JPH08311692A - Parts for vacuum chamber and production thereof - Google Patents

Parts for vacuum chamber and production thereof

Info

Publication number
JPH08311692A
JPH08311692A JP11831095A JP11831095A JPH08311692A JP H08311692 A JPH08311692 A JP H08311692A JP 11831095 A JP11831095 A JP 11831095A JP 11831095 A JP11831095 A JP 11831095A JP H08311692 A JPH08311692 A JP H08311692A
Authority
JP
Japan
Prior art keywords
vacuum chamber
corrosion resistance
film
alloy layer
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11831095A
Other languages
Japanese (ja)
Inventor
Eiji Iwamura
栄治 岩村
Takashi Onishi
隆 大西
Katsuhisa Takagi
勝寿 高木
Kazuo Yoshikawa
一男 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11831095A priority Critical patent/JPH08311692A/en
Publication of JPH08311692A publication Critical patent/JPH08311692A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE: To provide parts for a vacuum chamber to be used for a CVD device, PVD device, dry etching device, etc., exhibiting excellent corrosion resistance to a corrosive gas or plasma introduced in the vacuum chamber and to provide a producing method therefor. CONSTITUTION: In the parts for the vacuum chamber in which an anodically oxidized film of an Al-based alloy layer having >=20nm thickness and forming a solid soln. with 0.1-10atom% more than one kind elements selected from Ta, Nb, V, Fe, Co and rare earth elements on the surface of a base material consisting of Al or an Al alloy, an anodically oxidizing treatment is executed after forming the Al-based alloy layer by a physical deposition method or an ion implantation method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、CVD装置,PVD装
置,ドライエッチング装置などに用いられる真空チャン
バ用部品であって、真空チャンバ内に導入される腐食性
のガスやプラズマに対して優れた耐食性を発揮する真空
チャンバ用部品及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a component for a vacuum chamber used in a CVD apparatus, a PVD apparatus, a dry etching apparatus, etc., and is excellent in corrosive gas and plasma introduced into the vacuum chamber. The present invention relates to a vacuum chamber component that exhibits corrosion resistance and a method for manufacturing the same.

【0002】[0002]

【従来の技術】CVD装置,PVD装置,ドライエッチ
ング装置などに用いられる真空チャンバの内部には、反
応ガスやエッチングガスとしてClやF等のハロゲン元
素を含む腐食性のガスが導入されることから、腐食性ガ
スに対する耐食性(以下、耐ガス腐食性という)が要求
されている。また熱プラズマCVD装置等の場合には、
上記腐食性ガスに加えて、ハロゲン系のプラズマも発生
するので、プラズマに対する耐食性(以下、耐プラズマ
性という)も重要である。
2. Description of the Related Art Since a corrosive gas containing a halogen element such as Cl or F is introduced as a reaction gas or an etching gas into a vacuum chamber used in a CVD apparatus, a PVD apparatus, a dry etching apparatus or the like. Corrosion resistance to corrosive gas (hereinafter referred to as gas corrosion resistance) is required. In the case of a thermal plasma CVD device, etc.,
In addition to the above corrosive gas, halogen-based plasma is also generated, and therefore corrosion resistance to plasma (hereinafter referred to as plasma resistance) is also important.

【0003】その為、上記真空チャンバ用材料としては
従来主にステンレス鋼材が用いられていた。しかしなが
ら、ステンレス鋼製の真空チャンバは重量が大きく土台
に大掛かりな工事が必要であり、また熱伝導性が十分で
なく作動時のベーキングに時間がかかるという問題があ
った。更に、ステンレス鋼の合金成分であるCrなどの
重金属が、何らかの要因でプロセス中に放出されて汚染
源となることもあった。そこで、ステンレス鋼より軽量
で、熱伝導性に優れ、しかも重金属汚染のおそれのない
AlまたはAl合金製の真空チャンバの開発が検討され
ている。
Therefore, stainless steel has been mainly used as the material for the vacuum chamber. However, the vacuum chamber made of stainless steel has a problem that it is heavy and requires a large amount of work on the base, and the thermal conductivity is not sufficient, and it takes a long time to bake at the time of operation. Further, heavy metals such as Cr, which is an alloy component of stainless steel, may be released during the process as a pollution source for some reason. Therefore, development of a vacuum chamber made of Al or Al alloy, which is lighter than stainless steel, excellent in thermal conductivity, and free from the risk of heavy metal contamination, is under study.

【0004】しかしながら、AlまたはAl合金の地金
表面は耐ガス腐食性および耐プラズマ性が必ずしも良い
訳ではなく、何らかの表面処理を施すことが必要と考え
られ、種々検討されている。例えば、特公平5−538
70号公報には、AlまたはAl合金製真空チャンバ用
部品の表面に陽極酸化処理を施し、陽極酸化皮膜を形成
することによりAlまたはAl合金の耐ガス腐食性を向
上させて真空チャンバ用部品とする発明が開示されてい
る。しかしながら上記陽極酸化皮膜は、前記腐食性ガス
やプラズマとの反応を全く起こさないというものではな
く、使用中に腐食されると反応生成物が微粒子として発
生し、例えば半導体の製造装置として用いられると上記
微粒子が不良品の原因となることがあり、改善が望まれ
ていた。
However, the surface of a bare metal of Al or Al alloy is not necessarily good in gas corrosion resistance and plasma resistance, and it is considered necessary to perform some kind of surface treatment, and various studies have been conducted. For example, Japanese Patent Publication No. 5-538
No. 70 discloses a vacuum chamber component that improves the gas corrosion resistance of Al or Al alloy by anodizing the surface of the Al or Al alloy vacuum chamber component to form an anodized film. An invention is disclosed. However, the anodic oxide film does not cause a reaction with the corrosive gas or plasma at all, and reaction products are generated as fine particles when corroded during use, for example, when used as a semiconductor manufacturing apparatus. The fine particles may cause defective products, and improvement has been desired.

【0005】また特公平5−53871号公報には、イ
オンプレーティング法を採用しAlまたはAl合金製真
空チャンバ用部品の表面に、耐食性に優れた皮膜(例え
ば、TiN,TiC,Al23 等)を形成する技術が
開示されている。しかしながら、この方法によれば皮膜
形成時に発生する膜応力に起因して、使用中に皮膜にク
ラックが発生したり、皮膜の剥離が起こったりして、そ
こから腐食が発生するという問題があった。
Further, Japanese Patent Publication No. 5-53871 discloses a film having excellent corrosion resistance (for example, TiN, TiC, Al 2 O 3) formed on the surface of a vacuum chamber component made of Al or Al alloy by using an ion plating method. Etc.) is disclosed. However, according to this method, due to the film stress generated at the time of film formation, there was a problem that cracks occurred in the film during use or peeling of the film occurred, causing corrosion from there. .

【0006】[0006]

【発明が解決しようとする課題】本発明は上記事情に着
目してなされたものであって、耐ガス腐食性及び耐プラ
ズマ性に優れた真空チャンバ用部品及びその製造方法を
提供しようとするものである。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a vacuum chamber component having excellent gas corrosion resistance and plasma resistance, and a method for manufacturing the same. Is.

【0007】[0007]

【課題を解決するための手段】上記目的を達成した本発
明に係る真空チャンバ用部品とは、AlまたはAl合金
からなる基材表面に、厚さ20nm以上であって、T
a,Nb,V,Fe,Co及び希土類元素よりなる群か
ら選ばれる1種以上の元素を0.1〜10at%固溶す
るAl基合金層の陽極酸化皮膜が形成されたものである
ことを要旨とするものである。
A vacuum chamber component according to the present invention, which has achieved the above object, has a thickness of 20 nm or more on a surface of a base material made of Al or an Al alloy, and T
an anodized film of an Al-based alloy layer in which 0.1 to 10 at% of one or more elements selected from the group consisting of a, Nb, V, Fe, Co and rare earth elements is formed as a solid solution. It is a summary.

【0008】上記真空チャンバ用部品を製造するにあた
っては、AlまたはAl合金からなる基材表面に、T
a,Nb,V,Fe,Co及び希土類元素よりなる群か
ら選ばれる1種以上の元素を0.1〜10at%固溶す
るAl基合金層を形成した後、該Al基合金層に陽極酸
化処理を施すことにより20nm以上の厚さの陽極酸化
皮膜を形成する製造方法を採用すればよく、前記Al基
合金層は物理的蒸着法またはイオン打込み法により形成
することが推奨される。
In manufacturing the above-mentioned vacuum chamber component, T is formed on the surface of a base material made of Al or Al alloy.
After forming an Al-based alloy layer in which 0.1 to 10 at% of one or more elements selected from the group consisting of a, Nb, V, Fe, Co and rare earth elements are formed as a solid solution, anodization is performed on the Al-based alloy layer. A manufacturing method of forming an anodized film having a thickness of 20 nm or more by applying a treatment may be adopted, and it is recommended that the Al-based alloy layer be formed by a physical vapor deposition method or an ion implantation method.

【0009】本発明において真空チャンバ用部品とは、
真空チャンバの構造材だけではなく、該真空チャンバ内
に配設されるガス拡散プレート(GDP),クランパ
ー,シャワーヘッド,サセプター,クランプリング,静
電チャックなどの部材であって、Al合金で製作される
ものには全て適用され、以下の説明では、これらの部材
をすべて包含して真空チャンバ用部品と総称する。但し
現実に製作する真空チャンバとしては、その部材の全て
を本発明の改良品で構成しなければならないという訳で
はなく、他の改良を加えたAl合金や従来公知のステン
レス鋼,セラミックス・プラスチック複合材料などと組
み合わせて、製作したものであっても差支えない場合が
ある。
In the present invention, the vacuum chamber component means
Not only the structural material of the vacuum chamber but also members such as a gas diffusion plate (GDP), a clamper, a shower head, a susceptor, a clamp ring, and an electrostatic chuck, which are arranged in the vacuum chamber, and are made of Al alloy. All of these members are collectively referred to as a vacuum chamber component in the following description. However, in a vacuum chamber to be actually manufactured, not all of its members have to be configured by the improved product of the present invention, but other improved Al alloys, conventionally known stainless steels, ceramics / plastics composites. In some cases, there is no problem even if it is manufactured by combining it with a material.

【0010】[0010]

【作用】本発明者らは、AlまたはAl基合金を用いた
真空チャンバ用部品の耐ガス腐食性及び耐プラズマ性を
改善することを目的として鋭意研究を重ねた。その結
果、真空チャンバ用部品の表面に、特定の金属元素を固
溶させたAl合金層を形成し、次いで該Al合金層に陽
極酸化処理を施して得られた陽極酸化皮膜は絶縁耐圧が
高く、従来方法により形成されたAl23 陽極酸化皮
膜や気相合成されたコーティング膜に比較して、極めて
高い耐ガス腐食性及び耐プラズマ性を発揮することを見
出した。
The present inventors have conducted intensive studies for the purpose of improving the gas corrosion resistance and plasma resistance of vacuum chamber parts using Al or an Al-based alloy. As a result, an anodized film obtained by forming an Al alloy layer in which a specific metal element is solid-solved on the surface of the vacuum chamber component and then subjecting the Al alloy layer to anodization treatment has a high withstand voltage. It has been found that, as compared with an Al 2 O 3 anodized film formed by a conventional method or a vapor-phase synthesized coating film, it exhibits extremely high gas corrosion resistance and plasma resistance.

【0011】上述の特定の金属元素とは、Ta,Nb,
V,Fe,Co及び希土類元素よりなる群から選ばれる
1種以上(以下、本発明に係る合金化元素という)であ
る。上記希土類元素とは、Y,ランタノイド元素,アク
チノイド元素を指し、該希土類元素の中では、Y,L
a,Nd,Gd,Dy,Tbが合金化元素として望まし
い。
The above-mentioned specific metal elements are Ta, Nb,
At least one selected from the group consisting of V, Fe, Co and rare earth elements (hereinafter referred to as the alloying element according to the present invention). The rare earth element refers to Y, a lanthanoid element, and an actinide element. Among the rare earth elements, Y and L
a, Nd, Gd, Dy and Tb are desirable as alloying elements.

【0012】本発明に係る合金化元素を含有する陽極酸
化皮膜は、該合金化元素の含有量や膜厚によっては絶縁
耐圧が高くなり、絶縁耐圧の上昇に伴い耐食性が向上す
る。上記絶縁耐圧と耐食性の間に強い相関関係があるこ
とについては、以下の様に説明できる。すなわち、絶縁
耐圧は陽極酸化皮膜の静電的バリア性によりもたらされ
るものであり、この静電的バリア性の程度は陽極酸化皮
膜の緻密性,欠陥密度,孔等の有無や量的程度によって
規定される。なぜなら、絶縁破壊によるリーク電流は主
に陽極酸化皮膜の欠陥,孔,粒界部分を経路として流れ
るためである。一方、耐食性は陽極酸化皮膜の緻密性,
欠陥密度,孔等の有無等の微視的構造に強い影響を受け
る。なぜなら、本来Al合金の耐食性は酸化皮膜の化学
的バリア性(原子の通過、拡散に対するバリア性)に起
因するものであり、皮膜の緻密性,欠陥密度,孔等の有
無等は孔食等の局部腐食を左右する。以上のことから、
絶縁耐圧と耐食性はどちらも陽極酸化皮膜の微視的構造
を反映したものであり、絶縁耐圧と耐食性は同一の原因
により生じる結果であることから、絶縁耐圧と耐食性に
は強い相関がある。従って、絶縁耐圧から耐食性を、耐
食性から絶縁耐圧を評価することができる。
The anodic oxide film containing an alloying element according to the present invention has a high dielectric strength depending on the content of the alloying element and the film thickness, and the corrosion resistance improves as the dielectric strength increases. The strong correlation between the dielectric strength and the corrosion resistance can be explained as follows. That is, the dielectric strength is brought about by the electrostatic barrier property of the anodized film, and the degree of this electrostatic barrier property is defined by the denseness of the anodized film, the defect density, the presence or absence of holes, etc. and the quantitative degree. To be done. This is because the leakage current due to the dielectric breakdown mainly flows through defects, holes and grain boundary portions of the anodic oxide film. On the other hand, the corrosion resistance is the denseness of the anodized film,
It is strongly influenced by the microscopic structure such as the defect density and the presence or absence of holes. This is because the corrosion resistance of the Al alloy originally originates from the chemical barrier property of the oxide film (barrier property against the passage and diffusion of atoms), and the denseness of the film, the defect density, the presence or absence of holes, etc. Controls local corrosion. From the above,
Both the dielectric strength and the corrosion resistance reflect the microscopic structure of the anodic oxide film. Since the dielectric strength and the corrosion resistance are the same cause, the dielectric strength and the corrosion resistance have a strong correlation. Therefore, it is possible to evaluate the corrosion resistance from the dielectric strength and the dielectric strength from the corrosion resistance.

【0013】前記Al合金層において上記合金化元素の
固溶量は、0.1〜10at%とすることが必要であ
る。上記固溶量が0.1at%未満では、結晶粒の微細
化や陽極酸化処理による複合酸化物の形成が十分でな
く、耐ガス腐食性及び耐プラズマ性の改善効果が顕著に
は発揮されない。上記固溶量の下限値としては、0.5
at%が好ましい。一方、10at%を超えると、必ず
しもAlマトリックス中に固溶されなくなり、Al合金
層を形成する際や陽極酸化処理時に、Alマトリックス
中に固溶されない添加元素が金属間化合物として析出す
る。その結果、膜の均質性が損なわれて耐ガス腐食性及
び耐プラズマ性に悪影響を及ぼすと共に、膜の強度も低
下してクラックや剥離が発生するので10at%以下に
設定した。上記固溶量の上限値は、5at%以下である
とより好ましい。
The solid solution amount of the alloying element in the Al alloy layer must be 0.1 to 10 at%. When the amount of the solid solution is less than 0.1 at%, the formation of complex oxides by the refinement of crystal grains and anodization is not sufficient, and the effect of improving gas corrosion resistance and plasma resistance cannot be remarkably exhibited. The lower limit of the solid solution amount is 0.5
At% is preferable. On the other hand, when it exceeds 10 at%, it is not necessarily solid-solved in the Al matrix, and an additional element which is not solid-solved in the Al matrix is precipitated as an intermetallic compound when forming an Al alloy layer or during anodization. As a result, the homogeneity of the film is impaired and the gas corrosion resistance and the plasma resistance are adversely affected, and the strength of the film is lowered to cause cracks and peeling. Therefore, the content is set to 10 at% or less. The upper limit of the solid solution amount is more preferably 5 at% or less.

【0014】また本発明において陽極酸化皮膜の厚みを
20nm以上に設定しているのは、陽極酸化皮膜が薄過
ぎると十分な耐ガス腐食性及び耐プラズマ性を発揮でき
ないからであり、40nm以上であればより好ましい。
尚、耐ガス腐食性及び耐プラズマ性向上の観点からは、
陽極酸化皮膜は厚く形成する程好ましい。但し、陽極酸
化皮膜を厚くするには、その分下地となるAl合金層を
厚く形成することが必要となり生産性を損なう。従っ
て、陽極酸化皮膜の厚さは1000nm以下で十分であ
る。
In the present invention, the thickness of the anodized film is set to 20 nm or more because if the anodized film is too thin, sufficient gas corrosion resistance and plasma resistance cannot be exhibited. It is more preferable if there is.
From the viewpoint of improving gas corrosion resistance and plasma resistance,
The thicker the anodized film is, the more preferable. However, in order to increase the thickness of the anodic oxide film, it is necessary to increase the thickness of the underlying Al alloy layer, which impairs the productivity. Therefore, a thickness of 1000 nm or less is sufficient for the anodized film.

【0015】本発明に係る合金化元素は、通常のAl鋳
造ではAlの合金化元素として添加してもAlマトリッ
クス中に固溶することなく、金属間化合物として存在す
る。本発明方法では、物理的蒸着法やイオン打込み法を
採用することにより、本発明に係る合金化元素がAlに
固溶したAl合金層を基材表面に形成でき、該Al合金
層に陽極酸化処理を施すことにより優れた耐食性を発揮
すると共に、従来方法による皮膜で多発していたクラッ
クや剥離が防止でき、即ち優れた耐クラック性をも兼ね
備えた真空チャンバ用部品を得ることができる。本発明
方法により得られる陽極酸化皮膜が優れた耐食性及び耐
クラック性を発揮できる理由としては、以下の様に推察
できる。
The alloying element according to the present invention does not form a solid solution in the Al matrix even when added as an alloying element of Al in ordinary Al casting, and exists as an intermetallic compound. In the method of the present invention, by adopting the physical vapor deposition method or the ion implantation method, the Al alloy layer in which the alloying element according to the present invention is dissolved in Al can be formed on the surface of the substrate, and the Al alloy layer is anodized. By performing the treatment, excellent corrosion resistance can be exhibited, and cracks and peeling, which frequently occur in the film by the conventional method, can be prevented, that is, a component for a vacuum chamber having excellent crack resistance can be obtained. The reason why the anodized film obtained by the method of the present invention can exhibit excellent corrosion resistance and crack resistance can be speculated as follows.

【0016】上記Al合金層は、基材のAlまたはAl
合金に比較して結晶粒が著しく微細化しており、その結
果、該Al合金層に陽極酸化処理を施して得られる陽極
酸化皮膜は緻密となり、しかもその表面を平坦に形成す
ることができる。従って、腐食性ガスやプラズマの浸食
が局所的に集中することがなく、腐食性ガスやプラズマ
が内部に侵入することを防ぐことができ、優れた耐食性
を発揮するものと考えられる。
The Al alloy layer is made of Al or Al of the base material.
The crystal grains are remarkably finer than those of the alloy, and as a result, the anodized film obtained by subjecting the Al alloy layer to anodization becomes dense and the surface can be formed flat. Therefore, it is considered that the erosion of the corrosive gas or plasma does not locally concentrate, the corrosive gas or plasma can be prevented from entering the inside, and excellent corrosion resistance is exhibited.

【0017】また、上記Al合金層は均質であることか
ら、このAl合金層に陽極酸化処理を施して得られる陽
極酸化皮膜の成分は、Al23 や添加元素の酸化物が
均一に混合した状態の複合酸化物となる。この複合酸化
物はAl23 単体に比較してその化学的性質がより安
定であることから(即ち腐食性ガスやプラズマに対する
反応性が低いことから)、優れた耐食性を発揮する。
Further, since the Al alloy layer is homogeneous, the components of the anodized film obtained by subjecting the Al alloy layer to anodizing treatment are Al 2 O 3 and oxides of additional elements mixed uniformly. It becomes a complex oxide in the state of being. This composite oxide exhibits excellent corrosion resistance because its chemical properties are more stable than that of Al 2 O 3 alone (that is, its reactivity to corrosive gas and plasma is low).

【0018】さらに、上述の様に皮膜が均一であること
から、皮膜中に内部応力が集中することがないので、ク
ラックや剥離が発生することがなく耐クラック性に優れ
るものと考えられる。
Furthermore, since the coating is uniform as described above, internal stress is not concentrated in the coating, so that it is considered that no crack or peeling occurs and the crack resistance is excellent.

【0019】本発明においてAl合金層を形成する物理
的蒸着法としては、真空蒸着法,イオンプレーティング
法,スパッタリング法など公知の方法を採用すればよい
が、特にDCマグネトロンスパッタリング法は、合金化
元素を非平衡固溶させて、合金化元素が均一に存在する
多結晶Al合金膜が効率良く形成できるという理由か
ら、好ましい方法として推奨される。
As the physical vapor deposition method for forming the Al alloy layer in the present invention, known methods such as a vacuum vapor deposition method, an ion plating method and a sputtering method may be adopted. Particularly, the DC magnetron sputtering method is alloyed. It is recommended as a preferable method because it allows non-equilibrium solid solution of elements to efficiently form a polycrystalline Al alloy film in which alloying elements uniformly exist.

【0020】本発明は陽極酸化処理方法を限定するもの
ではなく、硫酸,りん酸,しゅう酸,クロム酸等を用い
る通常の陽極酸化処理方法を用いれば良いが、弱酸の塩
からなる水溶液を陽極酸化処理液として用いることが望
ましく、中でもフタル酸,クエン酸,酒石酸等の有機酸
の塩を用いることが推奨される。上記陽極酸化処理液は
pHが中性付近であることが望ましく、エチレングリコ
ール等の親水性の有機溶媒(水と溶解し合う有機溶媒)
で希釈することが望ましい。尚希釈の範囲は、水溶液:
有機溶媒=1:1〜1:20程度が一般的である。
The present invention does not limit the anodizing treatment method, and an ordinary anodizing treatment method using sulfuric acid, phosphoric acid, oxalic acid, chromic acid or the like may be used. It is desirable to use it as an oxidation treatment liquid, and it is recommended to use salts of organic acids such as phthalic acid, citric acid, tartaric acid among others. It is desirable that the anodizing solution has a pH in the vicinity of neutrality, and a hydrophilic organic solvent such as ethylene glycol (an organic solvent that dissolves in water).
It is desirable to dilute with. The range of dilution is aqueous solution:
Generally, the organic solvent is about 1: 1 to 1:20.

【0021】陽極酸化処理時の電流密度については、低
く設定する程耐食性に優れた緻密な陽極酸化皮膜を得る
ことができる。但し、電流密度が低過ぎる場合には、陽
極酸化処理工程に長時間を必要とし生産性の低下を招く
ことから、0.5〜1.5mA/cm2 の電流密度で行
うことが望ましい。
Regarding the current density during the anodic oxidation treatment, the lower the current density is set, the more precise the anodic oxide film having excellent corrosion resistance can be obtained. However, if the current density is too low, it takes a long time for the anodic oxidation process, which leads to a decrease in productivity. Therefore, it is preferable to perform the current density at 0.5 to 1.5 mA / cm 2 .

【0022】本発明は陽極酸化処理時の印加電圧に関し
ても特に限定するものではないが、印加電圧と陽極酸化
皮膜厚は比例関係にあることから、20nm以上の陽極
酸化皮膜を形成するには25V以上印加することが好ま
しく、50V以上であればより好ましい。
The present invention is not particularly limited to the applied voltage during the anodizing treatment, but since the applied voltage and the anodized film thickness are in a proportional relationship, 25 V is required to form an anodized film of 20 nm or more. It is preferable to apply the voltage above, and more preferably 50 V or more.

【0023】本発明では、下地であるAl合金層を全て
陽極酸化皮膜に変えてもよいが、陽極酸化処理を施した
後に残るAl合金層は、応力の緩衝材として働き、耐ク
ラック性の向上に有効である。従って、下地となるAl
合金層は、陽極酸化皮膜より厚く形成することが好まし
く、上記Al合金層の厚さは、陽極酸化皮膜の2倍以上
の厚さに形成しておくことが望ましい。
In the present invention, the underlying Al alloy layer may be entirely changed to an anodized film, but the Al alloy layer remaining after the anodizing treatment acts as a buffer for stress and improves crack resistance. Is effective for. Therefore, the underlying Al
The alloy layer is preferably formed thicker than the anodized film, and it is desirable that the Al alloy layer is formed to have a thickness twice or more that of the anodized film.

【0024】以下実施例について説明するが、本発明は
下記の実施例に限定されるものではなく、前・後記の趣
旨に徴して適宜変更することは本発明の技術的範囲に含
まれる。
Examples will be described below, but the present invention is not limited to the following examples, and it is within the technical scope of the present invention to make appropriate modifications within the spirit of the preceding and the following.

【0025】[0025]

【実施例】実施例1 DCマグネトロンスパッタリング法により、Al−xT
a,Al−xFe,Al−xNd(x=0.01〜20
at%)よりなる組成のAl合金膜を、500nmの厚
さでガラス基板上に成膜した。次いでフォトリソグラフ
ィー及びウェットエッチングにより100μm幅のスト
ライプパターンを形成して櫛形電極を作製した。陽極酸
化処理を行うにあたっては、上記櫛形電極を作動電極と
して、Pt電極を対極とした。
EXAMPLES Example 1 Al-xT was formed by a DC magnetron sputtering method.
a, Al-xFe, Al-xNd (x = 0.01 to 20)
An Al alloy film having a composition of at%) was formed on a glass substrate to a thickness of 500 nm. Next, a stripe pattern having a width of 100 μm was formed by photolithography and wet etching to form a comb-shaped electrode. In performing the anodizing treatment, the above-mentioned comb-shaped electrode was used as the working electrode and the Pt electrode was used as the counter electrode.

【0026】電解浴には、3%酒石酸水溶液とエチレン
グリコールを等量混合した後、アンモニア水を加えpH
を7.0±0.5の範囲に調整した溶液を用いた。この
電解浴中に前記電極を浸漬し、電圧72V,浴温25℃
で定電圧電解法により陽極酸化処理を行い、基板上に陽
極酸化皮膜を形成した。このとき得られた陽極酸化皮膜
の厚みはいずれのAl合金膜においても150nmであ
った。
In the electrolytic bath, an equal amount of 3% tartaric acid aqueous solution and ethylene glycol were mixed, and then ammonia water was added to adjust the pH.
Was used in the range of 7.0 ± 0.5. Immerse the electrode in this electrolytic bath, voltage 72V, bath temperature 25 ℃
Was subjected to anodizing treatment by a constant voltage electrolysis method to form an anodized film on the substrate. The thickness of the anodized film obtained at this time was 150 nm in all Al alloy films.

【0027】陽極酸化処理を施した櫛形電極上に、スパ
ッタリング法により純Al膜を500nmの厚さで成膜
し、上記櫛形電極のストライプパターンと直交する方向
に、100μm幅のストライプパターンをフォトリソグ
ラフィー及びウェットエッチング法により形成して試験
片とした。
A pure Al film having a thickness of 500 nm is formed on the anodized comb-shaped electrode by a sputtering method, and a stripe pattern having a width of 100 μm is formed by photolithography in a direction orthogonal to the stripe pattern of the comb-shaped electrode. A test piece was formed by the wet etching method.

【0028】該試験片の直交配線パターンにプローバー
を接触させ、電圧を徐々に印加しながら、絶縁破壊まで
の電圧を測定することにより、耐食性の指標となる絶縁
耐圧を調べた。
A prober was brought into contact with the orthogonal wiring pattern of the test piece, and the voltage until the dielectric breakdown was measured while gradually applying the voltage to examine the withstand voltage, which is an index of corrosion resistance.

【0029】図1に合金元素添加量と絶縁耐圧の関係を
示す。0.1at%以上合金元素を添加することによ
り、絶縁耐圧は著しく上昇する。本実施例と同様に形成
し測定した純Alの陽極酸化皮膜の絶縁耐圧が約30V
であることに比較して、Ta,Fe,Ndを0.1at
%以上添加することで耐食性が向上したことが分かる。
また、10at%を超えて添加した場合には、いずれの
合金系においても絶縁耐圧は減少した。
FIG. 1 shows the relationship between the amount of alloying element added and the dielectric strength. By adding the alloy element in an amount of 0.1 at% or more, the withstand voltage is significantly increased. The anodized film of pure Al formed and measured in the same manner as in this example has a withstand voltage of about 30V.
In comparison with Ta, Fe, Nd 0.1 at
It can be seen that the corrosion resistance is improved by adding more than 100%.
When added in excess of 10 at%, the withstand voltage decreased in any alloy system.

【0030】実施例2 種々のAl合金膜(膜厚500nm)について、実施例
1と同様の方法により、陽極酸化皮膜を形成し絶縁耐圧
を測定した。また上記陽極酸化皮膜の耐ハロゲン系ガス
腐食性を評価することを目的として、5%塩素−アルゴ
ン混合ガス中において、300℃で4時間のガス腐食試
験を行い試験後の外観で耐ガス腐食性を評価した。 [耐ガス腐食性] ○: 腐食発生なし △: 腐食発生面積率 5%未満 ×: 腐食発生面積率 5%以上
Example 2 Anodized films were formed on various Al alloy films (thickness: 500 nm) by the same method as in Example 1 and the dielectric strength was measured. Further, for the purpose of evaluating the halogen-based gas corrosion resistance of the above anodic oxide film, a gas corrosion test was performed in a 5% chlorine-argon mixed gas at 300 ° C. for 4 hours, and the appearance after the test was gas corrosion resistance. Was evaluated. [Gas corrosion resistance] ○: No corrosion occurrence △: Corrosion occurrence area ratio less than 5% ×: Corrosion occurrence area ratio 5% or more

【0031】また、低バイアス条件下で90分間の塩素
プラズマ照射試験を行い、耐プラズマ性及び耐クラック
性を外観から以下の様に評価した。 [耐プラズマ性] ○: 腐食発生なし △: 腐食発生面積率 5%未満 ×: 腐食発生面積率 5%以上 [耐クラック性] ○: クラックまたは剥離発生なし ×: クラックまたは剥離発生なし 結果は表1に示す。
Further, a chlorine plasma irradiation test was performed for 90 minutes under a low bias condition, and the plasma resistance and crack resistance were evaluated from the appearance as follows. [Plasma resistance] ○: No corrosion occurrence △: Corrosion occurrence area ratio less than 5% ×: Corrosion occurrence area ratio 5% or more [Crack resistance] ○: No cracks or peeling occurred ×: No cracks or peeling occurred Shown in 1.

【0032】[0032]

【表1】 [Table 1]

【0033】表1の結果から、本発明例であるNo.1
〜10はいずれも絶縁耐圧が大きく、耐ガス腐食性,耐
プラズマ性,耐クラック性の全ての特性で優れているこ
とが分かる。これに対して本発明の要件を満足していな
い従来の皮膜が形成されているNo.11〜13は絶縁
耐圧が小さく、耐ガス腐食性,耐プラズマ性,耐クラッ
ク性のいずれか一つ以上に乏しい。またNiを含有させ
た比較例(No.14)では、絶縁耐圧がほぼゼロに近
く、耐ガス腐食性及び耐プラズマ性が共に低かった。
From the results shown in Table 1, No. 1
It can be seen that all of Nos. 10 to 10 have a large withstand voltage and are excellent in all characteristics of gas corrosion resistance, plasma resistance, and crack resistance. On the other hand, No. 1 in which a conventional film that does not satisfy the requirements of the present invention is formed. Nos. 11 to 13 have low withstand voltage, and are poor in at least one of gas corrosion resistance, plasma resistance, and crack resistance. Further, in the comparative example (No. 14) containing Ni, the withstand voltage was almost zero, and both the gas corrosion resistance and the plasma resistance were low.

【0034】実施例3 DCマグネトロンスパッタリング法により、Al−2a
t%Ta,Al−2at%FeまたはAl−2at%N
dよりなる組成のAl合金膜を、5,10,20,5
0,100,500nmの厚さでガラス基板上に成膜し
た。得られた試験片を用いて、実施例1と同様の方法に
より陽極酸化皮膜を形成し、絶縁耐圧を測定した。
Example 3 Al-2a was formed by a DC magnetron sputtering method.
t% Ta, Al-2 at% Fe or Al-2 at% N
An Al alloy film having a composition of d
A film having a thickness of 0,100,500 nm was formed on a glass substrate. Using the obtained test piece, an anodized film was formed in the same manner as in Example 1 and the withstand voltage was measured.

【0035】図2に各試験片の陽極酸化皮膜の膜厚と絶
縁耐圧の関係を示す。いずれの合金系においても20n
m以上の膜厚で絶縁耐圧は大きくなっており、即ち優れ
た耐食性が得られることが分かる。
FIG. 2 shows the relationship between the film thickness of the anodic oxide film of each test piece and the withstand voltage. 20n in any alloy system
It can be seen that with a film thickness of m or more, the withstand voltage increases, that is, excellent corrosion resistance is obtained.

【0036】実施例4 DCマグネトロンスパッタリング法により、Al−2a
t%Ta,Al−2at%FeまたはAl−2at%N
dよりなる組成のAl合金膜を、5,10,20,5
0,100,500nmの厚さでガラス基板上に成膜し
た。得られた試験片を用いて、実施例1と同様の方法に
より陽極酸化皮膜を形成し、さらに実施例2と同様の方
法により、ガス腐食試験及びプラズマ照射試験を行い、
耐ガス腐食性及び耐プラズマ性を評価した。結果は表2
に示す。
Example 4 Al-2a was formed by a DC magnetron sputtering method.
t% Ta, Al-2 at% Fe or Al-2 at% N
An Al alloy film having a composition of d
A film having a thickness of 0,100,500 nm was formed on a glass substrate. Using the obtained test piece, an anodized film was formed by the same method as in Example 1, and a gas corrosion test and a plasma irradiation test were further performed by the same method as in Example 2,
The gas corrosion resistance and plasma resistance were evaluated. The results are shown in Table 2.
Shown in

【0037】[0037]

【表2】 [Table 2]

【0038】表2の結果から、いずれの合金系において
も、20nm以上の膜厚においては、優れた耐ガス腐食
性及び耐プラズマ性を示すことが分かる。
From the results shown in Table 2, it can be seen that, in any of the alloy systems, excellent gas corrosion resistance and plasma resistance are exhibited at a film thickness of 20 nm or more.

【0039】[0039]

【発明の効果】本発明は以上の様に構成されているの
で、耐ガス腐食性及び耐プラズマ性に優れ、しかも耐ク
ラック性を有する真空チャンバ用部品及びその製造方法
が提供できることとなった。
As described above, the present invention can provide a vacuum chamber component having excellent gas corrosion resistance and plasma resistance as well as crack resistance, and a method of manufacturing the same.

【図面の簡単な説明】[Brief description of drawings]

【図1】合金化元素の添加量と陽極酸化皮膜の絶縁耐圧
の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the amount of alloying elements added and the dielectric strength of an anodized film.

【図2】陽極酸化皮膜の膜厚と絶縁耐圧の関係を示すグ
ラフである。
FIG. 2 is a graph showing the relationship between the film thickness of an anodized film and the withstand voltage.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/203 H01L 21/203 Z 21/205 21/205 21/3065 21/302 B (72)発明者 吉川 一男 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location H01L 21/203 H01L 21/203 Z 21/205 21/205 21/3065 21/302 B (72) Inventor Kazuo Yoshikawa 1-5-5 Takatsukadai, Nishi-ku, Kobe City, Hyogo Prefecture Kobe Steel Works, Ltd. Kobe Research Institute

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 AlまたはAl合金からなる基材表面
に、厚さ20nm以上であって、 Ta,Nb,V,Fe,Co及び希土類元素よりなる群
から選ばれる1種以上の元素を0.1〜10at%固溶
するAl基合金層の陽極酸化皮膜が形成されたものであ
ることを特徴とする真空チャンバ用部品。
1. A surface of a base material made of Al or an Al alloy having a thickness of 20 nm or more and one or more elements selected from the group consisting of Ta, Nb, V, Fe, Co and rare earth elements in an amount of 0. A vacuum chamber component, characterized in that an anodic oxide film of an Al-based alloy layer which forms a solid solution at 1 to 10 at% is formed.
【請求項2】 AlまたはAl合金製真空チャンバ用部
品に陽極酸化処理を施して陽極酸化皮膜を形成する真空
チャンバ用部品の製造方法であって、 AlまたはAl合金からなる基材表面に、Ta,Nb,
V,Fe,Co及び希土類元素よりなる群から選ばれる
1種以上の元素を0.1〜10at%固溶するAl基合
金層を形成した後、該Al基合金層に陽極酸化処理を施
すことにより20nm以上の厚さの陽極酸化皮膜を形成
することを特徴とする真空チャンバ用部品の製造方法。
2. A method of manufacturing a component for a vacuum chamber, which comprises subjecting an Al or Al alloy vacuum chamber component to anodizing treatment to form an anodized film, wherein Ta or Ta is formed on a surface of a base material made of Al or Al alloy. , Nb,
After forming an Al-based alloy layer in which 0.1 to 10 at% of one or more elements selected from the group consisting of V, Fe, Co and rare earth elements are formed as a solid solution, the Al-based alloy layer is anodized. Is used to form an anodic oxide film with a thickness of 20 nm or more.
【請求項3】 前記Al基合金層を物理的蒸着法または
イオン打込み法により形成する請求項2に記載の製造方
法。
3. The manufacturing method according to claim 2, wherein the Al-based alloy layer is formed by a physical vapor deposition method or an ion implantation method.
JP11831095A 1995-05-17 1995-05-17 Parts for vacuum chamber and production thereof Withdrawn JPH08311692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11831095A JPH08311692A (en) 1995-05-17 1995-05-17 Parts for vacuum chamber and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11831095A JPH08311692A (en) 1995-05-17 1995-05-17 Parts for vacuum chamber and production thereof

Publications (1)

Publication Number Publication Date
JPH08311692A true JPH08311692A (en) 1996-11-26

Family

ID=14733520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11831095A Withdrawn JPH08311692A (en) 1995-05-17 1995-05-17 Parts for vacuum chamber and production thereof

Country Status (1)

Country Link
JP (1) JPH08311692A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6916559B2 (en) 1997-02-26 2005-07-12 Kyocera Corporation Ceramic material resistant to halogen plasma and member utilizing the same
JP2005232487A (en) * 2004-02-17 2005-09-02 Kanagawa Acad Of Sci & Technol Anodically oxidized porous alumina, and production method therefor
JP2005307333A (en) * 2003-08-11 2005-11-04 Canon Inc Structure, manufacturing method therefor and porous material
JP2008285742A (en) * 2007-05-21 2008-11-27 Kobe Steel Ltd Al OR Al-ALLOY
JP2010126739A (en) * 2008-11-25 2010-06-10 Mitsubishi Alum Co Ltd Surface-treated aluminum material for vacuum equipment
JP2012057256A (en) * 2005-06-17 2012-03-22 Tohoku Univ Metal oxide film, laminate, metal member and process for producing the same
CN105200386A (en) * 2015-09-30 2015-12-30 深圳天珑无线科技有限公司 Die-cast aluminum alloy surface treatment method
WO2021207540A1 (en) * 2020-04-11 2021-10-14 Applied Materials, Inc. Apparatuses and methods of protecting nickel and nickel containing components with thin films
CN113808898A (en) * 2020-06-16 2021-12-17 中微半导体设备(上海)股份有限公司 Plasma corrosion resistant part, reaction device and composite coating forming method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6916559B2 (en) 1997-02-26 2005-07-12 Kyocera Corporation Ceramic material resistant to halogen plasma and member utilizing the same
JP2005307333A (en) * 2003-08-11 2005-11-04 Canon Inc Structure, manufacturing method therefor and porous material
JP2005232487A (en) * 2004-02-17 2005-09-02 Kanagawa Acad Of Sci & Technol Anodically oxidized porous alumina, and production method therefor
JP4623977B2 (en) * 2004-02-17 2011-02-02 財団法人神奈川科学技術アカデミー Anodized porous alumina and method for producing the same
JP2012057256A (en) * 2005-06-17 2012-03-22 Tohoku Univ Metal oxide film, laminate, metal member and process for producing the same
US9476137B2 (en) 2005-06-17 2016-10-25 Tohoku University Metal oxide film, laminate, metal member and process for producing the same
JP2008285742A (en) * 2007-05-21 2008-11-27 Kobe Steel Ltd Al OR Al-ALLOY
JP2010126739A (en) * 2008-11-25 2010-06-10 Mitsubishi Alum Co Ltd Surface-treated aluminum material for vacuum equipment
CN105200386A (en) * 2015-09-30 2015-12-30 深圳天珑无线科技有限公司 Die-cast aluminum alloy surface treatment method
WO2021207540A1 (en) * 2020-04-11 2021-10-14 Applied Materials, Inc. Apparatuses and methods of protecting nickel and nickel containing components with thin films
US11658014B2 (en) 2020-04-11 2023-05-23 Applied Materials, Inc. Apparatuses and methods of protecting nickel and nickel containing components with thin films
CN113808898A (en) * 2020-06-16 2021-12-17 中微半导体设备(上海)股份有限公司 Plasma corrosion resistant part, reaction device and composite coating forming method
CN113808898B (en) * 2020-06-16 2023-12-29 中微半导体设备(上海)股份有限公司 Plasma corrosion resistant part, reaction device and composite coating forming method

Similar Documents

Publication Publication Date Title
US7048814B2 (en) Halogen-resistant, anodized aluminum for use in semiconductor processing apparatus
KR100482862B1 (en) Surface treatment for vacuum chamber made of aluminum or its alloy
US20030205479A1 (en) Halogen-resistant, anodized aluminium for use in semiconductor processing apparatus
JP2001164354A (en) Member inside plasma treatment chamber, and manufacturing method therefor
US6280597B1 (en) Fluorinated metal having a fluorinated layer and process for its production
JP3094000B2 (en) Metal material or metal film having fluorinated surface layer and fluoridation method
JPH08311692A (en) Parts for vacuum chamber and production thereof
EP0393169A1 (en) Method for plating on titanium.
EP0362535B1 (en) Aluminum plating substance for anodizing
JP2943634B2 (en) Surface treatment method for vacuum chamber member made of Al or Al alloy
JP3249400B2 (en) Plasma processing equipment using plasma resistant aluminum alloy
Shimizu et al. GDOES depth profiling analysis of a thin surface film on aluminium
Muster Copper distributions in Aluminium alloys
JPH0347999A (en) Support metal having improved surface mor- phology
JP2900822B2 (en) Al or Al alloy vacuum chamber member
JP2001517737A (en) Electroplating method
JP2900820B2 (en) Surface treatment method for vacuum chamber member made of Al or Al alloy
US3835007A (en) Process for bonding copper or iron to titanium or tantalum
JP3608707B2 (en) Vacuum chamber member and manufacturing method thereof
JPH08144089A (en) Vacuum chamber member made of aluminum or aluminum alloy
JPH1143734A (en) Aluminum alloy for semiconductor producing device excellent in formability of alumite coating excellent in gas corrosion resistance and plasma corrosion resistance and heat resistance and material for semiconductor producing device
JP5162148B2 (en) Composite and production method thereof
JP3320965B2 (en) Hard film peeling method and recoated member obtained by the method
JPH111797A (en) Vacuum chamber member made of al or al alloy
JPH10265996A (en) Anodic oxidation treatment of aluminum or its alloy with good alkaline corrosion resistance

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020806