WO2011034008A1 - Microstructure and method for producing same - Google Patents

Microstructure and method for producing same Download PDF

Info

Publication number
WO2011034008A1
WO2011034008A1 PCT/JP2010/065633 JP2010065633W WO2011034008A1 WO 2011034008 A1 WO2011034008 A1 WO 2011034008A1 JP 2010065633 W JP2010065633 W JP 2010065633W WO 2011034008 A1 WO2011034008 A1 WO 2011034008A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
micropore
micropores
aluminum
treatment
Prior art date
Application number
PCT/JP2010/065633
Other languages
French (fr)
Japanese (ja)
Inventor
義治 田川
優介 畠中
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2011034008A1 publication Critical patent/WO2011034008A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/12Anodising more than once, e.g. in different baths
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/10Moulds; Masks; Masterforms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers

Definitions

  • the present invention relates to a microstructure, and more particularly to a microstructure having a long-period micropore array and a method for manufacturing the same.
  • Examples of such a fine structure manufacturing method include a method of directly manufacturing a nano structure by a semiconductor processing technique including a fine pattern forming technique such as photolithography, electron beam exposure, and X-ray exposure.
  • anodized alumina film obtained by anodizing aluminum in an electrolytic solution
  • a plurality of fine pores having a diameter of about several nm to several hundred nm are regularly formed in the anodized film.
  • hexagonal prism cells with a regular hexagonal bottom centered around the micropores are formed, and adjacent micropores are formed.
  • the connecting line forms an equilateral triangle.
  • Patent Document 1 describes that pores are sealed with metal to generate local plasmon resonance and applied to a Raman optical analyzer.
  • a self-ordering method using the self-ordering property of the anodized film is known. This is a method for improving the regularity by utilizing the property that the micropores of the anodized film are regularly arranged and removing the factors that disturb the regular arrangement.
  • Patent Document 2 discloses that anodization is performed with an anodic oxidation voltage obtained by gradually reducing the interval (period) of the recesses of the micropores at 2.5 nm / V, that is, the pore period can be adjusted by a voltage value. Is described. However, there is no description of an anodic oxide film having a pore period exceeding 500 nm.
  • JP 2007-231336 A Japanese Patent No. 3714507
  • the film growth rate of the anodized film is set to a speed necessary for the honeycomb arrangement. It was difficult to maintain the structure of the ordered micropores, and it was difficult to grow the film in the axial direction of the micropores.
  • the present inventor performs anodizing treatment using an electrolytic solution containing a specific carboxylic acid, so that the honeycomb arrangement of the micropores arranged in the honeycomb is not destroyed.
  • the inventors have found that a fine structure having a large distance between centers of micropores and a film thickness of 50 ⁇ m or more can be produced, and the present invention has been completed.
  • the present invention provides the following (1) to (4).
  • a microstructure comprising an anodized film of aluminum or an aluminum alloy, wherein the degree of ordering of the plurality of micropores defined by the following general formula (1) is 70% or more on the bottom surface, A fine structure having a center-to-center distance of 600 nm or more and an axial length of the micropore of 50 ⁇ m or more:
  • General formula (1) Ordering degree (%) B / A ⁇ 100
  • A represents the total number of micropores in the measurement range.
  • the shape of the cross section perpendicular to the major axis of the pore is not a perfect circle, it means the center of gravity of the cross section in the perpendicular direction.
  • the distance (cycle) between the centers means an average value of a plurality of micropores unless otherwise specified.
  • the length, density, and the like of the micropores in the axial direction are average values of a plurality of micropores unless otherwise specified.
  • the bottom surface is the surface of the fine structure perpendicular to the axis of the annular micropore, and has a plurality of holes in the micropore, and when the fine structure is manufactured from aluminum or an aluminum alloy plate, It is a plane close to the aluminum alloy plate and refers to the surface obtained by removing the aluminum or aluminum alloy plate.
  • the microstructure When the micropore is filled with a conductive material, the microstructure has conductivity in the micropore penetrating direction (axial direction of the annular micropore) and has insulation on a surface perpendicular to the micropore penetrating direction. It can be used as an anisotropic conductive film. In addition, it is expected to be used as a precision filter using the uniformity of micropore diameter, the finely packed structure of micropores, and the straight pipe structure.
  • the present invention provides a microstructure in which the degree of ordering defined by the general formula (1) is 70% or more, the distance between the centers of the micropores is 600 nm or more, and the thickness of the micropores is 50 ⁇ m or more.
  • the body can be provided.
  • the manufacturing method of this invention can manufacture the microstructure of this invention.
  • FIGS. 1A and 1B are simplified views showing an example of a preferred embodiment of the anisotropic conductive member of the present invention.
  • FIG. 1A is a front view
  • FIG. FIG. 6 is a cross-sectional view taken along section line IB-IB in FIG. 2A and 2B are explanatory diagrams of a method for calculating the degree of ordering of pores.
  • 3A to 3D are schematic end views for explaining an example of anodizing treatment in the production method of the present invention.
  • the present invention is described in detail below.
  • the microstructure of the present invention comprises an anodized film of aluminum or an aluminum alloy having micropores.
  • the microstructure of the present invention will be described with reference to FIG.
  • the microstructure has a plurality of micropores. In the present specification, unless otherwise specified, the definition of micropores is indicated by an average value of 25 or more micropores.
  • FIGS. 1A and 1B are simplified views showing an example of a preferred embodiment of the microstructure of the present invention.
  • FIG. 1A is a front view
  • FIG. 1B is a cross-sectional line IB- in FIG. It is sectional drawing seen from IB.
  • the microstructure 1 of the present invention is composed of an oxide film 2 and micropores 3.
  • the micropore 3 is an annular hole, and is preferably provided so as to be substantially parallel to the thickness direction of the oxide film 2 (parallel in FIG. 1).
  • the distance between the centers of the micropores 3 of the microstructure 1 of the present invention is 600 nm or more.
  • the thickness of the oxide film (the portion represented by reference numeral 6 in FIG. 1B), which is the axial length of the annular micropore, is 50 ⁇ m or more.
  • the thickness is preferably 50 to 200 ⁇ m, more preferably 50 to 150 ⁇ m, and even more preferably 50 to 100 ⁇ m.
  • the mechanical strength is high and handling is easy.
  • the micropore density is preferably 3.55 / ⁇ m 2 or less, 0.10 / ⁇ m 2 or more, more preferably 3.55 / ⁇ m 2 or less, 0.50 / ⁇ m 2 or more, and further 3.
  • the number is preferably 53 / ⁇ m 2 or less and 0.81 / ⁇ m 2 or more. Within this range, a microstructure having a sufficiently large distance between the centers of the micropores can be obtained.
  • the oxide film 2 constituting the microstructure of the present invention is an oxide film of aluminum or an aluminum alloy plate, and is formed by an anodic oxidation treatment.
  • the diameter of the micropore (portion represented by reference numeral 8 in FIG. 1B) is preferably 10 to 590 nm, and more preferably 150 to 360 nm. This is because the micropore diameter at the time of the formation of the anodizing treatment is excellent in uniformity, which is preferable.
  • the microstructure 1 has a bottom surface of a plurality of micropores defined by the following general formula (1) having a degree of ordering of 70% or more.
  • the bottom surface is the surface of the fine structure perpendicular to the axis of the annular micropore.
  • the aluminum or aluminum alloy plate has a plurality of micropores.
  • the plane 4 on the side represented by the symbol Z2 is meant.
  • the other of the bottom surface 4 of the microstructure 1 is a surface 5, which is a plane on the side represented by reference sign Z ⁇ b> 1 in FIG.
  • the measurement of the degree of ordering of the micropores on the bottom surface is carried out in a method for producing a microstructure according to the present invention, which will be described later, by performing film dissolution after anodizing treatment, and using a predetermined image from an image obtained by observing the bottom surface with a scanning electron microscope.
  • the number of micropores is visually confirmed and calculated from the following general formula (1). Further, the shape which becomes the starting point of the final anodizing treatment may be observed in the same manner.
  • Ordering degree (%) B / A ⁇ 100 (1)
  • A represents the total number of micropores in the measurement range.
  • B when a circle with the shortest radius inscribed in the edge of the other micropore is drawn from the center of the cross section perpendicular to the major axis of one micropore, the micropores other than the micropore are inside the circle. This represents the number in the measurement range of the one micropore that will contain six pore centers.
  • FIG. 2 is an explanatory diagram of a method for calculating the degree of ordering of micropores.
  • the above formula (1) will be described more specifically with reference to FIG.
  • the micropore 101 shown in FIG. 2A is centered on the center of gravity of the micropore 101 and has the shortest radius 103 inscribed in the edge of another micropore (in the figure, inscribed in the micropore 102). ) Includes six micropore centers other than the micropore 101 inside the circle 103. Therefore, the micropore 101 is included in B.
  • the micropore 104 shown in FIG. 2B is centered on the center of gravity of the micropore 104 and has the shortest radius 106 inscribed in the edge of another micropore (in the figure, inscribed in the micropore 105).
  • the micropore 107 shown in FIG. 2B is centered on the center of gravity of the micropore 107 and has the shortest radius 109 inscribed in the edge of another micropore (inscribed in the micropore 108). Is drawn, the circle 109 includes seven centroids of micropores other than the micropore 107. Therefore, the micropore 107 is not included in B.
  • the above-mentioned fine structure is expected to be used as an anisotropic conductive film by filling a micropore with metal by electrolytic plating or electroless plating. Further, by immersing the fine structure in an alkaline solution, the micropore bottom surface is penetrated, and the use as a precision filter is expected.
  • the microstructure of the present invention is anodized by applying a voltage of 195 V or more in an acidic aqueous solution containing an aliphatic carboxylic acid having 3 or more carbon atoms or an aromatic carboxylic acid to an aluminum or aluminum alloy plate. It can be manufactured by processing.
  • FIG. 3 is a schematic cross-sectional view of an aluminum member and a microstructure for explaining the manufacturing method of the microstructure of the present invention.
  • the aluminum or aluminum alloy substrate is not particularly limited.
  • a pure aluminum plate an alloy plate containing aluminum as a main component and containing a small amount of foreign elements; a substrate obtained by depositing high-purity aluminum on low-purity aluminum (for example, recycled material)
  • the surface on which the anodized film is provided by anodization treatment has an aluminum purity of preferably 99.5% by mass or more, more preferably 99.9% by mass or more, and 99.99% by mass. % Is more preferable.
  • the aluminum purity is in the above range, the regularity of the micropore array is sufficient.
  • the surface of the aluminum substrate is preferably preliminarily degreased and mirror-finished.
  • the mirror finishing process is performed to eliminate unevenness on the surface of the aluminum substrate and improve the uniformity and reproducibility of the particle forming process by an electrodeposition method or the like.
  • corrugation of the surface of an aluminum member the rolling rebar generated at the time of rolling in the case where an aluminum member is manufactured through rolling is mentioned, for example.
  • the mirror finish processing is not particularly limited, and a conventionally known method can be used. Examples thereof include mechanical polishing, chemical polishing, and electrolytic polishing. Examples of the mechanical polishing include a method of polishing with various commercially available polishing cloths, and a method of combining various commercially available abrasives (for example, diamond, alumina) and a buff.
  • a method using an abrasive and a method of changing the used abrasive from coarse particles to fine particles over time are preferably exemplified.
  • the final polishing agent is preferably # 1500.
  • the glossiness can be 50% or more (in the case of rolled aluminum, both the rolling direction and the width direction are 50% or more).
  • Examples of chemical polishing include various methods described in “Aluminum Handbook”, 6th edition, edited by Japan Aluminum Association, 2001, p.164-165. Further, the phosphoric acid-nitric acid method, Alupol I method, Alupol V method, Alcoa R5 method, H 3 PO 4 —CH 3 COOH—Cu method, and H 3 PO 4 —HNO 3 —CH 3 COOH method are preferably mentioned. Of these, the phosphoric acid-nitric acid method, the H 3 PO 4 —CH 3 COOH—Cu method, and the H 3 PO 4 —HNO 3 —CH 3 COOH method are preferable.
  • the glossiness can be set to 70% or more (in the case of rolling, 70% or more in both the rolling direction and the width direction).
  • the electrolytic polishing examples include various methods described in “Aluminum Handbook”, 6th edition, edited by Japan Aluminum Association, 2001, p.164-165. Further, a method described in US Pat. No. 2,708,655 is preferably exemplified. "Practical surface technology", vol. 33, No. 3, 1986, p32-38 is also preferred.
  • the gloss can be 70% or more (in the case of rolled aluminum, both the rolling direction and the width direction are 70% or more).
  • a method of using an abrasive is preferably performed by changing the abrasive to be used from coarse particles to fine particles over time, and then performing electrolytic polishing.
  • a surface having an average surface roughness Ra, 0.1 ⁇ m or less, and a glossiness of 50% or more can be obtained.
  • the average surface roughness is preferably 0.03 ⁇ m or less, and more preferably 0.02 ⁇ m or less.
  • the glossiness is preferably 70% or more, and more preferably 80% or more.
  • the glossiness is a regular reflectance obtained in accordance with JIS Z8741-1997 “Method 3 60 ° Specular Gloss” in the direction perpendicular to the rolling direction.
  • variable angle gloss meter for example, VG-1D, manufactured by Nippon Denshoku Industries Co., Ltd.
  • the incident reflection angle is 60 degrees and the regular reflectance is 70%.
  • the incident / reflection angle is 20 degrees.
  • Degreasing treatment uses acids, alkalis, organic solvents, etc. to dissolve and remove the organic components such as dust, fat, and resin that adhere to the aluminum surface, and removes defects in each treatment described below caused by the organic components. It is performed for the purpose of preventing the occurrence. Further, it is also used for the purpose of removing the oxide film formed on the film during the mirror finishing process.
  • a conventionally known degreasing agent can be used for the degreasing treatment. Specifically, for example, various commercially available degreasing agents can be used by a predetermined method.
  • a method of bringing an organic solvent such as alcohol (for example, methanol), ketone, benzine, or volatile oil into contact with the aluminum surface at room temperature (organic solvent method); contacting an organic solvent such as acetone with the aluminum surface at room temperature and using ultrasonic waves Method (ultrasonic cleaning method); Method of bringing a solution containing a surfactant such as soap and neutral detergent into contact with the aluminum surface at a temperature from room temperature to 80 ° C., and then washing with water (surfactant method); concentration
  • a 10 to 200 g / L sulfuric acid aqueous solution is brought into contact with an aluminum surface at a temperature from room temperature to 70 ° C.
  • a sodium hydroxide aqueous solution having a concentration of 5 to 20 g / L is applied to the aluminum surface at a normal temperature.
  • the aluminum surface is electrolyzed by applying a direct current of a current density of 1 ⁇ 10A / dm 2 in the cathode, then the concentration 100 ⁇ 500 g / L How neutralized by contacting the aqueous solution of nitric acid; while various known anodizing electrolytic solution is brought into contact with the aluminum surface at ordinary temperature, by passing a direct current of a current density of 1 ⁇ 10A / dm 2 of the aluminum surface in the cathode
  • Neutralization method A method in which an emulsion prepared by mixing a surfactant, water, etc. with light oil, kerosene, etc. is brought into contact with the aluminum surface at a temperature from room temperature to 50 ° C. for 30 to 180 seconds and then washed with water (emulsification and degreasing) Method): A method in which a mixed solution of sodium carbonate, phosphates, surfactant, etc. is brought into contact with the aluminum surface at a temperature from room temperature to 50 ° C. for 30 to 180 seconds and then washed with water. Phosphate method) can be exemplified.
  • ⁇ Micropore starting point formation method> As a method for forming the starting point of the micropore, a conventionally known method can be used. Specifically, it is preferable to use the self-ordering method described later.
  • the self-ordering method is a method of improving the regularity by utilizing the property that the micropores of the anodized film are regularly arranged and removing the factors that disturb the regular arrangement. Specifically, high-purity aluminum is used, and an anodized film is formed at a voltage corresponding to the type of the electrolyte. In this method, since the micropore diameter depends on the voltage, a desired micropore diameter can be obtained to some extent by controlling the voltage.
  • the average flow rate during the anodizing treatment is preferably 0.5 to 20.0 m / min, more preferably 1.0 to 15.0 m / min, and 2.0 to 10.0 m / min. More preferably, it is min.
  • the method of flowing the electrolytic solution under the above conditions is not particularly limited, but for example, a method using a general stirring device such as a stirrer is used. It is preferable to use a stirrer capable of controlling the stirring speed by digital display because the average flow rate can be controlled. Examples of such a stirring device include a magnetic stirrer HS-50D manufactured by AS ONE.
  • the anodizing treatment is performed by applying a voltage of 195 V or more in an acidic aqueous solution containing an aliphatic carboxylic acid having 3 or more carbon atoms or an aromatic carboxylic acid.
  • the voltage used for the anodizing treatment can be 195 to 600V, preferably 195V to 500V, and more preferably 195V to 400V.
  • the average micropore density corresponding to the processing voltage is 0.57 to 3.53 / ⁇ m 2 .
  • the generated current density during the anodizing treatment can be used at 1000 A / m 2 or less, preferably 500 A / m 2 or less, more preferably 400 to 100 A / m 2 , and even more preferably 250 A / m 2 . As long as it is within the above voltage / current density range, either constant voltage processing or constant current processing can be performed.
  • the electrolytic solution used for the anodizing treatment is an acidic aqueous solution containing an aliphatic carboxylic acid having 3 or more carbon atoms or an aromatic carboxylic acid.
  • an aliphatic carboxylic acid propionic acid, butyric acid, valeric acid, Caproic acid, enanthic acid, caprylic acid, pelargonic acid, lauric acid, myristic acid, palmitic acid, margaric acid, stearic acid, oleic acid, linoleic acid, linolenic acid, arachidonic acid, docosahexaenoic acid, eicosapentanoic acid, malonic acid, Succinic acid, adipic acid, tartaric acid, malic acid, and citric acid can be used, malonic acid, succinic acid, adipic acid, and tartaric acid are preferable, and malonic acid, succinic acid, and tartaric acid are more preferable.
  • aromatic carboxylic acids benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, hemimellitic acid, trimellitic acid, trimesic acid, melophanoic acid, planitic acid, pyromellitic acid, mellitic acid, diphenic acid, toluic acid, Xylyl acid, hemelic acid, mesitylene acid, prenicylic acid, jurylic acid, cumic acid are preferable, benzoic acid, phthalic acid, isophthalic acid, terephthalic acid can be used, and benzoic acid, phthalic acid, isophthalic acid, terephthalic acid are preferable.
  • phthalic acid More preferred are phthalic acid, isophthalic acid, and terephthalic acid.
  • Said carboxylic acid may be used independently and may be used in mixture of 2 or more types. Acids other than the above carboxylic acids may be used as long as the effects of the present invention are not impaired, but the total acid concentration in the aqueous solution is 50% by mass or less.
  • acids other than the above carboxylic acids sulfuric acid, phosphoric acid, boric acid and the like may be used together with the above carboxylic acids.
  • the concentration of the carboxylic acid can be 0.01 mol / L to 10 mol / L, preferably 0.05 to 5 mol / L, and more preferably 0.1 to 5.0 mol / L.
  • the electrolyte temperature used for the anodizing treatment can be 0-100 ° C., preferably 0-50 ° C., more preferably 0-20 ° C.
  • the micropore density is preferably 3.55 / ⁇ m 2 or less, 0.10 / ⁇ m 2 or more, more preferably 3.55 / ⁇ m 2 or less, 0.50 / ⁇ m 2 or more, and further 3.
  • the number is preferably 53 / ⁇ m 2 or less and 0.81 / ⁇ m 2 or more.
  • the ordering process is a process in which a process consisting of a film dissolving process for dissolving the anodized film and an anodizing process after the film dissolving process is performed once or more.
  • the film dissolution treatment is a treatment for dissolving the anodized film of the aluminum member described above. Thereby, a part of the irregular arrangement on the surface of the anodized film is partially dissolved, so that the regularity of the arrangement of the micropores becomes high. In addition, by dissolving the film, the current density rises during the first anodic oxidation after the film is dissolved, and as a result, the regularity of the arrangement of micropores increases.
  • the film dissolution treatment is performed by bringing the aluminum member into contact with an acidic aqueous solution or an alkaline aqueous solution.
  • the method of making it contact is not specifically limited, For example, the immersion method and the spray method are mentioned. Of these, the dipping method is preferred.
  • an aqueous acid solution When an aqueous acid solution is used for the film dissolution treatment, it is preferable to use an aqueous solution of an inorganic acid such as sulfuric acid, phosphoric acid, nitric acid, hydrochloric acid, or a mixture thereof. Especially, the aqueous solution which does not contain chromic acid is preferable at the point which is excellent in safety
  • the concentration of the acid aqueous solution is preferably 1 to 10% by mass.
  • the temperature of the aqueous acid solution is preferably 25 to 40 ° C.
  • an alkaline aqueous solution of at least one alkali selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide.
  • the concentration of the alkaline aqueous solution is preferably 0.1 to 5% by mass.
  • the temperature of the alkaline aqueous solution is preferably 20 to 35 ° C. Specifically, for example, 50 g / L, 40 ° C. phosphoric acid aqueous solution, 0.5 g / L, 30 ° C. sodium hydroxide aqueous solution or 0.5 g / L, 30 ° C. potassium hydroxide aqueous solution is preferably used. .
  • the immersion time in the acid aqueous solution or alkali aqueous solution is preferably 8 to 60 minutes, more preferably 10 to 50 minutes, and further preferably 15 to 30 minutes.
  • the anodizing treatment is performed after the above-described film dissolution treatment. Thereby, the oxidation reaction of the aluminum substrate proceeds, and the anodic oxide film dissolved by the film dissolution treatment becomes thick.
  • the anodizing treatment may be performed by a conventionally known method, but is preferably performed under the same conditions as the method of the present invention used in the self-ordering method described above.
  • the electrolysis time is preferably 1 to 100 hours, more preferably 30 to 80 hours, and further preferably 40 to 50 hours.
  • the above-described film dissolution treatment and the subsequent anodic oxidation treatment may be performed once or more.
  • the regularization treatment when the above steps are repeated twice or more, the conditions of each film dissolution treatment and anodization treatment may be the same or different.
  • FIG. 3A shows an aluminum substrate 12a and an anodized film 14a having micropores 16a present on the surface of the aluminum substrate 12a.
  • FIG. 3B the surface of the anodized film 14a shown in FIG. 3A and the inside of the micropores 16a are dissolved by the first film dissolution treatment, and the micropores 16a are formed on the aluminum substrate 12a.
  • An anodized film 14b having a pore 16b is formed, and the anodized film 14b remains on the bottom surface of the micropore 16b.
  • FIG. 3C the oxidation reaction of the aluminum substrate 12a shown in FIG.
  • FIG. 3B proceeds by the next anodic oxidation treatment, and the micropores 16c deeper than the micropores 16b are formed on the aluminum substrate 12b.
  • An anodic oxide film 14c that is thicker than the anodic oxide film 14b is obtained.
  • FIG. 3D the surface of the anodic oxide film 14c shown in FIG. 3C and the inside of the micropore 16c are dissolved by the second film dissolution treatment, and the micropore 16d is formed on the aluminum substrate 12b.
  • the microstructure 20 having the anodic oxide film 14d is obtained.
  • the barrier layer is indicated by 18d.
  • the anodic oxide film 14d remains in FIG. 3D, the anodic oxide film may be completely dissolved in the second film dissolution treatment. When all of the anodized film is dissolved, the depressions present on the surface of the aluminum substrate become micropores of the fine structure.
  • the fine structure of the present invention is obtained by the manufacturing method described above. Moreover, the aluminum or aluminum alloy substrate of the microstructure of the present invention described below may be removed, or micropore penetration processing may be performed.
  • a treatment solution is used in which the anodized film (alumina) is difficult to dissolve and aluminum is easily dissolved. That is, the aluminum dissolution rate is 1 ⁇ m / min or more, preferably 3 ⁇ m / min or more, more preferably 5 ⁇ m / min or more, and the anodic oxide film dissolution rate is 0.1 nm / min or less, preferably 0.05 nm / min or less, more preferably Uses a treatment liquid having a condition of 0.01 nm / min or less.
  • Such a treatment liquid is based on an acid or alkali aqueous solution, for example, manganese, zinc, chromium, iron, cadmium, cobalt, nickel, tin, lead, antimony, bismuth, copper, mercury, silver, palladium, platinum,
  • a gold compound for example, chloroplatinic acid
  • a fluoride thereof, a chloride thereof, or the like is preferably used.
  • an acid aqueous solution base is preferable, and it is preferable to blend a chloride.
  • a treatment liquid (hydrochloric acid / mercury chloride) in which mercury chloride is blended with an aqueous hydrochloric acid solution and a treatment liquid (hydrochloric acid / copper chloride) in which copper chloride is blended with an aqueous hydrochloric acid solution are preferable from the viewpoint of treatment latitude.
  • the composition of such a treatment liquid is not particularly limited, and for example, a bromine / methanol mixture, a bromine / ethanol mixture, aqua regia and the like can be used.
  • the acid or alkali concentration of such a treatment liquid is preferably 0.01 to 10 mol / L, and more preferably 0.05 to 5 mol / L.
  • the treatment temperature using such a treatment liquid is preferably ⁇ 10 ° C. to 80 ° C., and preferably 0 ° C. to 60 ° C.
  • the aluminum substrate is dissolved by bringing the aluminum substrate after the anodizing treatment step into contact with the treatment liquid described above.
  • the method of making it contact is not specifically limited, For example, the immersion method and the spray method are mentioned. Of these, the dipping method is preferred.
  • the contact time at this time is preferably 10 seconds to 5 hours, more preferably 1 minute to 3 hours.
  • the following treatment (2-a) or (2-b) is preferably performed.
  • the bottom of the anodized film is removed by pre-soaking in a pH buffer solution and filling the hole with the pH buffer solution from the opening side of the micropore, and then on the opposite side of the opening, that is, on the bottom of the anodized film. It is preferably carried out by a method of contacting with an acid aqueous solution or an alkali aqueous solution.
  • an aqueous solution of an inorganic acid such as sulfuric acid, phosphoric acid, nitric acid, hydrochloric acid or a mixture thereof.
  • the concentration of the acid aqueous solution is preferably 1 to 10% by mass.
  • the temperature of the aqueous acid solution is preferably 25 to 40 ° C.
  • an alkaline aqueous solution it is preferable to use an aqueous solution of at least one alkali selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide.
  • the concentration of the alkaline aqueous solution is preferably 0.1 to 5% by mass.
  • the temperature of the alkaline aqueous solution is preferably 20 to 35 ° C.
  • a 50 g / L, 40 ° C. phosphoric acid aqueous solution, a 0.5 g / L, 30 ° C. sodium hydroxide aqueous solution, or a 0.5 g / L, 30 ° C. potassium hydroxide aqueous solution is suitably used. It is done.
  • the immersion time in the acid aqueous solution or alkali aqueous solution is preferably 8 to 120 minutes, more preferably 10 to 90 minutes, and further preferably 15 to 60 minutes. Moreover, when immersing in a pH buffer solution beforehand, the buffer solution corresponding to the acid / alkali mentioned above is used appropriately.
  • a CMP slurry such as PNINERLITE-7000 manufactured by Fujimi Incorporated, GPXHSC800 manufactured by Hitachi Chemical Co., Ltd., CL-1000 manufactured by Asahi Glass (Seimi Chemical) Co., Ltd. can be used.
  • Example 1 Electrolytic polishing treatment A high-purity aluminum substrate (Sumitomo Light Metal Co., Ltd., purity 99.99 mass%, thickness 0.4 mm) was cut in an area of 10 cm square, and using an electrolytic polishing liquid having the following composition, a voltage of 10 V, liquid The electropolishing treatment was performed at a temperature of 65 ° C.
  • the cathode was a carbon electrode, and the power source was GPO-250-30R (manufactured by Takasago Seisakusho).
  • Degreasing treatment The sample after the polishing treatment obtained above was degreased by immersing it for 10 to 60 seconds under the condition of a liquid temperature of 60 ° C. using a degreasing treatment liquid having the following composition.
  • the obtained surface has an average surface roughness Ra, It was 0.1 ⁇ m or less and the glossiness was 50% or more.
  • ⁇ Degreasing solution composition > 1.75 mol / L sodium hydroxide 0.16 mol / L sodium nitrate 3.
  • the sample obtained above was subjected to a constant voltage anodizing treatment with an electrolyte of 0.30 mol / L succinic acid aqueous solution for 45 hours under conditions of a voltage of 252 V and a liquid temperature of 0 ° C. 4).
  • Film dissolution treatment The sample obtained above was immersed for 12 hours under the condition of a liquid temperature of 60 ° C. using an oxide film removal treatment liquid having the following composition to perform an oxide film removal treatment.
  • Anodizing treatment The sample obtained above was subjected to anodizing treatment in the same manner except that the treatment time was 43 hours. 6).
  • micropore cycle and thickness measurement The micropore cycle is a cross section of the sample obtained by anodizing, observed with FE-SEM (S-900, manufactured by Hitachi, Ltd.), and a photograph (150,000 times). In other words, it is a value obtained by measuring the period of 25 or more micropores and averaging them. The micropore thickness was also measured and averaged in the same manner.
  • Example 2 The electrolytic conditions for the ordered anodizing treatment are as follows: a constant voltage anodizing treatment is carried out for 47 hours with a 0.3 mol / L aqueous solution of citric acid and a voltage of 375 V and a solution temperature of 0 ° C .; Example 2 was obtained in the same manner as in Example 1 except that the treatment time in the anodizing treatment was 45 hours, and the scanning microscope observation field of view in the calculation of the degree of ordering was 4000 times. (Example 3) 3.
  • the electrolytic conditions for the ordered anodizing treatment are as follows: a constant voltage anodizing treatment is carried out for 49 hours using a 0.03 mol / L phthalic acid aqueous solution at a voltage of 320 V and a liquid temperature of 0 ° C .; Example 3 was obtained in the same manner as in Example 1 except that the treatment time in the anodizing treatment was 47 hours and the scanning microscope observation field of view in the calculation of the degree of ordering was 5000 times.
  • the electrolytic condition of the ordered anodizing treatment is a constant voltage anodizing treatment for 17 hours with a 0.1 mol / L tartaric acid aqueous solution under the conditions of a voltage of 263 V and a liquid temperature of 5 ° C.
  • Example 4 was obtained in the same manner as in Example 1 except that the treatment time in the anodizing treatment was 20 hours.
  • Comparative Example 1 was obtained in the same manner as in Example 1 except that the scanning microscope observation field for calculating the degree of ordering was set to 10000 times.
  • Comparative Example 2 3. above.
  • Example 2 As the electrolytic conditions for the ordered anodizing treatment, a constant voltage anodizing treatment was performed for 8 hours with an electrolyte solution of 0.5 mol / L oxalic acid at a voltage of 40 V and a liquid temperature of 15 ° C. The treatment time in the anodizing treatment is 9 hours, and the above 6. Comparative Example 2 was obtained in the same manner as in Example 1 except that the scanning microscope observation field for calculating the degree of ordering was 10,000 times.
  • Comparative Example 3 As the electrolytic conditions for the ordered anodizing treatment, a constant voltage anodizing treatment was performed for 0.3 hours with a 0.5 mol / L oxalic acid electrolytic solution at a voltage of 195 V and a liquid temperature of 0 ° C. Comparative Example 3 was obtained in the same manner as in Example 1 except that the treatment time in the anodizing treatment was 0.3 hour. The formed anodized film “burned”. ("Burning" refers to a phenomenon in which local film growth occurs and uniform film formation does not occur). Therefore, the calculation of the micropore period, the micropore thickness, and the degree of bottom ordering cannot be performed. (Comparative Example 4) 3. above. The processing time of the ordered anodizing treatment is 10 hours, and the above 5. Comparative Example 4 was obtained in the same manner as in Example 1 except that the treatment time in the anodizing treatment was 11 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

