JP5353613B2 - Coated cemented carbide member - Google Patents

Coated cemented carbide member Download PDF

Info

Publication number
JP5353613B2
JP5353613B2 JP2009229292A JP2009229292A JP5353613B2 JP 5353613 B2 JP5353613 B2 JP 5353613B2 JP 2009229292 A JP2009229292 A JP 2009229292A JP 2009229292 A JP2009229292 A JP 2009229292A JP 5353613 B2 JP5353613 B2 JP 5353613B2
Authority
JP
Japan
Prior art keywords
cemented carbide
base material
hard
phase
binder phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009229292A
Other languages
Japanese (ja)
Other versions
JP2011074473A (en
Inventor
新太郎 五十嵐
憲一 鈴木
能成 土屋
英男 太刀川
広行 森
宗久 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2009229292A priority Critical patent/JP5353613B2/en
Publication of JP2011074473A publication Critical patent/JP2011074473A/en
Application granted granted Critical
Publication of JP5353613B2 publication Critical patent/JP5353613B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new coated cemented carbide member which has improved adhesion between a base material made of a cemented carbide and a hard film by forming the surface of the base material into a predetermined rugged face. <P>SOLUTION: The coated cemented carbide member includes: the base material 10 made of a cemented carbide composed of a hard phase 12 containing tungsten carbide and a binder phase 11 containing transition metal; and the hard film 2 covered on the surface of the base material 10. The surface of the base material 10 covered with the hard film 2 is a rugged face 10f having a recessed part 12<SP>-</SP>from which the hard phase 12 is lost, and when the average particle diameter of WC is defined as X[&mu;m], the maximum depth of the recessed part 12<SP>-</SP>as Y[&mu;m], and the area ratio of the binder phase 11 in the rugged face 10f as [Z%], by controlling the values of X, Y and Z to prescribed ranges, an anchor effect improves the adhesion between the surface of the base material 10 and the hard film 2. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、超硬合金からなる基材の表面に無機化合物の硬質膜を被覆してなる被覆超硬合金部材に関するものである。   The present invention relates to a coated cemented carbide member obtained by coating a hard film of an inorganic compound on the surface of a substrate made of cemented carbide.

金属炭化物粉末と金属粉末との混合粉末を焼結してなる超硬合金は、硬度、強度などの機械的性質に優れ、耐摩耗性、耐腐食性にも優れる。そのため、切削工具はもとより、高精度が要求される金型などに利用されている。また、超硬合金の用途に応じて超硬合金のみでは満足されない要求特性を補完し、品質向上を図るために、超硬合金の表面に各種コーティングを施して用いられることが多い。   A cemented carbide formed by sintering a mixed powder of metal carbide powder and metal powder is excellent in mechanical properties such as hardness and strength, and is excellent in wear resistance and corrosion resistance. Therefore, it is used not only for cutting tools but also for dies that require high accuracy. In addition, in order to complement the required characteristics that cannot be satisfied by the cemented carbide alone and improve the quality according to the application of the cemented carbide, the surface of the cemented carbide is often used with various coatings.

たとえば、超硬合金からなる基材の表面に非晶質炭素(ダイヤモンドライクカーボン:DLC)膜または窒化チタンなどの硬質膜を被覆した部材が広く用いられている。ところが、一般的な超硬合金の表面に単に基材の表面を被覆しただけでは、基材と被覆膜との熱膨張係数の差が大きく、また、両者の界面で化学的な結合が生じないため、被覆膜は剥離しやすい。超硬合金と被覆膜との密着性を向上させて被覆膜の剥離を防止するために、これまでにも様々な検討がなされてきた。   For example, a member in which a hard film such as an amorphous carbon (diamond-like carbon: DLC) film or titanium nitride is coated on the surface of a substrate made of a cemented carbide is widely used. However, if the surface of the base material is simply coated on the surface of a general cemented carbide, the difference in thermal expansion coefficient between the base material and the coating film is large, and chemical bonding occurs at the interface between the two. Therefore, the coating film is easy to peel off. Various studies have been made so far in order to improve the adhesion between the cemented carbide and the coating film to prevent the peeling of the coating film.

基材と被覆膜との密着性を向上させるには、たとえば、膜が被覆される基材の表面に形成した凹凸によるアンカー効果が有効である。一般に、超硬合金は、炭化タングステン(WC)を主成分とする硬質相と、コバルト(Co)などの鉄族金属を主成分とする結合相と、からなる。そこで、硬質相と結合相との間の腐食されやすさの違いを利用して超硬合金からなる基材の表面を腐食させることで、基材の表面に凹凸を形成している。   In order to improve the adhesion between the base material and the coating film, for example, the anchor effect by the unevenness formed on the surface of the base material on which the film is coated is effective. In general, cemented carbide is composed of a hard phase mainly composed of tungsten carbide (WC) and a binder phase mainly composed of an iron group metal such as cobalt (Co). Therefore, the surface of the base material made of cemented carbide is corroded by using the difference in the susceptibility to corrosion between the hard phase and the binder phase, thereby forming irregularities on the surface of the base material.

特許文献1では、99重量%以上の硬質相をもち残部が結合相と不純物とからなる超硬合金の基材の表面に、アルカリ溶液による電解腐食と、酸溶液による腐食と、を施して基材の表面に凹凸を形成している。アルカリ溶液中では硬質相が、酸溶液中では結合相が腐食され、これらの相互作用により凹凸が大きくなり、基材の表面の凹凸により基材と被覆膜との密着性および付着性を高めている。   In Patent Document 1, the surface of a cemented carbide substrate having a hard phase of 99% by weight or more and the balance consisting of a binder phase and impurities is subjected to electrolytic corrosion with an alkaline solution and corrosion with an acid solution. Concavities and convexities are formed on the surface of the material. The hard phase is corroded in the alkaline solution and the binder phase is corroded in the acid solution, and these interactions increase the unevenness, and the unevenness on the surface of the substrate improves the adhesion and adhesion between the substrate and the coating film. ing.

特許文献2では、基材として、WCを主成分としCoを結合相成分とする超硬合金であって、WCよりもエッチングされにくい分散相を分散して有する超硬合金を用いている。この基材の表面に電解エッチングにより凹凸を形成する。電解エッチングにより基材表面のWCおよび結合相成分が溶出し、溶け残った分散相を先端にした突起が形成されて表面に凹凸面が形成される(特許文献2の図1および図2)。   In Patent Document 2, a cemented carbide containing WC as a main component and Co as a binder phase component and having a dispersed phase that is harder to be etched than WC is used as a base material. Unevenness is formed on the surface of the substrate by electrolytic etching. Electrolytic etching elutes the WC and the binder phase component on the surface of the base material, forming a protrusion with the disperse phase remaining undissolved at the tip and forming an uneven surface on the surface (FIGS. 1 and 2 of Patent Document 2).

特開平10−226597号公報JP-A-10-226597 特開2000−144451号公報JP 2000-144451 A

特許文献1および特許文献2では、凹凸面を形成する手法として、硬質相を構成するWC粒子同士を結合する結合相を溶解させている。しかしながら、結合相を溶解させると、基材の表面部分の強度が低下する。そのため、凹凸面を形成しても、かえって基材と被覆膜との密着性が悪化するおそれがある。   In Patent Document 1 and Patent Document 2, as a method for forming an uneven surface, a binder phase that bonds WC particles constituting a hard phase is dissolved. However, when the binder phase is dissolved, the strength of the surface portion of the substrate decreases. Therefore, even if an uneven surface is formed, the adhesion between the substrate and the coating film may be deteriorated.

