JP2019123895A - Austenitic stainless steel and manufacturing method therefor - Google Patents

Austenitic stainless steel and manufacturing method therefor Download PDF

Info

Publication number
JP2019123895A
JP2019123895A JP2018003523A JP2018003523A JP2019123895A JP 2019123895 A JP2019123895 A JP 2019123895A JP 2018003523 A JP2018003523 A JP 2018003523A JP 2018003523 A JP2018003523 A JP 2018003523A JP 2019123895 A JP2019123895 A JP 2019123895A
Authority
JP
Japan
Prior art keywords
less
stainless steel
austenitic stainless
amount
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018003523A
Other languages
Japanese (ja)
Other versions
JP6547011B1 (en
Inventor
敏彦 吉見
Toshihiko Yoshimi
敏彦 吉見
石丸 詠一朗
Eiichiro Ishimaru
詠一朗 石丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Stainless Steel Corp filed Critical Nippon Steel Stainless Steel Corp
Priority to JP2018003523A priority Critical patent/JP6547011B1/en
Priority to CN201880061854.7A priority patent/CN111148854B/en
Priority to KR1020207009056A priority patent/KR102379904B1/en
Priority to PCT/JP2018/047737 priority patent/WO2019138869A1/en
Application granted granted Critical
Publication of JP6547011B1 publication Critical patent/JP6547011B1/en
Publication of JP2019123895A publication Critical patent/JP2019123895A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/34Anodisation of metals or alloys not provided for in groups C25D11/04 - C25D11/32

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

To provide an austenitic stainless steel having no deterioration of anticorrosion and manufacturability as the austenitic stainless steel, and no reduction of anticorrosion even after annealing and acid cleaning.SOLUTION: There is provided an austenitic stainless steel having steel and a coating on a surface of the steel, in which the steel contains, by mass%, C:0.100% or less, Si:3.00% or less, Mn:0.01 to 5.00%, P:0.100% or less, S:0.0050% or less, Ni:7.00 to 40.00%, Cr:17.00 to 28.00%, V:0.010 to 5.000%, and the balance Fe with impurities, the coating has a film with a peak value of V concentration in a depth direction from an outermost surface layer of 5.00 atomic% or more when total amount of a cation element in the coating is 100%.SELECTED DRAWING: None

Description

本発明は、オーステナイト系ステンレス鋼およびその製造方法に関し、さらに詳しくは、海洋環境、化学プラント等の腐食環境に利用されるオーステナイト系ステンレス鋼およびその製造方法に関する。   The present invention relates to an austenitic stainless steel and a method of manufacturing the same, and more particularly, to an austenitic stainless steel used in a corrosive environment such as a marine environment or a chemical plant and a method of manufacturing the same.

オーステナイト系ステンレス鋼は、優れた耐食性を有するため、海洋環境や化学プラントの部材として適用されている。近年、希少金属の価格が高騰しており、省合金化かつ薄肉化した耐食性に優れるステンレス鋼のニーズが高くなっている。   Since austenitic stainless steel has excellent corrosion resistance, it is applied as a member of marine environment and chemical plant. In recent years, the price of rare metals has risen, and the need for alloy-saving and thin-walled stainless steel excellent in corrosion resistance is increasing.

また、ステンレス鋼の耐食性は合金量のみではなく、表面皮膜の影響も受ける。Crを多く含有するオーステナイト系ステンレス鋼は、熱延や焼鈍で生じる酸化スケール直下に、Cr欠乏層が生じる。Cr欠乏層が生じた場合、酸洗後に露出するオーステナイト系ステンレス鋼の表面のCr濃度は鋼材の平均的なCr濃度よりも低くなる。さらに、酸洗後には、オーステナイト系ステンレス鋼にCr濃度が低い表面皮膜が形成され、本来の耐食性を発揮することが出来ない。   Moreover, the corrosion resistance of stainless steel is affected not only by the amount of alloy but also by the surface film. In an austenitic stainless steel containing a large amount of Cr, a Cr-deficient layer is formed directly below the oxide scale produced by hot rolling or annealing. When a Cr deficient layer is formed, the Cr concentration of the surface of the austenitic stainless steel exposed after pickling is lower than the average Cr concentration of the steel material. Furthermore, after pickling, a surface film with low Cr concentration is formed on the austenitic stainless steel, and the inherent corrosion resistance can not be exhibited.

特許文献1には、830℃以下における熱延時の圧下率を30%とし、さらに25℃/sec以上の冷却速度で冷却し、650℃以下で巻き取ることで表面のCr濃度を低下させないステンレス鋼の製造方法が記載されている。しかし、熱延条件を制御することは製造コストの増加に繋がる。   In Patent Document 1, stainless steel which does not reduce the Cr concentration on the surface by cooling at a cooling rate of 25 ° C./sec or more and setting the rolling reduction at 30 ° C. or less to 30%, and further cooling it at 650 ° C. or less The manufacturing method of is described. However, controlling the hot rolling conditions leads to an increase in manufacturing costs.

特許文献2には、Feイオンとの錯体生成定数がフッ酸より大きい添加剤を添加することで溶解速度を増加させて、Cr欠乏層を溶解させることが出来る酸洗剤が記載されている。しかし、酸洗液に添加剤を加えることは製造コストの増加に繋がるとともに、Cr欠乏層を溶解させることは鋼材の歩留まり低下に繋がる。   Patent Document 2 describes an acid detergent capable of dissolving a Cr-deficient layer by increasing the dissolution rate by adding an additive whose complex formation constant with Fe ions is larger than hydrofluoric acid. However, adding an additive to the pickling solution leads to an increase in the manufacturing cost, and dissolving the Cr-deficient layer leads to a decrease in the yield of steel products.

特許文献3には、高濃度の塩酸で酸洗することでCr欠乏層を溶解させて、高速酸洗を可能とする方法が記載されている。しかし、高濃度の塩酸を用いることは製造コスト増加に繋がるとともに、Cr欠乏層を溶解させることは鋼材の歩留まり低下に繋がる。   Patent Document 3 describes a method of dissolving a Cr-deficient layer by pickling with a high concentration of hydrochloric acid to enable rapid pickling. However, using a high concentration of hydrochloric acid leads to an increase in manufacturing cost, and dissolving the Cr-deficient layer leads to a decrease in the yield of steel products.

特許第3369570号公報Patent No. 3369570 gazette 特許第2981417号公報Patent 2981417 gazette 特許第2991829号公報Patent 2991829 gazette

この様に、従来の技術では、オーステナイト系ステンレス鋼を製造すると、適正な耐食性と製造性を確保することが困難である。   As described above, in the prior art, when austenitic stainless steel is manufactured, it is difficult to ensure appropriate corrosion resistance and manufacturability.

本発明は、このような課題を解決するためになされたものであり、オーステナイト系ステンレス鋼として耐食性、製造性を損なうことなく、焼鈍、酸洗後も耐食性が低下しないオーステナイト系ステンレス鋼を提供することを目的とする。   The present invention has been made to solve such problems, and provides an austenitic stainless steel as an austenitic stainless steel which does not deteriorate in corrosion resistance and manufacturability and which does not deteriorate in corrosion resistance even after annealing and pickling. The purpose is

上記課題を解決するために、本発明のオーステナイト系ステンレス鋼およびその製造方法は、下記の構成を有する。   In order to solve the said subject, the austenitic stainless steel of this invention and its manufacturing method have the following structures.