Disclosed is a microstructure comprising an anodized film of aluminum or an aluminum alloy, wherein the degree of regularization of a plurality of micropores on the bottom surface is 70% or more, the center-to-center distance between the micropores is 600 nm or more, and the length of each micropore in the axial direction is 50 μm or more. Also disclosed is a method for producing the microstructure.

Description

微細構造体およびその製造方法Fine structure and manufacturing method thereof
 本発明は、微細構造体に関し、特に長周期のマイクロポア配列を有する微細構造体およびその製造方法に関する。 The present invention relates to a microstructure, and more particularly to a microstructure having a long-period micropore array and a method for manufacturing the same.
 金属および半導体の薄膜、細線、ドット等の技術領域では、ある特徴的な長さより小さなサイズにおいて自由電子の動きが閉じ込められることにより、電気的、光学的および化学的に特異な現象が見られている。このような現象は「量子力学的サイズ効果(量子サイズ効果)」と呼ばれている。このような特異な現象を応用した機能材料の研究開発が、現在盛んに行われている。具体的には、数百nmより微細な構造を有する材料が、「微細構造体」または「ナノ構造体」と称されており、材料開発の対象とされている。 In the technical fields of metal and semiconductor thin films, thin wires, dots, etc., the phenomenon of electrical, optical and chemical peculiarities is seen by confining the movement of free electrons in a size smaller than a certain characteristic length. Yes. Such a phenomenon is called “quantum mechanical size effect (quantum size effect)”. Research and development of functional materials applying such a unique phenomenon is actively underway. Specifically, a material having a structure finer than several hundred nm is called a “microstructure” or “nanostructure”, and is a target for material development.
 こうした微細構造体の作製方法としては、例えば、フォトリソグラフィ、電子線露光、X線露光等の微細パターン形成技術を初めとする半導体加工技術によって直接的にナノ構造体を作製する方法が挙げられる。 Examples of such a fine structure manufacturing method include a method of directly manufacturing a nano structure by a semiconductor processing technique including a fine pattern forming technique such as photolithography, electron beam exposure, and X-ray exposure.
 中でも、規則的なマイクロポアを有する微細構造体を作製する方法についての研究が注目され、多く行われている。
 例えば、自己規制的に規則的な構造が形成される方法として、電解液中でアルミニウムを陽極酸化処理して得られる陽極酸化アルミナ膜(陽極酸化皮膜)が挙げられる。陽極酸化皮膜には、数nm程度から数百nm程度の直径を有する複数の微細孔(マイクロポア)が規則的に形成されることが知られている。この陽極酸化皮膜の自己規則化を用い、完全に規則的な配列を得ると、理論的には、マイクロポアを中心に底面が正六角形である六角柱のセルが形成され、隣接するマイクロポアを結ぶ線が正三角形を成すことが知られている。
In particular, much research has been conducted on a method for manufacturing a microstructure having a regular micropore.
For example, as a method of forming a regular structure in a self-regulating manner, an anodized alumina film (anodized film) obtained by anodizing aluminum in an electrolytic solution can be mentioned. It is known that a plurality of fine pores (micropores) having a diameter of about several nm to several hundred nm are regularly formed in the anodized film. By using this self-ordering of the anodized film and obtaining a perfectly regular arrangement, theoretically, hexagonal prism cells with a regular hexagonal bottom centered around the micropores are formed, and adjacent micropores are formed. It is known that the connecting line forms an equilateral triangle.
 このようなマイクロポアを有する陽極酸化皮膜の用途例としては、光機能性ナノデバイス、磁気デバイス、発光担体、触媒担持体等が知られている。例えば、特許文献1には、ポアを金属で封孔し局所プラズモン共鳴を発生させてラマン光分析装置へ応用する旨が記載されている。
 このようにマイクロポアを形成させる陽極酸化処理の前には、陽極酸化処理のマイクロポアの生成の起点となる窪みを形成させておく方法が知られている。このように窪みを形成させることにより、マイクロポアの配列およびポア径のばらつきを所望の範囲に制御することが容易となる。
 窪みを形成させる一般的な方法として、陽極酸化皮膜の自己規則性を利用した自己規則化法が知られている。これは陽極酸化皮膜のマイクロポアが規則配列する性質を利用し、規則的な配列をかく乱する要因を取り除くことで、規則性を向上させる方法である。
As examples of applications of such an anodized film having micropores, optical functional nanodevices, magnetic devices, luminescent carriers, catalyst carriers and the like are known. For example, Patent Document 1 describes that pores are sealed with metal to generate local plasmon resonance and applied to a Raman optical analyzer.
There is known a method in which a depression that is a starting point for generating micropores in an anodizing process is formed before the anodizing process for forming micropores. By forming the depressions in this way, it becomes easy to control the variation in the arrangement of micropores and the pore diameter within a desired range.
As a general method for forming the depression, a self-ordering method using the self-ordering property of the anodized film is known. This is a method for improving the regularity by utilizing the property that the micropores of the anodized film are regularly arranged and removing the factors that disturb the regular arrangement.
 また、特許文献2には、マイクロポアの窪みの間隔(周期)を2.5nm/Vで徐することによって得られるアノード酸化電圧で陽極酸化を行うこと、すなわち、ポア周期を電圧値で調整できることが記載されている。しかし、ポア周期が500nmを超える陽極酸化皮膜の記載は見られない。 Patent Document 2 discloses that anodization is performed with an anodic oxidation voltage obtained by gradually reducing the interval (period) of the recesses of the micropores at 2.5 nm / V, that is, the pore period can be adjusted by a voltage value. Is described. However, there is no description of an anodic oxide film having a pore period exceeding 500 nm.
特開2007-231336号公報JP 2007-231336 A 特許第3714507号Japanese Patent No. 3714507
 特許文献1記載の自己規則化法は、平均ポア密度が15個/μm2以下即ち、マイクロポアの重心間距離が300nm以上では、陽極酸化皮膜の膜成長速度をハニカム配列化に必要な速度に維持できず、規則配列化されたマイクロポアの構造を維持したまま膜をマイクロポアの軸方向に成長させることが困難であった。 In the self-ordering method described in Patent Document 1, when the average pore density is 15 pieces / μm 2 or less, that is, when the distance between the center of gravity of the micropores is 300 nm or more, the film growth rate of the anodized film is set to a speed necessary for the honeycomb arrangement. It was difficult to maintain the structure of the ordered micropores, and it was difficult to grow the film in the axial direction of the micropores.
 本発明者は、上記目的を達成すべく鋭意研究した結果、特定のカルボン酸を含む電解液を用いて陽極酸化処理を施すことにより、ハニカム配列化されたマイクロポアのハニカム配列を崩すことなく、マイクロポアの中心間距離が大きく、膜厚が50μm以上となる微細構造体を作成できることを見出し、本発明を完成させた。 As a result of earnest research to achieve the above-mentioned object, the present inventor performs anodizing treatment using an electrolytic solution containing a specific carboxylic acid, so that the honeycomb arrangement of the micropores arranged in the honeycomb is not destroyed. The inventors have found that a fine structure having a large distance between centers of micropores and a film thickness of 50 μm or more can be produced, and the present invention has been completed.
 即ち、本発明は、以下の(1)~(4)を提供する。
 (1)アルミニウムまたはアルミニウム合金の陽極酸化皮膜よりなる微細構造体で、底部面で下記一般式(1)により定義される複数のマイクロポアの規則化度が70%以上であり、該マイクロポアの中心間距離が600nm以上であり、該マイクロポアの軸方向の長さが50μm以上である微細構造体:
一般式(1)
 規則化度(%)=B/A×100
 上記一般式(1)中、Aは、測定範囲におけるマイクロポアの全数を表す。Bは、一のマイクロポアの長軸に直角方向の断面の中心から、その他のマイクロポアの縁に内接する最も半径が短い円を描いた場合に、その円の内部に前記マイクロポア以外のマイクロポアの中心を6個含むことになる前記一のマイクロポアの測定範囲における数を表す。
 (2)前記微細構造体のマイクロポアの中心間距離が600nm~1200nmである請求項1に記載の微細構造体。
 ここでマイクロポアの中心間の距離(周期)とは、1つの円環状のマイクロポアの長軸に直角方向断面の中心と、一番近い次のマイクロポアの中心との距離を意味し、マイクロポアの長軸に直角方向の断面の形状が真円でない場合には直角方向の断面の重心を意味する。中心間の距離(周期)は、特に断らない限り複数のマイクロポアの平均値を意味する。マイクロポアの軸方向の長さ、密度等も同様に特に断らない限り複数のマイクロポアの平均値である。
 また、底部面とは円環状のマイクロポアの軸に垂直な微細構造体の表面で、マイクロポアの複数の孔を有し、アルミニウムまたはアルミニウム合金板から微細構造体が製造されたときにアルミニウムまたはアルミニウム合金板に近い側の平面で、アルミニウムまたはアルミニウム合金板が除去されて得られる表面をいう。
 (3)アルミニウムまたはアルミニウム合金板を、炭素数が3以上の脂式カルボン酸、または芳香族カルボン酸を含む、酸性水溶液中で195V以上の電圧を印加して陽極酸化処理する(1)または(2)に記載の微細構造体の製造方法。
 (4)前記カルボン酸が、マロン酸、コハク酸、アジピン酸、酒石酸、リンゴ酸、クエン酸、安息香酸、フタル酸、イソフタル酸、およびテレフタル酸からなる群から選択される少なくとも1つである(3)に記載の微細構造体の製造方法。
That is, the present invention provides the following (1) to (4).
(1) A microstructure comprising an anodized film of aluminum or an aluminum alloy, wherein the degree of ordering of the plurality of micropores defined by the following general formula (1) is 70% or more on the bottom surface, A fine structure having a center-to-center distance of 600 nm or more and an axial length of the micropore of 50 μm or more:
General formula (1)
Ordering degree (%) = B / A × 100
In the general formula (1), A represents the total number of micropores in the measurement range. B, when a circle with the shortest radius inscribed in the edge of the other micropore is drawn from the center of the cross section perpendicular to the major axis of one micropore, the micropores other than the micropore are inside the circle. This represents the number in the measurement range of the one micropore that will contain six pore centers.
(2) The microstructure according to claim 1, wherein a distance between centers of micropores of the microstructure is 600 nm to 1200 nm.
Here, the distance (period) between the centers of the micropores means the distance between the center of the cross section perpendicular to the major axis of one annular micropore and the center of the next nearest micropore. When the shape of the cross section perpendicular to the major axis of the pore is not a perfect circle, it means the center of gravity of the cross section in the perpendicular direction. The distance (cycle) between the centers means an average value of a plurality of micropores unless otherwise specified. Similarly, the length, density, and the like of the micropores in the axial direction are average values of a plurality of micropores unless otherwise specified.
The bottom surface is the surface of the fine structure perpendicular to the axis of the annular micropore, and has a plurality of holes in the micropore, and when the fine structure is manufactured from aluminum or an aluminum alloy plate, It is a plane close to the aluminum alloy plate and refers to the surface obtained by removing the aluminum or aluminum alloy plate.
(3) Anodizing the aluminum or aluminum alloy plate by applying a voltage of 195 V or more in an acidic aqueous solution containing an aliphatic carboxylic acid having 3 or more carbon atoms or an aromatic carboxylic acid (1) or ( The manufacturing method of the microstructure described in 2).
(4) The carboxylic acid is at least one selected from the group consisting of malonic acid, succinic acid, adipic acid, tartaric acid, malic acid, citric acid, benzoic acid, phthalic acid, isophthalic acid, and terephthalic acid ( The manufacturing method of the fine structure as described in 3).
 上記微細構造体は、マイクロポア内に導電物質を充填した場合は、マイクロポア貫通方向(円環状のマイクロポアの軸方向)に導電性を、マイクロポア貫通方向と垂直な面に絶縁性を有する異方性導電膜として用いることができる。また、マイクロポア径の均一性、マイクロポアの細密充填構造、直管構造を利用した精密フィルタとしての用途が見込まれる。 When the micropore is filled with a conductive material, the microstructure has conductivity in the micropore penetrating direction (axial direction of the annular micropore) and has insulation on a surface perpendicular to the micropore penetrating direction. It can be used as an anisotropic conductive film. In addition, it is expected to be used as a precision filter using the uniformity of micropore diameter, the finely packed structure of micropores, and the straight pipe structure.
 本発明は、上記一般式(1)により定義される規則化度が70%以上であり、上記マイクロポアの中心間の距離が600nm以上で、上記マイクロポアの厚さが50μm以上である微細構造体を提供することができる。また、本発明の製造方法は、本発明の微細構造体を製造できる。 The present invention provides a microstructure in which the degree of ordering defined by the general formula (1) is 70% or more, the distance between the centers of the micropores is 600 nm or more, and the thickness of the micropores is 50 μm or more. The body can be provided. Moreover, the manufacturing method of this invention can manufacture the microstructure of this invention.
図1(A),(B)は、本発明の異方導電性部材の好適な実施態様の一例を示す簡略図であり、図1(A)は正面図、図1(B)は図1(A)の切断面線IB-IBからみた断面図である。FIGS. 1A and 1B are simplified views showing an example of a preferred embodiment of the anisotropic conductive member of the present invention. FIG. 1A is a front view, and FIG. FIG. 6 is a cross-sectional view taken along section line IB-IB in FIG. 図2(A),(B)は、ポアの規則化度を算出する方法の説明図である。2A and 2B are explanatory diagrams of a method for calculating the degree of ordering of pores. 図3(A)~(D)は、本発明の製造方法における陽極酸化処理の一例を説明する模式的な端面図である。3A to 3D are schematic end views for explaining an example of anodizing treatment in the production method of the present invention.
 以下に、本発明を詳細に説明する。
 <微細構造体>
 本発明の微細構造体は、マイクロポアを有するアルミニウムまたはアルミニウム合金の陽極酸化皮膜よりなる。
 本発明の微細構造体について、図1を用いて説明する。微細構造体は複数のマイクロポアを有し、本明細書においてマイクロポアに関する規定は特に断らない限り25個以上のマイクロポアの平均値で示されている。
The present invention is described in detail below.
<Microstructure>
The microstructure of the present invention comprises an anodized film of aluminum or an aluminum alloy having micropores.
The microstructure of the present invention will be described with reference to FIG. The microstructure has a plurality of micropores. In the present specification, unless otherwise specified, the definition of micropores is indicated by an average value of 25 or more micropores.
 図1は、本発明の微細構造体の好適な実施態様の一例を示す簡略図であり、図1(A)は正面図、図1(B)は図1(A)の切断面線IB-IBからみた断面図である。
 本発明の微細構造体1は、酸化皮膜2およびマイクロポア3から構成される。
 図1(B)に示すようにマイクロポア3は、円環状の孔であり、該酸化皮膜2の厚み方向と略平行(図1においては平行)となるように設けられるのが好ましい。