本発明は、上記問題点に鑑み、超硬合金からなる基材の表面を特定の凹凸面とすることで、基材と硬質膜との密着性を向上させた新規の被覆超硬合金部材を提供することを目的とする。   In view of the above problems, the present invention provides a novel coated cemented carbide member with improved adhesion between the substrate and the hard film by making the surface of the substrate made of cemented carbide a specific uneven surface. The purpose is to provide.

上述のように、超硬合金の結合相を溶解して基材に凹凸面を形成すると、強度の面で問題が生じ、密着性にも影響する。一方、超硬合金の結合相を残して硬質相を消失させることで凹凸面を形成すれば、基材の表面部分の強度を低下させることなく、アンカー効果を発現させることができる。そして、本発明者等は、超硬合金の硬質相を消失させて基材の表面に凹凸面を形成する場合に、硬質相を構成する金属炭化物の粒径が基材と硬質膜との密着性に大きく影響することを見出した。また、結合相は、硬質膜との密着性に乏しい。しかし、結合相を残して硬質相を消失させることで、表出する結合相の面積が増大する。そのため、金属炭化物の粒径に応じた適切な量の硬質相を消失させ、かつ、表出する結合相の面積を抑えることが、超硬合金と硬質膜との密着性の向上に重要であることを新たに見出した。   As described above, when the cemented carbide alloy phase is dissolved to form an uneven surface on the substrate, a problem arises in terms of strength and affects the adhesion. On the other hand, if the irregular surface is formed by leaving the cemented carbide alloy binder phase and eliminating the hard phase, the anchor effect can be exhibited without lowering the strength of the surface portion of the substrate. And when the present inventors disappear the hard phase of a cemented carbide and form an uneven surface on the surface of the substrate, the particle size of the metal carbide constituting the hard phase is close contact between the substrate and the hard film. It has been found that it greatly affects sex. Further, the binder phase has poor adhesion with the hard film. However, by leaving the binder phase and eliminating the hard phase, the area of the binder phase that is exposed increases. Therefore, it is important to improve the adhesion between the cemented carbide and the hard film by eliminating an appropriate amount of the hard phase according to the particle size of the metal carbide and suppressing the area of the binder phase to be exposed. I found a new thing.

すなわち、本発明の被覆超硬合金部材は、炭化タングステン(WC)を含む硬質相および遷移金属を含む結合相からなる超硬合金からなる基材と、該基材の表面に被覆された硬質膜と、を備える被覆超硬合金部材であって、
前記硬質膜は、チタン(Ti)またはクロム(Cr)を必須とし炭素(C)および/または窒素(N)を含み、
前記硬質膜が被覆された前記基材の表面は、前記硬質相が消失してなる凹部をもつ凹凸面であり、WCの平均粒径をX[μm]、該凹部の最大深さをY[μm]、該凹凸面における前記結合相の面積率をZ[%]としたとき、X、YおよびZの値が次の第一の範囲内かつ第二の範囲内にあることを特徴とする。
第一の範囲:
1≦X≦6において0<Y≦−0.04X+0.64、
第二の範囲:
1≦X≦2において0<Z≦71、
2≦X≦6において0<Z≦−5.25X+81.5
That is, the coated cemented carbide member of the present invention includes a substrate made of a cemented carbide composed of a hard phase containing tungsten carbide (WC) and a binder phase containing a transition metal, and a hard film coated on the surface of the substrate. A coated cemented carbide member comprising:
The hard film essentially includes titanium (Ti) or chromium (Cr), and includes carbon (C) and / or nitrogen (N).
The surface of the base material coated with the hard film is a concavo-convex surface having a concave portion formed by the disappearance of the hard phase, the average particle diameter of WC is X [μm], and the maximum depth of the concave portion is Y [ μm], where the area ratio of the binder phase on the uneven surface is Z [%], the values of X, Y and Z are within the following first range and second range. .
First range:
1 ≦ X ≦ 6, 0 <Y ≦ −0.04X + 0.64,
Second range:
1 ≦ X ≦ 2, 0 <Z ≦ 71,
In 2 ≦ X ≦ 6, 0 <Z ≦ −5.25X + 81.5

本発明の被覆超硬合金部材は、超硬合金からなる基材の表面から硬質相を消失させて凹部を形成することで凹凸面が形成されている。そのため、硬質相を構成するWC粒子同士を結合する結合相は残存するため、基材の表面部分の強度は保たれる。   The coated cemented carbide member of the present invention has a concavo-convex surface by forming a recess by eliminating the hard phase from the surface of the substrate made of the cemented carbide. Therefore, since the binder phase that binds the WC particles constituting the hard phase remains, the strength of the surface portion of the substrate is maintained.

このとき、硬質相を構成するWCの平均粒径に対して凹部の最大深さを制限するとともに、凹部が形成されることで表面に露出して硬質膜と接する結合相の面積率を制限することで、未処理の表面よりも基材と硬質膜との密着性が向上する。   At this time, the maximum depth of the recess is limited with respect to the average particle diameter of the WC constituting the hard phase, and the area ratio of the binder phase exposed to the surface and in contact with the hard film is limited by the formation of the recess. Thereby, the adhesiveness of a base material and a hard film improves rather than an untreated surface.

本発明の被覆超硬合金部材において、凹凸面をもつ基材の断面を示す模式図である。It is a schematic diagram which shows the cross section of the base material which has an uneven surface in the covering cemented carbide member of this invention. 本発明の被覆超硬合金部材の断面を示す模式図である。It is a schematic diagram which shows the cross section of the covering cemented carbide member of this invention. 電解エッチングを説明するための模式図である。It is a schematic diagram for demonstrating electrolytic etching. 実施例および比較例の被覆超硬合金部材について、基材の最大エッチング深さ(Y)に対するスクラッチ剥離荷重を示すグラフである。It is a graph which shows the scratch peeling load with respect to the maximum etching depth (Y) of a base material about the covering cemented carbide member of an Example and a comparative example. 超硬合金Aからなる基材の表面を走査電子顕微鏡により観察した結果を示す図面代用写真である。It is a drawing substitute photograph which shows the result of having observed the surface of the base material which consists of cemented carbide A with the scanning electron microscope. 超硬合金Bからなる基材の表面を走査電子顕微鏡により観察した結果を示す図面代用写真である。It is a drawing substitute photograph which shows the result of having observed the surface of the base material which consists of cemented carbide B with the scanning electron microscope. 超硬合金Dからなる基材の表面を走査電子顕微鏡により観察した結果を示す図面代用写真である。4 is a drawing-substituting photograph showing the result of observing the surface of a substrate made of cemented carbide D with a scanning electron microscope. 超硬合金Eからなる基材の表面を走査電子顕微鏡により観察した結果を示す図面代用写真である。4 is a drawing-substituting photograph showing the result of observing the surface of a substrate made of cemented carbide E with a scanning electron microscope. 超硬合金Fからなる基材の表面を走査電子顕微鏡により観察した結果を示す図面代用写真である。4 is a drawing-substituting photograph showing the result of observing the surface of a substrate made of cemented carbide F with a scanning electron microscope. 被覆超硬合金部材の密着性の評価を、WCの平均粒径(X)と最大エッチング深さ(Y)の関係とともに示す線図である。It is a diagram which shows evaluation of the adhesiveness of a covering cemented carbide member with the relationship between the average particle diameter (X) of WC, and the maximum etching depth (Y). 被覆超硬合金部材の密着性の評価を、WCの平均粒径(X)と結合相の面積率(Z)の関係とともに示す線図である。It is a diagram which shows evaluation of the adhesiveness of a covering cemented carbide member, with the relationship between the average particle diameter (X) of WC, and the area ratio (Z) of a binder phase.

