JP3320965B2 - Hard film peeling method and recoated member obtained by the method - Google Patents

Hard film peeling method and recoated member obtained by the method

Info

Publication number
JP3320965B2
JP3320965B2 JP30486095A JP30486095A JP3320965B2 JP 3320965 B2 JP3320965 B2 JP 3320965B2 JP 30486095 A JP30486095 A JP 30486095A JP 30486095 A JP30486095 A JP 30486095A JP 3320965 B2 JP3320965 B2 JP 3320965B2
Authority
JP
Japan
Prior art keywords
hard film
peeling
substrate
coated
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30486095A
Other languages
Japanese (ja)
Other versions
JPH08325755A (en
Inventor
治夫 泊里
康昭 杉崎
俊樹 佐藤
龍哉 安永
政憲 蔡
和久 河田
保之 山田
裕介 田中
恭典 和田
Original Assignee
エムエムシーコベルコツール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エムエムシーコベルコツール株式会社 filed Critical エムエムシーコベルコツール株式会社
Priority to JP30486095A priority Critical patent/JP3320965B2/en
Publication of JPH08325755A publication Critical patent/JPH08325755A/en
Application granted granted Critical
Publication of JP3320965B2 publication Critical patent/JP3320965B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F5/00Electrolytic stripping of metallic layers or coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/14Cleaning or pickling metallic material with solutions or molten salts with alkaline solutions
    • C23G1/19Iron or steel

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高速度切削工具
鋼、SNCMやSCM等のFe系金属基材、あるいは超
硬合金基材等の表面に、耐摩耗性・寿命向上の目的で設
けられる硬質膜を除去するための方法に関するものであ
り、詳細には、基材を劣化させることなく表面の硬質膜
のみを化学的に除去し、再被覆を行うことによって基材
の繰り返し使用を可能にする硬質膜除去法および該方法
の利用によって得られる再被覆部材に関するものであ
る。なお、本発明の「超硬合金」とは、WCを主成分と
し結合相形成成分としてFe系金属のうちの1種以上を
含有するWC基超硬合金に代表される超硬合金を意味す
る。
The present invention is provided on the surface of a high-speed cutting tool steel, Fe-based metal base material such as SNCM or SCM, or a cemented carbide base material for the purpose of improving wear resistance and life. The present invention relates to a method for removing a hard film, specifically, by chemically removing only a hard film on the surface without deteriorating the base material and enabling re-use of the base material by performing re-coating. The present invention relates to a method for removing a hard film and a re-coated member obtained by using the method. The “hard metal” of the present invention means a hard metal represented by a WC-based hard metal containing WC as a main component and one or more of Fe-based metals as a binder phase forming component. .

【0002】[0002]

【従来の技術】切削工具、金型、軸受け等の耐摩耗性が
要求される部材には、TiやAl、Crの窒化物、炭化
物、炭窒化物からなる硬質皮膜が被覆されることが多
い。この硬質皮膜は耐摩耗性、耐食性に優れているの
で、上記部材の寿命延長に効果的である。
2. Description of the Related Art Members requiring wear resistance, such as cutting tools, dies, and bearings, are often coated with a hard film made of nitride, carbide, or carbonitride of Ti, Al, or Cr. . Since this hard coating has excellent wear resistance and corrosion resistance, it is effective in extending the life of the above members.

【0003】これらの硬質膜は、一般的にはCVD法や
PVD法等によってコーティングされているが、コーテ
ィング時の条件によっては、皮膜中に欠陥が生じたり、
部分的に剥離が起こったりするため、期待される耐摩耗
性や耐食性が得られないことがある。また硬質膜を被覆
した部材は、未被覆の部材に比べ寿命が長くなるが、や
はり長時間の使用によって硬質膜が摩耗損傷を受け、結
局使用不能に陥ってしまう。
[0003] These hard films are generally coated by a CVD method, a PVD method or the like, but depending on the conditions at the time of coating, defects may occur in the film,
Expected wear resistance and corrosion resistance may not be obtained due to partial peeling. A member coated with a hard film has a longer service life than an uncoated member. However, the hard film suffers from abrasion damage due to long-time use, and eventually becomes unusable.

【0004】この様な欠陥を含む硬質膜や、あるいは寿
命に達した硬質膜を、基材から除去する試みがなされて
いる。すなわち、不要な硬質膜を基材から除去した後、
新しい硬質膜を被覆してやれば部材の繰り返し使用が可
能になり、資源の効率的使用およびコスト削減に役立つ
からである。
Attempts have been made to remove a hard film having such a defect or a hard film which has reached the end of its life from a substrate. That is, after removing the unnecessary hard film from the base material,
If a new hard film is coated, the member can be used repeatedly, which contributes to efficient use of resources and cost reduction.

【0005】硬質膜の除去法には、研削等の物理的除
去法、過酸化水素水溶液による化学的除去法の2つの
方法が知られている。しかし、の物理的除去法では、
基材にダメージを与えることなく非常に薄い硬質膜のみ
を研削することは不可能であり、またこの様な精密な研
削が可能であるとしてもコストが高くなって、「コスト
削減」の目的に反することになる。
There are two known methods for removing a hard film: a physical removal method such as grinding, and a chemical removal method using an aqueous hydrogen peroxide solution. However, in the physical removal method,
It is impossible to grind only a very thin hard film without damaging the base material, and even if such precision grinding is possible, the cost will increase, and the purpose of "cost reduction" Would be contrary.

【0006】一方、の化学的除去法では、過酸化水素
水系の溶液が使用可能であることが知られている。例え
ば米国特許4554049号には、過酸化水素水含有溶
液の使用が開示されているが、硬質膜の種類によっては
全く除去ができないか、あるいは除去に長時間かかる
上、基材の種類によっては基材自体が侵食を受けてしま
うという問題があった。また特開平5−503320号
には、過酸化水素水、酸、ヒドロキシルイオンのアルカ
リ源を含む水溶液を剥離液として用いて、硬質膜を除去
する方法が示されている。しかしこの方法の場合、基材
がスーパーアロイ、ステンレス鋼あるいは合金鋼といっ
た耐食性に優れた鋼材であるために適用可能なのであ
り、他の一般的なFe系金属部材や超硬合金材料では、
やはり侵食を受けてしまう。また、除去しきれなかった
硬質膜が基材上に残存したり、基材表面が剥離液によっ
て汚染されるため、せっかく再被覆を行っても再被覆膜
との密着性が損なわれていて結局新品の時の様な優れた
耐摩耗特性は得られないという問題もあった。
On the other hand, in the chemical removal method, it is known that an aqueous solution of hydrogen peroxide can be used. For example, U.S. Pat. No. 4,554,049 discloses the use of a solution containing a hydrogen peroxide solution, but it cannot be removed at all depending on the type of hard film, or it takes a long time to remove it. There was a problem that the wood itself was eroded. Japanese Patent Application Laid-Open No. 5-503320 discloses a method for removing a hard film using an aqueous solution containing a hydrogen peroxide solution, an acid, and an alkali source of hydroxyl ions as a stripping solution. However, this method is applicable because the base material is a steel material having excellent corrosion resistance such as superalloy, stainless steel or alloy steel, and in other general Fe-based metal members and cemented carbide materials,
After all it is eroded. In addition, since the hard film that could not be removed remains on the base material or the base material surface is contaminated by the stripping solution, even if re-coating is performed, the adhesion with the re-coated film is impaired. As a result, there is also a problem that excellent abrasion resistance characteristics as in the case of a new article cannot be obtained.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記の事情に
着目してなされたものであって、再被覆後の部材が新品
部材と同等の耐摩耗特性・耐食性を有することができる
様に、基材に対する化学的侵食を抑えつつ、該基材表面
の硬質膜を迅速に除去する方法、および該方法を利用し
て安価な再被覆部材を提供することを課題とするもので
ある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has been developed so that a member after recoating can have the same wear resistance and corrosion resistance as a new member. An object of the present invention is to provide a method for quickly removing a hard film on the surface of a substrate while suppressing chemical erosion on the substrate, and an inexpensive recoating member using the method.