 本発明の微細構造体1のマイクロポア3の中心間の距離(図1(A)、図1(B)においては符号9で表される部分)は、600nm以上である。好ましくは、600~1200nm、より好ましくは、600~1000nmで、さらに好ましくは600nm超~1000nmである。
 この範囲であると、異方性導電膜として用いる場合に絶縁性と導電性のバランスがよい。
 本発明においては、円環状のマイクロポアの軸方向の長さである上記酸化皮膜の厚み(図1(B)においては符号6で表される部分)は、50μm以上である。50~200μmであるのが好ましく、50~150μm、さらには50~100μmであるのがより好ましい。
 この範囲であると種々の用途に用いる場合に機械的強度が高く取扱が容易である。
 マイクロポア密度は、好ましくは、3.55個/μm以下0.10個/μm以上、より好ましくは、3.55個/μm以下0.50個/μm以上、さらには3.53個/μm以下0.81個/μm以上、であるのが好ましい。この範囲であるとマイクロポアの中心間距離が十分大きい微細構造体を得ることができる。
1A and 1B are simplified views showing an example of a preferred embodiment of the microstructure of the present invention. FIG. 1A is a front view, and FIG. 1B is a cross-sectional line IB- in FIG. It is sectional drawing seen from IB.
The microstructure 1 of the present invention is composed of an oxide film 2 and micropores 3.
As shown in FIG. 1B, the micropore 3 is an annular hole, and is preferably provided so as to be substantially parallel to the thickness direction of the oxide film 2 (parallel in FIG. 1).
The distance between the centers of the micropores 3 of the microstructure 1 of the present invention (portion represented by reference numeral 9 in FIGS. 1A and 1B) is 600 nm or more. Preferably, it is 600 to 1200 nm, more preferably 600 to 1000 nm, and even more preferably more than 600 nm to 1000 nm.
Within this range, when used as an anisotropic conductive film, the balance between insulation and conductivity is good.
In the present invention, the thickness of the oxide film (the portion represented by reference numeral 6 in FIG. 1B), which is the axial length of the annular micropore, is 50 μm or more. The thickness is preferably 50 to 200 μm, more preferably 50 to 150 μm, and even more preferably 50 to 100 μm.
Within this range, when used for various purposes, the mechanical strength is high and handling is easy.
The micropore density is preferably 3.55 / μm 2 or less, 0.10 / μm 2 or more, more preferably 3.55 / μm 2 or less, 0.50 / μm 2 or more, and further 3. The number is preferably 53 / μm 2 or less and 0.81 / μm 2 or more. Within this range, a microstructure having a sufficiently large distance between the centers of the micropores can be obtained.
 本発明の微細構造体を構成する上記酸化皮膜2は、アルミニウムまたはアルミニウム合金板の酸化皮膜であり、陽極酸化処理で形成される。
 また、本発明においては、マイクロポアの径(図1(B)において符号8で表される部分)は、10~590nmであるのが好ましく、150~360nmであるのがより好ましい。この範囲であると、陽極酸化処理形成時のマイクロポア径が均一性に優れるため、好ましいからである。
The oxide film 2 constituting the microstructure of the present invention is an oxide film of aluminum or an aluminum alloy plate, and is formed by an anodic oxidation treatment.
In the present invention, the diameter of the micropore (portion represented by reference numeral 8 in FIG. 1B) is preferably 10 to 590 nm, and more preferably 150 to 360 nm. This is because the micropore diameter at the time of the formation of the anodizing treatment is excellent in uniformity, which is preferable.
 本発明においては、上記微細構造体1は、底部面で、下記一般式(1)により定義される複数のマイクロポアの規則化度が70%以上である。なお、底部面とは円環状のマイクロポアの軸に垂直な微細構造体の表面で、マイクロポアを複数有し、アルミニウムまたはアルミニウム合金板から微細構造体が製造されたときにアルミニウムまたはアルミニウム合金板に近い側の平面で、アルミニウムまたはアルミニウム合金板が除去されれば除去された後に得られる酸化皮膜の表面をいう。図1(B)においては符号Z2で表される側の平面4をいう。微細構造体1の底部面4の他方は表面5であり、図1(B)においては符号Z1で表される側の平面である。
 底部面のマイクロポアの規則化度の測定は、後述する本発明の微細構造体の製造方法において、陽極酸化処理後、皮膜溶解を行い、底面部を走査型電子顕微鏡で観察した画像から所定のマイクロポア数を目視で確認し、下記一般式(1)より算出する。また、最終の陽極酸化処理の起点となる形状を観察して同様に求めてもよい。
In the present invention, the microstructure 1 has a bottom surface of a plurality of micropores defined by the following general formula (1) having a degree of ordering of 70% or more. The bottom surface is the surface of the fine structure perpendicular to the axis of the annular micropore. When the fine structure is manufactured from an aluminum or aluminum alloy plate, the aluminum or aluminum alloy plate has a plurality of micropores. The surface of the oxide film obtained after the aluminum or aluminum alloy plate is removed if the aluminum or aluminum alloy plate is removed. In FIG. 1B, the plane 4 on the side represented by the symbol Z2 is meant. The other of the bottom surface 4 of the microstructure 1 is a surface 5, which is a plane on the side represented by reference sign Z <b> 1 in FIG.
The measurement of the degree of ordering of the micropores on the bottom surface is carried out in a method for producing a microstructure according to the present invention, which will be described later, by performing film dissolution after anodizing treatment, and using a predetermined image from an image obtained by observing the bottom surface with a scanning electron microscope. The number of micropores is visually confirmed and calculated from the following general formula (1). Further, the shape which becomes the starting point of the final anodizing treatment may be observed in the same manner.
 規則化度(%)=B/A×100  (1)
 上記一般式(1)中、Aは、測定範囲におけるマイクロポアの全数を表す。Bは、一のマイクロポアの長軸に直角方向の断面の中心から、その他のマイクロポアの縁に内接する最も半径が短い円を描いた場合に、その円の内部に前記マイクロポア以外のマイクロポアの中心を6個含むことになる前記一のマイクロポアの測定範囲における数を表す。
Ordering degree (%) = B / A × 100 (1)
In the general formula (1), A represents the total number of micropores in the measurement range. B, when a circle with the shortest radius inscribed in the edge of the other micropore is drawn from the center of the cross section perpendicular to the major axis of one micropore, the micropores other than the micropore are inside the circle. This represents the number in the measurement range of the one micropore that will contain six pore centers.
 図2は、マイクロポアの規則化度を算出する方法の説明図である。図2を用いて、上記式(1)をより具体的に説明する。
 図2(A)に示されるマイクロポア101は、マイクロポア101の重心を中心とし、他のマイクロポアの縁に内接する最も半径が短い円103(図では、マイクロポア102に内接している。)を描いた場合に、円103の内部にマイクロポア101以外のマイクロポアの中心を6個含んでいる。したがって、マイクロポア101は、Bに算入される。
 図2(B)に示されるマイクロポア104は、マイクロポア104の重心を中心とし、他のマイクロポアの縁に内接する最も半径が短い円106(図では、マイクロポア105に内接している。)を描いた場合に、円106の内部にマイクロポア104以外のマイクロポアの重心を5個含んでいる。したがって、マイクロポア104は、Bに算入されない。
 また、図2(B)に示されるマイクロポア107は、マイクロポア107の重心を中心とし、他のマイクロポアの縁に内接する最も半径が短い円109(マイクロポア108に内接している。)を描いた場合に、円109の内部にマイクロポア107以外のマイクロポアの重心を7個含んでいる。したがって、マイクロポア107は、Bに算入されない。
FIG. 2 is an explanatory diagram of a method for calculating the degree of ordering of micropores. The above formula (1) will be described more specifically with reference to FIG.
The micropore 101 shown in FIG. 2A is centered on the center of gravity of the micropore 101 and has the shortest radius 103 inscribed in the edge of another micropore (in the figure, inscribed in the micropore 102). ) Includes six micropore centers other than the micropore 101 inside the circle 103. Therefore, the micropore 101 is included in B.
The micropore 104 shown in FIG. 2B is centered on the center of gravity of the micropore 104 and has the shortest radius 106 inscribed in the edge of another micropore (in the figure, inscribed in the micropore 105). ) Includes five centroids of micropores other than the micropores 104 inside the circle 106. Therefore, the micropore 104 is not included in B.
Further, the micropore 107 shown in FIG. 2B is centered on the center of gravity of the micropore 107 and has the shortest radius 109 inscribed in the edge of another micropore (inscribed in the micropore 108). Is drawn, the circle 109 includes seven centroids of micropores other than the micropore 107. Therefore, the micropore 107 is not included in B.
 上記微細構造体は、マイクロポア内に電解メッキ、または無電解メッキにより金属を充填することにより、異方性導電膜としての用途が見込まれる。また、微細構造体をアルカリ溶液に浸漬することにより、マイクロポア底部面を貫通させ精密フィルターとしての用途が見込まれる。 The above-mentioned fine structure is expected to be used as an anisotropic conductive film by filling a micropore with metal by electrolytic plating or electroless plating. Further, by immersing the fine structure in an alkaline solution, the micropore bottom surface is penetrated, and the use as a precision filter is expected.
 本発明の微細構造体は、例えば、アルミニウムまたはアルミニウム合金板を、炭素数が3以上の脂式カルボン酸、または芳香族カルボン酸を含む、酸性水溶液中で195V以上の電圧を印加して陽極酸化処理することにより製造することができる。 For example, the microstructure of the present invention is anodized by applying a voltage of 195 V or more in an acidic aqueous solution containing an aliphatic carboxylic acid having 3 or more carbon atoms or an aromatic carboxylic acid to an aluminum or aluminum alloy plate. It can be manufactured by processing.
 図3は、本発明の微細構造体の製造方法を説明するためのアルミニウム部材および微細構造体の模式的な断面図である。 FIG. 3 is a schematic cross-sectional view of an aluminum member and a microstructure for explaining the manufacturing method of the microstructure of the present invention.
 <アルミニウム基板>
 アルミニウムまたはアルミニウム合金基板は特に限定されず、例えば、純アルミニウム板;アルミニウムを主成分とし微量の異元素を含む合金板;低純度のアルミニウム(例えば、リサイクル材料)に高純度アルミニウムを蒸着させた基板;シリコンウエハー、石英、ガラス等の表面に蒸着、スパッタ等の方法により高純度アルミニウムを被覆させた基板;アルミニウムをラミネートした樹脂基板が挙げられる。
<Aluminum substrate>
The aluminum or aluminum alloy substrate is not particularly limited. For example, a pure aluminum plate; an alloy plate containing aluminum as a main component and containing a small amount of foreign elements; a substrate obtained by depositing high-purity aluminum on low-purity aluminum (for example, recycled material) A substrate in which high purity aluminum is coated on the surface of a silicon wafer, quartz, glass or the like by a method such as vapor deposition or sputtering; a resin substrate in which aluminum is laminated.
 アルミニウム基板のうち、陽極酸化処理により陽極酸化皮膜を設ける表面は、アルミニウム純度が、99.5質量%以上であることが好ましく、99.9質量%以上であることがより好ましく、99.99質量%であることが更に好ましい。アルミニウム純度が上記範囲であると、マイクロポア配列の規則性が十分となる。 Of the aluminum substrate, the surface on which the anodized film is provided by anodization treatment has an aluminum purity of preferably 99.5% by mass or more, more preferably 99.9% by mass or more, and 99.99% by mass. % Is more preferable. When the aluminum purity is in the above range, the regularity of the micropore array is sufficient.
 アルミニウム基板の表面は、あらかじめ脱脂処理および鏡面仕上げ処理を施されるのが好ましい。 The surface of the aluminum substrate is preferably preliminarily degreased and mirror-finished.
 <鏡面仕上げ処理>
 鏡面仕上げ処理は、アルミニウム基板の表面の凹凸をなくして、電着法等による粒子形成処理の均一性や再現性を向上させるために行われる。アルミニウム部材の表面の凹凸としては、例えば、アルミニウム部材が圧延を経て製造されたものである場合における、圧延時に発生した圧延筋が挙げられる。
 本発明においては、鏡面仕上げ処理は特に限定されず、従来公知の方法を用いることができる。例えば、機械研磨、化学研磨、電解研磨が挙げられる。
 機械研磨としては、例えば、各種市販の研磨布で研磨する方法、市販の各種研磨剤(例えば、ダイヤ、アルミナ)とバフとを組み合わせた方法が挙げられる。具体的には、研磨剤を用いる方法と、用いる研磨剤を粗い粒子から細かい粒子へと経時的に変更して行う方法が好適に例示される。この場合、最終的に用いる研磨剤としては、#1500のものが好ましい。これより、光沢度を50%以上(圧延アルミ二ウムである場合、その圧延方向および幅方向ともに50%以上)とすることができる。
<Mirror finish processing>
The mirror finishing process is performed to eliminate unevenness on the surface of the aluminum substrate and improve the uniformity and reproducibility of the particle forming process by an electrodeposition method or the like. As an unevenness | corrugation of the surface of an aluminum member, the rolling rebar generated at the time of rolling in the case where an aluminum member is manufactured through rolling is mentioned, for example.
In the present invention, the mirror finish processing is not particularly limited, and a conventionally known method can be used. Examples thereof include mechanical polishing, chemical polishing, and electrolytic polishing.
Examples of the mechanical polishing include a method of polishing with various commercially available polishing cloths, and a method of combining various commercially available abrasives (for example, diamond, alumina) and a buff. Specifically, a method using an abrasive and a method of changing the used abrasive from coarse particles to fine particles over time are preferably exemplified. In this case, the final polishing agent is preferably # 1500. Thus, the glossiness can be 50% or more (in the case of rolled aluminum, both the rolling direction and the width direction are 50% or more).
 化学研磨としては、例えば、「アルミニウムハンドブック」、第6版、(社)日本アルミニウム協会編、2001年、p.164-165に記載されている各種方法が挙げられる。
 また、リン酸-硝酸法、Alupol I法、Alupol V法、Alcoa R5法、H3PO4-CH3COOH-Cu法、H3PO4-HNO3-CH3COOH法が好適に挙げられる。中でも、リン酸-硝酸法、H3PO4-CH3COOH-Cu法、H3PO4-HNO3-CH3COOH法が好ましい。
 化学研磨により、光沢度を70%以上(圧延である場合、その圧延方向および幅方向ともに70%以上)とすることができる。
Examples of chemical polishing include various methods described in “Aluminum Handbook”, 6th edition, edited by Japan Aluminum Association, 2001, p.164-165.
Further, the phosphoric acid-nitric acid method, Alupol I method, Alupol V method, Alcoa R5 method, H 3 PO 4 —CH 3 COOH—Cu method, and H 3 PO 4 —HNO 3 —CH 3 COOH method are preferably mentioned. Of these, the phosphoric acid-nitric acid method, the H 3 PO 4 —CH 3 COOH—Cu method, and the H 3 PO 4 —HNO 3 —CH 3 COOH method are preferable.
By chemical polishing, the glossiness can be set to 70% or more (in the case of rolling, 70% or more in both the rolling direction and the width direction).
 電解研磨としては、例えば、「アルミハンドブック」,第6版,(社)日本アルミニウム協会編,2001年p.164-165に記載されている各種の方法が挙げられる。
 また、米国特許第2708655号明細書に記載されている方法が好適に挙げられる。
 また、「実務表面技術」,vol.33,No.3,1986年,p32-38に記載されている方法も好適に挙げられる。