以下に、本発明の被覆超硬合金部材を実施するための最良の形態を説明する。なお、本明細書において不等号を使用せずに「N〜M」と表記する数値範囲には、数値範囲の両端であるNおよびMも含む。   The best mode for carrying out the coated cemented carbide member of the present invention will be described below. In the present specification, the numerical range expressed as “N to M” without using an inequality sign includes N and M which are both ends of the numerical range.

本発明の被覆超硬合金部材は、超硬合金からなる基材と、該基材の表面に被覆された硬質膜と、を備える。   The coated cemented carbide member of the present invention includes a base material made of a cemented carbide and a hard film coated on the surface of the base material.

基材は超硬合金からなり、超硬合金は炭化タングステン(WC)を含む硬質相および鉄族金属を含む結合相からなる。超硬合金は、WCなどの金属炭化物粉末(硬質相)と金属粉末(結合相)とを混合した原料粉末を成形後、焼結して得られる一般的な超硬合金である。硬質相と結合相との好ましい質量比は、硬質相:結合相=80〜99:20〜1さらには90〜99:10〜1である。硬質相と結合相との質量比が上記範囲内にあれば、所望の凹凸面が形成されやすく、アンカー効果が十分に得られる。また、硬質相と結合相との質量比が上記範囲内にある超硬合金は、機械的性質に優れる。   The substrate is made of a cemented carbide, and the cemented carbide is composed of a hard phase containing tungsten carbide (WC) and a binder phase containing an iron group metal. The cemented carbide is a general cemented carbide obtained by sintering a raw material powder obtained by mixing a metal carbide powder (hard phase) such as WC and a metal powder (binding phase). A preferable mass ratio of the hard phase and the binder phase is hard phase: bond phase = 80 to 99:20 to 1 and further 90 to 99:10 to 1. If the mass ratio of the hard phase and the binder phase is within the above range, a desired uneven surface can be easily formed, and the anchor effect can be sufficiently obtained. Moreover, the cemented carbide in which the mass ratio of the hard phase and the binder phase is within the above range is excellent in mechanical properties.

硬質相は、WCを主成分とする。WCの含有量は、硬質相全体を100質量%としたときに70〜100質量%、90〜100質量%さらには95〜100質量%である。硬質相は、少量であればWC以外の金属炭化物を含んでもよく、たとえば、炭化チタン(TiC)、炭化タンタル(TaC)、炭化ニオブ(NbC)、炭化バナジウム(VC)、炭化クロム(Cr)のうちの一種以上である。また、硬質相を構成するWCの平均粒径は1μm以上6μm以下であるとよい。この範囲の平均粒径のWCを含む超硬合金であれば、被覆超硬合金部材の使用目的に応じて適宜選択すればよい。なお、WCの平均粒径は、超硬合金の製造に用いられる原料粉末に含まれるWC粒子の平均粒径に一致する。市販の超硬合金を基材として用いた場合であっても、WCの平均粒径は、光学顕微鏡、走査電子顕微鏡(SEM)などにより所定の範囲を観察して得られた濃淡画像を二値化処理し、複数個のWC粒子の最大径(最大長さ)を測定して得られる値の算術平均値であり、測定により得られた平均粒径は、その公称平均粒径にほぼ一致する。 The hard phase is mainly composed of WC. The content of WC is 70 to 100% by mass, 90 to 100% by mass, and further 95 to 100% by mass when the entire hard phase is 100% by mass. The hard phase may contain a metal carbide other than WC in a small amount. For example, titanium carbide (TiC), tantalum carbide (TaC), niobium carbide (NbC), vanadium carbide (VC), chromium carbide (Cr 3 C). 2 ) One or more of the above. Moreover, the average particle diameter of WC which comprises a hard phase is good in it being 1 to 6 micrometers. What is necessary is just to select suitably according to the use purpose of a covering cemented carbide member, if it is a cemented carbide containing WC of the average particle diameter of this range. In addition, the average particle diameter of WC corresponds with the average particle diameter of the WC particle contained in the raw material powder used for manufacture of a cemented carbide. Even when a commercially available cemented carbide is used as a base material, the average particle diameter of WC is a binary image obtained by observing a predetermined range with an optical microscope, a scanning electron microscope (SEM), or the like. Is an arithmetic average value of values obtained by measuring the maximum diameter (maximum length) of a plurality of WC particles, and the average particle diameter obtained by the measurement substantially matches the nominal average particle diameter .

結合相は、クロム(Cr)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)およびモリブデン(Mo)等の遷移金属を主成分とする。特に、Ni、CrおよびCoであるのが好ましい。これらのうち少なくとも一種が結合相に含まれればよいが、主としてCoを含むのがさらに好ましい。Coの含有量は、結合相全体を100質量%としたときに80〜100質量%さらには90〜100質量%含まれているのが好ましい。また、超硬合金全体を100質量%とすれば、Coの含有量は、1〜20質量%さらには1〜10質量%含まれているのが好ましい。   The binder phase is mainly composed of a transition metal such as chromium (Cr), iron (Fe), cobalt (Co), nickel (Ni), and molybdenum (Mo). In particular, Ni, Cr and Co are preferable. At least one of these may be contained in the binder phase, but it is more preferable that Co is mainly contained. The Co content is preferably 80 to 100% by mass, and more preferably 90 to 100% by mass, based on 100% by mass of the entire binder phase. Further, if the entire cemented carbide is 100% by mass, the Co content is preferably 1 to 20% by mass, and more preferably 1 to 10% by mass.

なお、基材(すなわち超硬合金)の表面での凹凸面が形成される前の結合相の面積率は、上記の硬質相と結合相の質量比から0.7〜1.5%さらには0.7〜4.0%であるのが好ましい。すなわち、凹凸面が形成された後の結合相の面積率は、0.7%を超える。なお、「結合相の面積率」とは、基材の表面を、その表面に対して垂直に観察したときの平面に存在する結合相の面積割合である。たとえば、光学顕微鏡、SEMなどにより所定の範囲を観察して得られた濃淡画像を二値化処理して対象領域(結合相)と背景(硬質相)とに分離し、全体の面積に対する対象領域の面積を算出することで結合相の面積率が得られる。   In addition, the area ratio of the binder phase before the uneven surface on the surface of the base material (that is, the cemented carbide) is 0.7 to 1.5% from the mass ratio of the hard phase and the binder phase. It is preferable that it is 0.7 to 4.0%. That is, the area ratio of the binder phase after the uneven surface is formed exceeds 0.7%. The “area ratio of the binder phase” is the area ratio of the binder phase existing in a plane when the surface of the substrate is observed perpendicularly to the surface. For example, a grayscale image obtained by observing a predetermined range with an optical microscope, SEM, etc. is binarized to separate it into a target area (bonded phase) and a background (hard phase), and the target area for the entire area The area ratio of the binder phase can be obtained by calculating the area.