【0008】[0008]

【課題を解決するための手段】上記課題を解決すること
のできた本発明の第1の方法は、基材表面に硬質膜が被
覆された耐摩耗性部材から該硬質膜を剥離する方法であ
って、過マンガン酸イオンおよび/または重クロム酸イ
オンを含むpH10以上の水溶液中に該部材を浸漬する
ところに要旨を有する硬質膜の剥離方法である。過マン
ガン酸イオンの濃度が0.05mol/l 以上であること、
重クロム酸イオンの濃度が0.03mol/l 以上であるこ
と、前記水溶液の温度を40〜90℃に保つものである
ことは、第1の方法における好ましい実施態様である。
Means for Solving the Problems A first method of the present invention which can solve the above-mentioned problems is a method of peeling a hard film from a wear-resistant member having a hard film coated on a substrate surface. This is a method for stripping a hard film, which has a gist in immersing the member in an aqueous solution containing a permanganate ion and / or a dichromate ion and having a pH of 10 or more. The concentration of permanganate ion is 0.05 mol / l or more,
It is a preferred embodiment of the first method that the concentration of dichromate ion is 0.03 mol / l or more and that the temperature of the aqueous solution is maintained at 40 to 90 ° C.

【0009】一方第2の方法は、基材表面に硬質膜が被
覆された耐摩耗性部材から該硬質膜を剥離する方法であ
って、pH8以上のアルカリ溶液中に該部材を浸漬しな
がら該部材を陽極として電解処理を行うものであるとこ
ろに要旨を有する。アルカリ溶液の温度を40〜90℃
に保つことは第2の方法においても好ましい実施態様で
ある。
On the other hand, a second method is a method of peeling the hard film from a wear-resistant member having a hard film coated on the surface of a base material, while immersing the member in an alkaline solution having a pH of 8 or more. The gist lies in that the electrolytic treatment is performed using the member as an anode. The temperature of the alkaline solution is 40-90 ° C
Is also a preferred embodiment in the second method.

【0010】本発明の第1および第2の方法において
は、前記硬質膜がIVa 、Va 、VIa 族元素およびAlか
ら選択される1種以上の元素の窒化物、炭化物、炭窒化
物のいずれかである時に適用することが好ましい。
In the first and second methods of the present invention, the hard film is preferably made of any one of nitrides, carbides, and carbonitrides of at least one element selected from the group consisting of IVa, Va, VIa group elements and Al. It is preferable to apply when.

【0011】第1の方法あるいは第2の方法のいずれか
の剥離方法によって硬質膜を剥離した後、新たに任意の
硬質膜が被覆されたものである再被覆部材も本発明に包
含される。本発明の剥離方法は、Fe系金属基材かまた
は超硬合金基材であるときに好ましく利用でき、再被覆
部材の基材は、Fe系金属かまたは超硬合金基材である
ことが好ましい。さらに、基材にVおよび/またはWが
含まれていると、硬質膜剥離時にVおよび/またはWに
由来する化合物が溶出して、再被覆膜との密着性向上に
有効な微細な孔が基材表面に無数に発生することが知見
された。従って、基材表面のVおよび/またはWの組成
が基材内部のVおよび/またはWの組成の0.1〜0.
9倍であること、また、硬質膜剥離後の基材表面に直径
0.2〜8μmの孔が多数存在しているものであるこ
と、の2条件のいずれか一方または両方を満足すると、
再被覆膜の密着性が極めて良好となり、新品同様の再被
覆部材が得られるので、上記2条件は本発明の再被覆部
材における最も好ましい実施態様である。
[0011] The present invention also includes a recoated member in which a hard film is newly coated after the hard film is peeled off by the peeling method of either the first method or the second method. The peeling method of the present invention can be preferably used when the substrate is an Fe-based metal substrate or a cemented carbide substrate, and the substrate of the recoating member is preferably an Fe-based metal or a cemented carbide substrate. . Further, when the base material contains V and / or W, a compound derived from V and / or W is eluted at the time of peeling the hard film, and fine pores effective for improving the adhesion to the recoating film are obtained. Was found to occur innumerably on the substrate surface. Therefore, the composition of V and / or W on the surface of the substrate is 0.1 to 0.1% of the composition of V and / or W inside the substrate.
When one or both of the following two conditions are satisfied: 9 times, and a large number of holes having a diameter of 0.2 to 8 μm are present on the substrate surface after peeling the hard film.
The above two conditions are the most preferable embodiments of the recoating member of the present invention, since the recoating film has extremely good adhesion and a recoating member like a new one can be obtained.

【0012】[0012]

【発明の実施の形態】部材の耐摩耗性・耐食性向上の目
的で設けられる硬質被覆膜は、IVa 、Va 、VIa 族元素
あるいはAlから選択される1種以上の元素の単独もし
くは複合窒化物、炭化物、炭窒化物である。これらの化
合物は、酸性溶液、特に非酸化性溶液中で優れた耐食性
を示すが、酸化性の環境下では分解を起こす。この作用
を利用したのが前述の特開平5−503320号の酸化
性剥離液であるが、本発明者等が検討した結果、酸化分
解の結果生じる金属イオンは雰囲気が酸化性環境なので
酸化物として硬質膜表面に析出し、この酸化物が膜表面
全体を覆ってしまうため、硬質膜の分解・剥離はそれ以
上進行しにくくなり、剥離にかなりの時間を要すること
がわかった。さらに、剥離液によって分解を受けた皮膜
には多数の割れが入るため、この割れ部分から剥離液が
基材自体を侵食してしまうことも明らかとなった。
BEST MODE FOR CARRYING OUT THE INVENTION A hard coating film provided for the purpose of improving wear resistance and corrosion resistance of a member is a single or composite nitride of at least one element selected from the group consisting of IVa, Va, VIa group elements and Al. , Carbides and carbonitrides. These compounds exhibit excellent corrosion resistance in acidic solutions, especially non-oxidizing solutions, but decompose in oxidizing environments. The oxidizing stripper disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 5-503320 utilizes this effect. However, as a result of studies by the present inventors, metal ions resulting from oxidative decomposition are converted into oxides because the atmosphere is an oxidizing environment. Since the oxide was deposited on the surface of the hard film and this oxide covered the entire surface of the film, the decomposition and peeling of the hard film became difficult to proceed further, and it was found that a considerable time was required for the peeling. Furthermore, it was also clarified that since the film decomposed by the stripping solution had many cracks, the stripping solution eroded the base material itself from the cracks.

【0013】そこで本発明者等は、金属酸化物皮膜を形
成させずに硬質膜の分解を起こし得る酸化環境を作るこ
とについて検討し、有用な2つの剥離方法を見出した。
以下詳細に説明する。
The inventors of the present invention have studied the creation of an oxidizing environment in which a hard film can be decomposed without forming a metal oxide film, and have found two useful peeling methods.
This will be described in detail below.

【0014】まず、本発明の第1の方法は、過マンガン
酸イオンおよび/または重クロム酸イオンを含むpH1
0以上の水溶液中に硬質膜被覆部材を浸漬するところに
特徴を有するものである。過マンガン酸イオンおよび/
または重クロム酸イオンを含む水溶液は酸化力が強く、
酸化還元反応時に酸素をほとんど発生しないため、金属
酸化物の皮膜形成を抑制する効果がある。従って従来の
剥離溶液に比べ、硬質膜を短時間で除去することが可能
である。しかし剥離用水溶液のpHが10以上でなけれ
ば、これらのイオンが存在しても金属酸化物皮膜が形成
されてしまい、硬質膜の溶解・剥離反応の進行を妨害す
る。
First, the first method of the present invention is a method for preparing a pH 1 containing permanganate ion and / or dichromate ion.
It is characterized in that the hard film-coated member is immersed in zero or more aqueous solutions. Permanganate ion and / or
Or the aqueous solution containing dichromate ion has strong oxidizing power,
Since almost no oxygen is generated during the oxidation-reduction reaction, there is an effect of suppressing the formation of a metal oxide film. Therefore, it is possible to remove the hard film in a shorter time than in a conventional stripping solution. However, if the pH of the aqueous solution for stripping is not 10 or more, even if these ions are present, a metal oxide film is formed, which hinders the progress of the dissolution and stripping reaction of the hard film.