 電解研磨により、光沢度を70%以上(圧延アルミニウムである場合、その圧延方向および幅方向ともに70%以上)とすることができる。
Examples of the electrolytic polishing include various methods described in “Aluminum Handbook”, 6th edition, edited by Japan Aluminum Association, 2001, p.164-165.
Further, a method described in US Pat. No. 2,708,655 is preferably exemplified.
"Practical surface technology", vol. 33, No. 3, 1986, p32-38 is also preferred.
By electropolishing, the gloss can be 70% or more (in the case of rolled aluminum, both the rolling direction and the width direction are 70% or more).
 これらの方法は、適宜組み合わせて用いることができる。例えば、研磨剤を用いる方法を、用いる研磨剤を粗い粒子から細かい粒子へと経時的に変更して行い、その後、電解研磨を施す方法が好適に挙げられる。 These methods can be used in appropriate combination. For example, a method of using an abrasive is preferably performed by changing the abrasive to be used from coarse particles to fine particles over time, and then performing electrolytic polishing.
 鏡面仕上げ処理により、例えば、平均表面粗さRa、0.1μm以下、光沢度50%以上の表面を得ることができる。平均表面粗さは、0.03μm以下であるのが好ましく、0.02μm以下であるのがより好ましい。また、光沢度は70%以上であるのが好ましく、80%以上であるのがより好ましい。
 なお、光沢度は、圧延方向に垂直な方向において、JIS Z8741-1997の「方法3 60度鏡面光沢」の規定に準じて求められる正反射率である。具体的には、変角光沢度計(例えば、VG-1D、日本電色工業社製)を用いて、正反射率70%以下の場合には入反射角度60度で、正反射率70%を超える場合には入反射角度20度で測定する。
By mirror finishing, for example, a surface having an average surface roughness Ra, 0.1 μm or less, and a glossiness of 50% or more can be obtained. The average surface roughness is preferably 0.03 μm or less, and more preferably 0.02 μm or less. Further, the glossiness is preferably 70% or more, and more preferably 80% or more.
The glossiness is a regular reflectance obtained in accordance with JIS Z8741-1997 “Method 3 60 ° Specular Gloss” in the direction perpendicular to the rolling direction. Specifically, using a variable angle gloss meter (for example, VG-1D, manufactured by Nippon Denshoku Industries Co., Ltd.), when the regular reflectance is 70% or less, the incident reflection angle is 60 degrees and the regular reflectance is 70%. In the case of exceeding, the incident / reflection angle is 20 degrees.
 <脱脂処理>
 脱脂処理は、酸、アルカリ、有機溶媒等を用いて、アルミニウム表面に付着した、ほこり、脂、樹脂等の有機成分を溶解させて除去し、有機成分を原因とする後述の各処理における欠陥の発生を防止することを目的として行われる。また、鏡面処理仕上げ処理の際に皮膜に形成された酸化膜を除去する目的としても用いられる。
 脱脂処理には、従来公知の脱脂剤を用いることができる。具体的には、例えば、市販されている各種脱脂剤を所定の方法で用いることにより行うことができる。
<Degreasing treatment>
Degreasing treatment uses acids, alkalis, organic solvents, etc. to dissolve and remove the organic components such as dust, fat, and resin that adhere to the aluminum surface, and removes defects in each treatment described below caused by the organic components. It is performed for the purpose of preventing the occurrence. Further, it is also used for the purpose of removing the oxide film formed on the film during the mirror finishing process.
A conventionally known degreasing agent can be used for the degreasing treatment. Specifically, for example, various commercially available degreasing agents can be used by a predetermined method.
 中でも、以下の各方法が好適に例示される。
 アルコール(例えば、メタノール)、ケトン、ベンジン、揮発油等の有機溶剤を常温でアルミニウム表面に接触させる方法(有機溶剤法);アセトン等の有機溶媒を常温でアルミニウム表面に接触させ、超音波を用いる方法(超音波洗浄法);石鹸、中性洗剤等の界面活性剤を含有する液を常温から80℃までの温度でアルミニウム表面に接触させ、その後、水洗する方法(界面活性剤法);濃度10~200g/Lの硫酸水溶液を常温から70℃までの温度でアルミニウム表面に30~80秒間接触させ、その後水洗する方法;濃度5~20g/Lの水酸化ナトリウム水溶液を常温でアルミニウム表面に30秒間程度接触させつつ、アルミニウム表面を陰極にして電流密度を1~10A/dm2の直流電流を流して電解し、その後、濃度100~500g/Lの硝酸水溶液を接触させて中和する方法;各種公知の陽極酸化処理用電解液を常温でアルミニウム表面に接触させつつ、アルミニウム表面を陰極にして電流密度1~10A/dm2の直流電流を流して、または、交流電流を流して電解する方法;濃度10~200g/Lのアルカリ水溶液を40~50℃でアルミニウム表面に15~60秒間接触させ、その後、濃度100~500g/Lの硝酸水溶液を接触させ中和する方法;軽油、灯油等に界面活性剤、水等を混合させた乳化液を常温から50℃までの温度でアルミニウム表面に30~180秒間接触させ、その後、水洗する方法(乳化脱脂法);炭酸ナトリウム、リン酸塩類、界面活性剤等の混合液を常温から50℃までの温度でアルミニウム表面に30~180秒間接触させ、その後、水洗する方法(リン酸塩法)が例示できる。
Especially, the following each method is illustrated suitably.
A method of bringing an organic solvent such as alcohol (for example, methanol), ketone, benzine, or volatile oil into contact with the aluminum surface at room temperature (organic solvent method); contacting an organic solvent such as acetone with the aluminum surface at room temperature and using ultrasonic waves Method (ultrasonic cleaning method); Method of bringing a solution containing a surfactant such as soap and neutral detergent into contact with the aluminum surface at a temperature from room temperature to 80 ° C., and then washing with water (surfactant method); concentration A method in which a 10 to 200 g / L sulfuric acid aqueous solution is brought into contact with an aluminum surface at a temperature from room temperature to 70 ° C. for 30 to 80 seconds and then washed with water; a sodium hydroxide aqueous solution having a concentration of 5 to 20 g / L is applied to the aluminum surface at a normal temperature. while contacting about seconds, the aluminum surface is electrolyzed by applying a direct current of a current density of 1 ~ 10A / dm 2 in the cathode, then the concentration 100 ~ 500 g / L How neutralized by contacting the aqueous solution of nitric acid; while various known anodizing electrolytic solution is brought into contact with the aluminum surface at ordinary temperature, by passing a direct current of a current density of 1 ~ 10A / dm 2 of the aluminum surface in the cathode Alternatively, a method in which an alternating current is applied for electrolysis; an alkaline aqueous solution having a concentration of 10 to 200 g / L is brought into contact with an aluminum surface at 40 to 50 ° C. for 15 to 60 seconds, and then an aqueous nitric acid solution having a concentration of 100 to 500 g / L is contacted. Neutralization method: A method in which an emulsion prepared by mixing a surfactant, water, etc. with light oil, kerosene, etc. is brought into contact with the aluminum surface at a temperature from room temperature to 50 ° C. for 30 to 180 seconds and then washed with water (emulsification and degreasing) Method): A method in which a mixed solution of sodium carbonate, phosphates, surfactant, etc. is brought into contact with the aluminum surface at a temperature from room temperature to 50 ° C. for 30 to 180 seconds and then washed with water. Phosphate method) can be exemplified.
 <マイクロポアの起点形成方法>
 マイクロポアの起点形成方法としては、従来公知の方法を用いることができる。具体的には、後述する自己規則化法を用いるのが好ましい。
 自己規則化法は、陽極酸化皮膜のマイクロポアが規則的に配列する性質を利用し、規則的な配列をかく乱する要因を取り除くことで、規則性を向上させる方法である。具体的には、高純度のアルミニウムを使用し、電解液の種類に応じた電圧で陽極酸化皮膜を形成させる。
 この方法においては、マイクロポア径は電圧に依存するので、電圧を制御することにより、ある程度所望のマイクロポア径を得ることができる。
<Micropore starting point formation method>
As a method for forming the starting point of the micropore, a conventionally known method can be used. Specifically, it is preferable to use the self-ordering method described later.
The self-ordering method is a method of improving the regularity by utilizing the property that the micropores of the anodized film are regularly arranged and removing the factors that disturb the regular arrangement. Specifically, high-purity aluminum is used, and an anodized film is formed at a voltage corresponding to the type of the electrolyte.
In this method, since the micropore diameter depends on the voltage, a desired micropore diameter can be obtained to some extent by controlling the voltage.
 陽極酸化処理をする際の平均流速は、0.5~20.0m/minであるのが好ましく、1.0~15.0m/minであるのがより好ましく、2.0~10.0m/minであるのが更に好ましい。上記範囲の流速で陽極酸化を行うことにより、均一かつ高い規則性を有することができる。
 また、電解液を上記条件で流動させる方法は、特に限定されないが、例えば、スターラーのような一般攪拌装置を使用する方法が用いられる。攪拌速度をデジタル表示でコントロールできるようなスターラーを用いると、平均流速が制御できるため、好ましい。そのような攪拌装置としては、例えば、AS ONE社製のマグネティックスターラーHS-50Dが挙げられる。
The average flow rate during the anodizing treatment is preferably 0.5 to 20.0 m / min, more preferably 1.0 to 15.0 m / min, and 2.0 to 10.0 m / min. More preferably, it is min. By performing anodization at a flow rate in the above range, uniform and high regularity can be obtained.
Moreover, the method of flowing the electrolytic solution under the above conditions is not particularly limited, but for example, a method using a general stirring device such as a stirrer is used. It is preferable to use a stirrer capable of controlling the stirring speed by digital display because the average flow rate can be controlled. Examples of such a stirring device include a magnetic stirrer HS-50D manufactured by AS ONE.
 陽極酸化処理は、炭素数が3以上の脂式カルボン酸、または芳香族カルボン酸を含む、酸性水溶液中で195V以上の電圧を印加して陽極酸化処理する。陽極酸化処理に用いる電圧は、195~600Vが使用でき、195V~500Vが好ましく、195V~400Vがより好ましい。
 上記、処理電圧に対応する平均マイクロポア密度は、0.57~3.53個/μmとなる。
 陽極酸化処理時の発生電流密度は、1000A/m以下で使用でき、500A/m以下が好ましく、400~100A/mがより好ましく、250A/mがさらに好ましい。
 上記、電圧/電流密度範囲内であれば、定電圧処理、定電流処理のどちらの処理も可能である。
The anodizing treatment is performed by applying a voltage of 195 V or more in an acidic aqueous solution containing an aliphatic carboxylic acid having 3 or more carbon atoms or an aromatic carboxylic acid. The voltage used for the anodizing treatment can be 195 to 600V, preferably 195V to 500V, and more preferably 195V to 400V.
The average micropore density corresponding to the processing voltage is 0.57 to 3.53 / μm 2 .
The generated current density during the anodizing treatment can be used at 1000 A / m 2 or less, preferably 500 A / m 2 or less, more preferably 400 to 100 A / m 2 , and even more preferably 250 A / m 2 .
As long as it is within the above voltage / current density range, either constant voltage processing or constant current processing can be performed.
 陽極酸化処理に使用される電解液は、炭素数が3以上の脂式カルボン酸、または芳香族カルボン酸を含む、酸性水溶液であり、脂式カルボン酸については、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、ラウリル酸、ミリスチン酸、パルミチン酸、マルガリン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、アラキドン酸、ドコサヘキサエン酸、エイコサペンタン酸、マロン酸、コハク酸、アジピン酸、酒石酸、リンゴ酸、クエン酸を用いることができ、マロン酸、コハク酸、アジピン酸、酒石酸が好ましく、マロン酸、コハク酸、酒石酸がより好ましい。
 また、芳香族カルボン酸については、安息香酸、フタル酸、イソフタル酸、テレフタル酸、ヘミメリット酸、トリメリット酸、トリメシン酸、メロファン酸、プレーニト酸、ピロメリト酸、メリト酸、ジフェン酸、トルイル酸、キシリル酸、ヘメリト酸、メシチレン酸、プレーニチル酸、ジュリル酸、クミン酸が好ましく、安息香酸、フタル酸、イソフタル酸、テレフタル酸を用いることができ、安息香酸、フタル酸、イソフタル酸、テレフタル酸が好ましく、フタル酸、イソフタル酸、テレフタル酸がより好ましい。
 上記のカルボン酸は単独で用いてもよいし2種以上混合して用いてもよい。
 上記のカルボン酸以外の酸は本発明の効果を損なわない限り、用いてもよいが、水溶液中の全体の酸濃度の50質量%以下とする。上記のカルボン酸以外の酸では、硫酸、リン酸、ホウ酸等を、上記のカルボン酸と共に使用してもよい。
The electrolytic solution used for the anodizing treatment is an acidic aqueous solution containing an aliphatic carboxylic acid having 3 or more carbon atoms or an aromatic carboxylic acid. For the aliphatic carboxylic acid, propionic acid, butyric acid, valeric acid, Caproic acid, enanthic acid, caprylic acid, pelargonic acid, lauric acid, myristic acid, palmitic acid, margaric acid, stearic acid, oleic acid, linoleic acid, linolenic acid, arachidonic acid, docosahexaenoic acid, eicosapentanoic acid, malonic acid, Succinic acid, adipic acid, tartaric acid, malic acid, and citric acid can be used, malonic acid, succinic acid, adipic acid, and tartaric acid are preferable, and malonic acid, succinic acid, and tartaric acid are more preferable.
As for aromatic carboxylic acids, benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, hemimellitic acid, trimellitic acid, trimesic acid, melophanoic acid, planitic acid, pyromellitic acid, mellitic acid, diphenic acid, toluic acid, Xylyl acid, hemelic acid, mesitylene acid, prenicylic acid, jurylic acid, cumic acid are preferable, benzoic acid, phthalic acid, isophthalic acid, terephthalic acid can be used, and benzoic acid, phthalic acid, isophthalic acid, terephthalic acid are preferable. More preferred are phthalic acid, isophthalic acid, and terephthalic acid.
Said carboxylic acid may be used independently and may be used in mixture of 2 or more types.
Acids other than the above carboxylic acids may be used as long as the effects of the present invention are not impaired, but the total acid concentration in the aqueous solution is 50% by mass or less. For acids other than the above carboxylic acids, sulfuric acid, phosphoric acid, boric acid and the like may be used together with the above carboxylic acids.
 上記のカルボン酸の濃度は、0.01mol/L~10mol/Lが使用でき、0.05~5mol/Lが好ましく、0.1~5.0mol/Lがより好ましい。
 陽極酸化処理に用いる電解液温度は、0~100℃で使用することができ、0~50℃が好ましく、0℃~20℃がより好ましい
The concentration of the carboxylic acid can be 0.01 mol / L to 10 mol / L, preferably 0.05 to 5 mol / L, and more preferably 0.1 to 5.0 mol / L.
The electrolyte temperature used for the anodizing treatment can be 0-100 ° C., preferably 0-50 ° C., more preferably 0-20 ° C.
 マイクロポア密度は、好ましくは、3.55個/μm以下0.10個/μm以上、より好ましくは、3.55個/μm以下0.50個/μm以上、さらには3.53個/μm以下0.81個/μm以上、であるのが好ましい。 The micropore density is preferably 3.55 / μm 2 or less, 0.10 / μm 2 or more, more preferably 3.55 / μm 2 or less, 0.50 / μm 2 or more, and further 3. The number is preferably 53 / μm 2 or less and 0.81 / μm 2 or more.
 <規則化処理>
 規則化処理は、陽極酸化皮膜を溶解させる皮膜溶解処理と、皮膜溶解処理後の陽極酸化処理とからなる工程を1回以上行う処理である。
<Regularization processing>