(1)鋼と、前記鋼の表面にある皮膜と、を備え、
前記鋼は、質量%で、
C:0.100%以下、
Si:3.00%以下、
Mn:0.01〜5.00%、
P:0.100%以下、
S:0.0050%以下、
Ni:7.00〜40.00%、
Cr:17.00〜28.00%、
V:0.010〜5.000%
を含有し、残部はFeおよび不純物からなり、
前記皮膜は、皮膜中のカチオン元素の全量を100%としたときの最表層から深さ方向におけるV濃度のピーク値が5.00atomic%以上の膜であることを特徴とするオーステナイト系ステンレス鋼。
(2)質量%で、
Mo:10.00%以下、
Cu:3.00%以下、
W:2.000%以下、
N:0.400%以下
より選択される1種以上を含有することを特徴とする上記(1)に記載のオーステナイト系ステンレス鋼。
(3)質量%で、
Ca:0.0002〜0.0050%、
B:0.0002〜0.0050%、
Mg:0.0002〜0.0050%、
REM:0.0010〜0.1000%
より選択される1種以上を含有することを特徴とする上記(1)または(2)に記載のオーステナイト系ステンレス鋼。
(4)質量%で、
Al:3.000%以下
を含有することを特徴とする上記(1)〜(3)のいずれかに記載のオーステナイト系ステンレス鋼。
(5)質量%で、
Ti:0.001〜0.400%、
Nb:0.001〜0.400%、
Ta:0.001〜0.500%、
Zr:0.001〜0.500%、
Co:0.001〜0.500%、
Sn:0.001〜0.500%、
Sb:0.001〜0.500%、
Ga:0.001〜0.500%
より選択される1種以上を含有することを特徴とする上記(1)〜(4)のいずれかに記載のオーステナイト系ステンレス鋼。
(6)化学プラント、製塩設備、排煙脱硫装置、EGRクーラー、海洋構造体、水処理設備に用いられることを特徴とする上記(1)〜(5)のいずれかに記載のオーステナイト系ステンレス鋼。
(7)上記(1)〜(6)のいずれかに記載のオーステナイト系ステンレス鋼の製造方法であって、
酸洗後の鋼を、pH6.0〜7.5であり、0.05mol/L以上のNaSO水溶液中において、−0.35〜−0.15V vs SHEで10sec以上電解処理して、最表層から深さ方向における前記鋼の皮膜中のV濃度のピーク値を5.00atomic%以上にすることを特徴とするオーステナイト系ステンレス鋼の製造方法。
(1) A steel and a film on the surface of the steel,
Said steel is in mass%,
C: 0. 100% or less,
Si: 3.00% or less,
Mn: 0.01 to 5.00%,
P: 0. 100% or less,
S: less than 0.0050%,
Ni: 7.00 to 40.00%,
Cr: 17.00-28.00%,
V: 0.010 to 5.000%
And the balance consists of Fe and impurities,
An austenitic stainless steel characterized in that the film is a film having a peak value of V concentration in a depth direction from an outermost layer to a depth direction of 5.00 atomic% or more when the total amount of cationic elements in the film is 100%.
(2) mass%,
Mo: 10.00% or less,
Cu: 3.00% or less,
W: 2.000% or less,
N: The austenitic stainless steel according to the above (1), which contains one or more selected from 0.400% or less.
(3) mass%,
Ca: 0.0002 to 0.0050%,
B: 0.0002 to 0.0050%,
Mg: 0.0002 to 0.0050%,
REM: 0.0010 to 0.1000%
The austenitic stainless steel according to (1) or (2) above, which contains one or more selected from the group consisting of
(4) mass%,
Al: 3.000% or less is contained, The austenitic stainless steel in any one of said (1)-(3) characterized by the above-mentioned.
(5) mass%,
Ti: 0.001 to 0.400%,
Nb: 0.001 to 0.400%,
Ta: 0.001 to 0.500%,
Zr: 0.001 to 0.500%,
Co: 0.001 to 0.500%,
Sn: 0.001 to 0.500%,
Sb: 0.001 to 0.500%,
Ga: 0.001 to 0.500%
The austenitic stainless steel according to any one of the above (1) to (4), which contains one or more selected from the above.
(6) The austenitic stainless steel according to any one of the above (1) to (5) characterized in that it is used in a chemical plant, a salt production facility, a flue gas desulfurization apparatus, an EGR cooler, a marine structure, and a water treatment facility. .
(7) A method for producing an austenitic stainless steel according to any one of (1) to (6) above,
The pickled steel has a pH of 6.0 to 7.5, and is electrolytically treated at −0.35 to −0.15 V vs SHE in an aqueous solution of 0.05 mol / L or more of Na 2 SO 4 for 10 seconds or more A method of producing an austenitic stainless steel, wherein a peak value of V concentration in a film of the steel in a depth direction from the outermost layer is made 5.00 atomic% or more.

本発明のオーステナイト系ステンレス鋼は、焼鈍、酸洗後に露出する表面にCr欠乏層が存在しても耐食性が低下しないため、従来、製造性と耐食性を両立することが困難であった問題を解決し、耐食性に優れるオーステナイト系ステンレス鋼を提供することが出来る。   The austenitic stainless steel of the present invention solves the problem that it was difficult to simultaneously achieve both productivity and corrosion resistance, because the corrosion resistance does not decrease even if a Cr-deficient layer exists on the surface exposed after annealing and pickling It is possible to provide an austenitic stainless steel excellent in corrosion resistance.

最表層から深さ方向における皮膜中のV濃度ピーク値とΔCPTの関係を示す図である。It is a figure which shows the relationship between V density | concentration peak value in the film in the depth direction from outermost layer, and (DELTA) CPT.

以下に本発明を詳細に説明する。なお、特に注記しない限り、本明細書において元素含有量の%は質量%を意味する。   The present invention will be described in detail below. In the present specification,% of the element content means mass% unless otherwise noted.

本発明者らは、オーステナイト系ステンレス鋼の耐食性と表面皮膜について鋭意調査した結果、以下の知見を得た。
(1)Vを添加したオーステナイト系ステンレス鋼を酸洗後に中性溶液中で電解することで、表面皮膜中にVを濃化させることが出来る。
(2)オーステナイト系ステンレス鋼の表面にCr欠乏層が存在しても、表面皮膜中にVが濃化していれば耐食性低下を抑制することが出来る。
The inventors of the present invention obtained the following findings as a result of intensive investigations on the corrosion resistance and surface film of austenitic stainless steel.
(1) By pickling the austenitic stainless steel to which V is added and performing electrolysis in a neutral solution, V can be concentrated in the surface film.
(2) Even if a Cr-depleted layer exists on the surface of austenitic stainless steel, if V is concentrated in the surface film, the reduction in corrosion resistance can be suppressed.

本実施形態における各成分元素の限定範囲とその理由について説明する。   The limited range of each component element in the present embodiment and the reason thereof will be described.

C:0.100%以下
Cは、ステンレス鋼の耐食性を確保するため、C量を0.100%以下の含有量に制限する。0.100%を超えてCを含有させるとCr炭化物が生成して、耐食性が劣化する。Cr炭化物の生成抑制の観点からは、C量の好ましい範囲は0.05%以下、より好ましい範囲は0.03%以下である。
C: not more than 0.100% C limits the content of C to a content of not more than 0.100% in order to secure the corrosion resistance of stainless steel. When C is contained in excess of 0.100%, Cr carbides are formed to deteriorate the corrosion resistance. From the viewpoint of suppressing the formation of Cr carbides, the preferable range of the amount of C is 0.05% or less, and the more preferable range is 0.03% or less.

Si:3.00%以下
Siは、脱酸のため含有するが、3.00%を超えてSiを含有するとσ相の析出が促進される。そのため、Si量の上限を3.00%以下に限定する。Si量は1.50%以下が効果的である。Si量の好ましい範囲は1.50%以下、より好ましい範囲は0.80%以下である。
Si: 3.00% or less Si is contained for deoxidation, but containing Si in excess of 3.00% promotes the precipitation of the σ phase. Therefore, the upper limit of the amount of Si is limited to 3.00% or less. An amount of Si of 1.50% or less is effective. The preferable range of the amount of Si is 1.50% or less, and the more preferable range is 0.80% or less.

Mn:0.01〜5.00%
Mnは、脱酸材として、0.01%以上含有する。Mn量の下限は、好ましくは0.10%以上であり、より好ましくは0.25%以上である。しかしながら、5.00%を超えてMnを含有すると耐食性が劣化する。そのため、Mn量の上限を5.00%以下に限定する。Mn量の上限の好ましい範囲は1.00%以下、より好ましい範囲は0.80%以下である。
Mn: 0.01 to 5.00%
Mn is contained as 0.01% or more as a deoxidizer. The lower limit of the amount of Mn is preferably 0.10% or more, more preferably 0.25% or more. However, when the content of Mn exceeds 5.00%, the corrosion resistance is deteriorated. Therefore, the upper limit of the amount of Mn is limited to 5.00% or less. The preferable range of the upper limit of the amount of Mn is 1.00% or less, and the more preferable range is 0.80% or less.

P:0.100%以下
Pは、熱間加工性および靭性を劣化させるため、P量を0.100%以下に限定する。P量の好ましい範囲は0.050%以下、より好ましい範囲は0.030%以下である。
P: 0. 100% or less P degrades hot workability and toughness, so the amount of P is limited to 0.100% or less. The preferable range of P amount is 0.050% or less, and the more preferable range is 0.030% or less.

S:0.0050%以下
Sは、熱間加工性、靭性および耐食性を劣化させるため、S量を0.0050%以下に限定する。S量の好ましい範囲は0.0050%以下、より好ましい範囲は0.0010%以下である。
S: 0.0050% or less S degrades the hot workability, toughness and corrosion resistance, so the S content is limited to 0.0050% or less. The preferable range of S amount is 0.0050% or less, and the more preferable range is 0.0010% or less.

Ni:7.00〜40.00%
Niは、腐食が生じた際の腐食進展を抑制するとともにσ相の析出を抑制する効果があるが、Ni量が7.00%未満では、十分な耐食性を得ることが出来ない。Ni量が40.00%を超えると、耐食性の効果は飽和する。また、Niの使用量が増加して鋼板が高価格となる。よって、Ni量を7.00〜40.00%の範囲にすることが必要である。なお、Ni量が少ないと、十分な耐食性を担保出来ない。よって、Ni量の好ましい下限は10.00%以上であり、Ni量の好ましい上限は30.00%以下である。また、必要十分な耐食性を担保しつつ、材料コストを抑えるため、Ni量のより好ましい下限は17.00%以上であり、Ni量のより好ましい上限は26.00%以下である。
Ni: 7.00 to 40.00%
Ni has the effect of suppressing the growth of corrosion when corrosion occurs and also suppressing the precipitation of the σ phase, but if the amount of Ni is less than 7.00%, sufficient corrosion resistance can not be obtained. When the amount of Ni exceeds 40.00%, the corrosion resistance effect is saturated. In addition, the amount of use of Ni increases and the steel plate becomes expensive. Therefore, it is necessary to make Ni amount into the range of 7.00-40.00%. If the amount of Ni is small, sufficient corrosion resistance can not be secured. Therefore, the preferable lower limit of the amount of Ni is 10.00% or more, and the preferable upper limit of the amount of Ni is 30.00% or less. Moreover, in order to hold down material cost while securing necessary and sufficient corrosion resistance, a more preferable lower limit of the amount of Ni is 17.00% or more, and a more preferable upper limit of the amount of Ni is 26.00% or less.

Cr:17.00〜28.00%
Cr量が17.00%未満では、十分な耐食性を得ることが出来ず、Cr量が28.00%を超えると、σ相の析出が多くなり、耐食性が劣化する。従って、Cr量を17.00〜28.00%の範囲にすることが必要である。なお、Cr量が少ないと、十分な耐食性を担保出来ない。よって、Cr量の好ましい下限は20.00%以上であり、Cr量の好ましい上限は27.00%以下である。また、必要十分な耐食性を担保しつつ、材料コストを抑えるため、Cr量のより好ましい下限は23.00%以上であり、Cr量のより好ましい上限は26.00%以下である。
Cr: 17.00 to 28.00%
If the amount of Cr is less than 17.00%, sufficient corrosion resistance can not be obtained, and if the amount of Cr exceeds 28.00%, the precipitation of the sigma phase increases and the corrosion resistance deteriorates. Therefore, it is necessary to make Cr amount into the range of 17.00-28.00%. If the amount of Cr is small, sufficient corrosion resistance can not be secured. Therefore, the preferable lower limit of the amount of Cr is 20.00% or more, and the preferable upper limit of the amount of Cr is 27.00% or less. Moreover, in order to hold down material cost while securing necessary and sufficient corrosion resistance, a more preferable lower limit of the amount of Cr is 23.00% or more, and a more preferable upper limit of the amount of Cr is 26.00% or less.

V:0.010〜5.000%
Vは、耐食性、特に塩化物環境における耐孔食性、耐すき間腐食性を改善する効果があり、表面の酸化皮膜中に濃化する事で焼鈍・酸洗で生じたCr欠乏層による耐食性低下を補う効果があり、本発明を構成する重要な元素である。ただし、過度な量で含有すると、加工性を低下させ、かつ耐食性向上効果も飽和するため、V量の下限を0.010%以上とし、上限を5.000%以下とする。V量の好ましい下限は0.040%以上であり、V量の好ましい上限は3.000%以下である。また、V量のより好ましい下限は0.070%以上であり、V量のより好ましい上限は2.000%以下である。
V: 0.010 to 5.000%
V has the effect of improving corrosion resistance, particularly pitting corrosion resistance and crevice corrosion resistance in a chloride environment, and by concentrating in the oxide film on the surface, the corrosion resistance reduction due to the Cr-deficient layer generated by annealing and pickling is It has a compensating effect and is an important element constituting the present invention. However, when it is contained in an excessive amount, the formability is lowered and the corrosion resistance improving effect is also saturated, so the lower limit of the V amount is made 0.010% or more and the upper limit is made 5.00% or less. The preferable lower limit of the amount of V is 0.040% or more, and the preferable upper limit of the amount of V is 3.000% or less. Moreover, the more preferable lower limit of the amount of V is 0.070% or more, and the more preferable upper limit of the amount of V is 2.000% or less.

本実施形態においては、前記元素に加えて、鋼の諸特性を調整する目的で、以下の合金元素を含有しても良い。   In the present embodiment, in addition to the above-described elements, the following alloying elements may be contained in order to adjust various properties of the steel.

Mo、Cu、W、Nは、耐食性を改善する元素であり、その目的で、これらの元素を1種または2種以上含有してもよい。   Mo, Cu, W, N are elements that improve the corrosion resistance, and for that purpose, one or more of these elements may be contained.

Mo:10.00%以下
Moの効果は、Mo量が0.10%以上で発現することから、Mo量の下限は0.10%以上とする。しかし、Moを過剰に含有するとσ相の析出が多くなるとともに、熱延時の反力が高くなり製造性が悪化する。このため、Mo量は0.10〜10.00%にすることが必要である。Mo量の好ましい下限は1.50%以上、好ましい上限は8.50%以下、より好ましい下限は5.00%以上、より好ましい上限は7.00%以下である。
Mo: 10.00% or less Since the effect of Mo is expressed when the amount of Mo is 0.10% or more, the lower limit of the amount of Mo is made 0.10% or more. However, when Mo is excessively contained, the precipitation of the σ phase increases and the reaction force at the time of hot rolling becomes high, and the productivity deteriorates. Therefore, the Mo content needs to be 0.10 to 10.00%. The lower limit of the amount of Mo is preferably 1.50% or more, the upper limit is preferably 8.50% or less, the more preferable lower limit is 5.00% or more, and the more preferable upper limit is 7.00% or less.

Cu:3.00%以下
Cuの効果は、Cu量が0.10%から発現することから、Cu量の下限は0.10%以上とするが、過剰に含有すると鋳造時に割れが発生し易くなる。このため、Cu量は0.10〜3.00%にすることが必要である。Cu量の好ましい下限は0.30%以上である。より好ましい下限は0.60%以上である。
Cu: 3.00% or less The effect of Cu is expressed from the amount of Cu of 0.10%, so the lower limit of the amount of Cu is 0.10% or more, but if it is contained excessively, cracking is likely to occur during casting Become. For this reason, it is necessary to make Cu amount into 0.10 to 3.00%. The preferable lower limit of the amount of Cu is 0.30% or more. A more preferable lower limit is 0.60% or more.

W:2.000%以下
Wの効果は、W量が0.010%以上で発現することから、W量の下限は0.010%以上とする。しかし、Wを過剰に含有すると加工性が低下する。このため、W量は0.010〜2.000%にすることが必要である。W量の好ましい下限は0.030%以上、好ましい上限は1.000%以下、より好ましい下限は0.050%以上、より好ましい上限は0.500%以下である。
W: 2.000% or less Since the effect of W is expressed when the amount of W is 0.010% or more, the lower limit of the amount of W is made 0.010% or more. However, when W is contained excessively, the processability is reduced. For this reason, it is necessary to make W amount into 0.010 to 2.000%. The lower limit of the W content is preferably 0.030% or more, more preferably 1.000% or less, more preferably 0.050% or more, and still more preferably 0.500% or less.

N:0.400%以下
Nの効果は、N量が0.100%以上で発現することから、N量の下限は0.100%以上とする。しかし、Nを過剰に含有すると鋳造時に気泡が発生する。このため、N量は0.100〜0.400%にすることが必要である。N量の好ましい下限は0.150%以上である。より好ましい下限は0.200%以上である。好ましい上限は0.300%以下である。
N: 0.400% or less The effect of N is expressed when the amount of N is 0.100% or more, so the lower limit of the amount of N is 0.100% or more. However, when N is contained excessively, bubbles are generated during casting. Therefore, the N content needs to be 0.100 to 0.400%. The preferable lower limit of the amount of N is 0.150% or more. A more preferable lower limit is 0.200% or more. The preferred upper limit is 0.300% or less.

Ca、B、Mg、REMは、熱間加工性を改善する元素であり、その目的で、これらの元素を1種または2種以上含有してもよい。これらの元素は含有しなくてもよく、含有しない場合の下限は0%以上である。   Ca, B, Mg, and REM are elements for improving the hot workability, and for that purpose, one or more of these elements may be contained. These elements may not be contained, and the lower limit in the case of not containing is 0% or more.

Ca:0.0002〜0.0050%
Caの効果は、Ca量が0.0002%以上で発現することから、Ca量の下限を0.0002%以上とする。しかしながら、Caを過剰に含有すると逆に熱間加工性が低下するため、Ca量の上下限を次のように定めるとよい。Ca量は、0.0002〜0.0050%である。Ca量の好ましい下限は0.0010%以上であり、好ましい上限は0.0030%以下である。
Ca: 0.0002 to 0.0050%
Since the effect of Ca is expressed when the amount of Ca is 0.0002% or more, the lower limit of the amount of Ca is made 0.0002% or more. However, if the content of Ca is excessive, the hot workability is reduced, so the upper and lower limits of the amount of Ca may be determined as follows. The amount of Ca is 0.0002 to 0.0050%. The preferable lower limit of the amount of Ca is 0.0010% or more, and the preferable upper limit is 0.0030% or less.

B:0.0002〜0.0050%
Bの効果は、B量が0.0002%以上で発現することから、B量の下限を0.0002%以上とする。しかしながら、Bを過剰に含有すると逆に熱間加工性が低下するため、B量の上下限を次のように定めるとよい。B量は、0.0002〜0.0050%である。B量の好ましい下限は0.0010%以上であり、好ましい上限は0.0030%以下である。
B: 0.0002 to 0.0050%
Since the effect of B is expressed when the amount of B is 0.0002% or more, the lower limit of the amount of B is made 0.0002% or more. However, if the content of B is excessive, the hot workability is lowered, so the upper and lower limits of the amount of B may be determined as follows. The B content is 0.0002 to 0.0050%. The preferable lower limit of the amount of B is 0.0010% or more, and the preferable upper limit is 0.0030% or less.

Mg:0.0002〜0.0050%
Mgの効果は、Mg量が0.0002%以上で発現することから、Mg量の下限を0.0002%以上とする。しかしながら、Mgを過剰に含有すると逆に熱間加工性が低下するため、Mg量の上下限を次のように定めるとよい。Mg量は、0.0002〜0.0050%である。Mg量の好ましい下限は0.0010%以上であり、好ましい上限は0.0030%以下である。
Mg: 0.0002 to 0.0050%
Since the effect of Mg is expressed when the amount of Mg is 0.0002% or more, the lower limit of the amount of Mg is made 0.0002% or more. However, if the content of Mg is excessive, the hot workability is deteriorated, so the upper and lower limits of the amount of Mg may be set as follows. The amount of Mg is 0.0002 to 0.0050%. The preferable lower limit of the amount of Mg is 0.0010% or more, and the preferable upper limit is 0.0030% or less.

REM:0.0010〜0.1000%
REM量の下限を0.0010%以上とする。ここで、REM量とは、後述する希土類元素の合計量である。しかしながら、REMを過剰に含有すると逆に熱間加工性が低下するため、Mg量の上下限を次のように定めるとよい。REM量は、0.0010〜0.1000%である。REM量の好ましい下限は0.0050%以上であり、好ましい上限は0.0300%以下である。
ここで、REM(希土類元素)は、一般的な定義に従い、スカンジウム(Sc)、イットリウム(Y)の2元素と、周期律表におけるランタン(La)からルテチウム(Lu)までの15元素(ランタノイド)の総称を指す。これらは単独で含有してもよいし、混合物として含有してもよい。
REM: 0.0010 to 0.1000%
The lower limit of the REM amount is 0.0010% or more. Here, the REM amount is the total amount of rare earth elements described later. However, if the content of REM is excessive, the hot workability is deteriorated, so the upper and lower limits of the amount of Mg may be determined as follows. The REM amount is 0.0010 to 0.1000%. The preferable lower limit of the REM amount is 0.0050% or more, and the preferable upper limit is 0.0300% or less.
Here, REM (rare earth element) is two elements of scandium (Sc) and yttrium (Y) according to a general definition, and 15 elements (lanthanoids) from lanthanum (La) to lutetium (Lu) in the periodic table. Refers to the generic term of These may be contained alone or as a mixture.

Al:3.000%以下
Alは、脱酸元素として有用であり、Alを0.001%以上の量で含有させる。しかし、Alは加工性を劣化させるため多量に含有させるべきではなく、Al量の上限を3.000%以下に制限するのがよい。Al量の好ましい下限は0.005%以上であり、Al量の好ましい上限は1.000%以下である。また、Alは含有しなくてもよく、含有しない場合の下限は0%以上である。
Al: 3.000% or less Al is useful as a deoxidizing element, and contains Al in an amount of 0.001% or more. However, Al should not be contained in a large amount to deteriorate the processability, and the upper limit of the Al amount is preferably limited to 3.000% or less. The preferable lower limit of the amount of Al is 0.005% or more, and the preferable upper limit of the amount of Al is 1.000% or less. Moreover, Al may not be contained, and the lower limit in the case of not containing is 0% or more.

Ti、Nb、Ta、Zr、Co、Sn、Sb、Gaは、耐食性を向上する元素であり、以下の範囲で1種または2種以上含有してもよい。これらの元素は含有しなくてもよく、含有しない場合の下限は0%以上である。
Ti:0.001〜0.400%、Nb:0.001〜0.400%、Ta:0.001〜0.500%、Zr:0.001〜0.500%、Co:0.001〜0.500%、Sn:0.001〜0.500%、Sb:0.001〜0.500%、Ga:0.001〜0.500%。
Ti, Nb, Ta, Zr, Co, Sn, Sb, and Ga are elements for improving the corrosion resistance, and may be contained singly or in combination in the following range. These elements may not be contained, and the lower limit in the case of not containing is 0% or more.
Ti: 0.001 to 0.400%, Nb: 0.001 to 0.400%, Ta: 0.001 to 0.500%, Zr: 0.001 to 0.500%, Co: 0.001 to 0.500% 0.500%, Sn: 0.001 to 0.500%, Sb: 0.001 to 0.500%, Ga: 0.001 to 0.500%.

TiおよびNbは、C、Nを炭窒化物として固定して耐食性、特に粒界腐食を抑制する作用を有する。このため、TiとNbの一方または両方を含有させてもよいが、過剰な量のTi、Nbを含有しても効果は飽和するため、Ti量、Nb量の各々の上限を0.400%とする。ここで、Ti量とNb量の少なくとも一方が0.001%以上であれば効果を発揮することができる。なお、Ti量、Nb量の適正な値としては、Ti量とNb量の合計量が、C量とN量の合計量の5倍以上30倍以下である。好ましくは、Ti量とNb量の合計量が、C量とN量の合計量の10倍以上25倍以下である。   Ti and Nb fix C, N as carbonitrides and have the effect of suppressing corrosion resistance, particularly intergranular corrosion. For this reason, one or both of Ti and Nb may be contained, but even if it contains excessive amounts of Ti and Nb, the effect is saturated, so the upper limit of each of the Ti amount and the Nb amount is 0.400% I assume. Here, if at least one of the Ti amount and the Nb amount is 0.001% or more, the effect can be exhibited. In addition, as an appropriate value of Ti amount and Nb amount, the total amount of Ti amount and Nb amount is 5 times or more and 30 times or less of the total amount of C amount and N amount. Preferably, the total amount of Ti and Nb amounts to 10 times or more and 25 times or less of the total amount of C and N amounts.

Ta、Zr、Co、Sn、Sbは、微量でも耐食性を向上させるのに有用な元素であり、廉価性を損なわない範囲で含有してもよい。Ta、Zr、Co、Sn、Sbのそれぞれの量が0.001%未満では、耐食性を向上させる効果は発現されない。Ta、Zr、Co、Sn、Sbのそれぞれの量が0.500%を超えると、コスト増が顕在化すると共に加工性も低下する。このため、Ta、Zr、Co、Sn、Sbのそれぞれの量は、0.001〜0.500%を適正範囲とする。Ta、Zr、Co、Sn、Sbのそれぞれの量に関して、好ましい下限は0.010%以上であり、好ましい上限は0.300%以下である。   Ta, Zr, Co, Sn, and Sb are elements which are useful for improving the corrosion resistance even in a slight amount, and may be contained in a range which does not impair the cost price. When the amount of each of Ta, Zr, Co, Sn and Sb is less than 0.001%, the effect of improving the corrosion resistance is not exhibited. When the amount of each of Ta, Zr, Co, Sn, and Sb exceeds 0.500%, the increase in cost becomes apparent and the processability also decreases. Therefore, the respective amounts of Ta, Zr, Co, Sn, and Sb fall within the appropriate range of 0.001 to 0.500%. With respect to the respective amounts of Ta, Zr, Co, Sn and Sb, the preferable lower limit is 0.010% or more, and the preferable upper limit is 0.300% or less.

Gaは、耐食性および加工性向上に寄与する元素であり、0.001〜0.500%の範囲でGaを含有させることができる。Ga量の好ましい下限は0.015%以上であり、Ga量の好ましい上限は0.300%以下である。   Ga is an element which contributes to corrosion resistance and processability improvement, and can be made to contain Ga in 0.001 to 0.500% of range. The preferable lower limit of the amount of Ga is 0.015% or more, and the preferable upper limit of the amount of Ga is 0.300% or less.

本実施形態の鋼板は、上述した元素以外の残部は、Feおよび不可避的不純物であるが、以上説明した各元素の他にも、本実施形態の効果を損なわない範囲で含有させることができる。   In the steel plate of the present embodiment, the balance other than the above-described elements is Fe and unavoidable impurities, but can be contained in addition to the above-described elements without impairing the effects of the present embodiment.

次に、本実施形態に関わる表面成分について説明する。
オーステナイト系ステンレス鋼の表面成分は以下の要件(1)を満たす。
(1)皮膜中のカチオン元素の全量を100%としたときの最表層から深さ方向におけるV濃度のピーク値が5.00atomic%以上
Next, surface components according to the present embodiment will be described.
The surface component of the austenitic stainless steel satisfies the following requirement (1).
(1) The peak value of V concentration in the depth direction from the outermost layer is 5.00 atomic% or more, where the total amount of cationic elements in the film is 100%

焼鈍、酸洗後に耐孔食性が低下するのは、焼鈍で酸化スケール下の素地にCr欠乏層が生じて、酸洗でこのCr欠乏層が除去出来ていない場合、酸洗後の表面Cr濃度は鋼の平均組成のCr濃度よりも低くなり、表面Cr濃度に対応したCr濃度の酸化皮膜しか形成されないためである。本発明者らは、表面の酸化皮膜組成と耐食性の関係を鋭意調査し、表面の酸化皮膜にVが濃化することでステンレス鋼の耐食性が向上することを明らかにした。これは、酸化皮膜中のV酸化物が緻密であり、Cr酸化物と同様の環境遮断性を有しているためと考えられる。焼鈍、酸洗後に生じたCr欠乏による耐孔食性低下を低減するには、皮膜を、皮膜中のカチオン元素の全量を100%としたときの最表層から深さ方向におけるV濃度ピーク値が5.00atomic%以上の膜にする必要がある。皮膜中のカチオン元素の全量を100%としたときの最表層から深さ方向におけるV濃度ピーク値の好ましい下限は7.00atomic%以上であり、より好ましい下限は10.00atomic%以上である。   The decrease in pitting resistance after annealing and pickling means that a Cr-depleted layer is formed on the substrate under the oxide scale due to annealing, and this Cr-depleted layer can not be removed by pickling, the surface Cr concentration after pickling Is lower than the Cr concentration of the average composition of the steel, and only an oxide film having a Cr concentration corresponding to the surface Cr concentration is formed. The present inventors diligently investigated the relationship between the oxide film composition on the surface and the corrosion resistance, and revealed that the corrosion resistance of stainless steel is improved by the concentration of V in the oxide film on the surface. This is considered to be because V oxide in the oxide film is dense and has the same environmental barrier properties as Cr oxide. In order to reduce the decrease in pitting resistance due to Cr deficiency caused after annealing and pickling, the film is made to have a V concentration peak value in the depth direction of 5 from the outermost layer when the total amount of cationic elements in the film is 100%. The film needs to be .00 atomic% or more. The preferable lower limit of the V concentration peak value in the depth direction from the outermost layer when the total amount of cationic elements in the film is 100% is 7.00 atomic% or more, and the more preferable lower limit is 10.00 atomic% or more.

皮膜中のV濃度ピーク値の測定方法は次の通りである。
酸洗後の鋼を試料とし、その試料を、表面に加工および化学処理を施さず、分析装置に入る形状に切断し、AES(オージェ電子分光分析装置)を用いて分析する。無処理の試料表面を最表層からArガスでスパッタして深さ方向のプロファイル分析を行い、Cr欠乏域のCr濃度と皮膜中のV濃度を分析する。ここで、Cr欠乏域は最表層からCrが母材の値になるまでの位置とし、Cr欠乏域の最低Cr濃度はカチオン元素の合計を100%とした場合のCrの濃度のCr欠乏域中で最も低い値とする。また、皮膜は最表層からO(酸素)がピーク値の半値になるまでの位置とし、V濃度のピーク値はカチオン元素の合計を100%とした場合のV濃度の皮膜中で最も高い値とする。ここで、各元素の濃度は原子%(atomic%)で計算する。
The method of measuring the V concentration peak value in the film is as follows.
The steel after pickling is used as a sample, and the sample is cut into a shape that enters the analyzer without processing and chemical treatment on the surface, and analyzed using AES (Auger electron spectroscopy). The untreated sample surface is sputtered with Ar gas from the outermost layer and profile analysis in the depth direction is performed to analyze the Cr concentration in the Cr-deficient region and the V concentration in the film. Here, the Cr deficient area is the position from the outermost layer to the value of the base material from the outermost layer, and the lowest Cr concentration in the Cr deficient area is the Cr deficient area of the concentration of Cr when the total of the cation elements is 100%. And the lowest value. In addition, the film is positioned from the outermost layer to the half of the peak value of O (oxygen), and the peak value of V concentration is the highest value in the film of V concentration when the total of cationic elements is 100%. Do. Here, the concentration of each element is calculated by atomic%.

次に、本実施形態に係るオーステナイト系ステンレス鋼の製造方法について説明する。
本実施形態のオーステナイト系ステンレス鋼は、基本的にはステンレス鋼を製造する一般的な工程を適用して製造される。例えば、電気炉で上記の化学組成を有する溶鋼とし、AOD(Argon Oxygen Decarburization)炉やVOD(Vacuum Arc Degassing)炉などで精練する。その後、連続鋳造法または造塊法で鋼片とし、次いで、熱間圧延、熱延板の焼鈍(溶体化熱処理)を施す。薄板を製造する場合(例えば、3mm程度の厚さの鋼板)には、前述の溶体化熱処理後に、冷間圧延を施し、次いで、再度、焼鈍(溶体化熱処理)、酸洗を施す。これにより薄板が製造される。なお、本発明を適用可能な鋼は、焼鈍後に酸洗を施した鋼材であれば良く、板状鋼材、線状鋼材、管状鋼材等の制約はない。板状鋼材の場合は、熱延板、熱延焼鈍板、冷延板、冷延焼鈍板のいずれであってもよい。
Next, a method of manufacturing the austenitic stainless steel according to the present embodiment will be described.
The austenitic stainless steel of the present embodiment is basically manufactured by applying a general process of manufacturing stainless steel. For example, an electric furnace is used as a molten steel having the above-described chemical composition, and is refined by an AOD (Argon Oxygen Decarburization) furnace or a VOD (Vacuum Arc Degassing) furnace. Then, it is made into a steel piece by a continuous casting method or an ingot formation method, then, it hot-rolls and performs annealing (solution heat treatment) of a hot-rolled sheet. In the case of manufacturing a thin plate (for example, a steel plate having a thickness of about 3 mm), cold rolling is performed after the solution heat treatment described above, and then annealing (solution heat treatment) and pickling are performed again. Thereby, a thin plate is manufactured. The steel to which the present invention can be applied may be any steel material that has been subjected to pickling after annealing, and there is no limitation on plate-like steel materials, linear steel materials, tubular steel materials, and the like. In the case of a plate-like steel material, any of a hot-rolled sheet, a hot-rolled and annealed sheet, a cold-rolled sheet and a cold-rolled and annealed sheet may be used.

次に、オーステナイト系ステンレス鋼の中性電解処理について説明する。
表面成分が要件(1)を満たすオーステナイト系ステンレス鋼を製造するためには、Vが酸化物を形成する特定のpH、電位で電解処理しなければならない。例えば、本実施形態のオーステナイト系ステンレス鋼の製造方法における中性電解処理のpH範囲であるpH6.0〜7.5であっても、0.2V vs SHE(Standard Hydrogen Electrode)で電解した場合は、この電位−pH領域ではV酸化物は溶解するので酸化皮膜中にVは濃化しない。また、本実施形態のオーステナイト系ステンレス鋼の製造方法における中性電解処理の電位範囲である−0.35〜−0.15V vs SHEであっても、pH5.0で電解した場合は、この電位−pH領域ではV酸化物は溶解するので酸化皮膜中にVは濃化しない。そのため、中性電解処理は酸化皮膜にV酸化物が形成されるpH6.0〜7.5で−0.35〜−0.15V vs SHEで10sec以上電解処理する必要がある。また、電解質として添加する硫酸ナトリウム(NaSO)の濃度が低いと電気伝導度不足で電解出来ないため、中性電解処理に用いられる電解液におけるNaSOの濃度は0.05mol/L以上にする必要がある。
Next, neutral electrolytic treatment of austenitic stainless steel will be described.
In order to produce an austenitic stainless steel the surface component of which satisfies requirement (1), electrolytic treatment must be performed at a specific pH and potential at which V forms an oxide. For example, even when the pH range of 6.0 to 7.5, which is the pH range of neutral electrolytic treatment in the method for producing austenitic stainless steel according to the present embodiment, when electrolysis is performed by 0.2 V vs SHE (Standard Hydrogen Electrode), Since V oxide dissolves in this potential-pH region, V does not concentrate in the oxide film. Moreover, even if it is -0.35--0.15V vs SHE which is a potential range of neutral electrolysis processing in the manufacturing method of austenitic stainless steel of this embodiment, when electrolysis is carried out at pH 5.0, this potential Since V oxide dissolves in the pH range, V does not concentrate in the oxide film. Therefore, it is necessary to carry out the electrolytic treatment at pH 6.0 to 7.5 at which V oxide is formed on the oxide film for 10 seconds or more at -0.35 to -0.15 V vs SHE at which neutral electrolytic treatment is performed. In addition, if the concentration of sodium sulfate (Na 2 SO 4 ) added as an electrolyte is low, the conductivity can not be achieved due to insufficient electric conductivity, so the concentration of Na 2 SO 4 in the electrolytic solution used for neutral electrolytic treatment is 0.05 mol / It is necessary to be more than L.

本実施形態のオーステナイト系ステンレス鋼は、化学プラント、製塩設備、排煙脱硫装置、EGRクーラー、海洋構造体、水処理設備に好適に用いられる。   The austenitic stainless steel of the present embodiment is suitably used for a chemical plant, a salt production facility, a flue gas desulfurization apparatus, an EGR cooler, an offshore structure, and a water treatment facility.

本発明の効果を詳細に確認するため、以下の実験を行った。なお、本実施例は、本発明の一実施例を示すものであり、本発明は以下の構成に限定されるものではない。   The following experiments were conducted to confirm the effects of the present invention in detail. In addition, a present Example shows one Example of this invention, and this invention is not limited to the following structures.

表1〜表5に示す化学成分を有するステンレス鋼を真空誘導溶解炉にて溶製し、鋳造した。
次いで、1200℃にて均熱処理を施した後、熱間鍛造し、板厚が6mmになるまで熱間圧延し、焼鈍、酸洗を行った。
次いで、板厚が1mmになるまで冷間圧延し、さらに焼鈍、酸洗した。得られたオーステナイト系ステンレス鋼に対して、表面皮膜中へVを濃化させる目的で、以下の方法で中性電解処理した。
Stainless steel having the chemical components shown in Tables 1 to 5 was melted and cast in a vacuum induction melting furnace.
Next, after soaking at 1200 ° C., it was hot forged, hot rolled to a plate thickness of 6 mm, and annealed and pickled.
Subsequently, it cold-rolled until plate | board thickness was set to 1 mm, and also it annealed and pickled. The obtained austenitic stainless steel was subjected to neutral electrolytic treatment by the following method in order to concentrate V into the surface film.

オーステナイト系ステンレス鋼の中性電解処理を以下の方法で行った。
電解液としては、純水とNaSOを混合させて調製した0.02〜0.50mol/LのNaSO水溶液を用いた。ここで用いる電解液は電気伝導性があれば良いので、後述のpH範囲であれば他の水溶液を用いても良い。電解液として用いることが出来る水溶液の種類としては、例えば、NaNO、KNO、KSOなどを溶質とした水溶液が挙げられる。NaClなどのClを含む溶質を用いると、電解中に孔食が発生するため用いることは出来ない。電解液のpHを、HSOやNaOH等を用いて4.0〜8.0に調整した。電解電位は−0.40〜−0.10V vs SHEとし、常温で5〜60sec電解した。
以上により鋼板を製造した。
Neutral electrolytic treatment of austenitic stainless steel was performed by the following method.
As an electrolytic solution, with aqueous Na 2 SO 4 of 0.02~0.50mol / L was prepared by mixing pure water and Na 2 SO 4. The electrolytic solution used here only needs to have electrical conductivity, so other aqueous solutions may be used within the pH range described later. The types of aqueous solutions that can be used as the electrolyte solution, for example, aqueous solution NaNO 4, KNO 3, K 2 SO 4 and the like as a solute. If a solute containing Cl such as NaCl is used, it can not be used because pitting occurs during electrolysis. The pH of the electrolyte was adjusted to 4.0 to 8.0 using H 2 SO 4 , NaOH or the like. The electrolysis potential was -0.40 to -0.10 V vs SHE, and electrolysis was carried out at normal temperature for 5 to 60 seconds.
The steel plate was manufactured by the above.

次に、以下の方法により特性試験を行った。   Next, the characteristic test was performed by the following method.

(CPT測定)
鋼板表面での耐食性を評価するために、孔食発生の臨界温度(CPT)を測定した。
6%塩化第二鉄水溶液に1%塩酸を加えて試験液を作製した。
試験にはCr欠乏域を全て#600エメリー湿式研磨で除去した研磨材と、切断面のみ#600エメリー湿式研磨仕上げした酸洗材の2種類の表面仕上げ材を供した。この鋼板を試験液中に72h浸漬させ、孔食が発生する最も低い温度をCPT(孔食発生臨界温度)とした。なお、試験温度は2℃単位で設定した。このようにして求めた研磨材のCPTを研磨材CPT、酸洗材のCPTを酸洗材CPTとし、酸洗材CPTから研磨材CPTを算術的に引いた値をΔCPTとした。ΔCPTが4℃以下の場合、耐食性が十分と判断し、ΔCPTが4℃を超える場合には、耐食性が不十分と判断した。
(CPT measurement)
In order to evaluate the corrosion resistance on the steel plate surface, the critical temperature (CPT) of pitting corrosion occurrence was measured.
The test solution was prepared by adding 1% hydrochloric acid to a 6% aqueous solution of ferric chloride.
In the test, two kinds of surface finish materials were provided: an abrasive material from which all the Cr-deficient area was removed by # 600 emery wet polishing, and a pickling material finished with # 600 emery wet polishing only on the cut surface. This steel plate was immersed in the test solution for 72 h, and the lowest temperature at which pitting occurred was defined as CPT (pitting critical temperature). The test temperature was set in 2 ° C. units. The CPT of the abrasive obtained in this manner is the abrasive CPT, the CPT of the pickling material is the pickling material CPT, and the value obtained by arithmetically subtracting the abrasive CPT from the pickling material CPT is ΔCPT. When ΔCPT was 4 ° C. or less, it was judged that the corrosion resistance was sufficient, and when ΔCPT exceeded 4 ° C., it was judged that the corrosion resistance was insufficient.

(皮膜分析)
酸洗後の表面皮膜の性状を調査するために、表面皮膜の分析を行った。
鋼板酸洗後の試料を、表面に加工および化学処理を施さず、分析装置に入る形状に切断し、AES(オージェ電子分光分析装置)を用いて分析した。無処理の試料表面を最表層からArガスでスパッタして深さ方向のプロファイル分析を行い、Cr欠乏域のCr濃度と皮膜中のV濃度を分析した。ここで、Cr欠乏域は最表層からCrが母材の値になるまでの位置とし、Cr欠乏域の最低Cr濃度はカチオン元素の合計を100%とした場合のCrの濃度のCr欠乏域中で最も低い値とした。また、皮膜は最表層からO(酸素)がピーク値の半値になるまでの位置とし、V濃度のピーク値はカチオン元素の合計を100%とした場合のV濃度の皮膜中で最も高い値とした。ここで、各元素の濃度は原子%(atomic%)で計算した。
(Film analysis)
In order to investigate the properties of the surface film after pickling, analysis of the surface film was performed.
The steel plate after pickling was not subjected to processing and chemical treatment on the surface, and was cut into a shape that enters the analyzer, and was analyzed using AES (Auger electron spectroscopy). The untreated sample surface was sputtered with Ar gas from the outermost layer and profile analysis in the direction of depth was performed to analyze the Cr concentration in the Cr-depleted region and the V concentration in the film. Here, the Cr deficient area is the position from the outermost layer to the value of the base material from the outermost layer, and the lowest Cr concentration in the Cr deficient area is the Cr deficient area of the concentration of Cr when the total of the cation elements is 100%. And the lowest value. In addition, the film is positioned from the outermost layer to the half of the peak value of O (oxygen), and the peak value of V concentration is the highest value in the film of V concentration when the total of cationic elements is 100%. did. Here, the concentration of each element was calculated by atomic%.

CPT試験の結果を表1〜5および図1に示す。   The results of the CPT test are shown in Tables 1 to 5 and FIG.

Figure 2019123895
Figure 2019123895

Figure 2019123895
Figure 2019123895

Figure 2019123895
Figure 2019123895

Figure 2019123895
Figure 2019123895

Figure 2019123895
Figure 2019123895

表1〜4より、本発明鋼1〜64は、最表層から深さ方向における皮膜中のV濃度のピーク値が5.00atomic%以上であるため、いずれもΔCPTが4℃以下であり、良好な耐食性を示していることが分かった。
一方、表5より、比較鋼4〜12は、最表層から深さ方向における皮膜中のV濃度ピーク値が5.00atomic%未満であるため、いずれもΔCPTが4℃を超えており、耐食性が不十分であることが分かった。また、比較鋼1〜3は、最表層から深さ方向における皮膜中のV濃度ピーク値が5.00atomic%以上であっても、Mn量、S量、Cr量が本発明の範囲外であるため、ΔCPTが4℃を超えており、耐食性が不十分であることが分かった。
なお、表1〜5に示すPREは、ステンレス鋼板の耐孔食性を示す一般的な指標であり、鋼の平均組成から下記式で計算される値である。
PRE={Cr}+3.3{Mo}+16{N}
ここで、上記式中の{ }で囲まれた元素記号は、鋼板全体での平均含有量(質量%)を意味する。
From Tables 1 to 4, according to the steels 1 to 64 of the present invention, since the peak value of V concentration in the film in the depth direction from the outermost layer is 5.00 atomic% or more, ΔCPT is 4 ° C. or less in all cases. Was found to exhibit good corrosion resistance.
On the other hand, according to Table 5, in Comparative Steels 4 to 12, the V concentration peak value in the film in the depth direction from the outermost layer is less than 5.00 atomic%, so ΔCPT exceeds 4 ° C. It turned out to be inadequate. Further, in Comparative Steels 1 to 3, even if the V concentration peak value in the film in the depth direction from the outermost layer is 5.00 atomic% or more, the amounts of Mn, S and Cr are out of the range of the present invention Therefore, it has been found that ΔCPT exceeds 4 ° C., and the corrosion resistance is insufficient.
In addition, PRE shown in Tables 1-5 is a general index which shows the pitting corrosion resistance of a stainless steel plate, and is a value calculated by a following formula from the average composition of steel.
PRE = {Cr} + 3.3 {Mo} + 16 {N}
Here, the elemental symbol enclosed by {} in the above-mentioned formula means the average content (mass%) in the whole steel plate.

本実施形態のオーステナイト系ステンレス鋼は、高塩分環境で極めて優れた耐すきま腐食性が得られる。このため、本実施形態のオーステナイト系ステンレス鋼は、海洋鋼構造体用材料、海洋構造体ライニング材用材料、排煙脱硫装置用材料、食品製造プラント用材料、建築外装材用材料、製塩プラント用材料、温水貯蔵用材料、化学プラント用材料、下水処理設備用材料、オゾン処理設備用材料、海水淡水化プラント用材料、海水ポンプ用材料、自動車EGR(Exhaust Gas Recirculation)クーラー用材料として適用可能である。   The austenitic stainless steel of the present embodiment can provide extremely excellent resistance to crevice corrosion in a high salt environment. Therefore, the austenitic stainless steel of the present embodiment is a material for marine steel structure, a material for marine structure lining material, a material for exhaust gas desulfurization apparatus, a material for food manufacturing plant, a material for building exterior material, for salt production plant Materials, materials for hot water storage, materials for chemical plants, materials for sewage treatment facilities, materials for ozone treatment facilities, materials for seawater desalination plants, materials for seawater pumps, materials for automotive EGR (Exhaust Gas Recirculation) coolers is there.

(1)鋼と、前記鋼の表面にある酸化皮膜と、を備え、
前記鋼は、質量%で、
C:0.100%以下、
Si:3.00%以下、
Mn:0.01〜5.00%、
P:0.100%以下、
S:0.0050%以下、
Ni:7.00〜40.00%、
Cr:17.00〜28.00%、
V:0.010〜5.000%
を含有し、残部はFeおよび不純物からなり、
前記酸化皮膜は、酸化皮膜中のカチオン元素の全量を100%としたときの最表層から深さ方向におけるV濃度のピーク値が5.00atomic%以上の膜であることを特徴とするオーステナイト系ステンレス鋼。
(2)質量%で、
Mo:10.00%以下、
Cu:3.00%以下、
W:2.000%以下、
N:0.400%以下
より選択される1種以上を含有することを特徴とする上記(1)に記載のオーステナイト系ステンレス鋼。
(3)質量%で、
Ca:0.0002〜0.0050%、
B:0.0002〜0.0050%、
Mg:0.0002〜0.0050%、
REM:0.0010〜0.1000%
より選択される1種以上を含有することを特徴とする上記(1)または(2)に記載のオーステナイト系ステンレス鋼。
(4)質量%で、
Al:3.000%以下
を含有することを特徴とする上記(1)〜(3)のいずれかに記載のオーステナイト系ステンレス鋼。
(5)質量%で、
Ti:0.001〜0.400%、
Nb:0.001〜0.400%、
Ta:0.001〜0.500%、
Zr:0.001〜0.500%、
Co:0.001〜0.500%、
Sn:0.001〜0.500%、
Sb:0.001〜0.500%、
Ga:0.001〜0.500%
より選択される1種以上を含有することを特徴とする上記(1)〜(4)のいずれかに記載のオーステナイト系ステンレス鋼。
(6)化学プラント、製塩設備、排煙脱硫装置、EGRクーラー、海洋構造体、水処理設備に用いられることを特徴とする上記(1)〜(5)のいずれかに記載のオーステナイト系ステンレス鋼。
(7)上記(1)〜(6)のいずれかに記載のオーステナイト系ステンレス鋼の製造方法であって、
酸洗後の鋼を、pH6.0〜7.5であり、0.05mol/L以上のNaSO水溶液中において、−0.35〜−0.15V vs SHEで10sec以上電解処理して、最表層から深さ方向における前記鋼の酸化皮膜中のV濃度のピーク値を5.00atomic%以上にすることを特徴とするオーステナイト系ステンレス鋼の製造方法。
(1) A steel and an oxide film on the surface of the steel,
Said steel is in mass%,
C: 0. 100% or less,
Si: 3.00% or less,
Mn: 0.01 to 5.00%,
P: 0. 100% or less,
S: less than 0.0050%,
Ni: 7.00 to 40.00%,
Cr: 17.00-28.00%,
V: 0.010 to 5.000%
And the balance consists of Fe and impurities,
The oxide film, austenitic stainless steel, wherein the peak value of V concentrations in the depth direction from the outermost layer when the total amount of cationic element in the oxide film is 100% is 5.00Atomic% or more membrane steel.
(2) mass%,
Mo: 10.00% or less,
Cu: 3.00% or less,
W: 2.000% or less,
N: The austenitic stainless steel according to the above (1), which contains one or more selected from 0.400% or less.
(3) mass%,
Ca: 0.0002 to 0.0050%,
B: 0.0002 to 0.0050%,
Mg: 0.0002 to 0.0050%,
REM: 0.0010 to 0.1000%
The austenitic stainless steel according to (1) or (2) above, which contains one or more selected from the group consisting of
(4) mass%,
Al: 3.000% or less is contained, The austenitic stainless steel in any one of said (1)-(3) characterized by the above-mentioned.
(5) mass%,
Ti: 0.001 to 0.400%,
Nb: 0.001 to 0.400%,
Ta: 0.001 to 0.500%,
Zr: 0.001 to 0.500%,
Co: 0.001 to 0.500%,
Sn: 0.001 to 0.500%,
Sb: 0.001 to 0.500%,
Ga: 0.001 to 0.500%
The austenitic stainless steel according to any one of the above (1) to (4), which contains one or more selected from the above.
(6) The austenitic stainless steel according to any one of the above (1) to (5) characterized in that it is used in a chemical plant, a salt production facility, a flue gas desulfurization apparatus, an EGR cooler, a marine structure, and a water treatment facility. .
(7) A method for producing an austenitic stainless steel according to any one of (1) to (6) above,
The pickled steel has a pH of 6.0 to 7.5, and is electrolytically treated at −0.35 to −0.15 V vs SHE in an aqueous solution of 0.05 mol / L or more of Na 2 SO 4 for 10 seconds or more A method of producing an austenitic stainless steel, wherein the peak value of V concentration in the oxide film of the steel in the depth direction from the outermost layer is 5.00 atomic% or more.

Claims (7)

鋼と、前記鋼の表面にある皮膜と、を備え、
前記鋼は、質量%で、
C:0.100%以下、
Si:3.00%以下、
Mn:0.01〜5.00%、
P:0.100%以下、
S:0.0050%以下、
Ni:7.00〜40.00%、
Cr:17.00〜28.00%、
V:0.010〜5.000%
を含有し、残部はFeおよび不純物からなり、
前記皮膜は、皮膜中のカチオン元素の全量を100%としたときの最表層から深さ方向におけるV濃度のピーク値が5.00atomic%以上の膜であることを特徴とするオーステナイト系ステンレス鋼。
A steel and a coating on the surface of the steel;
Said steel is in mass%,
C: 0. 100% or less,
Si: 3.00% or less,
Mn: 0.01 to 5.00%,
P: 0. 100% or less,
S: less than 0.0050%,
Ni: 7.00 to 40.00%,
Cr: 17.00-28.00%,
V: 0.010 to 5.000%
And the balance consists of Fe and impurities,
An austenitic stainless steel characterized in that the film is a film having a peak value of V concentration in a depth direction from an outermost layer to a depth direction of 5.00 atomic% or more when the total amount of cationic elements in the film is 100%.
質量%で、
Mo:10.00%以下、
Cu:3.00%以下、
W:2.000%以下、
N:0.400%以下
より選択される1種以上を含有することを特徴とする請求項1に記載のオーステナイト系ステンレス鋼。
In mass%,
Mo: 10.00% or less,
Cu: 3.00% or less,
W: 2.000% or less,
The austenitic stainless steel according to claim 1, characterized in that it contains one or more selected from N: 0.400% or less.
質量%で、
Ca:0.0002〜0.0050%、
B:0.0002〜0.0050%、
Mg:0.0002〜0.0050%、
REM:0.0010〜0.1000%
より選択される1種以上を含有することを特徴とする請求項1または2に記載のオーステナイト系ステンレス鋼。
In mass%,
Ca: 0.0002 to 0.0050%,
B: 0.0002 to 0.0050%,
Mg: 0.0002 to 0.0050%,
REM: 0.0010 to 0.1000%
The austenitic stainless steel according to claim 1 or 2, characterized in that it contains one or more selected from the above.
質量%で、
Al:3.000%以下
を含有することを特徴とする請求項1〜3のいずれか1項に記載のオーステナイト系ステンレス鋼。
In mass%,
The austenitic stainless steel according to any one of claims 1 to 3, which contains Al: 3.000% or less.
質量%で、
Ti:0.001〜0.400%、
Nb:0.001〜0.400%、
Ta:0.001〜0.500%、
Zr:0.001〜0.500%、
Co:0.001〜0.500%、
Sn:0.001〜0.500%、
Sb:0.001〜0.500%、
Ga:0.001〜0.500%
より選択される1種以上を含有することを特徴とする請求項1〜4のいずれか1項に記載のオーステナイト系ステンレス鋼。
In mass%,
Ti: 0.001 to 0.400%,
Nb: 0.001 to 0.400%,
Ta: 0.001 to 0.500%,
Zr: 0.001 to 0.500%,
Co: 0.001 to 0.500%,
Sn: 0.001 to 0.500%,
Sb: 0.001 to 0.500%,
Ga: 0.001 to 0.500%
The austenitic stainless steel according to any one of claims 1 to 4, containing one or more selected from the group consisting of
化学プラント、製塩設備、排煙脱硫装置、EGRクーラー、海洋構造体、水処理設備に用いられることを特徴とする請求項1〜5のいずれか1項に記載のオーステナイト系ステンレス鋼。   The austenitic stainless steel according to any one of claims 1 to 5, which is used for a chemical plant, a salt production facility, a flue gas desulfurization apparatus, an EGR cooler, a marine structure, and a water treatment facility. 請求項1〜6のいずれか1項に記載のオーステナイト系ステンレス鋼の製造方法であって、
酸洗後の鋼を、pH6.0〜7.5であり、0.05mol/L以上のNaSO水溶液中において、−0.35〜−0.15V vs SHEで10sec以上電解処理して、最表層から深さ方向における前記鋼の皮膜中のV濃度のピーク値を5.00atomic%以上にすることを特徴とするオーステナイト系ステンレス鋼の製造方法。
It is a manufacturing method of the austenitic stainless steel of any one of Claims 1-6, Comprising:
The pickled steel has a pH of 6.0 to 7.5, and is electrolytically treated at −0.35 to −0.15 V vs SHE in an aqueous solution of 0.05 mol / L or more of Na 2 SO 4 for 10 seconds or more A method of producing an austenitic stainless steel, wherein a peak value of V concentration in a film of the steel in a depth direction from the outermost layer is made 5.00 atomic% or more.
JP2018003523A 2018-01-12 2018-01-12 Austenitic stainless steel and method of manufacturing the same Active JP6547011B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018003523A JP6547011B1 (en) 2018-01-12 2018-01-12 Austenitic stainless steel and method of manufacturing the same
CN201880061854.7A CN111148854B (en) 2018-01-12 2018-12-26 Austenitic stainless steel and method for producing same
KR1020207009056A KR102379904B1 (en) 2018-01-12 2018-12-26 Austenitic stainless steel and manufacturing method thereof
PCT/JP2018/047737 WO2019138869A1 (en) 2018-01-12 2018-12-26 Austenitic stainless steel and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018003523A JP6547011B1 (en) 2018-01-12 2018-01-12 Austenitic stainless steel and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP6547011B1 JP6547011B1 (en) 2019-07-17
JP2019123895A true JP2019123895A (en) 2019-07-25

Family

ID=67219694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018003523A Active JP6547011B1 (en) 2018-01-12 2018-01-12 Austenitic stainless steel and method of manufacturing the same

Country Status (4)

Country Link
JP (1) JP6547011B1 (en)
KR (1) KR102379904B1 (en)
CN (1) CN111148854B (en)
WO (1) WO2019138869A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7270777B2 (en) * 2020-01-09 2023-05-10 日鉄ステンレス株式会社 Austenitic stainless steel material
JP6823221B1 (en) * 2020-07-31 2021-01-27 日本冶金工業株式会社 Highly corrosion resistant austenitic stainless steel and its manufacturing method
JP7210780B2 (en) * 2020-09-01 2023-01-23 株式会社特殊金属エクセル Austenitic stainless steel sheet and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011047041A (en) * 2009-07-23 2011-03-10 Jfe Steel Corp Stainless steel for fuel cell having excellent corrosion resistance and method for producing the same
JP2012046800A (en) * 2010-08-27 2012-03-08 Jfe Steel Corp Surface treatment method of stainless steel sheet
JP2012201950A (en) * 2011-03-25 2012-10-22 Nisshin Steel Co Ltd METHOD FOR PRODUCING STAINLESS STEEL SHEET WITH FINELY ROUGHENED SURFACE AND THIN FILM Si SOLAR CELL
WO2017164344A1 (en) * 2016-03-23 2017-09-28 新日鐵住金ステンレス株式会社 Austenitic stainless steel sheet for exhaust component having excellent heat resistance and workability, turbocharger component, and method for producing austenitic stainless steel sheet for exhaust component

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5915975B2 (en) * 1980-04-18 1984-04-12 住友金属工業株式会社 Chrome molybdenum steel for petroleum and coal chemical plants
JP2991829B2 (en) 1991-09-27 1999-12-20 新日本製鐵株式会社 High speed pickling method for steel metal
DE69516336T2 (en) 1994-01-26 2000-08-24 Kawasaki Steel Co METHOD FOR PRODUCING A STEEL SHEET WITH HIGH CORROSION RESISTANCE
JP2981417B2 (en) 1995-10-17 1999-11-22 川崎製鉄株式会社 Stainless steel pickling agent
JP6390648B2 (en) 2016-03-18 2018-09-19 トヨタ自動車株式会社 Metal separator for fuel cell
CA3026612A1 (en) 2016-06-10 2017-12-14 Jfe Steel Corporation Stainless steel sheet for fuel cell separators, and production method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011047041A (en) * 2009-07-23 2011-03-10 Jfe Steel Corp Stainless steel for fuel cell having excellent corrosion resistance and method for producing the same
JP2012046800A (en) * 2010-08-27 2012-03-08 Jfe Steel Corp Surface treatment method of stainless steel sheet
JP2012201950A (en) * 2011-03-25 2012-10-22 Nisshin Steel Co Ltd METHOD FOR PRODUCING STAINLESS STEEL SHEET WITH FINELY ROUGHENED SURFACE AND THIN FILM Si SOLAR CELL
WO2017164344A1 (en) * 2016-03-23 2017-09-28 新日鐵住金ステンレス株式会社 Austenitic stainless steel sheet for exhaust component having excellent heat resistance and workability, turbocharger component, and method for producing austenitic stainless steel sheet for exhaust component

Also Published As

Publication number Publication date
JP6547011B1 (en) 2019-07-17
KR20200047631A (en) 2020-05-07
WO2019138869A1 (en) 2019-07-18
CN111148854B (en) 2021-09-21
KR102379904B1 (en) 2022-04-01
CN111148854A (en) 2020-05-12

Similar Documents

Publication Publication Date Title
JP6792951B2 (en) Duplex stainless steel for ozone-containing water
CN109536827B (en) Steel sheet having improved resistance to acid dew point corrosion, method for producing same, and exhaust gas flow path component
CN101903553B (en) The high-purity ferritic stainless steel of erosion resistance and excellent in workability and manufacture method thereof
CN111575588B (en) Martensite precipitation hardening stainless steel and preparation method and application thereof
JP5366609B2 (en) Alloy-saving duplex stainless steel material with good corrosion resistance and its manufacturing method
JP5156293B2 (en) Ferritic / austenitic stainless steel with excellent corrosion resistance and workability and manufacturing method thereof
WO2018181990A1 (en) Two-phase stainless steel and manufacturing method therefor
JP6446470B2 (en) High corrosion resistance austenitic stainless steel sheet
JP5907320B1 (en) Material for stainless cold-rolled steel sheet and manufacturing method thereof
JP6547011B1 (en) Austenitic stainless steel and method of manufacturing the same
JP6782660B2 (en) Duplex Stainless Steel Welded Structure for Oxidizing Fluid Environment
CN112779453B (en) Fe-Ni-Cr-Mo-Cu alloy excellent in corrosion resistance
JP6605066B2 (en) Fe-Cr alloy and method for producing the same
JP2022509863A (en) Ferritic stainless steel with improved corrosion resistance and its manufacturing method
JP2008303445A (en) Ferritic stainless steel sheet having excellent grindability and corrosion resistance, and method for producing the same
JP6745373B1 (en) Stainless steel excellent in corrosion resistance and method of manufacturing the same
JP2011149041A (en) Stainless steel for conductive component having low contact electric resistance, and method for producing the same
JP7458902B2 (en) Ferritic Stainless Steel
JP7465955B2 (en) Low Cr ferritic stainless steel sheet with improved pipe expansion workability and its manufacturing method
CN114901851B (en) Austenitic stainless steel sheet and method for producing same
TWI752854B (en) Vostian iron series stainless steel and spring
CN106929763A (en) A kind of harsh marine environment application is with economical corrosion-resisting steel composition design method
KR101819376B1 (en) Ferritic stainless cold-rolled steel sheet having excellent acid eletrolytic cleaning
JP2016166394A (en) Duplex stainless steel material, production method therefor and surface treatment method
JPH02115345A (en) Ferritic stainless steel having excellent corrosion resistance in high concentrated halide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190624

R150 Certificate of patent or registration of utility model

Ref document number: 6547011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250