【0015】従って、本発明の第1方法では、pH10
以上を必須要件と定めた。水溶液のpHは高い方が硬質
膜の溶解反応を促進するので、好ましいpHは12以上
であり、さらに好ましくはpH14以上である。剥離用
水溶液のpHを調整するためには、水に溶けてアルカリ
性を示す化合物が特に限定されずに使用できるが、入手
し易く安価な水酸化ナトリウムや水酸化カリウム等が好
ましく採用される。
Therefore, in the first method of the present invention, the pH 10
The above are defined as essential requirements. Since the higher the pH of the aqueous solution, the higher the dissolution reaction of the hard film is promoted, the preferred pH is 12 or more, and more preferably pH 14 or more. In order to adjust the pH of the aqueous solution for stripping, a compound which is soluble in water and shows alkalinity can be used without any particular limitation, but easily available and inexpensive sodium hydroxide and potassium hydroxide are preferably used.

【0016】一方、過マンガン酸イオンの濃度は0.0
5mol/l 以上が適切である。0.05mol/l より低い
と、硬質膜の溶解速度が遅く、実用的ではない。好まし
くは0.1mol/l 以上、より好ましい濃度は0.3mol/
l 以上であり、また上限はコストの点から飽和濃度以下
にすることが推奨される。重クロム酸イオンの濃度は、
0.03mol/l 以上が適している。好ましくは0.1mo
l/l 以上、さらに好ましい濃度は0.2mol/l 以上であ
る。また上限は過マンガン酸イオンの場合と同様に飽和
濃度以下にすることが推奨される。これらのイオンは、
1種のみを単独で剥離用水溶液中に存在させてもよい
が、より短時間に硬質膜の除去を行うためには、両イオ
ンを上記濃度で存在させることが好ましい。これらのイ
オンを剥離用水溶液中に存在させるためには、水中で解
離してこれらのイオンを出す塩化合物を使用すればよ
く、例えば過マンガン酸カリウムや重クロム酸ナトリウ
ム等が挙げられる。
On the other hand, the concentration of permanganate ion is 0.0
More than 5 mol / l is appropriate. If it is lower than 0.05 mol / l, the dissolution rate of the hard film is low, which is not practical. Preferably 0.1 mol / l or more, more preferably 0.3 mol / l
l or more, and it is recommended that the upper limit be lower than the saturation concentration in terms of cost. The concentration of dichromate ion is
0.03 mol / l or more is suitable. Preferably 0.1mo
l / l or more, more preferably 0.2 mol / l or more. It is recommended that the upper limit be lower than the saturation concentration as in the case of permanganate ion. These ions are
Although only one type may be present alone in the aqueous solution for stripping, it is preferable that both ions be present at the above concentrations in order to remove the hard film in a shorter time. In order for these ions to be present in the aqueous solution for stripping, a salt compound which dissociates in water to generate these ions may be used, and examples thereof include potassium permanganate and sodium dichromate.

【0017】硬質膜をより迅速に溶解剥離するには、剥
離用水溶液を加温することが好ましい。特に40℃以上
にすると溶解反応が顕著に進行する。しかし90℃以上
に保つと基材の腐食の恐れがあるため、40〜90℃が
好ましい温度範囲である。より好ましくは45〜80
℃、さらに好ましくは50〜75℃である。
In order to dissolve and peel off the hard film more quickly, it is preferable to heat the aqueous solution for peeling. Particularly, when the temperature is set to 40 ° C. or higher, the dissolution reaction remarkably proceeds. However, if the temperature is maintained at 90 ° C. or more, there is a risk of corrosion of the base material. More preferably 45 to 80
° C, more preferably 50-75 ° C.

【0018】本発明の第2の剥離方法は、pH8以上の
アルカリ溶液中に硬質膜被覆部材を浸漬しながら、この
部材を陽極として電解処理を行うところに特徴を有す
る。アルカリ溶液を電解液とすることによって、硬質膜
の分解によって生成する金属イオンは酸化物を形成しな
い。また酸化物が形成されても溶解されてしまい、硬質
膜の分解進行を阻害しない。従って、この方法において
も従来の剥離方法に比べ、迅速・確実な硬質膜の除去が
可能である。この第2の方法の場合は、pHが8以上で
あれば金属酸化物の生成を妨げられる。好ましいpHは
10以上、より好ましくはpH12以上とする。第2の
剥離方法においても、アルカリ溶液は水酸化ナトリウム
や水酸化カリウムを用いて調製することが好ましい。電
解時の温度も、第1の方法の時と同様に反応進行促進の
ため、40〜90℃の範囲とすることが推奨される。電
解処理における電圧は特に限定されないが、反応進行促
進のために、陽極である被覆部材の電位を800mV
vs.Ag/AgCl(銀/塩化銀参照電極基準)以上
とすることが好ましい。
The second peeling method of the present invention is characterized in that the hard film-coated member is immersed in an alkaline solution having a pH of 8 or more and electrolytic treatment is performed using the member as an anode. By using the alkaline solution as the electrolytic solution, metal ions generated by decomposition of the hard film do not form an oxide. In addition, even if an oxide is formed, it is dissolved and does not inhibit the progress of decomposition of the hard film. Therefore, even in this method, the hard film can be removed quickly and reliably as compared with the conventional peeling method. In the case of the second method, if the pH is 8 or more, generation of a metal oxide is prevented. The preferred pH is 10 or more, more preferably pH 12 or more. Also in the second stripping method, the alkali solution is preferably prepared using sodium hydroxide or potassium hydroxide. It is recommended that the temperature during electrolysis be in the range of 40 to 90 ° C. in order to promote the progress of the reaction as in the case of the first method. The voltage in the electrolytic treatment is not particularly limited, but in order to promote the progress of the reaction, the potential of the coating member as the anode is set to 800 mV.
vs. Ag / AgCl (silver / silver chloride reference electrode reference) or more is preferable.

【0019】本発明の第1の剥離用水溶液による剥離方
法では、硬質膜の溶解・剥離度合いは、剥離用水溶液中
の過マンガン酸イオンと重クロム酸イオンの濃度、p
H、溶液温度および浸漬時間によって決定され、第2の
電解による剥離方法では、電解液のpHと設定電位、溶
液温度および浸漬電解時間によって決定される。それぞ
れの方法において基材の侵食を可及的に抑えつつ所望の
溶解・剥離状態を得るには、剥離除去すべき硬質膜と該
硬質膜が被覆されている基材の種類に応じて、これらの
条件を適宜設定するとよい。
In the first stripping method using a stripping aqueous solution of the present invention, the degree of dissolution and stripping of the hard film is determined by the concentration of permanganate ion and dichromate ion in the stripping aqueous solution,
H, the solution temperature and the immersion time, and in the second stripping method by electrolysis, it is determined by the pH and the set potential of the electrolytic solution, the solution temperature and the immersion electrolysis time. In order to obtain a desired dissolution / peeling state while minimizing erosion of the base material in each method, depending on the type of the hard film to be peeled and removed and the type of the base material coated with the hard film, May be set as appropriate.

【0020】本発明の上記2つの方法における被覆部材
を浸漬する液は、共にアルカリ溶液環境である。この環
境では、Fe系金属基材は極微量腐食するが、錆などの
腐食生成物の発生は認められない。また、超硬合金基材
では腐食を起こす可能性もあるが、剥離処理の時間を精
密に制御することにより、硬質膜のみを溶解除去して基
材の侵食を防止することができる。従って、本発明の剥
離方法は、その適用対象として、従来の除去法では腐食
して再使用ができなかったFe系金属基材や超硬合金基
材を好適に選択することが可能になった。これらの基材
は本発明の剥離方法によって化学的侵食を受けず、基材
の強度がほとんど低下しないため、硬質膜剥離後の基材
に再び硬質膜を被覆することにより、高性能な耐摩耗性
部材として再使用することができる。
In the above two methods of the present invention, the liquid for immersing the coated member is in an alkaline solution environment. In this environment, the Fe-based metal substrate corrodes in a very small amount, but no generation of corrosion products such as rust is observed. In addition, although corrosion may occur in the cemented carbide substrate, by precisely controlling the time of the peeling treatment, only the hard film can be dissolved and removed, thereby preventing erosion of the substrate. Therefore, the peeling method of the present invention can suitably select, as an application object, an Fe-based metal substrate or a cemented carbide substrate that could not be reused by being corroded by the conventional removal method. . Since these substrates are not subjected to chemical erosion by the peeling method of the present invention and the strength of the substrate hardly decreases, by coating the hard film again on the substrate after peeling the hard film, high performance abrasion resistance is obtained. It can be reused as a functional member.

【0021】もちろん本発明法を、耐食性に優れたステ
ンレス鋼(Crが20%程度含まれている)や、用途が
広い高速度工具鋼に適用することが好ましいことは言う
までもないが、本発明の2つの剥離方法のいずれかによ
って過激に侵食する恐れのない金属基材であれば、Fe
系金属や超硬合金以外の他の金属基材にも充分適用可能
である。
Of course, it is needless to say that the method of the present invention is preferably applied to stainless steel having excellent corrosion resistance (containing about 20% of Cr) and high-speed tool steel having a wide range of uses. If the metal substrate is not likely to be severely eroded by either of the two peeling methods, Fe
The present invention is sufficiently applicable to other metal base materials other than base metals and cemented carbides.

【0022】本発明法により剥離される硬質膜は、IVa
、Va 、VIa 族元素あるいはAlから選択される1種
以上の元素の単独もしくは複合窒化物、炭化物、炭窒化
物であることが好ましい。
The hard film peeled off by the method of the present invention is IVa
, Va, VIa or one or more elements selected from the group consisting of Al and single or complex nitrides, carbides and carbonitrides.

【0023】本発明の2つの剥離方法によって硬質膜を
除去された基材は、新たな硬質膜をコーティングするこ
とによって、切削工具、金型、軸受け等の種々の耐摩耗
性を要求される部材に使用することができる。従来の剥
離方法に比べ本発明の剥離方法では、未除去剥離膜の残
存や基材の化学的侵食および汚染がほとんどないため、
再被覆膜の密着性が良く、新品と同等の耐用寿命が得ら
れるためである。従って、2つの剥離方法のいずれかに
よって硬質膜を除去された基材に新たに硬質膜を被覆し
た再被覆部材も本発明に包含される。この時、除去され
る硬質膜と新たに被覆する硬質膜の種類は同一であって
も異なっていてもよい。
The base material from which the hard film has been removed by the two peeling methods of the present invention is coated with a new hard film, so that members requiring various wear resistance such as cutting tools, dies, bearings, etc. Can be used for Compared to the conventional peeling method, the peeling method of the present invention has little residual chemicals and contamination of the substrate and the unremoved peeling film,
This is because the adhesion of the recoating film is good, and a service life equivalent to that of a new product can be obtained. Accordingly, the present invention also includes a re-coated member in which the hard film is newly coated on the substrate from which the hard film has been removed by one of the two peeling methods. At this time, the type of the hard film to be removed and the type of the hard film to be newly coated may be the same or different.

【0024】本発明者等の研究によれば、基材中にVお
よび/またはWを合金添加元素として有する高速度工具
鋼や超硬合金部材等の硬質膜除去に本発明の剥離方法を
適用した場合、特に再被覆膜の密着性が優れていること
が見出された。図1には、電解剥離法で硬質膜を剥離除
去した後の高速度工具鋼の表面の走査型電子顕微鏡(S
EM)図面代用写真を示したが、一面に細かい孔が発生
していることがわかる。図2には、従来法(特開平5−
503320号に開示された剥離液を用いた方法)で剥
離した場合の表面の図面代用写真を示したが、図1に見
られるような細かい孔は認められない。
According to the study of the present inventors, the peeling method of the present invention is applied to the removal of a hard film of a high speed tool steel or a cemented carbide member having V and / or W as an alloying element in a base material. In particular, it was found that the adhesion of the recoating film was excellent. FIG. 1 shows a scanning electron microscope (S) of the surface of a high-speed tool steel after the hard film was peeled and removed by the electrolytic peeling method.
EM) A photograph as a substitute for a drawing is shown, and it can be seen that fine holes are generated on one surface. FIG. 2 shows a conventional method (Japanese Unexamined Patent Publication No.
A photograph instead of a drawing of the surface when peeled off by the method using a peeling liquid disclosed in JP-A-503320 is shown, but no fine holes as shown in FIG. 1 are recognized.

【0025】また、剥離用水溶液を用いる本発明第1の
剥離方法においても、基材中にVおよび/またはWが含
まれている場合は、図1に示した様な細かい孔が発生す
ることが確認された。この孔の発生現象は、V、Wを含
有する高速度工具鋼や超硬合金基材の場合にのみ起こる
ため、これらの基材に比較的多く含まれているVやWの
炭化物が電解中に溶解された痕であると考えられる。
Also, in the first stripping method of the present invention using the stripping aqueous solution, when V and / or W is contained in the substrate, fine holes as shown in FIG. 1 are generated. Was confirmed. Since this phenomenon of pore generation occurs only in the case of high-speed tool steel or cemented carbide base materials containing V and W, carbides of V and W contained in these base materials in relatively large amounts during electrolysis. It is considered to be a trace dissolved in

【0026】本発明者等は、この孔の直径が0.2〜8
μmのときに、再被覆膜の密着性が特に優れたものとな
ることを見出した。いわゆる「アンカー効果」によって
密着性を高めるのである。0.2μmより小さい孔では
アンカー効果が期待できず、逆に、8μmより大きい孔
が生じると被覆される硬質膜の平坦性が失われ、密着性
が低下するので、生成する孔の直径が上記範囲になる様
に、剥離条件をコントロールすることが好ましい。
The present inventors have reported that the diameter of this hole is 0.2-8.
It was found that the adhesion of the recoating film was particularly excellent when the thickness was μm. The so-called "anchor effect" enhances the adhesion. Anchor effect cannot be expected with a hole smaller than 0.2 μm. Conversely, if a hole larger than 8 μm is formed, the flatness of the coated hard film is lost and the adhesion is reduced. It is preferable to control the peeling conditions so as to fall within the range.

【0027】この様な孔の形成によって基材中に含まれ
るVやWが溶出することになるので、基材表面の合金組
成が変化することも考えられるため、この点について検
討した結果、剥離処理後の基材表面のVおよび/または
Wの組成が、基材内部の組成の0.1〜0.9倍であれ
ば、その後の再被覆膜の密着性向上効果が基材の強度の
低下度合いを上回ることがわかった。つまり、例えばV
を添加元素として含有する基材を用いて剥離処理を行う
と、基材表面からVC等の硬度発揮成分が溶出して基材
の硬度は若干低下するが、上述した様な孔が形成される
ため、基材と再被覆膜との密着性が大幅に向上し、結果
として優れた特性の再被覆耐摩耗性部材が得られるので
ある。V、Wは両元素とも炭化物となって優れた硬度を
発揮する成分であるため、本発明では、V、またはW、
あるいはVとWの両方について、基材表面における組成
と、基材内部の組成の変化度合いを上記の様に設定し
た。
Since V and W contained in the base material are eluted by the formation of such holes, it is considered that the alloy composition on the surface of the base material may be changed. If the composition of V and / or W on the surface of the substrate after the treatment is 0.1 to 0.9 times the composition inside the substrate, the effect of improving the adhesion of the subsequent recoating film is the strength of the substrate. Was found to exceed the degree of decrease. That is, for example, V
When a peeling treatment is performed using a base material containing as an additive element, a hardness exhibiting component such as VC elutes from the base material surface and the hardness of the base material is slightly lowered, but the above-described pores are formed. Therefore, the adhesion between the substrate and the recoating film is greatly improved, and as a result, a recoating wear-resistant member having excellent characteristics can be obtained. Since V and W are both carbides and are components that exhibit excellent hardness, in the present invention, V or W,
Alternatively, for both V and W, the composition on the substrate surface and the degree of change in the composition inside the substrate were set as described above.

【0028】このとき、基材表面のVおよび/またはW
の組成が、基材内部のVおよび/またはWの組成の0.
1倍より少なくなる様な過度の剥離処理を行うと、基材
の表面近傍のV、Wが少なくなりすぎて、機械的強度が
劣ったものとなり、硬質膜を再被覆したところで良好な
特性は得られない。一方、硬質膜剥離後の基材表面にお
いて、基材内部の組成の0.9倍を超えてVやWが残存
しているということは、アンカー効果を発揮し得る孔が
ほとんど生成していないことを示し、密着性向上効果が
発揮されないため好ましくない。基材表面のVおよび/
またはWの組成のより好ましい範囲は、基材内部のVお
よび/またはWの組成0.15〜0.5倍、最も好まし
い範囲は0.2〜0.4倍である。
At this time, V and / or W on the substrate surface
Of the composition of V and / or W inside the substrate is 0.
When an excessive release treatment is performed so as to be less than 1 time, V and W in the vicinity of the surface of the base material become too small, and the mechanical strength becomes inferior. I can't get it. On the other hand, the fact that V or W remains over 0.9 times the composition inside the substrate on the surface of the substrate after peeling off the hard film means that few holes capable of exhibiting the anchor effect are generated. This is not preferable because the effect of improving the adhesion is not exhibited. V and / or of substrate surface
Alternatively, the more preferable range of the composition of W is 0.15 to 0.5 times the composition of V and / or W inside the substrate, and the most preferable range is 0.2 to 0.4 times.

【0029】[0029]

【実施例】以下実施例によって本発明をさらに詳述する
が、下記実施例は本発明を制限するものではなく、前・
後記の趣旨を逸脱しない範囲で変更実施することは全て
本発明の技術範囲に包含される。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which do not limit the present invention.
Modifications and alterations that do not depart from the spirit described below are all included in the technical scope of the present invention.

【0030】実験例1 高速度工具鋼にTiAlN硬質膜をイオンプレーティン
グ法で4μm厚さに被覆した。過マンガン酸イオンを
0.1mol/l 、重クロム酸イオンを0.1mol/l含む5
0℃の水酸化ナトリウム水溶液のpHを表1に示した様
に、8、10、12、14と変化させて、それぞれに上
記高速度工具鋼を浸漬し、硬質膜が剥離するまでの時間
を測定した。結果を表1に併記した。
Experimental Example 1 A high-speed tool steel was coated with a TiAlN hard film to a thickness of 4 μm by an ion plating method. 5 containing 0.1 mol / l of permanganate ion and 0.1 mol / l of dichromate ion
As shown in Table 1, the pH of the aqueous sodium hydroxide solution at 0 ° C. was changed to 8, 10, 12, and 14, and the time until the high-speed tool steel was immersed in each and the hard film was peeled off was changed. It was measured. The results are shown in Table 1.

【0031】[0031]

【表1】 [Table 1]

【0032】表1から明らかな様に、pHが8では剥離
時間が10時間と長く実用的でないこと、またpHは高
いほど剥離に要する時間が短くなることがわかる。な
お、特開平5−503320号に示されている従来法で
同じ実験を行った場合は、硬質膜の剥離に20時間もか
かった。
As is clear from Table 1, when the pH is 8, the stripping time is as long as 10 hours, which is not practical, and the higher the pH, the shorter the time required for stripping. When the same experiment was performed by the conventional method disclosed in Japanese Patent Application Laid-Open No. 5-503320, it took as long as 20 hours to peel off the hard film.

【0033】実験例2 pHを10と一定にして、過マンガン酸イオン濃度を表
2の様に変更した以外は実験例1と同様にして剥離実験
を行った。結果を表2に示す。
Experimental Example 2 A peeling experiment was performed in the same manner as in Experimental Example 1 except that the pH was kept constant at 10 and the permanganate ion concentration was changed as shown in Table 2. Table 2 shows the results.

【0034】[0034]

【表2】 [Table 2]

【0035】表2から明らかな様に、過マンガン酸イオ
ン濃度が高いほど剥離時間が短くなっており、0.03
mol/l 程度では非実用的であると考えられることがわか
った。
As is clear from Table 2, the higher the permanganate ion concentration, the shorter the stripping time.
It was found that mol / l was considered impractical.

【0036】実験例3 pHを10と一定にして、重クロム酸イオン濃度を表3
の様に変更した以外は実験例1と同様にして剥離実験を
行った。結果を表3に示す。
Experimental Example 3 The pH was kept constant at 10 and the concentration of dichromate ions was measured as shown in Table 3.
A peeling test was performed in the same manner as in Experimental Example 1 except that the test was changed as follows. Table 3 shows the results.

【0037】[0037]

【表3】 [Table 3]

【0038】表3から明らかな様に、重クロム酸イオン
濃度が高いほど剥離時間が短くなっており、0.02mo
l/l 程度では非実用的であると考えられることがわかっ
た。
As is clear from Table 3, the higher the dichromate ion concentration, the shorter the stripping time,
It was found that l / l was considered impractical.

【0039】実験例4 pHを10と一定にして、剥離溶液の温度を表4の様に
変更した以外は実験例1と同様にして剥離実験を行っ
た。結果を表4に示す。
Experimental Example 4 A peeling experiment was conducted in the same manner as in Experimental Example 1 except that the pH was kept constant at 10 and the temperature of the stripping solution was changed as shown in Table 4. Table 4 shows the results.

【0040】[0040]

【表4】 [Table 4]

【0041】表4から明らかな様に溶液温度が高いほど
剥離時間が短くなっており、高速度工具鋼の場合、溶液
温度を40℃以上に設定するのが実用的であると考えら
れる。なお100℃での実験では2時間で硬質膜の剥離
が完了したが、高速度工具鋼表面に侵食が認められたた
め、溶液温度を90℃以下とすることが好ましいことが
確認された。
As is clear from Table 4, the higher the solution temperature, the shorter the peeling time. In the case of high-speed tool steel, it is considered practical to set the solution temperature to 40 ° C. or higher. In the experiment at 100 ° C., although the peeling of the hard film was completed in 2 hours, erosion was observed on the surface of the high-speed tool steel, and it was confirmed that the solution temperature was preferably set to 90 ° C. or lower.

【0042】実験例5 高速度工具鋼以外に、WCを主成分とする超硬合金材、
炭素鋼、ステンレス鋼にも硬質膜を実験例1と同様に被
覆して、実験例4と同様に溶液温度を変化させたときの
剥離実験を行った。結果を表5に示した。なお高速度工
具鋼の結果は表4の結果を再び示したものである。
Experimental Example 5 In addition to the high-speed tool steel, a cemented carbide material mainly composed of WC,
A hard film was also coated on carbon steel and stainless steel in the same manner as in Experimental Example 1, and a peeling experiment was performed when the solution temperature was changed in the same manner as in Experimental Example 4. Table 5 shows the results. The results for the high-speed tool steel are again the results in Table 4.

【0043】[0043]

【表5】 [Table 5]

【0044】表5から明らかな様に、炭素鋼では30℃
の低温でゆっくり剥離させる方が侵食を防げることがわ
かる。超硬合金材やステンレス鋼では高速度工具鋼と同
程度の侵食度合いであり、これらの部材の剥離条件は同
程度に設定してもよいことがわかった。
As is clear from Table 5, 30 ° C. for carbon steel
It can be seen that erosion can be prevented by slowly peeling at a low temperature. Cemented carbide and stainless steel have the same degree of erosion as high-speed tool steel, and it was found that the peeling conditions for these members may be set to the same degree.

【0045】実験例6 TiAlNに代えて、Si34 、ZrAlN、HfA
lNのそれぞれの硬質膜を被覆した高速度工具鋼を用い
て、pHを10に一定にした以外は実験例1と同様な剥
離実験を行った。結果を表6に示す。なおTiAlNの
結果は表1のpH10の結果を再び示したものである。
Experimental Example 6 Instead of TiAlN, Si 3 N 4 , ZrAlN, HfA
Using a high-speed tool steel coated with 1N of each hard film, the same peeling test as in Experimental Example 1 was performed except that the pH was kept constant at 10. Table 6 shows the results. The results for TiAlN are again the results for pH 10 in Table 1.

【0046】[0046]

【表6】 [Table 6]

【0047】ZrAlN、HfAlNは、ほぼTiAl
N膜と同様の剥離時間であった。Si34 の場合は1
5時間と長時間かかることがわかった。しかし、特開平
5−503320号の方法でSi34 膜の剥離実験を
行ったときは40時間を要したので、本発明の剥離方法
が優れていることが明らかである。
ZrAlN and HfAlN are almost TiAl
The stripping time was similar to that of the N film. 1 for Si 3 N 4
It turned out that it took as long as 5 hours. However, it took 40 hours to carry out a stripping test of the Si 3 N 4 film by the method of JP-A-5-503320, and it is clear that the stripping method of the present invention is excellent.

【0048】実験例7 実験例1と同じ試料を用いて、電解法による硬質膜剥離
実験を行った。電解液は50℃の水酸化ナトリウム水溶
液とし、pHを表7に示した様に変化させた。陽極は硬
質膜被覆材、陰極は白金板とし、陽極の電位を800m
V vs.Ag/AgCl(銀/塩化銀参照電極基準)
に保持して電解処理を行い、剥離に要する時間を測定し
て表7に結果を示した。
Experimental Example 7 Using the same sample as in Experimental Example 1, a hard film peeling test was performed by an electrolytic method. The electrolytic solution was an aqueous sodium hydroxide solution at 50 ° C., and the pH was changed as shown in Table 7. The anode is a hard film coating material, the cathode is a platinum plate, and the potential of the anode is 800 m.
V vs. Ag / AgCl (based on silver / silver chloride reference electrode)
, And the time required for stripping was measured. Table 7 shows the results.

【0049】[0049]

【表7】 [Table 7]

【0050】表7から明らかな様に、pHが6では剥離
時間が12時間と長く実用的でないこと、またpHは高
いほど剥離に要する時間が短くなることがわかる。な
お、図1に示した図面代用写真は、pH:8における電
解剥離後の高速度工具鋼の表面SEM写真である。
As is clear from Table 7, when the pH is 6, the stripping time is as long as 12 hours, which is not practical, and the higher the pH, the shorter the time required for stripping. The drawing substitute photograph shown in FIG. 1 is a surface SEM photograph of the high-speed tool steel after electrolytic peeling at pH: 8.

【0051】実験例8 実験例7におけるpH8の本発明剥離方法によって硬質
膜を除去した高速度工具鋼と、従来法(特開平5−50
3320号に示された剥離液による方法)で剥離して得
られた高速度工具鋼基材のそれぞれに、再びTiAlN
硬質膜をイオンプレーティング法で4μm厚さに被覆し
た。得られた再被覆高速度工具鋼に対して引っかき試験
を行い、皮膜が剥離するときの臨界荷重を調べ表8に示
した。またこの再被覆高速度工具鋼のドリルで切削試験
を行ったときの皮膜が剥離するまでの時間(耐用寿命)
を調べ表8に併記した。
Experimental Example 8 A high-speed tool steel from which a hard film was removed by the peeling method of the present invention having a pH of 8 in Experimental Example 7 and a conventional method (JP-A-5-50)
Each of the high-speed tool steel substrates obtained by stripping by the stripping solution shown in
The hard film was coated to a thickness of 4 μm by an ion plating method. A scratch test was performed on the obtained recoated high-speed tool steel, and a critical load when the coating was peeled was examined. Also, the time until the film peels off when a cutting test is performed with this recoated high-speed tool steel drill (durable life)
And the results are shown in Table 8.

【0052】[0052]

【表8】 [Table 8]

【0053】表8から明らかな様に、本発明の再被覆部
材は剥離の臨界荷重が大きく優れた皮膜密着性を示し、
また耐用寿命も長いことがわかった。
As is clear from Table 8, the recoated member of the present invention has a large critical load for peeling and exhibits excellent film adhesion.
It was also found that the service life was long.

【0054】実験例9 実験例5で使用したTiAlN膜被覆高速度工具鋼、W
Cを主成分とする超硬合金材、炭素鋼、ステンレス鋼を
用いて実験例8の時と同様にTiAlN膜の剥離及び再
被覆を行い、臨界荷重を測定した。結果を表9に示し
た。高速度工具鋼の結果は表8の結果を再び示したもの
である。
Experimental Example 9 The high-speed tool steel coated with TiAlN film used in Experimental Example 5, W
Using a cemented carbide material containing C as a main component, carbon steel, and stainless steel, the TiAlN film was peeled off and recoated in the same manner as in Experimental Example 8, and the critical load was measured. The results are shown in Table 9. The results for the high speed tool steel are again the results in Table 8.

【0055】[0055]

【表9】 [Table 9]

【0056】表9から、超硬合金材やステンレス鋼も高
速度工具鋼と同様に、再被覆膜が優れた密着性を示すこ
とがわかる。侵食されやすい炭素鋼ではこの実験例9の
剥離条件が若干過酷であったと考えられ、臨界荷重は5
Nであったが、従来法で剥離した場合は1Nとさらに低
い値であったことから、本発明の再被覆部材の優位性が
確認できた。
From Table 9, it can be seen that, similarly to the high-speed tool steel, the cemented carbide material and the stainless steel also exhibit excellent adhesion of the recoating film. In the case of carbon steel which is easily eroded, it is considered that the peeling condition in Experimental Example 9 was slightly severe, and the critical load was 5
Although it was N, the value was much lower at 1N when peeled off by the conventional method, so that the superiority of the recoated member of the present invention could be confirmed.

【0057】実験例10 実験例7においてpHを8と一定にして、陽極の被覆部
材の電位を100mV〜2V vs.Ag/AgCl
(銀/塩化銀参照電極基準)まで変化させることによっ
て、剥離後に生じる図1に示されるほぼ一様な細かい孔
の直径(最大)を0.1〜10μmまで変化させた。そ
の後TiAlN膜を再被覆して臨界荷重を測定した。結
果を表10に示した。
Experimental Example 10 In Experimental Example 7, the pH was kept constant at 8, and the potential of the anode coating member was set to 100 mV to 2 V vs. 100 mV. Ag / AgCl
(Silver / silver chloride reference electrode reference), the diameter (maximum) of the substantially uniform fine holes shown in FIG. 1 after peeling was changed from 0.1 to 10 μm. Thereafter, the TiAlN film was re-coated and the critical load was measured. The results are shown in Table 10.

【0058】[0058]

【表10】 [Table 10]

【0059】表10から、孔の直径が0.2〜8μmの
ときに高い臨界荷重が得られ、優れた密着性を示すこと
が確認された。また電位800mV vs.Ag/Ag
Clであれば、生成する孔の直径が0.2〜8μmにな
ることもわかった。
From Table 10, it was confirmed that a high critical load was obtained when the diameter of the pores was 0.2 to 8 μm, and excellent adhesion was exhibited. Further, a potential of 800 mV vs. potential. Ag / Ag
It was also found that if Cl was used, the diameter of the generated pore would be 0.2 to 8 μm.

【0060】実験例11 実験例10において、電位の他にpHも8〜12と変化
させ、硬質膜剥離実験を行った。これは硬質膜剥離後の
高速度工具鋼の内部のV、Wの組成に対する表面近傍の
V、Wの組成を0.01〜0.95倍に変化させるため
である。剥離後の高速度工具鋼の表面硬度を荷重10g
fでビッカース硬度試験を行い測定し、結果を表11に
示した。また剥離後の高速度工具鋼に、再びTiAlN
膜を被覆した後に引っかき試験を行い、皮膜が剥離する
ときの臨界荷重を測定した。結果を表12に示した。
Experimental Example 11 In Experimental Example 10, a hard film peeling experiment was performed by changing the pH in addition to the potential to 8 to 12. This is because the composition of V and W near the surface with respect to the composition of V and W inside the high-speed tool steel after hard film peeling is changed by 0.01 to 0.95 times. The surface hardness of the high-speed tool steel after peeling was measured with a load of 10 g.
f, a Vickers hardness test was performed and measured. The results are shown in Table 11. The high-speed tool steel after peeling is again
After coating the film, a scratch test was performed to measure a critical load when the film was peeled off. The results are shown in Table 12.