The ordering process is a process in which a process consisting of a film dissolving process for dissolving the anodized film and an anodizing process after the film dissolving process is performed once or more.
 <皮膜溶解処理>
 皮膜溶解処理は、上記したアルミニウム部材の陽極酸化皮膜を溶解させる処理である。これにより、陽極酸化皮膜表面の配列が不規則な部分が一部溶解するため、マイクロポアの配列の規則性が高くなる。また、皮膜を溶解させることにより、第1回の皮膜溶解後の陽極酸化処理の際、電流密度の立ち上がりが大きくなり、この結果、マイクロポアの配列の規則化性が高くなる。
<Film dissolution treatment>
The film dissolution treatment is a treatment for dissolving the anodized film of the aluminum member described above. Thereby, a part of the irregular arrangement on the surface of the anodized film is partially dissolved, so that the regularity of the arrangement of the micropores becomes high. In addition, by dissolving the film, the current density rises during the first anodic oxidation after the film is dissolved, and as a result, the regularity of the arrangement of micropores increases.
 皮膜溶解処理は、アルミニウム部材を酸性水溶液またはアルカリ性水溶液に接触させることにより行う。接触させる方法は、特に限定されず、例えば、浸漬法、スプレー法が挙げられる。中でも浸漬法が好ましい。 The film dissolution treatment is performed by bringing the aluminum member into contact with an acidic aqueous solution or an alkaline aqueous solution. The method of making it contact is not specifically limited, For example, the immersion method and the spray method are mentioned. Of these, the dipping method is preferred.
 皮膜溶解処理に酸水溶液を用いる場合は、硫酸、リン酸、硝酸、塩酸等の無機酸またはこれらの混合液の水溶液を用いることが好ましい。中でも、クロム酸を含有しない水溶液が安全性に優れる点で好ましい。酸水溶液の濃度は、1~10質量%であることが好ましい。酸水溶液の温度は、25~40℃であるのが好ましい。
 皮膜溶解処理にアルカリ水溶液を用いる場合は、水酸化ナトリウム、水酸化カリウムおよび水酸化リチウムからなる群から選ばれる少なくとも一つのアルカリの水溶液を用いることが好ましい。アルカリ水溶液の濃度は0.1~5質量%であるのが好ましい。アルカリ水溶液の温度は、20~35℃であるのが好ましい。
 具体的には、例えば、50g/L、40℃のリン酸水溶液、0.5g/L、30℃の水酸化ナトリウム水溶液または0.5g/L、30℃の水酸化カリウム水溶液が好適に用いられる。
 酸水溶液またはアルカリ水溶液への浸漬時間は、8~60分であるのが好ましく、10~50分であるのがより好ましく、15~30分であるのが更に好ましい。
When an aqueous acid solution is used for the film dissolution treatment, it is preferable to use an aqueous solution of an inorganic acid such as sulfuric acid, phosphoric acid, nitric acid, hydrochloric acid, or a mixture thereof. Especially, the aqueous solution which does not contain chromic acid is preferable at the point which is excellent in safety | security. The concentration of the acid aqueous solution is preferably 1 to 10% by mass. The temperature of the aqueous acid solution is preferably 25 to 40 ° C.
When an alkaline aqueous solution is used for the film dissolution treatment, it is preferable to use an aqueous solution of at least one alkali selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide. The concentration of the alkaline aqueous solution is preferably 0.1 to 5% by mass. The temperature of the alkaline aqueous solution is preferably 20 to 35 ° C.
Specifically, for example, 50 g / L, 40 ° C. phosphoric acid aqueous solution, 0.5 g / L, 30 ° C. sodium hydroxide aqueous solution or 0.5 g / L, 30 ° C. potassium hydroxide aqueous solution is preferably used. .
The immersion time in the acid aqueous solution or alkali aqueous solution is preferably 8 to 60 minutes, more preferably 10 to 50 minutes, and further preferably 15 to 30 minutes.
 <陽極酸化処理>
 陽極酸化処理は、上述した皮膜溶解処理の後に行われる。これにより、アルミニウム基板の酸化反応が進行し、皮膜溶解処理により溶解した陽極酸化皮膜が厚くなる。
<Anodizing treatment>
The anodizing treatment is performed after the above-described film dissolution treatment. Thereby, the oxidation reaction of the aluminum substrate proceeds, and the anodic oxide film dissolved by the film dissolution treatment becomes thick.
 陽極酸化処理は、従来公知の方法を用いることができるが、上述した自己規則化法に用いた本発明の方法と同一条件で行われるのが好ましい。 The anodizing treatment may be performed by a conventionally known method, but is preferably performed under the same conditions as the method of the present invention used in the self-ordering method described above.
 陽極酸化処理では、電解時間は1~100時間が好ましく、30~80時間がより好ましく、40~50時間が更に好ましい。 In the anodizing treatment, the electrolysis time is preferably 1 to 100 hours, more preferably 30 to 80 hours, and further preferably 40 to 50 hours.
 規則化処理は、上述した皮膜溶解処理とその後の陽極酸化処理とからなる工程を1回以上行ってもよい。繰り返し回数が多いほど上述したマイクロポアの配列の規則性が高くなるため、この工程を2回以上繰り返して行ってもよい、3回以上繰り返してもよく、4回以上行ってもよい。
 規則化処理において、上記工程を2回以上繰り返して行う場合、各回の皮膜溶解処理および陽極酸化処理の条件はそれぞれ同じであっても、異なっていてもよい。
In the ordering treatment, the above-described film dissolution treatment and the subsequent anodic oxidation treatment may be performed once or more. The larger the number of repetitions, the higher the regularity of the micropore arrangement described above. Therefore, this step may be repeated two or more times, three or more times, or four or more times.
In the regularization treatment, when the above steps are repeated twice or more, the conditions of each film dissolution treatment and anodization treatment may be the same or different.
 例えば、図3(A)は、アルミニウム基板12aとアルミニウム基板12aの表面に存在する、マイクロポア16aを有する陽極酸化皮膜14aとを示している。次に、図3(B)では、第1回目の皮膜溶解処理により、図3(A)に示される陽極酸化皮膜14aの表面およびマイクロポア16aの内部が溶解し、アルミニウム基板12a上に、マイクロポア16bを有する陽極酸化皮膜14bとなり、マイクロポア16bの底面部には、陽極酸化皮膜14bが残存している。図3(C)では、次の陽極酸化処理により、図3(B)に示されるアルミニウム基板12aの酸化反応が進行し、アルミニウム基板12b上に、マイクロポア16bよりも深くなったマイクロポア16cを有し、かつ、陽極酸化皮膜14bよりも厚い陽極酸化皮膜14cが得られる。図3(D)では、第2回の皮膜溶解処理により、図3(C)に示される陽極酸化皮膜14cの表面およびマイクロポア16cの内部が溶解し、アルミニウム基板12b上に、マイクロポア16dを有する陽極酸化皮膜14dを有する微細構造体20が得られる。バリア層は18dで示されている。図3(D)においては陽極酸化皮膜14dが残存しているが、第2回の皮膜溶解処理においては、陽極酸化皮膜を全部溶解させてもよい。陽極酸化皮膜を全部溶解させた場合には、アルミニウム基板の表面に存在する窪みが微細構造体のマイクロポアとなる。 For example, FIG. 3A shows an aluminum substrate 12a and an anodized film 14a having micropores 16a present on the surface of the aluminum substrate 12a. Next, in FIG. 3B, the surface of the anodized film 14a shown in FIG. 3A and the inside of the micropores 16a are dissolved by the first film dissolution treatment, and the micropores 16a are formed on the aluminum substrate 12a. An anodized film 14b having a pore 16b is formed, and the anodized film 14b remains on the bottom surface of the micropore 16b. In FIG. 3C, the oxidation reaction of the aluminum substrate 12a shown in FIG. 3B proceeds by the next anodic oxidation treatment, and the micropores 16c deeper than the micropores 16b are formed on the aluminum substrate 12b. An anodic oxide film 14c that is thicker than the anodic oxide film 14b is obtained. In FIG. 3D, the surface of the anodic oxide film 14c shown in FIG. 3C and the inside of the micropore 16c are dissolved by the second film dissolution treatment, and the micropore 16d is formed on the aluminum substrate 12b. The microstructure 20 having the anodic oxide film 14d is obtained. The barrier layer is indicated by 18d. Although the anodic oxide film 14d remains in FIG. 3D, the anodic oxide film may be completely dissolved in the second film dissolution treatment. When all of the anodized film is dissolved, the depressions present on the surface of the aluminum substrate become micropores of the fine structure.
 上述した製造方法により、本発明の微細構造体が得られる。また、以下に説明する本発明の微細構造体のアルミニウムまたはアルミニウム合金基板を除去しても良いし、さらにマイクロポアの貫通化処理を行ってもよい。 The fine structure of the present invention is obtained by the manufacturing method described above. Moreover, the aluminum or aluminum alloy substrate of the microstructure of the present invention described below may be removed, or micropore penetration processing may be performed.
 <アルミニウム基板の溶解>
 一定電流下での陽極酸化処理後のアルミニウム基板の溶解は、陽極酸化皮膜(アルミナ)は溶解しにくく、アルミニウムを溶解しやすい処理液を用いる。
 即ち、アルミニウム溶解速度1μm/分以上、好ましくは3μm/分以上、より好ましくは5μm/分以上、および、陽極酸化皮膜溶解速度0.1nm/分以下、好ましくは0.05nm/分以下、より好ましくは0.01nm/分以下の条件を有する処理液を用いる。
 具体的には、アルミよりもイオン化傾向の低い金属化合物を少なくとも1種含み、かつ、pHが4以下8以上、好ましくは3以下9以上、より好ましくは2以下10以上の処理液に浸漬する処理を行う。
<Dissolution of aluminum substrate>
For the dissolution of the aluminum substrate after the anodizing treatment under a constant current, a treatment solution is used in which the anodized film (alumina) is difficult to dissolve and aluminum is easily dissolved.
That is, the aluminum dissolution rate is 1 μm / min or more, preferably 3 μm / min or more, more preferably 5 μm / min or more, and the anodic oxide film dissolution rate is 0.1 nm / min or less, preferably 0.05 nm / min or less, more preferably Uses a treatment liquid having a condition of 0.01 nm / min or less.
Specifically, a treatment that includes at least one metal compound having a lower ionization tendency than aluminum and has a pH of 4 or less and 8 or more, preferably 3 or less and 9 or more, more preferably 2 or less and 10 or more. I do.
 このような処理液としては、酸またはアルカリ水溶液をベースとし、例えば、マンガン、亜鉛、クロム、鉄、カドミウム、コバルト、ニッケル、スズ、鉛、アンチモン、ビスマス、銅、水銀、銀、パラジウム、白金、金の化合物(例えば、塩化白金酸)、これらのフッ化物、これらの塩化物等を配合したものであるのが好ましい。
 中でも、酸水溶液ベースが好ましく、塩化物をブレンドするのが好ましい。
 特に、塩酸水溶液に塩化水銀をブレンドした処理液(塩酸/塩化水銀)、塩酸水溶液に塩化銅をブレンドした処理液(塩酸/塩化銅)が、処理ラチチュードの観点から好ましい。
 なお、このような処理液の組成は特に限定されず、例えば、臭素/メタノール混合物、臭素/エタノール混合物、王水等を用いることができる。
Such a treatment liquid is based on an acid or alkali aqueous solution, for example, manganese, zinc, chromium, iron, cadmium, cobalt, nickel, tin, lead, antimony, bismuth, copper, mercury, silver, palladium, platinum, A gold compound (for example, chloroplatinic acid), a fluoride thereof, a chloride thereof, or the like is preferably used.
Among them, an acid aqueous solution base is preferable, and it is preferable to blend a chloride.
In particular, a treatment liquid (hydrochloric acid / mercury chloride) in which mercury chloride is blended with an aqueous hydrochloric acid solution and a treatment liquid (hydrochloric acid / copper chloride) in which copper chloride is blended with an aqueous hydrochloric acid solution are preferable from the viewpoint of treatment latitude.
The composition of such a treatment liquid is not particularly limited, and for example, a bromine / methanol mixture, a bromine / ethanol mixture, aqua regia and the like can be used.
 また、このような処理液の酸またはアルカリ濃度は、0.01~10mol/Lが好ましく、0.05~5mol/Lがより好ましい。更に、このような処理液を用いた処理温度は、-10℃~80℃が好ましく、0℃~60℃が好ましい。 In addition, the acid or alkali concentration of such a treatment liquid is preferably 0.01 to 10 mol / L, and more preferably 0.05 to 5 mol / L. Furthermore, the treatment temperature using such a treatment liquid is preferably −10 ° C. to 80 ° C., and preferably 0 ° C. to 60 ° C.
 本発明の製造方法においては、アルミニウム基板の溶解は、上記陽極酸化処理工程の後のアルミニウム基板を上述した処理液に接触させることにより行う。接触させる方法は、特に限定されず、例えば、浸せき法、スプレー法が挙げられる。中でも、浸せき法が好ましい。このときの接触時間としては、10秒~5時間が好ましく、1分~3時間がより好ましい。 In the production method of the present invention, the aluminum substrate is dissolved by bringing the aluminum substrate after the anodizing treatment step into contact with the treatment liquid described above. The method of making it contact is not specifically limited, For example, the immersion method and the spray method are mentioned. Of these, the dipping method is preferred. The contact time at this time is preferably 10 seconds to 5 hours, more preferably 1 minute to 3 hours.
 <陽極酸化皮膜の底部の除去(貫通化処理)>
 下記(2-a)または(2-b)の処理を実施することが好ましい。
(2-a)酸またはアルカリを用いて、陽極酸化皮膜を有するアルミニウム基板を溶解し、マイクロポアによる孔を貫通化する処理(化学溶解処理)。
(2-b)陽極酸化皮膜を有するアルミニウム基板を機械的に研磨し、マイクロポアによる孔を貫通化する処理(機械的研磨処理)。
<Removal of bottom of anodized film (penetration treatment)>
The following treatment (2-a) or (2-b) is preferably performed.
(2-a) A treatment (chemical dissolution treatment) in which an aluminum substrate having an anodized film is dissolved using acid or alkali and the pores are penetrated by micropores.
(2-b) A process of mechanically polishing an aluminum substrate having an anodized film so as to pierce holes by micropores (mechanical polishing process).
[(2-a)化学溶解処理]
 化学溶解処理では、具体的には、例えば、上記陽極酸化処理工程の後に、アルミニウム基板(図3(D)においては符号12bで表される部分)を溶解し、さらに、陽極酸化皮膜の底部(図3(D)においては符号18dで表される部分)を除去して、マイクロポアによる孔を貫通化させる。アルミニウム基板を溶解した後の陽極酸化皮膜の底部の除去は、酸水溶液またはアルカリ水溶液に浸せきさせることにより行う。底部の陽極酸化皮膜が除去されることにより、マイクロポアによる孔が貫通する。
[(2-a) Chemical dissolution treatment]
In the chemical dissolution treatment, specifically, for example, after the anodizing treatment step, an aluminum substrate (portion represented by reference numeral 12b in FIG. 3D) is melted, and further, the bottom portion of the anodized film ( In FIG. 3D, the portion represented by reference numeral 18d) is removed, and the holes by the micropores are made to penetrate. The bottom part of the anodized film after the aluminum substrate is dissolved is removed by dipping in an acid aqueous solution or an alkali aqueous solution. By removing the bottom anodic oxide film, the pores by the micropores penetrate.
 陽極酸化皮膜の底部の除去は、予めpH緩衝液に浸漬させてマイクロポアによる孔の開口側から孔内にpH緩衝液を充填した後に、開口部の逆面、即ち、陽極酸化皮膜の底部に酸水溶液またはアルカリ水溶液に接触させる方法により行うのが好ましい。 The bottom of the anodized film is removed by pre-soaking in a pH buffer solution and filling the hole with the pH buffer solution from the opening side of the micropore, and then on the opposite side of the opening, that is, on the bottom of the anodized film. It is preferably carried out by a method of contacting with an acid aqueous solution or an alkali aqueous solution.
 酸水溶液を用いる場合は、硫酸、リン酸、硝酸、塩酸等の無機酸またはこれらの混合物の水溶液を用いることが好ましい。酸水溶液の濃度は1~10質量%であるのが好ましい。酸水溶液の温度は、25~40℃であるのが好ましい。
 一方、アルカリ水溶液を用いる場合は、水酸化ナトリウム、水酸化カリウムおよび水酸化リチウムからなる群から選ばれる少なくとも一つのアルカリの水溶液を用いることが好ましい。アルカリ水溶液の濃度は0.1~5質量%であるのが好ましい。アルカリ水溶液の温度は、20~35℃であるのが好ましい。
In the case of using an acid aqueous solution, it is preferable to use an aqueous solution of an inorganic acid such as sulfuric acid, phosphoric acid, nitric acid, hydrochloric acid or a mixture thereof. The concentration of the acid aqueous solution is preferably 1 to 10% by mass. The temperature of the aqueous acid solution is preferably 25 to 40 ° C.
On the other hand, when using an alkaline aqueous solution, it is preferable to use an aqueous solution of at least one alkali selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide. The concentration of the alkaline aqueous solution is preferably 0.1 to 5% by mass. The temperature of the alkaline aqueous solution is preferably 20 to 35 ° C.
 具体的には、例えば、50g/L、40℃のリン酸水溶液や、0.5g/L、30℃の水酸化ナトリウム水溶液または0.5g/L、30℃の水酸化カリウム水溶液が好適に用いられる。 Specifically, for example, a 50 g / L, 40 ° C. phosphoric acid aqueous solution, a 0.5 g / L, 30 ° C. sodium hydroxide aqueous solution, or a 0.5 g / L, 30 ° C. potassium hydroxide aqueous solution is suitably used. It is done.
 酸水溶液またはアルカリ水溶液への浸せき時間は、8~120分であるのが好ましく、10~90分であるのがより好ましく、15~60分であるのが更に好ましい。
 また、予めpH緩衝液に浸漬させる場合は、上述した酸/アルカリに適宜対応した緩衝液を使用する。
The immersion time in the acid aqueous solution or alkali aqueous solution is preferably 8 to 120 minutes, more preferably 10 to 90 minutes, and further preferably 15 to 60 minutes.
Moreover, when immersing in a pH buffer solution beforehand, the buffer solution corresponding to the acid / alkali mentioned above is used appropriately.
[(2-b)機械的研磨処理]
 機械的研磨処理では、具体的には、例えば、上記陽極酸化処理工程の後に、アルミニウム基板(図3(D)においては符号12bで表される部分)およびアルミニウム基板近傍の陽極酸化皮膜(図3(D)においては符号18dで表される部分)を機械的に研磨して除去することにより、マイクロポアによる孔を貫通化させる。
 機械的研磨処理では、公知の機械的研磨処理方法を幅広く用いることができ、例えば、鏡面仕上げ処理について例示した機械研磨を用いることができる。但し、精密研磨速度が高いことから化学機械研磨(CMP:Chemical Mechanical Polishing)処理を行うことが好ましい。CMP処理には、フジミインコーポレイテッド社製のPNANERLITE-7000、日立化成社製のGPXHSC800、旭硝子(セイミケミカル)社製のCL-1000等のCMPスラリーを用いることができる。
[(2-b) Mechanical polishing treatment]
In the mechanical polishing treatment, specifically, for example, after the anodizing treatment step, an aluminum substrate (portion represented by reference numeral 12b in FIG. 3D) and an anodized film in the vicinity of the aluminum substrate (FIG. 3). In (D), the portion represented by reference numeral 18d) is mechanically polished and removed, thereby penetrating the holes by the micropores.
In the mechanical polishing treatment, known mechanical polishing treatment methods can be widely used. For example, the mechanical polishing exemplified for the mirror finish processing can be used. However, it is preferable to perform a chemical mechanical polishing (CMP) process because the precision polishing rate is high. For the CMP treatment, a CMP slurry such as PNINERLITE-7000 manufactured by Fujimi Incorporated, GPXHSC800 manufactured by Hitachi Chemical Co., Ltd., CL-1000 manufactured by Asahi Glass (Seimi Chemical) Co., Ltd. can be used.
 これらの貫通化処理工程により、図3(D)に示されるアルミニウム基板12bおよびバリア層18dがなくなった状態の構造物、即ち、マイクロポアが貫通した微細構造体が得られる。 By these penetration processing steps, a structure in which the aluminum substrate 12b and the barrier layer 18d shown in FIG. 3D are eliminated, that is, a fine structure through which the micropores pass is obtained.
 以下に実施例を示して本発明を具体的に記載する。ただし、本発明はこれらに限定されない。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these.
(実施例1)
1.電解研磨処理
 高純度アルミニウム基板(住友軽金属)社製、純度99.99質量%、厚さ0.4mm)を10cm四方の面積でカットし、以下組成の電解研磨液を用いて、電圧10V、液温度65℃の条件で電解研磨処理を行った。陰極はカーボン電極とし、電源はGPO-250-30R(高砂製作所社製)を用いた。
 <電解研磨液組成>
 ・85質量%リン酸(和光純薬社製試薬) 1320mL
 ・硫酸 600mL
 ・純水 80mL
2.脱脂処理
 上記で得られた研磨処理後のサンプルを以下組成の脱脂処理液を用いて、液温度60℃の条件で、10~60秒浸漬して脱脂処理を行った。得られた表面は、平均表面粗さRa、
0.1μm以下、光沢度50%以上であった。
 <脱脂処理液組成>
 ・1.75mol/L 水酸化ナトリウム
 ・0.16mol/L 硝酸ナトリウム
3.規則化陽極酸化処理
 上記で得られたサンプルを0.30mol/Lのコハク酸水溶液の電解液で、電圧252V、液温度0℃の条件で45時間定電圧陽極酸化処理を行った。
4.皮膜溶解処理
 上記で得られたサンプルを以下の組成の酸化膜除去処理液を用いて、液温度60℃の条件で、12時間浸漬して、酸化膜除去処理を行った。
 <酸化膜除去液組成>
 ・0.16mol/L 酸化クロム
 ・0.62mol/L リン酸
5.陽極酸化処理
 上記で得られたサンプルを、上記処理時間を43時間とした以外は同様の方法で陽極酸化処理を行った。
6.規則化度の算出
 上記で得られた皮膜溶解処理後のサンプルにスパッタリング装置を用いて、2分間金蒸着処理を行い、走査型顕微鏡を用いて7500倍の視野において、マイクロポアが形成されたことにより生じるアルミニウム基板上の凹凸を観察した。上記アルミニウム基板上の凹凸から、上記一般式(1)中、AおよびBの値を目視で観察し、上記一般式(1)により定義される底部面での規則化度の算出を行い、底部規則化度として表1に示す。
7.マイクロポアの周期、厚さの測定
 マイクロポア周期は、陽極酸化処理で得られたサンプルの断面を、FE-SEM(日立製作所社製、S-900)で観察し、写真(15万倍)をとり、25個以上のマイクロポアの周期を測定し、平均した値である。マイクロポアの厚さも同様に測定し平均した。
Example 1
1. Electrolytic polishing treatment A high-purity aluminum substrate (Sumitomo Light Metal Co., Ltd., purity 99.99 mass%, thickness 0.4 mm) was cut in an area of 10 cm square, and using an electrolytic polishing liquid having the following composition, a voltage of 10 V, liquid The electropolishing treatment was performed at a temperature of 65 ° C. The cathode was a carbon electrode, and the power source was GPO-250-30R (manufactured by Takasago Seisakusho).
<Electrolytic polishing liquid composition>
・ 85 mass% phosphoric acid (Wako Pure Chemical Industries, Ltd.) 1320mL
・ 600 mL of sulfuric acid
・ Pure water 80mL
2. Degreasing treatment The sample after the polishing treatment obtained above was degreased by immersing it for 10 to 60 seconds under the condition of a liquid temperature of 60 ° C. using a degreasing treatment liquid having the following composition. The obtained surface has an average surface roughness Ra,
It was 0.1 μm or less and the glossiness was 50% or more.
<Degreasing solution composition>
1.75 mol / L sodium hydroxide 0.16 mol / L sodium nitrate 3. Ordered Anodizing Treatment The sample obtained above was subjected to a constant voltage anodizing treatment with an electrolyte of 0.30 mol / L succinic acid aqueous solution for 45 hours under conditions of a voltage of 252 V and a liquid temperature of 0 ° C.
4). Film dissolution treatment The sample obtained above was immersed for 12 hours under the condition of a liquid temperature of 60 ° C. using an oxide film removal treatment liquid having the following composition to perform an oxide film removal treatment.
<Oxide film removal liquid composition>
0.16 mol / L chromium oxide 0.62 mol / L phosphoric acid Anodizing treatment The sample obtained above was subjected to anodizing treatment in the same manner except that the treatment time was 43 hours.
6). Calculation of degree of ordering The sample after the film dissolution treatment obtained above was subjected to gold vapor deposition for 2 minutes using a sputtering apparatus, and micropores were formed in a field of view 7500 times using a scanning microscope. The unevenness on the aluminum substrate caused by the above was observed. From the irregularities on the aluminum substrate, the values of A and B in the general formula (1) are visually observed, the degree of ordering on the bottom surface defined by the general formula (1) is calculated, and the bottom Table 1 shows the degree of ordering.
7). Micropore cycle and thickness measurement The micropore cycle is a cross section of the sample obtained by anodizing, observed with FE-SEM (S-900, manufactured by Hitachi, Ltd.), and a photograph (150,000 times). In other words, it is a value obtained by measuring the period of 25 or more micropores and averaging them. The micropore thickness was also measured and averaged in the same manner.
(実施例2)
 上記3.規則化陽極酸化処理の電解条件を、0.3mol/Lのクエン酸水溶液の電解液で、電圧375V、液温度0℃の条件で47時間定電圧陽極酸化処理を行い、上記5.陽極酸化処理での処理時間を45時間とし、上記6.規則化度の算出での走査型顕微鏡観察視野を4000倍とした以外は、実施例1と同様の方法で実施例2を得た。
(実施例3)
 上記3.規則化陽極酸化処理の電解条件を、0.03mol/Lのフタル酸水溶液の電解液で、電圧320V、液温度0℃の条件で49時間定電圧陽極酸化処理を行い、上記5.陽極酸化処理での処理時間を47時間とし、上記6.規則化度の算出での走査型顕微鏡観察視野を5000倍とした以外は、実施例1と同様の方法で実施例3を得た。
(実施例4)
 上記3.規則化陽極酸化処理の電解条件を、0.1mol/Lの酒石酸水溶液の電解液で、電圧263V、液温度5℃の条件で17時間定電圧陽極酸化処理とし上記5.陽極酸化処理での処理時間を20時間(とした以外は、実施例1と同様の方法で実施例4を得た。
(Example 2)
3. The electrolytic conditions for the ordered anodizing treatment are as follows: a constant voltage anodizing treatment is carried out for 47 hours with a 0.3 mol / L aqueous solution of citric acid and a voltage of 375 V and a solution temperature of 0 ° C .; Example 2 was obtained in the same manner as in Example 1 except that the treatment time in the anodizing treatment was 45 hours, and the scanning microscope observation field of view in the calculation of the degree of ordering was 4000 times.
(Example 3)
3. The electrolytic conditions for the ordered anodizing treatment are as follows: a constant voltage anodizing treatment is carried out for 49 hours using a 0.03 mol / L phthalic acid aqueous solution at a voltage of 320 V and a liquid temperature of 0 ° C .; Example 3 was obtained in the same manner as in Example 1 except that the treatment time in the anodizing treatment was 47 hours and the scanning microscope observation field of view in the calculation of the degree of ordering was 5000 times.
Example 4
3. above. The electrolytic condition of the ordered anodizing treatment is a constant voltage anodizing treatment for 17 hours with a 0.1 mol / L tartaric acid aqueous solution under the conditions of a voltage of 263 V and a liquid temperature of 5 ° C. Example 4 was obtained in the same manner as in Example 1 except that the treatment time in the anodizing treatment was 20 hours.
(比較例1)
 上記3.規則化陽極酸化処理の電解条件を、0.1mol/Lのコハク酸の電解液で、電圧40V、液温度20℃の条件で8時間定電圧陽極酸化処理を行い、上記5.陽極酸化処理での処理時間を9時間とし、上記6.規則化度の算出での走査型顕微鏡観察視野を10000倍とした以外は、実施例1と同様の方法で比較例1を得た。
(比較例2)
 上記3.規則化陽極酸化処理の電解条件を、0.5mol/Lのシュウ酸の電解液で、電圧40V、液温度15℃の条件で8時間定電圧陽極酸化処理を行い、上記5.陽極酸化処理での処理時間を9時間とし、上記6.規則化度の算出での走査型顕微鏡観察視野を10000倍とした以外は、実施例1と同様の方法で比較例2を得た。
(Comparative Example 1)
3. above. As the electrolytic condition of the ordered anodizing treatment, a constant voltage anodizing treatment was performed for 8 hours with 0.1 mol / L succinic acid electrolyte solution under a voltage of 40 V and a liquid temperature of 20 ° C. The treatment time in the anodizing treatment is 9 hours, and the above 6. Comparative Example 1 was obtained in the same manner as in Example 1 except that the scanning microscope observation field for calculating the degree of ordering was set to 10000 times.
(Comparative Example 2)
3. above. As the electrolytic conditions for the ordered anodizing treatment, a constant voltage anodizing treatment was performed for 8 hours with an electrolyte solution of 0.5 mol / L oxalic acid at a voltage of 40 V and a liquid temperature of 15 ° C. The treatment time in the anodizing treatment is 9 hours, and the above 6. Comparative Example 2 was obtained in the same manner as in Example 1 except that the scanning microscope observation field for calculating the degree of ordering was 10,000 times.
(比較例3)
 上記3.規則化陽極酸化処理の電解条件を、0.5mol/Lのシュウ酸の電解液で、電圧195V、液温度0℃の条件で0.3時間定電圧陽極酸化処理を行い、上記5.陽極酸化処理での処理時間を0.3時間とした以外は、実施例1と同様の方法で比較例3を得た。形成させた陽極酸化皮膜は、「焼け」が生じた。(「焼け」とは、局所的な皮膜成長が生じ、均一な膜形成が起こらない現象をいう)このため、マイクロポア周期、マイクロポア厚さ、底部規則化度の算出が実施できなかった。
(比較例4)
 上記3.規則化陽極酸化処理の処理時間を10時間とし、上記5.陽極酸化処理での処理時間を11時間とした以外は、実施例1と同様の方法で比較例4を得た。
(Comparative Example 3)
3. above. As the electrolytic conditions for the ordered anodizing treatment, a constant voltage anodizing treatment was performed for 0.3 hours with a 0.5 mol / L oxalic acid electrolytic solution at a voltage of 195 V and a liquid temperature of 0 ° C. Comparative Example 3 was obtained in the same manner as in Example 1 except that the treatment time in the anodizing treatment was 0.3 hour. The formed anodized film “burned”. ("Burning" refers to a phenomenon in which local film growth occurs and uniform film formation does not occur). Therefore, the calculation of the micropore period, the micropore thickness, and the degree of bottom ordering cannot be performed.
(Comparative Example 4)
3. above. The processing time of the ordered anodizing treatment is 10 hours, and the above 5. Comparative Example 4 was obtained in the same manner as in Example 1 except that the treatment time in the anodizing treatment was 11 hours.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 2 酸化皮膜
 3、16a、16b、16c、16d マイクロポア
 4 底部面
 5 表面
 6 マイクロポアの軸方向の距離
 7 マイクロポア間の幅
 8 マイクロポアの直径
 9 マイクロポアの中心間距離
 12、12a、12b、12c、12d アルミニウム基板
 14、14a、14b、14c、14d 陽極酸化皮膜
 18d バリア層
 20 微細構造体
 101、102、104、105、107、108 マイクロポア
 103、106、109 円
2 Oxide film 3, 16a, 16b, 16c, 16d Micropore 4 Bottom surface 5 Surface 6 Micropore axial distance 7 Micropore width 8 Micropore diameter 9 Micropore center distance 12, 12a, 12b , 12c, 12d Aluminum substrate 14, 14a, 14b, 14c, 14d Anodized film 18d Barrier layer 20 Microstructure 101, 102, 104, 105, 107, 108 Micropore 103, 106, 109 yen

Claims (4)

  1.  アルミニウムまたはアルミニウム合金の陽極酸化皮膜よりなる微細構造体で、底部面で下記一般式(1)により定義される複数のマイクロポアの規則化度が70%以上であり、該マイクロポアの中心間距離が600nm以上であり、該マイクロポアの軸方向の長さが50μm以上である微細構造体:
    一般式(1)
     規則化度(%)=B/A×100
     上記一般式(1)中、Aは、測定範囲におけるマイクロポアの全数を表す。Bは、一のマイクロポアの長軸に直角方向の断面の中心から、その他のマイクロポアの縁に内接する最も半径が短い円を描いた場合に、その円の内部に前記マイクロポア以外のマイクロポアの中心を6個含むことになる前記一のマイクロポアの測定範囲における数を表す。
    A fine structure made of an anodized film of aluminum or an aluminum alloy, wherein the order of the plurality of micropores defined by the following general formula (1) is 70% or more on the bottom surface, and the distance between the centers of the micropores Is a microstructure having a micropore of not less than 600 nm and an axial length of the micropore of not less than 50 μm:
    General formula (1)
    Ordering degree (%) = B / A × 100
    In the general formula (1), A represents the total number of micropores in the measurement range. B, when a circle with the shortest radius inscribed in the edge of the other micropore is drawn from the center of the cross section perpendicular to the major axis of one micropore, the micropores other than the micropore are inside the circle. This represents the number in the measurement range of the one micropore that will contain six pore centers.
  2.  前記微細構造体のマイクロポアの中心間距離が600nm~1200nmである請求項1に記載の微細構造体。 2. The microstructure according to claim 1, wherein a distance between centers of micropores of the microstructure is 600 nm to 1200 nm.
  3.  アルミニウムまたはアルミニウム合金板を、炭素数が3以上の脂式カルボン酸、または芳香族カルボン酸を含む、酸性水溶液中で195V以上の電圧を印加して陽極酸化処理する請求項1または2に記載の微細構造体の製造方法。 The aluminum or aluminum alloy plate is anodized by applying a voltage of 195 V or more in an acidic aqueous solution containing an aliphatic carboxylic acid having 3 or more carbon atoms or an aromatic carboxylic acid. A manufacturing method of a fine structure.
  4.  前記カルボン酸が、マロン酸、コハク酸、アジピン酸、酒石酸、リンゴ酸、クエン酸、安息香酸、フタル酸、イソフタル酸、およびテレフタル酸からなる群から選択される少なくとも1つである請求項3に記載の微細構造体の製造方法。 The carboxylic acid is at least one selected from the group consisting of malonic acid, succinic acid, adipic acid, tartaric acid, malic acid, citric acid, benzoic acid, phthalic acid, isophthalic acid, and terephthalic acid. The manufacturing method of the described microstructure.
PCT/JP2010/065633 2009-09-16 2010-09-10 Microstructure and method for producing same WO2011034008A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009214428 2009-09-16
JP2009-214428 2009-09-16

Publications (1)

Publication Number Publication Date
WO2011034008A1 true WO2011034008A1 (en) 2011-03-24

Family

ID=43758613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065633 WO2011034008A1 (en) 2009-09-16 2010-09-10 Microstructure and method for producing same

Country Status (2)

Country Link
JP (1) JP2011084810A (en)
WO (1) WO2011034008A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105543931A (en) * 2016-01-13 2016-05-04 西安交通大学 Aluminium alloy based surface dimension adjustable nanopore array and quick preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101923897B1 (en) * 2018-05-30 2018-11-29 백승현 Anodizing method of subject

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114470A (en) * 2007-11-01 2009-05-28 Fujifilm Corp Method for producing fine structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114470A (en) * 2007-11-01 2009-05-28 Fujifilm Corp Method for producing fine structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105543931A (en) * 2016-01-13 2016-05-04 西安交通大学 Aluminium alloy based surface dimension adjustable nanopore array and quick preparation method thereof

Also Published As

Publication number Publication date
JP2011084810A (en) 2011-04-28

Similar Documents

Publication Publication Date Title
JP4870544B2 (en) Manufacturing method of fine structure and fine structure
JP4813925B2 (en) Manufacturing method of fine structure and fine structure
JP5463052B2 (en) Metal parts
JP4603402B2 (en) Fine structure and manufacturing method thereof
JP2008270157A (en) Anisotropic conductive member, and manufacturing method thereof
JP4800860B2 (en) Manufacturing method of fine structure and fine structure
JP4768478B2 (en) Manufacturing method of fine structure and fine structure
JP2006322067A (en) Method for producing structure
JP2007238988A (en) Method for producing fine structure body, and fine structure body
JP4800799B2 (en) Manufacturing method of fine structure and fine structure
JP2007204802A (en) Method of manufacturing structure
JP2007211306A (en) Method for producing nano-structure
JP5274097B2 (en) Fine structure and manufacturing method thereof
WO2011034008A1 (en) Microstructure and method for producing same
JP4990737B2 (en) Manufacturing method of fine structure
JP2008156716A (en) Method of manufacturing microstructure and microstructure
JP2010168617A (en) Method for producing fine structure
JP2008057018A (en) Method for producing fine structure, and fine structure
JP2008063643A (en) Microstructure production method and microstructure
JP2009132959A (en) Aluminum removal treatment method, and aluminum removal treatment liquid
JP5106691B2 (en) Manufacturing method of precision filter unit
JP2012140708A (en) Microstructure and manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10817121

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10817121

Country of ref document: EP

Kind code of ref document: A1