基材の表面に被覆された硬質膜は、TiまたはCrを必須としCおよび/またはNを含む化合物からなれば、その組成、膜厚などに特に限定はない。被覆超硬合金部材の使用目的に応じて適宜選択すればよい。たとえば、TiまたはCrの一部が他の元素で置換された組成をもつチタン化合物であってもよい。他の元素としては、たとえばアルミニウム(Al)が挙げられる。具体的には、TiCN膜、TiC膜、TiN膜、TiAlN膜、CrN膜、Cr膜、などが挙げられる。なかでも特に効果的であるのは、TiCN膜などのTiを含むチタン系化合物膜である。さらに、後述のTiCN膜をもつ被覆超硬合金部材の密着性の評価結果を鑑みて、基材の表面性状が同等であれば、Cr系化合物膜であっても同様の結果が得られることが予測できる。また、膜厚は、基材の表面が露出しないように被覆されればよいため、0.5μm以上さらには1〜5μmとするとよい。このような硬質膜は、プラズマCVD法、イオンプレーティング法、スパッタリング法など、既に公知のCVD法、PVD法により形成することができる。 The hard film coated on the surface of the substrate is not particularly limited in its composition, film thickness, etc. as long as it is made of a compound containing Ti and Cr as essential and containing C and / or N. What is necessary is just to select suitably according to the intended purpose of the covering cemented carbide member. For example, a titanium compound having a composition in which part of Ti or Cr is substituted with another element may be used. Examples of other elements include aluminum (Al). Specific examples include a TiCN film, a TiC film, a TiN film, a TiAlN film, a CrN film, and a Cr 3 C 2 film. Of these, a titanium-based compound film containing Ti such as a TiCN film is particularly effective. Furthermore, in view of the evaluation results of the adhesion of a coated cemented carbide member having a TiCN film, which will be described later, if the surface properties of the substrate are the same, similar results can be obtained even with a Cr-based compound film. Predictable. Further, the film thickness is preferably 0.5 μm or more, and more preferably 1 to 5 μm, as long as the surface of the substrate is not exposed. Such a hard film can be formed by a known CVD method or PVD method such as a plasma CVD method, an ion plating method, or a sputtering method.

硬質膜が被覆された基材の表面は、硬質相が消失してなる凹部をもつ凹凸面である。凹部は、硬質相のみが消失してなるのが好ましい。図1は、凹凸面をもつ基材の断面を示す模式図である。凹凸面をもつ基材10は、結合相11とWC粒子12からなる硬質相とからなる超硬合金からなる。基材10の表面のWC粒子12を消失させて凹部12を形成することで、基材10の表面は凹凸面10fとなる。また、図2は、本発明の被覆超硬合金部材の断面を示す模式図である。凹凸面10fに硬質膜2を被覆することで、硬質膜2は凹部12の内部にまで堆積して成膜されて、アンカー効果を生じる。 The surface of the base material coated with the hard film is an uneven surface having a recess formed by disappearance of the hard phase. The recess preferably has only the hard phase disappeared. FIG. 1 is a schematic view showing a cross section of a substrate having an uneven surface. The base material 10 having an uneven surface is made of a cemented carbide composed of a binder phase 11 and a hard phase composed of WC particles 12. By removing the WC particles 12 on the surface of the base material 10 to form the concave portion 12 , the surface of the base material 10 becomes an uneven surface 10 f. FIG. 2 is a schematic view showing a cross section of the coated cemented carbide member of the present invention. By coating the hard film 2 on the uneven surface 10f, the hard film 2 is recess 12 - are deposited by depositing to the inside of, resulting in the anchor effect.

凹凸面は、WCの平均粒径をX[μm]、凹部の最大深さをY[μm]、凹凸面における結合相の面積率をZ[%]としたとき、X、YおよびZの値が次の第一の範囲内かつ第二の範囲内にある。
第一の範囲:
1≦X≦6において0<Y≦−0.04X+0.64、
第二の範囲:
1≦X≦2において0<Z≦71、
2≦X≦6において0<Z≦−5.25X+81.5
The uneven surface has values of X, Y, and Z when the average particle diameter of WC is X [μm], the maximum depth of the recess is Y [μm], and the area ratio of the binder phase on the uneven surface is Z [%]. Is in the following first range and in the second range.
First range:
1 ≦ X ≦ 6, 0 <Y ≦ −0.04X + 0.64,
Second range:
1 ≦ X ≦ 2, 0 <Z ≦ 71,
In 2 ≦ X ≦ 6, 0 <Z ≦ −5.25X + 81.5

好ましい第一の範囲は、WCの平均粒径Xを横軸、凹部の最大深さYを縦軸とした図10において(X,Y)がa点(1,0)、b点(1,0.6)、c点(6,0.4)およびd点(6,0.4)で囲まれた斜線で示す領域の内部および線上である。ただし、直線a−d上は含まない。また、好ましい第二の範囲は、WCの平均粒径Xを横軸、結合相の面積率Zを縦軸とした図11において(X,Z)がp点(1,0)、q点(1,71)、r点(2,71)およびs点(6,50)で囲まれた斜線で示す領域の内部および線上である。ただし、直線p−t上は含まない。   A preferred first range is that in FIG. 10 where the average particle diameter X of WC is the horizontal axis and the maximum depth Y of the recess is the vertical axis, (X, Y) is a point (1, 0), b point (1, 0.6), the inside of the region indicated by the oblique line surrounded by the c point (6, 0.4) and the d point (6, 0.4) and on the line. However, the line a-d is not included. A preferred second range is that (X, Z) is a p point (1, 0), a q point (X) in FIG. 11 where the horizontal axis is the average particle diameter X of WC and the vertical axis is the area ratio Z of the binder phase. 1, 71), r point (2, 71), and s point (6, 50). However, the line pt is not included.

ここで、「凹部の最大深さ」とは、凹凸面を構成する凹部のうち、基材の最表面から垂直方向への凹部の深さであり、基材の最表面の位置は、結合相の先端の位置に相当する。通常、基材の表面をエッチングすることで凹部を形成するため、凹部の深さはエッチング深さ(図1のD)である。たとえば、超硬合金は焼結体であるため、場所によってはWC粒子が表面に浅く埋まっていることもある。そのような場所をエッチングして凹部を形成すると、表面から所定の深さまでエッチングしても、所定の深さに達する前にWC粒子が溶出しきってしまい、結合相が露出し、それ以上の深さの凹部は形成されない。この凹部のエッチング深さは図1のD で表され、D <Dである。そこで、本明細書では、「凹部の最大深さ」を規定する。凹部の最大深さは、表面粗さ計、原子間力顕微鏡(AFM)などにより測定可能である。なお、凹凸面を構成する複数の凹部のうちの50%以上さらには80%以上の凹部が最大深さに達しているのが望ましい。また、「WCの平均粒径」および「結合相の面積率」は、既に述べた通りである。 Here, the “maximum depth of the concave portion” is the depth of the concave portion in the vertical direction from the outermost surface of the substrate among the concave portions constituting the uneven surface, and the position of the outermost surface of the substrate is the binding phase. It corresponds to the position of the tip. Usually, since the concave portion is formed by etching the surface of the substrate, the depth of the concave portion is an etching depth (D e in FIG. 1). For example, since cemented carbide is a sintered body, WC particles may be shallowly buried in the surface depending on the location. If such a portion is etched to form a recess, even if etching is performed from the surface to a predetermined depth, the WC particles are completely eluted before reaching the predetermined depth, and the binder phase is exposed, and the depth is further increased. The recess is not formed. Etching depth of the recess is D e in FIG. 1 - is represented by, D e - a <D e. Therefore, in this specification, the “maximum depth of the recess” is defined. The maximum depth of the recess can be measured by a surface roughness meter, an atomic force microscope (AFM), or the like. In addition, it is desirable that 50% or more, more than 80% or more of the plurality of recesses constituting the uneven surface reach the maximum depth. Further, “average particle diameter of WC” and “area ratio of binder phase” are as described above.