【0061】[0061]

【表11】 [Table 11]

【0062】[0062]

【表12】 [Table 12]

【0063】表11から明らかな様に、基材表面のV組
成が内部のV組成の0.01倍ではWに関係なくビッカ
ース硬度が低く、表面のW組成が内部のW組成の0.0
1倍でも同様であった。また表12から、表面のV組成
が内部のV組成の0.95倍ではW組成に関係なく密着
性が劣り、表面のW組成が内部のW組成の0.95倍で
も同様であった。従って、VやWを含有する基材に本発
明の剥離方法を適用する場合、表面のVおよび/または
Wの組成が内部のVおよび/またはWの組成の0.1〜
0.9倍となる様に剥離条件をコントロールすると、再
被覆後の機械的強度と再被覆膜の密着性の両特性に優れ
た再被覆部材が得られることが確認できた。
As is clear from Table 11, when the V composition on the surface of the base material is 0.01 times the V composition on the inside, the Vickers hardness is low irrespective of W, and the W composition on the surface is 0.0% of the W composition on the inside.
The same was true for 1-fold. Also, from Table 12, it was found that when the surface V composition was 0.95 times the internal V composition, the adhesion was inferior regardless of the W composition, and the same was true even when the surface W composition was 0.95 times the internal W composition. Therefore, when the peeling method of the present invention is applied to a substrate containing V or W, the composition of V and / or W on the surface is 0.1 to 0.1 or less of the composition of V and / or W inside.
When the peeling conditions were controlled so as to be 0.9 times, it was confirmed that a recoated member excellent in both the mechanical strength after the recoating and the adhesiveness of the recoated film was obtained.

【0064】実験例12 高速度工具鋼にTiAlN硬質膜をイオンプレーティン
グ法で4μm厚さに被覆し、pHを8と一定にした以外
は実験例7と同様にして定電位電解を行い硬質膜を剥離
した。その後、Si34 、TiAlN、ZrAlN、
HfAlNのそれぞれの硬質膜を再被覆して、得られた
部材の臨界荷重を測定した。結果を表13に示した。
EXPERIMENTAL EXAMPLE 12 A high-speed tool steel was coated with a TiAlN hard film to a thickness of 4 μm by an ion plating method, and constant-potential electrolysis was performed in the same manner as in Experimental Example 7 except that the pH was kept constant at 8. Was peeled off. Then, Si 3 N 4 , TiAlN, ZrAlN,
Each hard film of HfAlN was re-coated, and the critical load of the obtained member was measured. The results are shown in Table 13.

【0065】[0065]

【表13】 [Table 13]

【0066】TiAlN、ZrAlN、HfAlNを再
被覆した部材は、いずれも優れた密着性を示した。ただ
再被覆硬質膜としてSi34 を選択した場合、臨界荷
重は5Nと若干低かったが、従来法で剥離し、再被覆を
行った場合は1Nとさらに低い値であったことから、本
発明の再被覆部材の優位性が確認できた。
The members recoated with TiAlN, ZrAlN and HfAlN all exhibited excellent adhesion. However, when Si 3 N 4 was selected as the re-coated hard film, the critical load was slightly lower at 5 N, but when it was peeled off by the conventional method and re-coated, the critical load was even lower at 1 N. The superiority of the re-coated member of the invention was confirmed.

【0067】[0067]

【発明の効果】本発明は以上の様に構成されており、金
属酸化物皮膜を形成させずに硬質膜の分解を起こし得る
酸化環境を作ることに成功した。このため、硬質膜が被
覆されている基材の化学的侵食を可及的に抑えながら、
迅速に硬質膜のみを剥離することができる様になった。
また剥離後の硬質膜再被覆においても、基材の侵食や汚
染がないため密着性良好に被覆が行える。さらに、基材
がVおよび/またはWを含有するものである場合、アン
カー効果を発揮し得る孔の形成によって、一層優れた密
着性が得られることも見出された。
As described above, the present invention is constructed as described above and succeeds in creating an oxidizing environment in which a hard film can be decomposed without forming a metal oxide film. For this reason, while minimizing chemical erosion of the substrate coated with the hard film,
Only the hard film can be quickly removed.
Further, even in the case of recoating the hard film after peeling, the coating can be performed with good adhesion since there is no erosion or contamination of the substrate. Furthermore, it has been found that when the base material contains V and / or W, formation of pores capable of exhibiting an anchor effect can provide more excellent adhesion.

【0068】本発明によれば、新品に近い耐摩耗特性を
示す再被覆部材が得られることとなり、基材の有効利
用、すなわち省資源、省エネルギーに役立つと共に、コ
ストの削減も可能となった。本発明の剥離方法は、切削
工具、金型、軸受け等、硬質膜が被覆されている種々の
耐摩耗性部材に応用することができ、本発明の再被覆部
材もこれらの耐摩耗性部材として利用することができ
る。
According to the present invention, it is possible to obtain a re-coated member having a wear resistance characteristic close to that of a new article, and it is possible to effectively use the base material, that is, to save resources and energy and to reduce the cost. The peeling method of the present invention can be applied to various wear-resistant members coated with a hard film, such as cutting tools, dies, bearings, and the like, and the re-coated member of the present invention can also be used as these wear-resistant members. Can be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明法で硬質膜を剥離した後の高速度工具鋼
表面の図面代用SEM写真である。
FIG. 1 is a drawing-substituting SEM photograph of a high-speed tool steel surface after a hard film is peeled off by the method of the present invention.

【図2】従来法で硬質膜を剥離した後の高速度工具鋼表
面の図面代用SEM写真である。
FIG. 2 is a drawing-substituting SEM photograph of the surface of a high-speed tool steel after a hard film is peeled off by a conventional method.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 俊樹 兵庫県神戸市中央区脇浜町1丁目3番18 号 株式会社神戸製鋼所 神戸本社内 (72)発明者 安永 龍哉 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所 神戸総合技術研 究所内 (72)発明者 蔡 政憲 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所 神戸総合技術研 究所内 (72)発明者 河田 和久 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所 神戸総合技術研 究所内 (72)発明者 山田 保之 兵庫県明石市魚住町金ケ崎西大池179番 1 株式会社神戸製鋼所 明石工場内 (72)発明者 田中 裕介 兵庫県明石市魚住町金ケ崎西大池179番 1 株式会社神戸製鋼所 明石工場内 (72)発明者 和田 恭典 兵庫県明石市魚住町金ケ崎西大池179番 1 株式会社神戸製鋼所 明石工場内 (56)参考文献 特開 平6−287775(JP,A) 特開 平6−349978(JP,A) 特開 平3−150374(JP,A) 特開 昭60−107000(JP,A) 特開 平6−299318(JP,A) 特開 昭58−130280(JP,A) 特公 昭50−25896(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C23F 1/00 103 C23F 1/32 C23F 1/40 C25F 1/00 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshiki Sato 1-318 Wakihama-cho, Chuo-ku, Kobe City, Hyogo Prefecture Kobe Steel, Ltd. Kobe Head Office (72) Inventor Tatsuya Yasunaga Takatsukadai, Nishi-ku, Kobe City, Hyogo Prefecture 1-5-5 Kobe Steel, Ltd.Kobe Research Institute (72) Inventor Masanori Cai 1-5-5 Takatsukadai, Nishi-ku, Kobe, Hyogo Prefecture Kobe Steel, Ltd.Kobe Research Institute (72 ) Inventor Kazuhisa Kawada 1-5-5 Takatsukadai, Nishi-ku, Kobe City, Hyogo Prefecture Kobe Steel, Ltd.Kobe Research Institute (72) Inventor Yasuyuki Yamada 179-1 Kanegasaki Nishi-Oike, Uozumi-cho, Akashi-shi, Hyogo 1 Shares Kobe Steel, Ltd. Akashi Factory (72) Inventor Yusuke Tanaka 179 Kanegasaki Nishi-Oike, Uozumi-cho, Akashi-shi, Hyogo 1 Kobe Steel, Ltd. Akashi Factory (72) Inventor Yasunori Wada No. 179 Kanegasaki Nishi-Oike, Uozumi-cho, Akashi-shi, Hyogo 1 Inside the Akashi Works of Kobe Steel Ltd. (56) References JP-A-6-287775 (JP, A) JP-A-6-349978 ( JP, A) JP-A-3-150374 (JP, A) JP-A-60-107000 (JP, A) JP-A-6-299318 (JP, A) JP-A-58-130280 (JP, A) 50-50896 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) C23F 1/00 103 C23F 1/32 C23F 1/40 C25F 1/00

Claims (12)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基材表面に硬質膜が被覆された耐摩耗性
部材から該硬質膜を剥離する方法であって、過マンガン
酸イオンおよび/または重クロム酸イオンを含むpH1
0以上の水溶液中に該部材を浸漬することを特徴とする
硬質膜の剥離方法。
1. A method for peeling a hard film from a wear-resistant member having a hard film coated on a substrate surface, wherein the hard film has a pH of 1 containing permanganate ions and / or dichromate ions.
A method for removing a hard film, comprising immersing the member in an aqueous solution of zero or more.
【請求項2】 過マンガン酸イオンの濃度が0.05mo
l/l 以上である請求項1に記載の剥離方法。
2. The concentration of permanganate ion is 0.05 mol.
The peeling method according to claim 1, wherein the peeling rate is l / l or more.
【請求項3】 重クロム酸イオンの濃度が0.03mol/
l 以上である請求項1に記載の剥離方法。
3. The concentration of dichromate ion is 0.03 mol /
The peeling method according to claim 1, which is at least l.
【請求項4】 前記水溶液の温度を40〜90℃に保つ
ものである請求項1〜3のいずれかに記載の剥離方法。
4. The peeling method according to claim 1, wherein the temperature of the aqueous solution is maintained at 40 to 90 ° C.
【請求項5】 基材表面に硬質膜が被覆された耐摩耗性
部材から該硬質膜を剥離する方法であって、pH8以上
のアルカリ溶液中に該部材を浸漬しながら、該部材を陽
極として電解処理を行うことを特徴とする硬質膜の剥離
方法。
5. A method for peeling a hard film from a wear-resistant member having a hard film coated on a substrate surface, wherein the member is used as an anode while immersing the member in an alkaline solution having a pH of 8 or more. A method for removing a hard film, comprising performing an electrolytic treatment.
【請求項6】 前記アルカリ溶液の温度を40〜90℃
に保つものである請求項5に記載の剥離方法。
6. The temperature of the alkaline solution is 40 to 90 ° C.
The peeling method according to claim 5, wherein
【請求項7】 前記硬質膜がIVa 、Va 、VIa 族元素お
よびAlから選択される1種以上の元素の窒化物、炭化
物、炭窒化物のいずれかである請求項1〜6のいずれか
に記載の剥離方法。
7. The hard film according to claim 1, wherein the hard film is any one of a nitride, a carbide and a carbonitride of at least one element selected from the group consisting of IVa, Va, Group VIa and Al. The stripping method as described.
【請求項8】 請求項1〜7のいずれかに記載された剥
離方法によって硬質膜を剥離した後、新たに任意の硬質
膜が被覆されたものであることを特徴とする再被覆部
材。
8. A recoating member characterized in that an arbitrary hard film is newly coated after the hard film has been stripped by the stripping method according to any one of claims 1 to 7.
【請求項9】 基材がFe系金属である請求項8に記載
の再被覆部材。
9. The recoated member according to claim 8, wherein the base material is an Fe-based metal.
【請求項10】 基材が超硬合金である請求項8に記載
の再被覆部材。
10. The recoated member according to claim 8, wherein the base material is a cemented carbide.
【請求項11】 基材に、Vおよび/またはWが含まれ
ており、硬質膜剥離後の基材表面のVおよび/またはW
の組成が、基材内部のVおよび/またはW組成の0.1
〜0.9倍である請求項8〜10のいずれかに記載の再
被覆部材。
11. The substrate contains V and / or W, and V and / or W on the surface of the substrate after peeling off the hard film.
Is 0.1% of the V and / or W composition inside the substrate.
The re-coated member according to any one of claims 8 to 10, wherein the ratio is 0.9 to 0.9.
【請求項12】 硬質膜剥離後の基材表面に直径0.2
〜8μmの孔が多数存在しているものである請求項8〜
11のいずれかに記載の再被覆部材。
12. A substrate having a diameter of 0.2 after the hard film is peeled off.
A large number of pores having a diameter of up to 8 µm.
12. The re-coated member according to any one of items 11.
JP30486095A 1995-03-29 1995-11-22 Hard film peeling method and recoated member obtained by the method Expired - Fee Related JP3320965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30486095A JP3320965B2 (en) 1995-03-29 1995-11-22 Hard film peeling method and recoated member obtained by the method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7204195 1995-03-29
JP7-72041 1995-03-29
JP30486095A JP3320965B2 (en) 1995-03-29 1995-11-22 Hard film peeling method and recoated member obtained by the method

Publications (2)

Publication Number Publication Date
JPH08325755A JPH08325755A (en) 1996-12-10
JP3320965B2 true JP3320965B2 (en) 2002-09-03

Family

ID=26413169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30486095A Expired - Fee Related JP3320965B2 (en) 1995-03-29 1995-11-22 Hard film peeling method and recoated member obtained by the method

Country Status (1)

Country Link
JP (1) JP3320965B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073433A1 (en) * 2004-01-29 2005-08-11 Unaxis Balzers Ag Method for removing a coating and single-chamber device for carrying out said method
CH705281B1 (en) * 2004-01-29 2013-01-31 Oerlikon Trading Ag Process for removing a layer system from a workpiece comprises applying a chromium- and aluminum-containing layer directly on the workpiece, and removing the coating on the workpiece using an alkaline solution

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59811875D1 (en) * 1997-11-10 2004-09-30 Unaxis Trading Ag Truebbach METHOD FOR DE-COATING BODIES
US7077918B2 (en) 2004-01-29 2006-07-18 Unaxis Balzers Ltd. Stripping apparatus and method for removal of coatings on metal surfaces
JP4245026B2 (en) 2006-09-20 2009-03-25 株式会社豊田中央研究所 Coating film removal method and coating member regeneration method
TWI507573B (en) 2010-04-15 2015-11-11 Corning Inc Method for stripping nitride coatings

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073433A1 (en) * 2004-01-29 2005-08-11 Unaxis Balzers Ag Method for removing a coating and single-chamber device for carrying out said method
CH705281B1 (en) * 2004-01-29 2013-01-31 Oerlikon Trading Ag Process for removing a layer system from a workpiece comprises applying a chromium- and aluminum-containing layer directly on the workpiece, and removing the coating on the workpiece using an alkaline solution

Also Published As

Publication number Publication date
JPH08325755A (en) 1996-12-10

Similar Documents

Publication Publication Date Title
EP0584168B1 (en) Etching process
Popoola et al. Comparative studies of microstructural, tribological and corrosion properties of plated Zn and Zn-alloy coatings
US4525250A (en) Method for chemical removal of oxide layers from objects of metal
US20090223829A1 (en) Micro-Arc Assisted Electroless Plating Methods
US3951759A (en) Chromium electroplating baths and method of electrodepositing chromium
Khaled et al. Electrochemical study of laser nitrided and PVD TiN coated Ti–6Al–4V alloy: the observation of selective dissolution
JP2011157610A (en) Member coated with dlc film and method for manufacturing the same
JP3320965B2 (en) Hard film peeling method and recoated member obtained by the method
JPH0347999A (en) Support metal having improved surface mor- phology
US3962490A (en) Preparation of nickel and chromium substrates for ceramic coating
JP4245026B2 (en) Coating film removal method and coating member regeneration method
JP2599629B2 (en) Electrolysis method and bath for stripping coating from aluminum substrate
Ardila et al. Electrolytic removal of chromium rich PVD coatings from hardmetals substrates
US5368719A (en) Method for direct plating of iron on aluminum
JP5353613B2 (en) Coated cemented carbide member
JP2006347827A (en) MEMBER COATED WITH AMORPHOUS SiO2 FILM AND ITS FORMING METHOD
JP5217712B2 (en) Coated cemented carbide member
JPH0941199A (en) Method for peeling of surface coating film
EP2366809B1 (en) Titanium material and method for producing titanium material
JPH05271996A (en) Surface treatment of magnesium alloy material
JPS62174380A (en) Surface coated sintered hard alloy member for cutting tool
KR960004629B1 (en) Method for treating a surface of a base metal for coated cutting tool
CN112752866B (en) Coating stripping of aluminum-containing coatings
JP5205606B2 (en) DLC film coated member and method for manufacturing the same
JP2002285319A (en) Member for high temperature use having excellent oxidation resistance and wear resistance, and production method therefor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020604

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees