電圧向上率が10%未満となり、耐電圧性向上の効果が小さかった。また、No.4のように晶出物サイズが小さい基材を用いると、本発明方法による効果(デスマット処理の替わりに、カソード電解処理を採用したことの効果)が有効に発揮されず、デスマット処理を行った場合に比べて処理時間は、殆ど変わらなかった。これは、基材表面の晶出物のサイズが小さ過ぎるため、所定のカソード電解処理を行なったとしても、アルミニウム合金基材の極く表層のみの晶出物を除去したに止まったためである。   In contrast, no. 4 is an example using a base material having a crystallized material size of less than 3 μm (not including a crystallized material of 3 μm or more), and the withstand voltage improvement rate at 50 μm is less than 10%, which improves the withstand voltage. The effect was small. No. When a base material with a small crystallized size was used as in No. 4, the effect of the method of the present invention (the effect of adopting the cathode electrolytic treatment instead of the desmut treatment) was not effectively exhibited, and the desmut treatment was performed. Compared to the case, the processing time was almost the same. This is because the size of the crystallized material on the surface of the base material is too small, so that the crystallized material of only the surface layer of the aluminum alloy base material has been removed even if a predetermined cathode electrolytic treatment is performed.

また、No.5は、カソード電解処理での積算電気量が5000C/dm2未満の比較例であり、50μmでの耐電圧向上率が10%未満となり、所望とする耐電圧性を確保できなかった。これは、カソード電解処理での積算電気量が小さいため、基材表面の晶出物を十分除去できなかったためである。 No. No. 5 is a comparative example in which the cumulative amount of electricity in the cathode electrolysis treatment is less than 5000 C / dm 2 , and the withstand voltage improvement rate at 50 μm is less than 10%, and the desired withstand voltage cannot be ensured. This is because the accumulated amount of electricity in the cathodic electrolysis treatment is small, so that the crystallized material on the substrate surface cannot be removed sufficiently.

Claims (1)

晶出物サイズ3μm以上の晶出物が表面に露出したアルミニウム合金基材をアルカリ溶液で脱脂した後、
デスマット処理することなく、
前記脱脂した基材の表面に、硝酸を含む水溶液を用いて5000C/dm2以上の積算電気量でカソード電解処理を施し、
次いで、前記カソード電解処理を施した基材表面に、少なくともシュウ酸を含む陽極酸化処理液を用いて陽極酸化皮膜を形成することを特徴とするアルミニウム陽極酸化皮膜の製造方法。
After degreasing the aluminum alloy base material on which the crystallized product size of 3 μm or more is exposed on the surface with an alkaline solution,
Without desmut processing
The surface of the degreased base material is subjected to cathode electrolytic treatment with an accumulated electric quantity of 5000 C / dm 2 or more using an aqueous solution containing nitric acid ,
Then, the cathode electrolytic treatment to the substrate surface which has been subjected to, manufacturing method of an aluminum anodized film and forming a positive electrode oxide film by using an anodic oxidation treatment solution containing at least oxalic acid.
JP2011188722A 2011-08-31 2011-08-31 Method for producing aluminum anodic oxide film having high withstand voltage and excellent productivity Expired - Fee Related JP5613125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011188722A JP5613125B2 (en) 2011-08-31 2011-08-31 Method for producing aluminum anodic oxide film having high withstand voltage and excellent productivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011188722A JP5613125B2 (en) 2011-08-31 2011-08-31 Method for producing aluminum anodic oxide film having high withstand voltage and excellent productivity

Publications (2)

Publication Number Publication Date
JP2013049903A JP2013049903A (en) 2013-03-14
JP5613125B2 true JP5613125B2 (en) 2014-10-22

Family

ID=48012162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011188722A Expired - Fee Related JP5613125B2 (en) 2011-08-31 2011-08-31 Method for producing aluminum anodic oxide film having high withstand voltage and excellent productivity

Country Status (1)

Country Link
JP (1) JP5613125B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6190791B2 (en) * 2013-11-19 2017-08-30 株式会社神戸製鋼所 Anodized aluminum alloy member excellent in heat resistance and method for producing the same
JP2015203080A (en) * 2014-04-15 2015-11-16 株式会社フジミインコーポレーテッド polishing composition
CN112339395A (en) * 2020-11-06 2021-02-09 浙江融墨科技有限公司 Manufacturing method of voltage-resistant and delamination-resistant aluminum-based graphene board
CN114717628B (en) * 2022-04-14 2023-11-07 广东江丰电子材料有限公司 Preparation method of anodic oxide film

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02240292A (en) * 1989-03-10 1990-09-25 Sumitomo Light Metal Ind Ltd Anodic oxidation of aluminum material with superior corrosion resistance
JP2900822B2 (en) * 1994-11-16 1999-06-02 株式会社神戸製鋼所 Al or Al alloy vacuum chamber member
US5534356A (en) * 1995-04-26 1996-07-09 Olin Corporation Anodized aluminum substrate having increased breakdown voltage
JP2004292887A (en) * 2003-03-26 2004-10-21 Tokyo Electron Ltd Method for manufacturing member in plasma treatment vessel and member in plasma treatment vessel manufactured by the same
JP2006076105A (en) * 2004-09-09 2006-03-23 Fuji Photo Film Co Ltd Method for manufacturing support for lithographic printing plate
JP4054813B2 (en) * 2005-04-08 2008-03-05 株式会社共立 Plating method for aluminum alloy material
JP5143416B2 (en) * 2006-12-27 2013-02-13 三菱アルミニウム株式会社 Method for producing surface-treated aluminum material
JP5369083B2 (en) * 2010-01-07 2013-12-18 株式会社神戸製鋼所 Surface-treated aluminum member having high withstand voltage and method for producing the same

Also Published As

Publication number Publication date
JP2013049903A (en) 2013-03-14

Similar Documents

Publication Publication Date Title
JP5833987B2 (en) Aluminum alloy excellent in anodizing property and anodized aluminum alloy member
EP2859138B1 (en) Method for producing a metal coating
JP2014136832A (en) Anodic oxide film and method for manufacturing the same
TWI424096B (en) Method for forming anodic oxide film
JP5613125B2 (en) Method for producing aluminum anodic oxide film having high withstand voltage and excellent productivity
JP5369083B2 (en) Surface-treated aluminum member having high withstand voltage and method for producing the same
CN103774193A (en) Method for electrolytic-depositing dispersed zinc crystal nucleuses on surface of medium-high voltage electronic aluminum foil
CN104357886A (en) Method for chemically depositing diffused tin-zinc crystal nucleus on surface of high-purity aluminum foil for medium/high-voltage positive electrode
US3627654A (en) Electrolytic process for cleaning high-carbon steels
JP4705181B2 (en) Method for producing aluminum foil for electrolytic capacitor electrode
KR101790975B1 (en) Surface treatment method of aluminium material
CN103911645A (en) Magnesium alloy anode oxidation method
KR100489640B1 (en) Electrolyte solution for anodizing and corrosion-resisting coating method of magnesium alloy using the same
JP5937937B2 (en) Aluminum anodized film
JP5438485B2 (en) Surface treatment member
JP5352204B2 (en) Surface-treated aluminum material for vacuum equipment
TW202302921A (en) Structure, method for manufacturing structure
JP5426956B2 (en) Manufacturing method of surface treatment member for semiconductor liquid crystal manufacturing apparatus
JP2020084262A (en) Method for manufacturing chromium plated component
JP5334125B2 (en) Method for producing surface-treated aluminum material for vacuum equipment
JP2012057224A (en) Method for pre-plating treatment
JPH06346300A (en) Pretreatment for plating of titanium material and method for plating titanium material
JP2005272858A (en) Surface pretreatment method for light metal material
JP5419066B2 (en) Method for producing surface-treated aluminum material for vacuum equipment
JP2000260665A (en) Aluminum foil for electrolytic capacitor electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140905

R150 Certificate of patent or registration of utility model

Ref document number: 5613125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees