JPH111797A - Vacuum chamber member made of al or al alloy - Google Patents

Vacuum chamber member made of al or al alloy

Info

Publication number
JPH111797A
JPH111797A JP15109497A JP15109497A JPH111797A JP H111797 A JPH111797 A JP H111797A JP 15109497 A JP15109497 A JP 15109497A JP 15109497 A JP15109497 A JP 15109497A JP H111797 A JPH111797 A JP H111797A
Authority
JP
Japan
Prior art keywords
vacuum chamber
chamber member
alloy
concentration
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15109497A
Other languages
Japanese (ja)
Inventor
Atsushi Hisamoto
淳 久本
Koji Wada
浩司 和田
Kazuhisa Kawada
和久 河田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP15109497A priority Critical patent/JPH111797A/en
Publication of JPH111797A publication Critical patent/JPH111797A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum chamber member made of Al or Al alloy on which an anodic oxidation coating is formed, improved in resistance to gas and plasma to a greater extent than heretofore. SOLUTION: This member is a vacuum chamber member constituted by forming an anodic oxidation coating on the surface of a base material made of Al or Al alloy. At this time, S concentration in the anodic oxidation coating is regulated so that it is higher on the surface side than on the base material side, or the anodic oxidation coating is constituted of two or more layers so prepared that the chemical composition on the surface side is different from that on the base material side to incorporate S into the layer on the surface side and no to incorporate S into the layer on the base material side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、CVD装置,PV
D装置,ドライエッチング装置などに用いられるAlま
たはAl合金製真空チャンバ部材であって、真空チャン
バ内に導入される腐食性のガスやプラズマに対して優れ
た耐食性を発揮するAlまたはAl合金製真空チャンバ
部材に関するものである。
TECHNICAL FIELD The present invention relates to a CVD apparatus, a PV
A vacuum chamber member made of Al or Al alloy used for a D apparatus, a dry etching apparatus, etc., which has excellent corrosion resistance to corrosive gas or plasma introduced into the vacuum chamber. It relates to a chamber member.

【0002】[0002]

【従来の技術】CVD装置,PVD装置,ドライエッチ
ング装置などに用いられる真空チャンバの内部には、反
応ガスやエッチングガスとしてClやF等のハロゲン元
素を含む腐食性のガスが導入されることから、腐食性ガ
スに対する耐食性(以下、耐ガス性ということがある)
が要求されている。また熱プラズマCVD装置等の場合
には、上記腐食性ガスに加えて、ハロゲン系のプラズマ
も発生するので、プラズマに対する耐食性(以下、耐プ
ラズマ性ということがある)も重要である。
2. Description of the Related Art A corrosive gas containing a halogen element such as Cl or F is introduced as a reactive gas or an etching gas into a vacuum chamber used in a CVD apparatus, a PVD apparatus, a dry etching apparatus, or the like. , Corrosion resistance to corrosive gas (hereinafter sometimes referred to as gas resistance)
Is required. Further, in the case of a thermal plasma CVD apparatus or the like, halogen-based plasma is generated in addition to the corrosive gas, so that corrosion resistance to plasma (hereinafter, sometimes referred to as plasma resistance) is also important.

【0003】その為、上記真空チャンバ用材料としては
従来主にステンレス鋼材が用いられていた。しかしなが
ら、ステンレス鋼製の真空チャンバは重量が大きく土台
に大掛かりな工事が必要であり、また熱伝導性が十分で
なく作動時のベーキングに時間がかかるという問題があ
った。更に、ステンレス鋼の成分であるCrなどの重金
属が、何らかの要因でプロセス中に放出されて汚染源と
なることもあった。そこで、ステンレス鋼より軽量で、
熱伝導性に優れ、しかも重金属汚染のおそれのないAl
またはAl合金製の真空チャンバの開発が検討されてい
る。
[0003] Therefore, stainless steel materials have been mainly used as the vacuum chamber material. However, the vacuum chamber made of stainless steel has a problem that it is heavy and requires large-scale construction on a base. Further, there is a problem that thermal conductivity is not sufficient and baking during operation takes time. Furthermore, heavy metals such as Cr, which is a component of stainless steel, may be released during the process for some reason and become a contamination source. Therefore, it is lighter than stainless steel,
Al with excellent thermal conductivity and no risk of heavy metal contamination
Alternatively, the development of a vacuum chamber made of an Al alloy is being studied.

【0004】しかしながら、AlまたはAl合金の地金
表面は耐ガス性および耐プラズマ性が必ずしも良い訳で
はなく、何らかの表面処理を施すことが必要と考えら
れ、種々検討されている。例えば、特公平5−5387
0号公報には、AlまたはAl合金製真空チャンバ部材
の表面に陽極酸化処理を施し、陽極酸化皮膜を形成する
ことによりAlまたはAl合金の耐ガス性を向上させて
真空チャンバ部材とする発明が開示されている。図1
は、陽極酸化処理によりAl又はAl合金製真空チャン
バ部材の表面に形成される陽極酸化皮膜の概略構造を示
す一部断面説明図である。陽極酸化皮膜はセル2の中央
にポア3が形成されたポーラス層10と、該ポーラス層
10と基材1との間に位置するバリア層20からなり、
バリア層20はポアがなくガス透過性を有しないから、
ガスがAlやAl合金の基材1と接触するのを防ぐこと
ができる。
However, the metal surface of Al or Al alloy is not always good in gas resistance and plasma resistance, and it is considered that some surface treatment is required, and various studies have been made. For example, Japanese Patent Publication 5-5387
No. 0 discloses an invention in which the surface of an Al or Al alloy vacuum chamber member is subjected to anodic oxidation treatment to form an anodized film, thereby improving the gas resistance of Al or the Al alloy to form a vacuum chamber member. It has been disclosed. FIG.
FIG. 2 is a partially sectional explanatory view showing a schematic structure of an anodic oxide film formed on the surface of a vacuum chamber member made of Al or an Al alloy by anodizing treatment. The anodic oxide film is composed of a porous layer 10 having a pore 3 formed in the center of the cell 2 and a barrier layer 20 located between the porous layer 10 and the substrate 1.
Since the barrier layer 20 has no pores and no gas permeability,
The gas can be prevented from contacting the substrate 1 of Al or Al alloy.

【0005】しかしながら上記陽極酸化皮膜は、前記腐
食性ガスやプラズマとの反応を全く起こさないというも
のではなく、使用中に腐食されると反応生成物が微粒子
として発生し、例えば半導体製造に用いられると不良品
の原因となることがあり、改善が望まれていた。
[0005] However, the anodic oxide film does not cause a reaction with the corrosive gas or plasma at all. When it is corroded during use, a reaction product is generated as fine particles, and it is used in, for example, semiconductor manufacturing. It may cause defective products, and improvement has been desired.

【0006】また特公平5−53871号公報には、イ
オンプレーティング法を採用しAlまたはAl合金製真
空チャンバ部材の表面に、耐食性に優れた皮膜(例え
ば、TiN、TiC等)を形成する技術が開示されてい
る。但し、上記皮膜をイオンプレーティング等の気相合
成法により作成すると、かなりの処理コストがかかると
いう問題がある。
Japanese Patent Publication No. 5-53871 discloses a technique for forming a coating (eg, TiN, TiC, etc.) having excellent corrosion resistance on the surface of a vacuum chamber member made of Al or an Al alloy by employing an ion plating method. Is disclosed. However, when the above-mentioned film is formed by a vapor phase synthesis method such as ion plating, there is a problem that a considerable processing cost is required.

【0007】そこで本発明者らは、コスト的に有利な陽
極酸化処理法を採用することを前提として、耐食性に優
れたAlまたはAl合金製真空チャンバ部材を提供すべ
く研究を重ね、上記陽極酸化皮膜中の内部構造や成分組
成を制御することにより耐ガス性及び耐プラズマ性を向
上できることを見出し、先に提案した(例えば、特開平
8−193295号や特開平8−144088号等)。
即ち、優れた耐プラズマ性を得る為には、ポーラス層の
表面側のポア径はできるだけ小さく形成し、一方、基材
側のポア径はできるだけ大きく形成してバリア層を厚く
することにより耐ガス性を大幅に向上できることを本発
明者らは見出し、これを開示した。また、B,C,N,
F,P,Sよりなる群から選ばれる2種以上の元素を、
陽極酸化皮膜中に含有させることによって、ガスやプラ
ズマに対する耐食性が一層向上するとの知見も開示し
た。
[0007] The inventors of the present invention have conducted various studies to provide a vacuum chamber member made of Al or Al alloy having excellent corrosion resistance, on the premise that a cost-effective anodic oxidation method is adopted. It has been found that the gas resistance and the plasma resistance can be improved by controlling the internal structure and the component composition in the film, and have been proposed earlier (for example, JP-A-8-193295 and JP-A-8-1440088).
In other words, in order to obtain excellent plasma resistance, the pore diameter on the surface side of the porous layer is formed as small as possible, while the pore diameter on the substrate side is formed as large as possible and the barrier layer is thickened. The present inventors have found that the properties can be greatly improved, and have disclosed this. B, C, N,
Two or more elements selected from the group consisting of F, P, S
He also disclosed that the inclusion in the anodic oxide film further improves the corrosion resistance to gas and plasma.

【0008】これらの方法によれば、優れた耐食性を得
ることができる。しかしながら、例えば半導体の製造装
置用の部材として用いられる場合等では将来の半導体デ
バイスの高集積化に伴って、より一層高い耐久性を示す
真空チャンバ部材が要望されている。
[0008] According to these methods, excellent corrosion resistance can be obtained. However, for example, in the case of being used as a member for a semiconductor manufacturing apparatus, a vacuum chamber member having higher durability is demanded in accordance with high integration of semiconductor devices in the future.

【0009】[0009]

【発明が解決しようとする課題】本発明は上記事情に着
目してなされたものであって、陽極酸化処理皮膜が形成
されたAlまたはAl合金製真空チャンバ部材であり、
耐ガス性及び耐プラズマ性がより一層優れた真空チャン
バ部材を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and is an Al or Al alloy vacuum chamber member having an anodized film formed thereon.
It is an object of the present invention to provide a vacuum chamber member having more excellent gas resistance and plasma resistance.

【0010】[0010]

【課題を解決するための手段】上記目的を達成した本発
明に係るAlまたはAl合金製真空チャンバ部材とは、
AlまたはAl合金製の基材表面に陽極酸化皮膜が形成
されてなる真空チャンバ部材であって、該陽極酸化皮膜
の表面側におけるS濃度を、基材側のS濃度より高くし
てなることを要旨とするものである。従って、陽極酸化
皮膜を表面側と基材側で成分組成の異なる2層以上から
構成し、表面側の層(以下、表面層ということがある)
と基材側の層(以下、基材側層ということがある)でS
濃度を比較した場合、表面層のS濃度が高くすれば良
い。また、上記陽極酸化皮膜の表面層及び基材側層以外
の中間部のS濃度は任意の濃度とすることができ、表面
層または基材側層と同一濃度であってもよく、高濃度で
あっても低濃度であってもよい。更に、陽極酸化皮膜の
表面層のS濃度を高くし、基材側層のS濃度を低くする
にあたり、その中間部のS濃度は、連続的に変化させて
も良く、層状に段階的に変化させてもよく、或いは濃度
の連続的変化部と非変化部を組み合わせても良い。
The Al or Al alloy vacuum chamber member according to the present invention, which has achieved the above objects, comprises:
A vacuum chamber member having an anodized film formed on the surface of a substrate made of Al or Al alloy, wherein the S concentration on the surface side of the anodized film is higher than the S concentration on the substrate side. It is an abstract. Therefore, the anodic oxide film is composed of two or more layers having different component compositions on the surface side and the substrate side, and the layer on the surface side (hereinafter sometimes referred to as a surface layer).
And the layer on the substrate side (hereinafter sometimes referred to as the substrate side layer)
When comparing the concentrations, the S concentration of the surface layer may be increased. Further, the S concentration in the intermediate portion other than the surface layer and the substrate side layer of the anodic oxide film can be any concentration, and may be the same concentration as the surface layer or the substrate side layer. Or low concentration. Further, in increasing the S concentration of the surface layer of the anodic oxide film and lowering the S concentration of the substrate side layer, the S concentration in the intermediate portion may be continuously changed, and may be changed stepwise in layers. Alternatively, a continuously changing portion and a non-changing portion of the density may be combined.

【0011】また、上記の目的を達成する上で、陽極酸
化皮膜を表面側と基材側で成分組成の異なる2層以上か
ら構成し、表面層にはSを含有させ、基材側層にはSを
含有させないように構成しても良い。この場合も、表面
層と基材側層の間の中間層のS濃度は任意の濃度とする
ことができ、表面層または基材側層と同一濃度であって
もよく、高濃度であっても低濃度であってもよい。
In order to achieve the above object, the anodic oxide film is composed of two or more layers having different component compositions on the surface side and the base material side. May be configured not to contain S. Also in this case, the S concentration of the intermediate layer between the surface layer and the substrate side layer can be any concentration, and may be the same concentration as the surface layer or the substrate side layer, or may be a high concentration. May also be at a low concentration.

【0012】尚、本発明において上記表面層及び基材側
層とは、図2に示す様に、少なくとも、陽極酸化皮膜の
厚さ(A)の5分の1の厚さを目安とすればよく(A×
0.2)、表面層とは、最表面から陽極酸化皮膜の厚さ
A×0.2の領域であり、基材側層とは、陽極酸化皮膜
と基材Al合金との界面からA×0.2の領域である。
In the present invention, the above-mentioned surface layer and substrate side layer are, as shown in FIG. 2, at least one-fifth of the thickness (A) of the anodic oxide film. Well (A ×
0.2), the surface layer is a region of the thickness A × 0.2 of the anodic oxide film from the outermost surface, and the base material side layer is A × 0.2 mm from the interface between the anodic oxide film and the base Al alloy. It is an area of 0.2.

【0013】表面側のS濃度は0.5重量%以上である
ことが好ましく、基材側のS濃度は5.0重量%以下で
あることが望ましく(但し、基材側のS濃度は表面側の
S濃度より低いことが必要)、またB,C,N,Pより
なる群から選ばれる1種以上の元素を、陽極酸化皮膜に
含有させることにより、耐ガス性及び耐プラズマ性の向
上を図ることができる。
The S concentration on the surface side is preferably 0.5% by weight or more, and the S concentration on the substrate side is preferably 5.0% by weight or less (however, the S concentration on the substrate side is not more than 0.5% by weight). It is necessary that the concentration of S is lower than the S concentration on the side) and that one or more elements selected from the group consisting of B, C, N, and P are contained in the anodic oxide film to improve gas resistance and plasma resistance. Can be achieved.

【0014】更に真空チャンバ部材表面に、ポアを多数
有するポーラス層とポアのないバリア層からなる陽極酸
化皮膜を形成し、上記ポーラス層のポア径を表面側で小
さく、基材側で大きくすることが耐ガス性及び耐プラズ
マ性の向上に有効であり、陽極酸化皮膜中におけるバリ
ア層の厚さは、ポーラス層に形成されるセル壁の平均厚
さの1/2より厚くすることが望ましい。
Further, an anodic oxide film composed of a porous layer having a large number of pores and a barrier layer having no pores is formed on the surface of the vacuum chamber member, and the pore diameter of the porous layer is reduced on the surface side and increased on the substrate side. Is effective for improving gas resistance and plasma resistance, and the thickness of the barrier layer in the anodic oxide film is desirably larger than half the average thickness of the cell wall formed in the porous layer.

【0015】尚、本発明において、AlまたはAl合金
製真空チャンバ部材とは、AlまたはAl合金製真空チ
ャンバの構造材だけではなく、該真空チャンバ内に配設
されるクランパー,シャワーヘッド,サセプター,上部
電極,下部電極,ガス拡散板,ヒータブロック,ペデス
タル,チャック用基体などの部材であって、Alまたは
Al合金で製作されるものは全て適用可能であり、以下
の説明では、これらの部材をすべて包含してAlまたは
Al合金製真空チャンバ部材と総称する。
In the present invention, the Al or Al alloy vacuum chamber member means not only the structural material of the Al or Al alloy vacuum chamber, but also a clamper, a shower head, a susceptor, and a damper provided in the vacuum chamber. Members such as an upper electrode, a lower electrode, a gas diffusion plate, a heater block, a pedestal, and a chuck base, all of which are made of Al or an Al alloy, can be applied. In the following description, these members will be referred to. All of them are collectively referred to as an Al or Al alloy vacuum chamber member.

【0016】[0016]

【発明の実施の形態】本発明者らは、AlまたはAl合
金製真空チャンバ部材の腐食性ガスやプラズマに対する
耐食性を改善すべく、陽極酸化皮膜の成分組成の観点か
ら、更なる研究を重ねた結果、以下の知見を得た。即
ち、Sを含有する陽極酸化皮膜は、プラズマに対しては
非常に高い耐性を示すが、腐食性ガスに対する耐性は低
いことを突き止め、陽極酸化皮膜の表面側にはSを含有
させて優れた耐プラズマ性を発揮させ、基材側ではSの
含有量を低く抑えるか、或いは含有させないことにより
陽極酸化皮膜の有する耐ガス性を確保できることを見出
した。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have conducted further studies from the viewpoint of the component composition of an anodic oxide film in order to improve the corrosion resistance of a vacuum chamber member made of Al or an Al alloy against corrosive gas and plasma. As a result, the following findings were obtained. That is, the anodic oxide film containing S shows very high resistance to plasma, but has low resistance to corrosive gas. It has been found that the gas resistance of the anodic oxide film can be ensured by exhibiting plasma resistance and suppressing or suppressing the content of S on the base material side.

【0017】本発明はこの様な知見に基づいてなされた
ものであり、AlまたはAl合金製の基材表面に陽極酸
化皮膜が形成されてなる真空チャンバ部材の上記陽極酸
化皮膜の表面側におけるS濃度を、基材側のS濃度より
高くするか、或いは、該陽極酸化皮膜が表面側と基材側
で成分組成の異なる2層以上からなり表面側の層にはS
を含有させ、基材側の層はSを含有させないことによ
り、耐ガス腐食性及び耐プラズマ性が同時に優れたAl
またはAl合金製真空チャンバ部材が得られる。
The present invention has been made based on such knowledge, and the present invention relates to a vacuum chamber member in which an anodic oxide film is formed on the surface of a substrate made of Al or an Al alloy. The concentration is made higher than the S concentration on the substrate side, or the anodic oxide film is composed of two or more layers having different component compositions on the surface side and the substrate side, and the surface side layer has S concentration.
And the layer on the side of the base material does not contain S, so that Al has simultaneously excellent gas corrosion resistance and plasma resistance.
Alternatively, a vacuum chamber member made of an Al alloy is obtained.

【0018】表面側のS濃度としては、耐プラズマ性を
発揮させる上で0.02重量%以上は必要であり、0.
5重量%以上が好ましく、2重量%以上であるとより望
ましい。基材側層のS濃度は、上記表面側のS濃度より
小さくすることにより耐ガス性の改善効果は得られる
が、5重量%以下が好ましく、2重量%以下であればよ
り望ましく、或いはSを含有させなくても良い。
The S concentration on the surface side is required to be 0.02% by weight or more in order to exhibit plasma resistance.
It is preferably at least 5% by weight, more preferably at least 2% by weight. The effect of improving gas resistance can be obtained by making the S concentration of the base material side layer smaller than the S concentration on the surface side, but is preferably 5% by weight or less, more preferably 2% by weight or less. Need not be contained.

【0019】Sの濃度を表面側と基材側で変化させる方
法としては、以下の〜の方法を挙げることができ、
いずれかの方法を採用すればよいが、2種以上の方法を
組み合わせてもよい。 表面層を低電流密度で形成し、基材側層を高電流密
度で形成する。 表面層形成時の電解流撹拌速度を大きく、基材側層
形成時には小さくする。 2種類以上の電解液を用い、表面層を形成する際に
用いる電解液中のS濃度を高く、基材側層を形成する場
合の電解液中のS濃度を低くする。
As the method of changing the concentration of S between the surface side and the substrate side, the following methods can be mentioned.
Either method may be adopted, but two or more methods may be combined. The surface layer is formed at a low current density, and the substrate side layer is formed at a high current density. The stirring speed of the electrolytic flow during the formation of the surface layer is increased, and the stirring speed during the formation of the substrate side layer is decreased. Using two or more types of electrolytes, the S concentration in the electrolyte used when forming the surface layer is increased, and the S concentration in the electrolyte when forming the substrate side layer is reduced.

【0020】耐ガス性および耐プラズマ性の向上を図る
上で、B,C,N,Pよりなる群から選択される1種以
上を含有させることが推奨される。上記元素を陽極酸化
皮膜に含有させる量(重量%にて)としては、Bは0.
015%以上が好ましく、0.3%以上であるとより望
ましい。Cは0.01%以上が好ましく、0.5%以上
であるとより望ましい。Nは0.01%以上が好まし
く、0.7%以上であるとより望ましい。Pは0.01
5%以上が好ましく、1%以上であるとより望ましい。
In order to improve the gas resistance and plasma resistance, it is recommended that at least one selected from the group consisting of B, C, N, and P be contained. As an amount (in% by weight) of the element to be contained in the anodic oxide film, B is 0.1%.
It is preferably at least 015%, more preferably at least 0.3%. C is preferably 0.01% or more, and more preferably 0.5% or more. N is preferably at least 0.01%, and more preferably at least 0.7%. P is 0.01
It is preferably at least 5%, more preferably at least 1%.

【0021】本発明に係る陽極酸化皮膜を形成するにあ
たっては、電解を行う条件を制御すればよく、例えば、
溶液の組成、溶液の温度、電解条件(電圧、電流密度、
電流−電圧波形)等を制御することにより、陽極酸化皮
膜の成分組成及び内部構造を変化させた真空チャンバ部
材を得ることができる。
In forming the anodic oxide film according to the present invention, conditions for performing electrolysis may be controlled.
Solution composition, solution temperature, electrolysis conditions (voltage, current density,
By controlling the current-voltage waveform) and the like, a vacuum chamber member in which the component composition and the internal structure of the anodic oxide film are changed can be obtained.

【0022】溶液組成としては、その成分として、SO
4 2-,SO3 2-,HSO4 -,CO3 2- ,C24 2- ,COO
- ,NO3 -,NO2 -,BO3 3- ,B47 2- ,PO4
3- ,HPO4 2- ,H2 PO4 -,HPHO3 -等のイオン
成分の中から目的とする成分組成に応じて適宜組合わせ
を選択し、上記の成分を含有する化合物を処理溶液に加
えれば良い。
The composition of the solution is as follows.
4 2-, SO 3 2-, HSO 4 -, CO 3 2-, C 2 O 4 2-, COO
H -, NO 3 -, NO 2 -, BO 3 3-, B 4 O 7 2-, PO 4
3-, HPO 4 2-, H 2 PO 4 -, HPHO 3 - selects an appropriate combination in accordance with the chemical composition of interest from the ion components such as, the processing solution of a compound containing the above-described components Just add it.

【0023】尚、陽極酸化処理溶液に添加する上記化合
物の量は、B,C,N,Pという夫々の元素量に換算し
て0.1g/リットル以上が好ましく、0.1g/リッ
トル未満の場合には顕著な効果を発揮することは難し
い。
The amount of the compound to be added to the anodizing solution is preferably 0.1 g / L or more, and preferably less than 0.1 g / L, in terms of the amounts of the respective elements B, C, N and P. In some cases it is difficult to exert a noticeable effect.

【0024】また、陽極酸化処理液に上記化合物を添加
する方法以外にも、基材のAl合金に、合金化元素とし
て本発明に係る元素を含有したものを用いてもよく、ま
たイオン注入等の表面改質法により基材の表面層だけに
上記元素を含有させた後陽極酸化処理する方法を採用し
てもよい。いずれの方法を用いる場合であっても、最終
的に本発明に係る元素を2種以上含有させることによ
り、陽極酸化皮膜の耐ガス性および耐プラズマ性を向上
できる。
In addition to the method of adding the above compound to the anodizing treatment solution, an Al alloy of the base material containing an element according to the present invention as an alloying element may be used. Alternatively, a method may be employed in which the above element is contained only in the surface layer of the base material by the surface modification method, and then anodizing treatment is performed. Regardless of which method is used, the gas resistance and plasma resistance of the anodic oxide film can be improved by finally including two or more elements according to the present invention.

【0025】本発明においては、陽極酸化皮膜の表面側
におけるS濃度を、基材側のS濃度より高くするか、或
いは、該陽極酸化皮膜が表面側と基材側で成分組成の異
なる2層以上からなり表面側の層にはSを含有させ、基
材側の層はSを含有させないことにより、耐ガス腐食性
及び耐プラズマ性が同時に優れたAlまたはAl合金製
真空チャンバ部材が得られるが、本発明においても、ポ
ーラス層の基材側ポア径を表面側ポア径より大きくする
ことによって耐食性の向上を図ることが可能である。優
れた耐プラズマ性を得るには、表面側ポア径を80nm
以下とすることが好ましく、50nm以下であればより
好ましく、さらに好ましくは30nm以下である。ま
た、耐ガス性を十分発揮する上で、バリア層の厚さは5
0nm以上が好ましく、80nm以上であればより好ま
しい。
In the present invention, the S concentration on the surface side of the anodic oxide film is made higher than the S concentration on the substrate side, or the anodic oxide film has two layers having different component compositions on the surface side and the substrate side. By forming S on the surface-side layer and not containing S on the base material side, a vacuum chamber member made of Al or Al alloy excellent in gas corrosion resistance and plasma resistance at the same time is obtained. However, also in the present invention, it is possible to improve the corrosion resistance by making the pore diameter of the porous layer on the substrate side larger than the pore diameter on the surface side. To obtain excellent plasma resistance, the surface side pore diameter should be 80 nm.
It is preferably at most 50 nm, more preferably at most 50 nm, even more preferably at most 30 nm. In order to sufficiently exhibit gas resistance, the thickness of the barrier layer is 5
0 nm or more is preferable, and 80 nm or more is more preferable.

【0026】また陽極酸化皮膜中における上記バリア層
の厚さは、優れた耐ガス性を得る上で、ポーラス層に形
成されるセル壁の平均厚さの1/2より厚くすることが
望ましく、2/3以上であればより望ましい。
In order to obtain excellent gas resistance, the thickness of the barrier layer in the anodic oxide film is preferably larger than half the average thickness of the cell wall formed in the porous layer. It is more desirable if it is 2/3 or more.

【0027】本発明は、陽極酸化皮膜の厚さを限定する
ものではないが、優れた耐食性を発揮するには、0.0
5μm以上形成することが好ましく、0.1μm以上で
あればより好ましい。但し、皮膜厚さが厚過ぎると、内
部応力等の影響により割れを生じて表面の被覆が不充分
になったり、更には皮膜の剥離を起こすので80μm以
下とすることが望ましい。
Although the present invention does not limit the thickness of the anodic oxide film, it is necessary that the thickness be 0.00.0
The thickness is preferably 5 μm or more, and more preferably 0.1 μm or more. However, if the thickness of the film is too large, cracks occur due to the influence of internal stress and the like, resulting in insufficient coating on the surface, and furthermore, the film is peeled off.

【0028】本発明は基材となるAl合金を限定する訳
ではないが、例えばチャンバ材料としては機械的強度、
熱伝導率、電気伝導率、耐食性の観点から優れている5
000系合金や6000系合金が有用であり、5000
系合金の場合、少なくとも合金成分として、Siを0.
5重量%以下、Mgを0.5〜6.0重量%含有してい
ることが好ましく、また、6000系合金の場合、少な
くとも合金成分として、Siを0.2〜1.2重量%、
Mgを0.4〜1.5重量%含有していることが好まし
い。尚、チャンバ内部品の場合には、5000系合金や
6000系合金の他に、1000系合金,2000系合
金,7000系合金などの他のAl合金を部品の用途や
目的に応じて用いることができ、中でも1000系合金
は析出物や晶出物が少ないことから、陽極酸化皮膜の析
出物等に起因する欠陥を極めて少なくすることができ
る。
The present invention does not limit the Al alloy used as a base material.
Excellent in terms of thermal conductivity, electrical conductivity, and corrosion resistance 5
000 series alloy and 6000 series alloy are useful.
In the case of a system-based alloy, Si is added in an amount of at least 0.1 as an alloy component.
It is preferable that the alloy contains 5% by weight or less and 0.5 to 6.0% by weight of Mg. In the case of a 6000 series alloy, 0.2 to 1.2% by weight of Si is used as at least an alloy component.
It is preferable to contain 0.4 to 1.5% by weight of Mg. In the case of parts in the chamber, other Al alloys such as 1000 series alloys, 2000 series alloys, and 7000 series alloys may be used according to the use and purpose of the parts in addition to the 5000 series alloy and the 6000 series alloy. In particular, since the 1000 series alloy has few precipitates and crystallized substances, defects caused by the precipitates of the anodic oxide film and the like can be extremely reduced.

【0029】以下、本発明を実施例によって更に詳細に
説明するが、下記実施例は本発明を限定する性質のもの
ではなく、前・後記の主旨に徴して設計変更することは
いずれも本発明の技術的範囲内に含まれるものである。
Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following Examples are not intended to limit the present invention, and any design changes based on the gist of the preceding and following aspects will be described. Are included within the technical scope of

【0030】[0030]

【実施例】表1に示す各種Al合金板を用いて、表1に
併記する種々のS濃度を有する陽極酸化皮膜を形成して
試験片とした。尚、表面側と基材側でS濃度を変化させ
るにあたっては、電流密度を変化させた。例えば、N
o.1の試験片の場合には、陽極酸化処理溶液としてし
ゅう酸と硫酸を含有する溶液を用い、表面側の酸化皮膜
を形成する際には、0.1〜0.5A/cm2 で電解を
行い、基材側の酸化皮膜形成時には0.7〜1.5A/
cm2 で電解を行った。またS以外の含有元素及び上記
陽極酸化皮膜の厚さを表1に示す。
EXAMPLES Using various Al alloy plates shown in Table 1, anodic oxide films having various S concentrations shown in Table 1 were formed into test pieces. In changing the S concentration between the surface side and the substrate side, the current density was changed. For example, N
o. In the case of the test piece of No. 1, a solution containing oxalic acid and sulfuric acid was used as an anodizing treatment solution, and when forming an oxide film on the surface side, electrolysis was performed at 0.1 to 0.5 A / cm 2. When the oxide film on the substrate side is formed, 0.7 to 1.5 A /
Electrolysis was performed in cm 2 . Table 1 shows the content elements other than S and the thickness of the anodic oxide film.

【0031】上記試験片のハロゲン系ガスに対する耐食
性を評価することを目的として、5%Cl−Ar混合ガ
スにより、350℃で5時間のガス腐食試験を行い、試
験後の外観を調べて以下の基準で評価した。 [ガス腐食試験] ○:腐食発生なし △:腐食発生面積率 5%未満 ×:腐食発生面積率 5%以上
For the purpose of evaluating the corrosion resistance of the test piece to a halogen-based gas, a gas corrosion test was performed at 350 ° C. for 5 hours with a 5% Cl—Ar mixed gas, and the appearance after the test was examined. Evaluation was based on criteria. [Gas corrosion test] ○: No corrosion generated △: Corrosion generated area ratio less than 5% ×: Corrosion generated area ratio 5% or more

【0032】また、前記試験片の耐プラズマ性を評価す
るため、低バイアス条件下で90分間の塩素プラズマ照
射試験及びCF4 プラズマ照射試験を行い、その被エッ
チング量を測定して、以下の様に評価した。 [プラズマ照射試験] ○:被エッチング量 2μm未満 △:被エッチング量 2μm以上5μm未満 ×:被エッチング量 5μm以上
Further, in order to evaluate the plasma resistance of the test piece, a chlorine plasma irradiation test and a CF 4 plasma irradiation test were conducted for 90 minutes under a low bias condition, and the etching amount was measured. Was evaluated. [Plasma irradiation test] :: Amount to be etched is less than 2 μm Δ: Amount to be etched is 2 μm or more and less than 5 μm ×: Amount to be etched is 5 μm or more

【0033】上記ガス腐食試験およびプラズマ照射試験
の結果は表1に示す。尚、表中において「S以外の含有
元素」とは、S以外のB,C,P,Nのうち陽極酸化皮
膜中に含まれる元素であり、陽極酸化皮膜はAl−O,
Al−OHからなるため、O及びHは必然的に含まれて
いる元素である。
The results of the gas corrosion test and the plasma irradiation test are shown in Table 1. In the tables, “elements other than S” are elements contained in the anodic oxide film among B, C, P and N other than S, and the anodic oxide film is Al—O,
O and H are inevitably contained elements because they are made of Al-OH.

【0034】[0034]

【表1】 [Table 1]

【0035】表1の結果から明らかな様に、本発明に係
る条件を満足するNo.1〜9は、優れた耐ガス性およ
び耐プラズマ性を示した。一方No.10〜13は、本
発明に係る条件のいずれかを満足しない比較例であり、
耐ガス性または耐プラズマ性の少なくとも一方が不十分
である。
As is clear from the results in Table 1, No. satisfying the conditions according to the present invention. Nos. 1 to 9 exhibited excellent gas resistance and plasma resistance. On the other hand, no. 10 to 13 are comparative examples that do not satisfy any of the conditions according to the present invention,
At least one of gas resistance and plasma resistance is insufficient.

【0036】[0036]

【発明の効果】本発明は以上の様に構成されているの
で、耐ガス性および耐プラズマ性に優れたAlまたはA
l合金製真空チャンバ部材が提供できることとなった。
According to the present invention having the above-described structure, Al or A having excellent gas resistance and plasma resistance is provided.
Thus, a vacuum chamber member made of an alloy can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】陽極酸化皮膜の概略構造を示す一部断面説明図
である。
FIG. 1 is a partially sectional explanatory view showing a schematic structure of an anodized film.

【図2】陽極酸化皮膜の表面層と基材側層の領域の目安
を示す説明図である。
FIG. 2 is an explanatory view showing a standard of a region of a surface layer of an anodized film and a substrate side layer.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 AlまたはAl合金製の基材表面に陽極
酸化皮膜が形成されてなる真空チャンバ部材であって、 該陽極酸化皮膜の表面側におけるS濃度が、基材側のS
濃度より高いことを特徴とする耐ガス性及び耐プラズマ
性に優れたAlまたはAl合金製真空チャンバ部材。
1. A vacuum chamber member comprising an Al or Al alloy substrate having an anodized film formed on a surface thereof, wherein the S concentration on the surface side of the anodized film is lower than the S concentration on the substrate side.
A vacuum chamber member made of Al or an Al alloy which is superior in gas resistance and plasma resistance characterized by being higher in concentration.
【請求項2】 AlまたはAl合金製の基材表面に陽極
酸化皮膜が形成されてなる真空チャンバ部材であって、 該陽極酸化皮膜が表面側と基材側で成分組成の異なる2
層以上からなり、表面側の層はSを含有し、基材側の層
はSを含有していないことを特徴とする耐ガス性及び耐
プラズマ性に優れたAlまたはAl合金製真空チャンバ
部材。
2. A vacuum chamber member having an anodized film formed on a surface of a substrate made of Al or an Al alloy, wherein the anodized film has a different component composition between the surface side and the substrate side.
A vacuum chamber member made of Al or Al alloy excellent in gas resistance and plasma resistance, wherein the layer on the surface side contains S, and the layer on the substrate side does not contain S. .
【請求項3】 表面側のS濃度が0.5重量%以上であ
る請求項1または2に記載の真空チャンバ部材。
3. The vacuum chamber member according to claim 1, wherein the S concentration on the surface side is 0.5% by weight or more.
【請求項4】 基材側のS濃度が5.0重量%以下であ
る請求項1に記載の真空チャンバ部材。
4. The vacuum chamber member according to claim 1, wherein the S concentration on the substrate side is 5.0% by weight or less.
【請求項5】 B,C,N,Pよりなる群から選ばれる
1種以上の元素を、陽極酸化皮膜に含有する請求項1〜
4のいずれかに記載の真空チャンバ部材。
5. An anodic oxide film comprising one or more elements selected from the group consisting of B, C, N, and P.
5. The vacuum chamber member according to any one of 4.
【請求項6】 ポアを多数有するポーラス層とポアのな
いバリア層からなる陽極酸化皮膜が形成された請求項1
〜5のいずれかに記載の真空チャンバ部材であって、 上記陽極酸化皮膜中におけるポーラス層のポア径を表面
側で小さく、基材側で大きくしてなる真空チャンバ部
材。
6. An anodic oxide film comprising a porous layer having many pores and a barrier layer having no pores is formed.
The vacuum chamber member according to any one of claims 1 to 5, wherein a pore diameter of a porous layer in the anodic oxide film is smaller on a surface side and larger on a substrate side.
【請求項7】 ポアを多数有するポーラス層とポアのな
いバリア層からなる陽極酸化皮膜が形成された請求項1
〜6のいずれかに記載の真空チャンバ部材であって、 上記陽極酸化皮膜中におけるバリア層の厚さが、ポーラ
ス層に形成されるセル壁の平均厚さの1/2より厚くし
てなる真空チャンバ部材。
7. An anodic oxide film comprising a porous layer having a large number of pores and a barrier layer having no pores is formed.
The vacuum chamber member according to any one of claims 1 to 6, wherein a thickness of the barrier layer in the anodic oxide film is larger than 1 / of an average thickness of a cell wall formed in the porous layer. Chamber members.
JP15109497A 1997-06-09 1997-06-09 Vacuum chamber member made of al or al alloy Pending JPH111797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15109497A JPH111797A (en) 1997-06-09 1997-06-09 Vacuum chamber member made of al or al alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15109497A JPH111797A (en) 1997-06-09 1997-06-09 Vacuum chamber member made of al or al alloy

Publications (1)

Publication Number Publication Date
JPH111797A true JPH111797A (en) 1999-01-06

Family

ID=15511212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15109497A Pending JPH111797A (en) 1997-06-09 1997-06-09 Vacuum chamber member made of al or al alloy

Country Status (1)

Country Link
JP (1) JPH111797A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6521046B2 (en) 2000-02-04 2003-02-18 Kabushiki Kaisha Kobe Seiko Sho Chamber material made of Al alloy and heater block
US6686053B2 (en) 2001-07-25 2004-02-03 Kabushiki Kaisha Kobe Seiko Sho AL alloy member having excellent corrosion resistance
DE112007001836T5 (en) 2006-08-11 2009-05-28 Kabushiki Kaisha Kobe Seiko Sho, Kobe Aluminum alloy for anodic oxidation treatment, process for producing the same, aluminum component with anodic oxidation coating and plasma processing apparatus
JP2018531325A (en) * 2015-10-30 2018-10-25 アップル インコーポレイテッドApple Inc. Anode coating with improved characteristics
JP2020007643A (en) * 2013-11-13 2020-01-16 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated High-purity metal top coat for semiconductor manufacturing component
US11131036B2 (en) 2013-09-27 2021-09-28 Apple Inc. Cosmetic anodic oxide coatings

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6521046B2 (en) 2000-02-04 2003-02-18 Kabushiki Kaisha Kobe Seiko Sho Chamber material made of Al alloy and heater block
US6686053B2 (en) 2001-07-25 2004-02-03 Kabushiki Kaisha Kobe Seiko Sho AL alloy member having excellent corrosion resistance
DE112007001836T5 (en) 2006-08-11 2009-05-28 Kabushiki Kaisha Kobe Seiko Sho, Kobe Aluminum alloy for anodic oxidation treatment, process for producing the same, aluminum component with anodic oxidation coating and plasma processing apparatus
US8404059B2 (en) 2006-08-11 2013-03-26 Kobe Steel, Ltd. Aluminum alloy for anodizing having durability, contamination resistance and productivity, method for producing the same, aluminum alloy member having anodic oxide coating, and plasma processing apparatus
US11131036B2 (en) 2013-09-27 2021-09-28 Apple Inc. Cosmetic anodic oxide coatings
JP2020007643A (en) * 2013-11-13 2020-01-16 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated High-purity metal top coat for semiconductor manufacturing component
JP2018531325A (en) * 2015-10-30 2018-10-25 アップル インコーポレイテッドApple Inc. Anode coating with improved characteristics
US10760175B2 (en) 2015-10-30 2020-09-01 Apple Inc. White anodic films with multiple layers
US10781529B2 (en) 2015-10-30 2020-09-22 Apple Inc. Anodized films with pigment coloring

Similar Documents

Publication Publication Date Title
KR100482862B1 (en) Surface treatment for vacuum chamber made of aluminum or its alloy
JP4032068B2 (en) Titanium material used in fuel cell separators
TWI248991B (en) Aluminum alloy member superior in corrosion resistance and plasma resistance
US20030205479A1 (en) Halogen-resistant, anodized aluminium for use in semiconductor processing apparatus
JP2005517087A (en) Anodized halogen resistant aluminum for use in semiconductor processing equipment
WO2006123736A1 (en) Corrosion resistance treatment method for aluminum or aluminum alloy
TWI261947B (en) Titanium system material for fuel cell separator, and manufacturing method therefor
TWI421373B (en) Tungsten coating method for metal base material
JP2943634B2 (en) Surface treatment method for vacuum chamber member made of Al or Al alloy
JPS5938394A (en) Electrode for electrolysis having durability and its production
JPH11229185A (en) Aluminum material excellent in resistance to heat cracking and corrosion
CN107604342A (en) Its manufacture method of hardware and the process chamber with hardware
TW200426247A (en) Electrolytic electrode and process of producing the same
JPH111797A (en) Vacuum chamber member made of al or al alloy
JP3608707B2 (en) Vacuum chamber member and manufacturing method thereof
JPH08193295A (en) Vacuum chamber member made of aluminum of aluminum alloy
JP3746878B2 (en) Al alloy for semiconductor manufacturing equipment with excellent gas corrosion resistance and plasma corrosion resistance, and excellent heat resistance for aluminum manufacturing equipment and materials for semiconductor manufacturing equipment
JPH08144089A (en) Vacuum chamber member made of aluminum or aluminum alloy
JP2900820B2 (en) Surface treatment method for vacuum chamber member made of Al or Al alloy
CA2486687C (en) Corrosion resistant conductive parts
Shibli et al. Surface activation of aluminium alloy sacrificial anodes by IrO2
JP2020193355A (en) Method for producing separator material for fuel cell
JPH10208759A (en) Separator for molten carbonate type fuel cell
JP2578521B2 (en) Aluminum foil for electrolytic capacitor electrodes
JP2002118035A (en) Electrolytic capacitor electrode aluminum foil

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041005

A131 Notification of reasons for refusal

Effective date: 20041214

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050329