上記の通り、本発明の被覆超硬合金部材は、アンカー効果が発揮されるのに最適な凹凸面の形状が、硬質相のほとんどを構成するWCの平均粒径に影響されるという特徴を有している。本発明における基材と硬質膜との密着性の向上効果は、WCの平均粒径(X)が1μm以上である超硬合金からなる基材において発現し、1≦X≦6、1≦X≦3さらには1≦X≦2において顕著である。   As described above, the coated cemented carbide member of the present invention has a feature that the shape of the rough surface that is optimal for exhibiting the anchor effect is influenced by the average particle size of WC constituting most of the hard phase. doing. The effect of improving the adhesion between the substrate and the hard film in the present invention is manifested in a substrate made of a cemented carbide having a WC average particle size (X) of 1 μm or more, and 1 ≦ X ≦ 6, 1 ≦ X. ≦ 3, or even 1 ≦ X ≦ 2, is remarkable.

基材の表面に少しでも凹部が形成されればアンカー効果が得られ、凹凸面をもたない未処理の基材よりも密着性が向上するため、Yの値は0<Y(Y=0は未処理)であればよいが、好ましくは0.05≦Yさらに好ましくは0.1≦Yである。一方、凹部の最大深さが深すぎると密着性は低下し、WCの平均粒径が大きい程その影響は顕著である。1≦X≦6において0<Y≦−0.04X+0.64であれば未処理の基材よりも密着性が向上する。すなわち、1≦X≦6では、WCの平均粒径が大きくなっても、凹部の最大深さが0<Y≦−0.04X+0.64の範囲であれば、未処理の基材よりも密着性が向上する。さらに、1≦X≦2ではY≦0.5さらにはY≦0.4、WCの平均粒径にかかわらずY≦0.4とすることで、未処理の基材と比較して密着性が大きく向上する。   If even a slight depression is formed on the surface of the base material, an anchor effect is obtained, and the adhesion is improved as compared with an untreated base material having no uneven surface. Therefore, the value of Y is 0 <Y (Y = 0 Is preferably untreated), preferably 0.05 ≦ Y, more preferably 0.1 ≦ Y. On the other hand, if the maximum depth of the recess is too deep, the adhesiveness is lowered, and the influence is more remarkable as the average particle diameter of WC is larger. If 1 ≦ X ≦ 6 and 0 <Y ≦ −0.04X + 0.64, the adhesion is improved as compared with the untreated substrate. In other words, when 1 ≦ X ≦ 6, even if the average particle diameter of WC is large, if the maximum depth of the recess is in the range of 0 <Y ≦ −0.04X + 0.64, the adhesion is greater than that of the untreated substrate. Improves. Further, when 1 ≦ X ≦ 2, Y ≦ 0.5, further Y ≦ 0.4, and Y ≦ 0.4 regardless of the average particle diameter of WC, so that the adhesiveness compared with the untreated substrate is improved. Is greatly improved.

また、凹部が消失すると結合相の面積は増加するが、既に詳説したように、結合相の面積率が増加すると密着性は低下する。1≦X≦2において0<Z≦71、2≦X≦6において0<Z≦−5.25X+81.5であれば密着性は向上する。WCの平均粒径が小さいと、結合相の面積率が増大しても密着性の向上効果は得られやすい。しかし、結合相の面積率が71%を超えると、密着性は悪化する。すなわち1≦X≦2では、結合相の面積率が0<Z≦71さらには0<Z≦70の範囲であれば、密着性の低下を抑えられる。一方、WCの平均粒径(X)が2を超えると、結合相の面積率を抑制しなければ、密着性が得られ難くなる。2≦X≦6では、0<Z≦−5.25X+81.5さらには0<Z≦−5.4X+80.8であれば、密着性の低下を抑えられる。1≦X≦6の範囲であれば、Z≦50に抑えることで、密着性の向上効果は保たれる。なお、結合相の面積率Zが小さいほど密着性は向上するが、Zの下限を規定するのであれば、処理前の基材の結合相の面積率を超える値である。処理前の基材の結合相の面積率は、超硬合金に含まれる結合相の割合に応じた値である。つまり、0.7<Zが好ましく、さらに好ましくは5≦Zさらには9≦Zである。   Further, when the concave portion disappears, the area of the binder phase increases, but as already described in detail, the adhesion decreases when the area ratio of the binder phase increases. If 1 ≦ X ≦ 2 and 0 <Z ≦ 71, 2 ≦ X ≦ 6 and 0 <Z ≦ −5.25X + 81.5, the adhesion is improved. When the average particle diameter of WC is small, the effect of improving adhesion is easily obtained even if the area ratio of the binder phase is increased. However, when the area ratio of the binder phase exceeds 71%, the adhesion deteriorates. That is, in 1 ≦ X ≦ 2, a decrease in adhesion can be suppressed if the area ratio of the binder phase is in the range of 0 <Z ≦ 71 and further 0 <Z ≦ 70. On the other hand, if the average particle size (X) of WC exceeds 2, it is difficult to obtain adhesion unless the area ratio of the binder phase is suppressed. In 2 ≦ X ≦ 6, if 0 <Z ≦ −5.25X + 81.5, and further 0 <Z ≦ −5.4X + 80.8, a decrease in adhesion can be suppressed. If it is the range of 1 <= X <= 6, the adhesive improvement effect is maintained by restraining to Z <= 50. In addition, although adhesiveness improves, so that the area ratio Z of a binder phase is small, if the minimum of Z is prescribed | regulated, it is a value exceeding the area ratio of the binder phase of the base material before a process. The area ratio of the binder phase of the base material before treatment is a value corresponding to the ratio of the binder phase contained in the cemented carbide. That is, 0.7 <Z is preferable, more preferably 5 ≦ Z, and further preferably 9 ≦ Z.

凹凸面は、基材の表面に存在する硬質相を所定の深さだけ消失させて形成される。凹凸面の形成方法としては、アルカリ溶液を用いた陽極電解エッチングが挙げられる。アルカリ溶液中で陽極電解エッチングを行うことで、結合相は溶解されず、硬質相つまりWCのみを溶解させることができる。電解エッチングは、公知の方法により行うことができる。具体的には、基材を陽極とし、陽極と陰極とをアルカリ溶液に浸漬して電解処理を行う。   The uneven surface is formed by eliminating the hard phase existing on the surface of the base material by a predetermined depth. An example of the method for forming the uneven surface is anodic electrolytic etching using an alkaline solution. By performing anodic electrolytic etching in an alkaline solution, the binder phase is not dissolved, and only the hard phase, that is, WC, can be dissolved. Electrolytic etching can be performed by a known method. Specifically, the base material is an anode, and the anode and the cathode are immersed in an alkaline solution to perform electrolytic treatment.

陰極は、アルカリ溶液で腐食を受ける両性金属以外の金属材料であればよく、鉄、ステンレス、ニッケル、銅などの一般的な金属材料を用いるとよい。陰極の形状に特に限定はないが、基材とほぼ等間隔で対向する形状であれば電流が均一に流れやすいため望ましい。たとえば、基材の形状が柱状であれば、ステンレス製の容器を用いて電解槽と陰極とを兼ねてもよい。   The cathode may be a metal material other than an amphoteric metal that is corroded by an alkaline solution, and a general metal material such as iron, stainless steel, nickel, or copper may be used. There is no particular limitation on the shape of the cathode, but a shape facing the substrate at almost equal intervals is desirable because current can easily flow uniformly. For example, if the base material has a columnar shape, a stainless steel container may be used as an electrolytic cell and a cathode.

アルカリ溶液は、水溶液でも非水系溶液であってもよい。アルカリの具体例としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム等が挙げられる。アルカリ濃度はpH11〜pH14.5さらにはpH12〜pH14が望ましい。pH11未満では、エッチング速度が遅すぎて効率的でない。pH14.5を超えてもエッチング速度は上昇しないばかりか、エッチング深さが不均一となり易いため望ましくない。   The alkaline solution may be an aqueous solution or a non-aqueous solution. Specific examples of the alkali include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate and the like. The alkali concentration is preferably pH 11 to pH 14.5, more preferably pH 12 to pH 14. Below pH 11, the etching rate is too slow and not efficient. If the pH exceeds 14.5, the etching rate is not increased, and the etching depth is likely to be nonuniform, which is not desirable.

電解処理条件は、凹部の最大深さ(エッチング深さ)に応じて調整する。たとえば、通電する総電気量を0.05クーロン/cm〜5クーロン/cm、電流密度を1〜50mA/cmの範囲で調整するとよい。また、処理時間は、エッチング深さ、すなわち電気量および電流密度によって変化するため一概には言えないが、目安としては、エッチング速度が0.005〜0.1μm/分となるように選定するのがよい。 The electrolytic treatment conditions are adjusted according to the maximum depth (etching depth) of the recess. For example, the total amount of electricity to be energized may be adjusted in the range of 0.05 coulomb / cm 2 to 5 coulomb / cm 2 and the current density in the range of 1 to 50 mA / cm 2 . In addition, the processing time varies depending on the etching depth, that is, the amount of electricity and the current density, so it cannot be generally stated. However, as a guideline, the etching rate is selected to be 0.005 to 0.1 μm / min. Is good.

また、電解エッチングする基材は、使用目的に応じた表面粗さとなるように予め表面を研磨しておくとよい。具体的には、JISに規定の十点平均粗さRzjis0.1μm程度の鏡面加工が望ましい。また、電解エッチングが終了した基材は、有機溶剤などを用いて洗浄した後、硬質膜の成膜に供される。 Further, the surface of the substrate to be electrolytically etched is preferably polished in advance so as to have a surface roughness corresponding to the purpose of use. Specifically, mirror finishing with a ten-point average roughness Rz jis of about 0.1 μm as defined in JIS is desirable. In addition, after the electrolytic etching is finished, the base material is washed with an organic solvent or the like and then used for forming a hard film.

なお、本発明の被覆超硬合金部材は、基材と硬質膜との密着性に優れることから、表面に保護膜が必要な超硬合金製の各種部材に好適である。本発明の被覆超硬合金部材の具体的な用途としては、金型、工具などが挙げられる。特に、高い剥離強度を示す被覆超硬合金部材であれば、環境負荷低減を目的とした工具および金型への使用の可能性が期待できる。   The coated cemented carbide member of the present invention is excellent in adhesion between the base material and the hard film, and is therefore suitable for various members made of cemented carbide requiring a protective film on the surface. Specific applications of the coated cemented carbide member of the present invention include molds and tools. In particular, if it is a coated cemented carbide member exhibiting high peel strength, it can be expected to be used for tools and dies for the purpose of reducing the environmental load.

以上、本発明の被覆超硬合金部材の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。   As mentioned above, although embodiment of the covering cemented carbide alloy member of this invention was described, this invention is not limited to the said embodiment. The present invention can be implemented in various forms without departing from the gist of the present invention, with modifications and improvements that can be made by those skilled in the art.

以下に、本発明の被覆超硬合金部材の実施例および比較例を挙げて、本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples of the coated cemented carbide member of the present invention.

[試料の作製]
表1に示す超硬合金A〜Fを準備した。これらの超硬合金はWC−Co超硬合金であって、Aは住友電工ハードメタル株式会社製のH1、Bはダイジェット工業株式会社製のD3、Cは住友電工ハードメタル株式会社製のKH05、D、EおよびFはサンアロイ工業株式会社製でそれぞれ順にREA65、VA60、RL89を用いた。なお、表1に示すWCの平均粒径、Co含有量および硬さは、公称値である。基材として、これらの超硬合金からなる板材(40mm×10mm×厚さ5mm)を複数枚作製した。
[Preparation of sample]
Cemented carbides A to F shown in Table 1 were prepared. These cemented carbides are WC-Co cemented carbides, A is H1 manufactured by Sumitomo Electric Hardmetal Co., Ltd., B is D3 manufactured by Daidget Industries, Ltd., and C is KH05 manufactured by Sumitomo Electric Hardmetal Co., Ltd. , D, E, and F were manufactured by Sun Alloy Co., Ltd., and REA65, VA60, and RL89 were used in this order. In addition, the average particle diameter, Co content, and hardness of WC shown in Table 1 are nominal values. As a base material, a plurality of plate materials (40 mm × 10 mm × thickness 5 mm) made of these cemented carbides were produced.

これらの基材の表面をJISに規定の中心線表面粗さでRa2.0nm以下の鏡面とし、40mm×10mmの一面のみを残して他の面をマスキングテープで被覆した。これを脱脂洗浄した後、電解エッチングを行った。電解エッチングは、図3に示す装置30を用いて行った。装置30は、電解液32を保持する電解槽である容器31と、対極としての陰極33と、陰極33と基材10’との間に電流を印加する直流電源34と、からなる。電解液32は、1規定水酸化ナトリウム(pH14)水溶液とした。陰極33には、40mm×10mm×厚さ1mmのステンレス鋼製板材を用いた。そして、室温の下、電流密度を3〜15mA/cmとして2〜15分、基材表面に対して電解エッチングを行った。電解エッチングでは、上記の範囲内で電流値およびエッチング時間を変化させて最大エッチング深さを調整し、各基材の表面を、表2に示す最大エッチング深さ(目標値)の凹部をもつ凹凸面とした。電解エッチング後の各基材は、水洗、乾燥後、アセトンによる超音波洗浄を行った。次に、凹凸面をもつ基材の表面に硬質膜を被覆した。硬質膜として、PVD法により2〜3μmのTiCN膜を成膜した。 The surface of these base materials was made into a mirror surface of Ra 2.0 nm or less with a centerline surface roughness specified in JIS, and the other surface was covered with a masking tape, leaving only one surface of 40 mm × 10 mm. This was degreased and washed, followed by electrolytic etching. The electrolytic etching was performed using an apparatus 30 shown in FIG. The apparatus 30 includes a container 31 that is an electrolytic cell for holding an electrolytic solution 32, a cathode 33 as a counter electrode, and a DC power source 34 that applies a current between the cathode 33 and the base material 10 ′. The electrolyte solution 32 was a 1N sodium hydroxide (pH 14) aqueous solution. As the cathode 33, a stainless steel plate material of 40 mm × 10 mm × thickness 1 mm was used. Then, electrolytic etching was performed on the substrate surface at room temperature for 2 to 15 minutes with a current density of 3 to 15 mA / cm 2 . In the electrolytic etching, the maximum etching depth is adjusted by changing the current value and the etching time within the above range, and the surface of each substrate is uneven with the maximum etching depth (target value) shown in Table 2. The surface. Each substrate after electrolytic etching was subjected to ultrasonic cleaning with acetone after washing with water and drying. Next, a hard film was coated on the surface of the substrate having an uneven surface. As the hard film, a TiCN film having a thickness of 2 to 3 μm was formed by the PVD method.

上記の手順により、表2に示す各試料を作製した。なお、試料A0〜F0は、電解エッチングを施さず鏡面加工しただけの未処理の基材の表面にTiCN膜を成膜した比較例の被覆超硬合金部材である。各試料の密着性は、これら試料A0〜H0のうち同じ種類の超硬合金を使用した試料を基準として、密着性が向上したか低下したかで評価した。   Each sample shown in Table 2 was produced by the above procedure. Samples A0 to F0 are coated hard metal members of comparative examples in which a TiCN film is formed on the surface of an untreated base material that has not been subjected to electrolytic etching and has been mirror-finished. The adhesion of each sample was evaluated based on whether or not the adhesion was improved or decreased based on a sample using the same kind of cemented carbide among these samples A0 to H0.

[評価]
[最大エッチング深さの測定]
基材の表面の10μm×10μmの範囲の表面粗さをAFMにより測定した。各試料の測定結果は、表2に示す最大エッチング深さの目標値と同等であった。そのため、後の説明に用いる図4〜図11では、表2に示す目標値を最大エッチング深さYの値として用いる。
[Evaluation]
[Measurement of maximum etching depth]
The surface roughness in the range of 10 μm × 10 μm of the surface of the substrate was measured by AFM. The measurement result of each sample was equivalent to the target value of the maximum etching depth shown in Table 2. Therefore, in FIG. 4 to FIG. 11 used for later explanation, the target value shown in Table 2 is used as the value of the maximum etching depth Y.

[密着性の評価]
TiCN膜の剥離強度(密着力)を、ロックウェル試験およびスクラッチ試験により測定した。ここでは、実用性および評価方法の安定性の点から、光学顕微鏡を用いた観察においてTiCN膜の剥離が生じたときの荷重(剥離荷重)を密着力と定義した。
[Evaluation of adhesion]
The peel strength (adhesion strength) of the TiCN film was measured by the Rockwell test and the scratch test. Here, from the standpoint of practicality and stability of the evaluation method, the load (peeling load) when the TiCN film was peeled in the observation using an optical microscope was defined as the adhesion force.

ロックウェル試験については、Cスケールにて圧痕周囲のTiCN膜の剥離形態より密着力を評価した。スクラッチ試験においては、円錐型ダイヤモンド(圧子径:0.2mm)を用い、テーブル速度10mm/分、荷重増加速度:100N/分で行った。スクラッチ試験から得られた各試料の剥離荷重を図4に示す。また、表2の「密着性」の欄には、既に説明したように試料A0〜H0を基準として評価した密着性の評価結果を示す。基準の試料よりも剥離強度が向上した試料には○、剥離強度が低下した試料には×、をそれぞれ付した。   For the Rockwell test, the adhesion was evaluated from the peeling form of the TiCN film around the indentation on the C scale. In the scratch test, a conical diamond (indenter diameter: 0.2 mm) was used, and the table speed was 10 mm / min and the load increasing speed was 100 N / min. FIG. 4 shows the peel load of each sample obtained from the scratch test. Further, in the column of “Adhesion” in Table 2, the evaluation results of the adhesion evaluated based on the samples A0 to H0 as described above are shown. A sample with improved peel strength over the reference sample was marked with ◯, and a sample with lowered peel strength was marked with x.

[結合相面積率の算出]
TiCN膜を成膜する直前の基材の表面を、SEMにより観察した。なお、SEM観察は、集束電子線が基材の表面に対して垂直となるように、基材の向きを調節して行った。観察結果の一部を図5〜図9に示す。図5は超硬合金Aからなる基材の表面観察結果であり、左から順に、試料A0(未処理)、試料A1(Y=0.1:単位はμm)、試料A2(Y=0.2)および試料A3(Y=0.4)のSEM観察結果であり、それぞれ上から順に、二次電子像、反射電子像および反射電子像を二値化処理した二値化データ像である。また、図6〜図9は、異なる種類の超硬合金を用いた基材の表面観察結果であり、図6は超硬合金B、図7は超硬合金D、図8は超硬合金E、図9は超硬合金F、である。結合相の面積率は、二値化データ像のうち全体の面積に対する白色部分の面積を、画像処理ソフトを用いて算出した。算出した全ての結果を表2に示す。
[Calculation of binder phase area ratio]
The surface of the base material immediately before forming the TiCN film was observed by SEM. The SEM observation was performed by adjusting the orientation of the substrate so that the focused electron beam was perpendicular to the surface of the substrate. Some of the observation results are shown in FIGS. FIG. 5 shows the surface observation results of the base material made of cemented carbide A. From the left, the sample A0 (untreated), the sample A1 (Y = 0.1: the unit is μm), and the sample A2 (Y = 0. 2) SEM observation results of sample A3 (Y = 0.4), which are binary data images obtained by binarizing the secondary electron image, the reflected electron image, and the reflected electron image, respectively, in order from the top. 6 to 9 are the results of surface observation of the base material using different types of cemented carbide, FIG. 6 is cemented carbide B, FIG. 7 is cemented carbide D, and FIG. 8 is cemented carbide E. FIG. 9 shows a cemented carbide F. For the area ratio of the binder phase, the area of the white portion relative to the entire area of the binarized data image was calculated using image processing software. All the calculated results are shown in Table 2.

表2に記す測定結果に基づき、各試料についてWCの平均粒径(X)と最大エッチング深さ(Y)を図10に、各試料についてWCの平均粒径(X)と結合相の面積率(Z)を図11に、それぞれ示す。なお、図10および図11では、表2と同様に、未処理の基材にTiCN膜を成膜した試料A0〜H0を基準とし、剥離強度が向上した試料を○、剥離強度が低下した試料を×、で示した。   Based on the measurement results shown in Table 2, the average particle diameter (X) and the maximum etching depth (Y) of WC for each sample are shown in FIG. 10, and the average particle diameter (X) of WC and the area ratio of the binder phase for each sample. (Z) is shown in FIG. In FIGS. 10 and 11, as in Table 2, samples with improved peel strength are indicated with “◯” and samples with reduced peel strength based on samples A0 to H0 in which a TiCN film is formed on an untreated substrate. Is indicated by ×.

図10および図11のいずれにおいても、未処理に比べて密着性が向上した試料(○で示す)は、斜線で示す範囲内にあった。なかでも、WCの平均粒径(X)が1≦X≦3さらには1≦X≦2において、YおよびZの値を図10および図11に斜線で示す範囲内とすることで、密着性が大きく向上するとともに非常に高い密着力(剥離荷重)を示した(図4参照)。   In both FIG. 10 and FIG. 11, the sample (indicated by ◯) whose adhesion was improved as compared with the untreated was within the range indicated by the oblique lines. In particular, when the average particle diameter (X) of WC is 1 ≦ X ≦ 3, and further 1 ≦ X ≦ 2, the values of Y and Z are within the range shown by the oblique lines in FIG. 10 and FIG. As a result, the adhesion strength (peeling load) was extremely high (see FIG. 4).

また、基材として超硬合金A〜E、特にA〜Cを用いた場合には、密着性の向上が顕著であった。なお、図4に示されていないが、超硬合金Bからなる基材に対する最大エッチング深さが0.6μm以上になると、試料B0の密着性と同程度まで低下する傾向にあった。   Further, when cemented carbides A to E, particularly A to C were used as the base material, the improvement in adhesion was remarkable. Although not shown in FIG. 4, when the maximum etching depth with respect to the substrate made of the cemented carbide B is 0.6 μm or more, it tends to decrease to the same degree as the adhesion of the sample B0.

10:基材 10f:凹凸面
11:結合相
12:WC粒子(硬質相) 12:凹部
2:硬質膜
10: substrate 10f: uneven surface 11: bonding phase 12: WC particles (hard phase) 12 -: recess 2: hard film

Claims (6)

炭化タングステン(WC)を含む硬質相および遷移金属を含む結合相からなる超硬合金からなる基材と、該基材の表面に被覆された硬質膜と、を備える被覆超硬合金部材であって、
前記硬質膜は、チタン(Ti)またはクロム(Cr)を必須とし炭素(C)および/または窒素(N)を含み、
前記硬質膜が被覆された前記基材の表面は、前記硬質相が消失してなる凹部をもつ凹凸面であり、WCの平均粒径をX[μm]、該凹部の最大深さをY[μm]、該凹凸面における前記結合相の面積率をZ[%]としたとき、X、YおよびZの値が次の第一の範囲内かつ第二の範囲内にあることを特徴とする被覆超硬合金部材。
第一の範囲:
1≦X≦6において0<Y≦−0.04X+0.64、
第二の範囲:
1≦X≦2において0<Z≦71、
2≦X≦6において0<Z≦−5.25X+81.5
A coated cemented carbide member comprising a substrate made of a cemented carbide comprising a hard phase containing tungsten carbide (WC) and a binder phase containing a transition metal, and a hard film coated on the surface of the substrate. ,
The hard film essentially includes titanium (Ti) or chromium (Cr), and includes carbon (C) and / or nitrogen (N).
The surface of the base material coated with the hard film is a concavo-convex surface having a concave portion formed by the disappearance of the hard phase, the average particle diameter of WC is X [μm], and the maximum depth of the concave portion is Y [ μm], where the area ratio of the binder phase on the uneven surface is Z [%], the values of X, Y and Z are within the following first range and second range. Coated cemented carbide member.
First range:
1 ≦ X ≦ 6, 0 <Y ≦ −0.04X + 0.64,
Second range:
1 ≦ X ≦ 2, 0 <Z ≦ 71,
In 2 ≦ X ≦ 6, 0 <Z ≦ −5.25X + 81.5
前記第二の範囲は、1≦X≦2において0<Z≦70、2≦X≦6において0<Z≦−5.4X+80.8である請求項1記載の被覆超硬合金部材。   2. The coated cemented carbide member according to claim 1, wherein the second range is 0 <Z ≦ 70 in 1 ≦ X ≦ 2 and 0 <Z ≦ −5.4X + 80.8 in 2 ≦ X ≦ 6. 前記Yは、0.1≦Yである請求項1または2記載の被覆超硬合金部材。   The coated cemented carbide member according to claim 1, wherein Y is 0.1 ≦ Y. 前記Zは、0.7<Zである請求項1〜3のいずれかに記載の被覆超硬合金部材。   The coated cemented carbide member according to claim 1, wherein Z is 0.7 <Z. 前記結合相は、コバルト(Co)を含む請求項1〜4のいずれかに記載の被覆超硬合金部材。   The coated cemented carbide member according to any one of claims 1 to 4, wherein the binder phase contains cobalt (Co). 前記硬質膜は、チタン(Ti)を必須とし炭素(C)および/または窒素(N)を含むチタン化合物膜である請求項1〜5のいずれかに記載の被覆超硬合金。   The coated hard metal alloy according to any one of claims 1 to 5, wherein the hard film is a titanium compound film containing titanium (Ti) as an essential component and containing carbon (C) and / or nitrogen (N).
JP2009229292A 2009-10-01 2009-10-01 Coated cemented carbide member Active JP5353613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009229292A JP5353613B2 (en) 2009-10-01 2009-10-01 Coated cemented carbide member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009229292A JP5353613B2 (en) 2009-10-01 2009-10-01 Coated cemented carbide member

Publications (2)

Publication Number Publication Date
JP2011074473A JP2011074473A (en) 2011-04-14
JP5353613B2 true JP5353613B2 (en) 2013-11-27

Family

ID=44018752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009229292A Active JP5353613B2 (en) 2009-10-01 2009-10-01 Coated cemented carbide member

Country Status (1)

Country Link
JP (1) JP5353613B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6016270B2 (en) * 2013-03-29 2016-10-26 住友電工ハードメタル株式会社 Surface coated boron nitride sintered body tool
JP6016271B2 (en) * 2013-03-29 2016-10-26 住友電工ハードメタル株式会社 Surface coated boron nitride sintered body tool
JP6016269B2 (en) * 2013-03-29 2016-10-26 住友電工ハードメタル株式会社 Surface coated boron nitride sintered body tool
JP5716861B1 (en) * 2013-11-29 2015-05-13 三菱マテリアル株式会社 Diamond-coated cemented carbide cutting tool and method for manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000212743A (en) * 1999-01-27 2000-08-02 Toshiba Tungaloy Co Ltd Surface coated sintered alloy excellent in peeling resistance and its production
JP2000265236A (en) * 1999-03-16 2000-09-26 Toshiba Tungaloy Co Ltd Cemented carbide excellent in smoothness, coated cemented carbide, and their manufacture
JP2000297342A (en) * 1999-04-12 2000-10-24 Toshiba Tungaloy Co Ltd Surface-refined cemented carbide, coated surface-refined cemented carbide, and their manufacture
WO2009034716A1 (en) * 2007-09-14 2009-03-19 Sumitomo Electric Industries, Ltd. Composite material and coated cutting tool
JP5217712B2 (en) * 2008-07-11 2013-06-19 株式会社豊田中央研究所 Coated cemented carbide member

Also Published As

Publication number Publication date
JP2011074473A (en) 2011-04-14

Similar Documents

Publication Publication Date Title
Song et al. The corrosive behavior of Cr/CrN multilayer coatings with different modulation periods
Altun et al. The effect of PVD coatings on the corrosion behaviour of AZ91 magnesium alloy
Altun et al. The effect of DC magnetron sputtering AlN coatings on the corrosion behaviour of magnesium alloys
Ding et al. Corrosion resistance of CrAlN and TiAlN coatings deposited by lateral rotating cathode arc
Leppäniemi et al. Corrosion protection of steel with multilayer coatings: Improving the sealing properties of physical vapor deposition CrN coatings with Al2O3/TiO2 atomic layer deposition nanolaminates
WO2006073435A2 (en) Multi-layered superhard nanocomposite coatings
JP6444860B2 (en) Method for making a metal coating
Wu et al. Comparative corrosion resistance properties between (Cu, Ce)-DLC and Ti co-doped (Cu, Ce)/Ti-DLC films prepared via magnetron sputtering method
Li et al. Fabrication of the ZrC reinforced NiW composite coating and exploration of its mechanical properties and corrosion resistance
JP5353613B2 (en) Coated cemented carbide member
Mahmoudi et al. Study the variation of surface topography & corrosion resistance of Cr-GO nanocomposite coatings by addition of GO nanoparticles
CN108699667B (en) Cermet powder, protective film-coated member and method for producing same, and in-bath roller and method for producing same
Balasubramanian et al. Nanocomposite Ti–Si–N coatings deposited by reactive dc magnetron sputtering for biomedical applications
Meymian et al. Fabrication and characterization of bimetallic nickel-molybdenum nano-coatings for mild steel corrosion protection in 3.5% NaCl solution
Raghavendra et al. Study on influence of Surface roughness of Ni-Al2O3 nano composite coating and evaluation of wear characteristics
Ilic et al. A methodology for characterizing the electrochemical stability of DLC coated interlayers and interfaces
JP6034579B2 (en) Durable coated tool
Farhan et al. Synthesis and properties of electroless Ni–P-HfC nanocomposite coatings
JP5217712B2 (en) Coated cemented carbide member
Priyadarshini et al. Substrate temperature: A governing factor for the structural, mechanical and chemical properties of sputtered CrAlN ternary coating
Sun et al. Corrosion behavior of Ta-10W coatings on CP-Ti and TC4 substrates
KR102252719B1 (en) Mold and its manufacturing method
Micallef et al. Rapid surface finishing of chemical vapour deposited tungsten carbide hard coatings by electropolishing
Valleti et al. Efficacy of TiCrN/DLC coatings for service life enhancement of stamping dies
Weitong et al. Corrosive wear and electrochemical corrosion behaviors of laser thermal sprayed CoCrAlYTaSi coatings in 3.5 Wt.% NaCl solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130812

R151 Written notification of patent or utility model registration

Ref document number: 5353613

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151