JP2012097341A - Chromium-containing ferritic steel sheet for solar cell substrate - Google Patents

Chromium-containing ferritic steel sheet for solar cell substrate Download PDF

Info

Publication number
JP2012097341A
JP2012097341A JP2010248056A JP2010248056A JP2012097341A JP 2012097341 A JP2012097341 A JP 2012097341A JP 2010248056 A JP2010248056 A JP 2010248056A JP 2010248056 A JP2010248056 A JP 2010248056A JP 2012097341 A JP2012097341 A JP 2012097341A
Authority
JP
Japan
Prior art keywords
mass
less
solar cell
corrosion resistance
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010248056A
Other languages
Japanese (ja)
Other versions
JP5625765B2 (en
Inventor
Hiroki Ota
裕樹 太田
Tomomasa Hirata
知正 平田
Tetsuyuki Nakamura
徹之 中村
Takumi Ugi
工 宇城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010248056A priority Critical patent/JP5625765B2/en
Publication of JP2012097341A publication Critical patent/JP2012097341A/en
Application granted granted Critical
Publication of JP5625765B2 publication Critical patent/JP5625765B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a chromium-containing ferritic steel sheet for a solar cell substrate, which has necessary and sufficient characteristics, by finding characteristics required for stainless steel as a substrate for a compound solar cell.SOLUTION: The chromium-containing ferritic steel sheet for a solar cell substrate comprises, by mass, ≤0.03% C, ≤0.03% N, ≤0.05% C+N, 0.2-3.0% Si, ≤0.8% Mn, ≤0.04% P, ≤0.02% S, 5% or more but less than 10.5% Cr, ≤1.0% Ni, 0.01-0.05% Al, 4×(C+N)% or more but no more than 0.40% Ti and the balance being Fe and inevitable impurities and has an average surface roughness Ra of ≤0.03 μm.

Description

本発明は、太陽電池基板に用いるクロム含有フェライト系鋼板に関するものである。   The present invention relates to a chromium-containing ferritic steel sheet used for a solar cell substrate.

太陽電池は現在、シリコンを用いたものが主流であり、結晶シリコンを用いたものを中心に広く普及してきている。
太陽電池の普及が進むにつれ、太陽電池自体を様々な形状に対応できるようにすることで、太陽電池が設置される景観を損ねないようにできることも太陽電池としての重要な要素となりつつある。
この点、結晶シリコンを用いた太陽電池である結晶シリコン型電池の短所の1つに、フレキシビリティが無く、太陽電池自体を様々な形状に対応させることができないことが挙げられる。
Currently, solar cells using silicon are the mainstream, and those using crystalline silicon have been widely spread.
As solar cells become more widespread, it is becoming an important element as a solar cell that the solar cell itself can be adapted to various shapes so as not to damage the scenery where the solar cell is installed.
In this regard, one of the disadvantages of the crystalline silicon type battery, which is a solar battery using crystalline silicon, is that it does not have flexibility and the solar battery itself cannot be adapted to various shapes.

シリコン系の太陽電池においても、いわゆる薄膜系シリコン電池では、樹脂上に薄膜を形成させることなどにより、フレキシビリティを持たせたものもある。しかしながら、薄膜系シリコン電池は、発電効率が結晶シリコン型に比べて劣るという問題がある。
これに対し、CIS系やCIGS系(以下CIGS系と略す)と呼ばれる、いわゆる化合物系太陽電池は、製法上、大面積化やフレキシブル化が容易であり、コスト面でも有利であることから注目を集めてきている。
Among silicon-based solar cells, some so-called thin-film silicon cells are made flexible by forming a thin film on a resin. However, the thin film silicon battery has a problem that the power generation efficiency is inferior to that of the crystalline silicon type.
On the other hand, so-called compound solar cells called CIS and CIGS (hereinafter abbreviated as CIGS) are easy to increase in area and flexibility due to the manufacturing method, and are also attractive in terms of cost. Have gathered.

CIGS系太陽電池の基板材料としては、ソーダライムガラスやステンレス鋼が用いられてきたが、大量生産に向く、ロール・トゥ・ロールの製造方法を適用する場合にはフレキシビリティを持つステンレス鋼が有利である。
CIGS系太陽電池の基板材料に用いられるステンレス鋼としては、これまでフェライト系ステンレス鋼が多く用いられてきた。
この理由は、フェライト系ステンレス鋼の熱膨張率がCIGS化合物の熱膨張率であるおよそ10×10-6K-1に近い熱膨張を有するからである。CIGS系太陽電池は、CIGS化合物の発電効率を上げるための熱処理を行うが、基板材料となるステンレス鋼とCIGS化合物の熱膨張率の差が大きいと、前記熱処理において、熱膨張率差が原因となる剥離を生じる可能性がある。このため、熱膨張率がおよそ18×10-6K-1と大きい、オーステナイト系ステンレス鋼(たとえば、SUS304(18%Cr-8%Ni)(日本工業規格、JIS G 4305))は使用することができず、CIGS系太陽電池基板としては、フェライト系ステンレス鋼の代表である、SUS430(16%Cr)(JIS G 4305)が用いられる。
Soda lime glass and stainless steel have been used as substrate materials for CIGS solar cells, but stainless steel with flexibility is advantageous when applying a roll-to-roll manufacturing method suitable for mass production. It is.
Ferritic stainless steel has been widely used as a stainless steel used as a substrate material for CIGS solar cells.
This is because the thermal expansion coefficient of ferritic stainless steel has a thermal expansion close to approximately 10 × 10 −6 K −1 , which is the thermal expansion coefficient of the CIGS compound. CIGS solar cells are heat-treated to increase the power generation efficiency of the CIGS compound.If the difference in the thermal expansion coefficient between the stainless steel used as the substrate material and the CIGS compound is large, the difference in the thermal expansion coefficient is caused by the heat treatment. May cause peeling. For this reason, use austenitic stainless steel (for example, SUS304 (18% Cr-8% Ni) (Japanese Industrial Standard, JIS G 4305)) that has a large coefficient of thermal expansion of approximately 18 × 10 -6 K -1. However, as a CIGS solar cell substrate, SUS430 (16% Cr) (JIS G 4305), which is representative of ferritic stainless steel, is used.

太陽電池用基板として、ステンレス鋼を用いる場合、これまでは表面に絶縁層を形成することに研究の主眼が置かれてきた。例えば、特許文献1には、ステンレス箔の上に絶縁性に優れた膜を形成させたステンレス箔が開示されている。これらの技術は、ガラス基板の代替としてステンレス箔を用いることを目的としており、ガラスと同様の高い絶縁性を持たせることで絶縁膜上での回路の形成を可能にしようとするものである。
これに対し、CIGS系太陽電池では、非特許文献1に示されているように、ステンレス基板上の絶縁膜の有無によらず、同様の高い発電効率を達成することが可能である。このため、ステンレス基板上に絶縁膜を形成することなく、電極および電池を積層させていく方法が可能である。
In the case of using stainless steel as a solar cell substrate, until now, research has been focused on forming an insulating layer on the surface. For example, Patent Document 1 discloses a stainless steel foil in which a film having excellent insulating properties is formed on a stainless steel foil. These techniques are intended to use a stainless steel foil as an alternative to a glass substrate, and are intended to enable the formation of a circuit on an insulating film by giving the same high insulating properties as glass.
On the other hand, in the CIGS solar cell, as shown in Non-Patent Document 1, it is possible to achieve the same high power generation efficiency regardless of the presence or absence of the insulating film on the stainless steel substrate. For this reason, the method of laminating | stacking an electrode and a battery is possible, without forming an insulating film on a stainless steel substrate.

特許第3882008号公報Japanese Patent No. 3882008

T. Satoh et al.: Solar Energy Materials& Solar Cells,vol.75(2003),p65-71.T. Satoh et al .: Solar Energy Materials & Solar Cells, vol. 75 (2003), p65-71.

CIGS系太陽電池においては、発電効率を向上させるため一般に500℃以上、好ましくは600℃以上でのアニールが必要であるとされている。
したがって、CIGS系太陽電池用基板としての材料に望まれる特性としては、先に述べた熱膨張率の他に、熱処理時に異常酸化等が生じないための耐熱性が要求される。
また、太陽電池は長期間使用されることから、十分な耐食性が必要であると考えられ、フェライト系ステンレス鋼であって広い分野での使用実績があるSUS430が用いられているのが現状である。
In CIGS solar cells, annealing at 500 ° C. or higher, preferably 600 ° C. or higher is generally required to improve power generation efficiency.
Therefore, as a characteristic desired for the material for the substrate for CIGS solar cells, in addition to the thermal expansion coefficient described above, heat resistance is required so that abnormal oxidation or the like does not occur during heat treatment.
In addition, since solar cells are used for a long period of time, it is considered that sufficient corrosion resistance is necessary, and SUS430, which is a ferritic stainless steel and has been used in a wide range of fields, is currently used. .

上記のように、CIGS系太陽電池用基板としてのステンレス鋼に要求される特性として、現在までに知られているのは、上記のような熱膨張率、耐熱性、耐食性である。
しかしながら、実際には、CIGS系太陽電池用基板として必要な諸特性が明らかになっていないため、上記のような特性が必要であるのか、あるいは十分であるのかは不明であり、過度に高価なステンレス鋼を基板として用いてきた可能性がある一方、特性として不十分である可能性もある。
As described above, the properties required for stainless steel as a substrate for CIGS solar cells are known to date, such as the coefficient of thermal expansion, heat resistance, and corrosion resistance.
However, since the various characteristics necessary for a CIGS solar cell substrate have not been clarified in practice, it is unclear whether the above characteristics are necessary or sufficient, and are excessively expensive. While stainless steel may have been used as a substrate, the properties may be insufficient.

そこで、本発明においては、CIGS系太陽電池用基板としてのステンレス鋼に要求される特性を見出し、必要かつ十分な特性を有する太陽電池基板用クロム含有フェライト系鋼板を得ることを目的としている。   Accordingly, an object of the present invention is to find the properties required for stainless steel as a CIGS solar cell substrate and to obtain a chromium-containing ferritic steel plate for solar cell substrates having necessary and sufficient characteristics.

発明者は、CIGS系太陽電池用基板として必要な諸特性について検討した。
<耐食性・耐熱性>
太陽電池は長期に亘って使用されるため、十分な耐食性が必要であると考えられ、前述したように、SUS430が用いられてきた。
しかしながら、太陽電池セルとして組み上げられた後は、基板はEVAなどの封止剤によって包埋されているため、SUS430よりも低い耐食性でも十分である可能性が高い。そこで、必要な耐食性について検討したところ、ステンレス鋼の下限とされる11%Cr鋼でも十分であり、製造段階のアニール処理により異常酸化が生じない範囲であればさらに低Cr化が可能であることが明らかになった。
さらに検討をした結果、Cr量を低く抑えても、C、Nを低く抑え、さらにTi、Siを適当量含有させることによって、太陽電池用基板として十分な耐食性・耐熱性をもつ、安価な太陽電池基板用クロム含有フェライト系鋼板を提供可能であることが明らかになった。
The inventor examined various characteristics necessary for a substrate for CIGS solar cells.
<Corrosion resistance and heat resistance>
Since solar cells are used for a long period of time, it is considered that sufficient corrosion resistance is necessary, and as described above, SUS430 has been used.
However, after being assembled as a solar battery cell, since the substrate is embedded with a sealing agent such as EVA, it is highly possible that the corrosion resistance lower than that of SUS430 is sufficient. Therefore, when the necessary corrosion resistance was examined, 11% Cr steel, which is the lower limit of stainless steel, is sufficient, and it is possible to further reduce Cr as long as it does not cause abnormal oxidation due to annealing in the manufacturing stage. Became clear.
As a result of further studies, even if the Cr content is kept low, C and N are kept low, and by adding appropriate amounts of Ti and Si, the solar cell has sufficient corrosion resistance and heat resistance as a solar cell substrate. It has become clear that a chromium-containing ferritic steel sheet for battery substrates can be provided.

<表面粗度>
絶縁層無しで高い発電効率を達成するのに必要な条件を検討したところ、鋼板の表面粗度を小さくすることが必要であるとの知見を得、さらにその程度について検討したところ、0.03μm以下であることが必要であると判明した。
<Surface roughness>
When we examined the conditions necessary to achieve high power generation efficiency without an insulating layer, we obtained the knowledge that it was necessary to reduce the surface roughness of the steel sheet, and further examined the degree of that, 0.03μm or less It turned out to be necessary.

本発明は以上の知見を基になされたものであり、具体的には以下の構成からなるものである。   The present invention has been made based on the above findings, and specifically comprises the following constitution.

(1)本発明に係る太陽電池基板用クロム含有フェライト系鋼板は、C:0.03mass%以下、N:0.03mass%以下、C+N:0.05mass%以下、Si:0.2mass%以上3.0mass%以下、Mn:0.8mass%以下、P:0.04mass%以下、S:0.02mass%以下、Cr:5mass%以上10.5mass%未満、Ni:1.0mass%以下、Al:0.01mass%以上0.05mass以下、Ti:4×(C+N)mass%以上0.40mass%以下を含有し、残部がFeおよび不可避的不純物からなり、かつ表面の平均粗さRaが0.03μm以下であることを特徴とするものである。 (1) The chromium-containing ferritic steel sheet for solar cell substrates according to the present invention includes C: 0.03 mass% or less, N: 0.03 mass% or less, C + N: 0.05 mass% or less, Si: 0.2 mass% or more and 3.0 mass% or less, Mn: 0.8 mass% or less, P: 0.04 mass% or less, S: 0.02 mass% or less, Cr: 5 mass% or more and less than 10.5 mass%, Ni: 1.0 mass% or less, Al: 0.01 mass% or more, 0.05 mass or less, Ti: 4 × (C + N) mass% or more and 0.40mass% or less is contained, the balance is made of Fe and inevitable impurities, and the average roughness Ra of the surface is 0.03 μm or less.

(2)また、上記(1)に記載のものにおいて、Cu及び/又はMoを含有し、Cu:0.3mass%以上1.0mass%以下、Mo:1.0mass%以下(範囲下限値の零を含まず)であることを特徴とするものである。 (2) Moreover, in the thing as described in said (1), Cu and / or Mo are contained, Cu: 0.3 mass% or more and 1.0 mass% or less, Mo: 1.0 mass% or less (excluding zero of the range lower limit value) ).

(3)また、上記(1)又は(2)に記載のものにおいて、V及び/又はNbを含有し、V:0.5mass%以下(範囲下限値の零を含まず)、Nb:0.5mass%以下であることを特徴とするものである。 (3) Moreover, in the thing as described in said (1) or (2), V and / or Nb are contained, V: 0.5 mass% or less (excluding zero of a range lower limit), Nb: 0.5 mass% It is characterized by the following.

本発明によれば、Crをはじめとする高価な合金含有量を低く抑えたままで、太陽電池用基板に必要な優れた耐食性を持つ太陽電池用Cr含有鋼を得ることができる。
また、本発明の太陽電池用Cr含有鋼は、不純物元素を低減し、鋼中のCやNを固定する安定化元素であるTiを添加しているため、溶接性、溶接部加工性、溶接部耐食性にも優れる。
According to the present invention, it is possible to obtain Cr-containing steel for solar cells having excellent corrosion resistance necessary for a substrate for solar cells while keeping the content of expensive alloys including Cr low.
In addition, the Cr-containing steel for solar cells of the present invention reduces impurity elements and adds Ti, which is a stabilizing element that fixes C and N in the steel, so that weldability, weld zone workability, welding Excellent corrosion resistance.

本発明の効果の一つを示す実験結果の写真である。It is a photograph of the experimental result which shows one of the effects of this invention.

以下、本発明を具体的に説明する。
本発明に係る太陽電池基板用クロム含有フェライト系鋼板は、C:0.03mass%以下、N:0.03mass%以下、C+N:0.05mass%以下、Si:0.2mass%以上3.0mass%以下、Mn:0.8mass%以下、P:0.04mass%以下、S:0.02mass%以下、Cr:5mass%以上10.5mass%未満、Ni:1.0mass%以下、Al:0.01mass%以上0.05mass以下、Ti:4×(C+N)mass%以上0.40mass%以下を含有し、残部がFeおよび不可避的不純物からなり、かつ表面の平均粗さRaが0.03μm以下であることを特徴とするものである。
以下においては、太陽電池基板用クロム含有フェライト系鋼板の含有する各成分を上記の範囲に限定した理由、及び表面の平均粗さRaを0.03μm以下にする理由を説明する。
Hereinafter, the present invention will be specifically described.
The chromium-containing ferritic steel sheet for solar cell substrates according to the present invention is C: 0.03 mass% or less, N: 0.03 mass% or less, C + N: 0.05 mass% or less, Si: 0.2 mass% or more and 3.0 mass% or less, Mn: 0.8 mass% or less, P: 0.04 mass% or less, S: 0.02 mass% or less, Cr: 5 mass% or more and less than 10.5 mass%, Ni: 1.0 mass% or less, Al: 0.01 mass% or more and 0.05 mass or less, Ti: 4 × ( It is characterized by containing C + N) mass% or more and 0.40 mass% or less, the balance being Fe and inevitable impurities, and the average roughness Ra of the surface being 0.03 μm or less.
Hereinafter, the reason why each component contained in the chromium-containing ferritic steel sheet for solar cell substrate is limited to the above range and the reason why the average roughness Ra of the surface is 0.03 μm or less will be described.

<C:0.03mass%以下、N:0.03mass%以下、C+N:0.05mass%以下>
CおよびNは、熱延板の靭性を低下させるので少ない方が望ましく、それぞれ0.03mass%以下、合計(C+N)でも0.05mass%以下に限定する。
また、好ましくは、C:0.015mass%以下、N:0.015mass%以下、C+N:0.03mass%以下である。
なお、C、N量が多くなると太陽電池基板に用いた際の耐食性にも悪影響を及ぼすため、特に高い耐食性が要求される場合には、C:0.010mass%以下、N:0.010mass%以下、C+N:0.015mass%以下とすることがさらに好ましい。
<C: 0.03 mass% or less, N: 0.03 mass% or less, C + N: 0.05 mass% or less>
C and N are preferable because they reduce the toughness of the hot-rolled sheet, and are each limited to 0.03 mass% or less, and the total (C + N) is limited to 0.05 mass% or less.
Further, C: 0.015 mass% or less, N: 0.015 mass% or less, and C + N: 0.03 mass% or less are preferable.
In addition, in order to adversely affect the corrosion resistance when used for the solar cell substrate when the amount of C, N increases, particularly when high corrosion resistance is required, C: 0.010 mass% or less, N: 0.010 mass% or less, More preferably, C + N: 0.015 mass% or less.

<Si:0.2mass%以上3.0mass%以下>
Siは、脱酸剤として必要な元素である。また、本発明のようにCr量が10.5mass%以下の低Cr鋼の耐食性・耐熱性を向上させるのに重要な元素である。これらの効果を得るためには、0.2mass%以上の含有量が必要である。しかし、多量に含有させると熱延板の靭性を低下させる。よって、Siは3.0mass%以下とする。好ましくは、0.3mass%以上、2.0mass%以下である。
<Si: 0.2mass% or more and 3.0mass% or less>
Si is an element necessary as a deoxidizer. Further, it is an important element for improving the corrosion resistance and heat resistance of a low Cr steel having a Cr content of 10.5 mass% or less as in the present invention. In order to obtain these effects, a content of 0.2 mass% or more is necessary. However, if contained in a large amount, the toughness of the hot-rolled sheet is lowered. Therefore, Si is set to 3.0 mass% or less. Preferably, it is 0.3 mass% or more and 2.0 mass% or less.

<Mn:0.8mass%以下>
Mnは、脱酸作用がある。しかし、鋼中で硫化物を形成すると著しく耐食性を低下させるため含有量は低いほうが望ましく、製造時の経済性を考慮して、Mnは0.8mass%以下とする。好ましくは0.5mass%以下である。
<Mn: 0.8 mass% or less>
Mn has a deoxidizing action. However, when sulfides are formed in steel, the corrosion resistance is remarkably lowered, so the content is preferably low. In consideration of economics during production, Mn is set to 0.8 mass% or less. Preferably it is 0.5 mass% or less.

<P:0.04mass%以下>
Pは、熱間加工性に悪影響を与えることから少ない方が好ましい。許容される上限は0.04mass%である。
<P: 0.04 mass% or less>
A smaller amount of P is preferred because it adversely affects hot workability. The upper limit allowed is 0.04 mass%.

<S:0.02mass%以下>
Sは、熱間加工性および耐食性に悪影響を与えることから少ない方が好ましい。許容される上限は0.02mass%である。好ましくは0.005mass%以下である。
<S: 0.02 mass% or less>
A smaller amount of S is preferable because it adversely affects hot workability and corrosion resistance. The upper limit allowed is 0.02 mass%. Preferably it is 0.005 mass% or less.

<Cr:5mass%以上10.5mass%未満>
Crは、耐食性を左右する重要な元素であるが、経済的な面からは低いことが望ましい。太陽電池基板として必要な耐食性・耐酸化性を得るためには5mass%以上の含有量が必要である。一方、ステンレス鋼の下限として定義される10.5mass%を上限とする。本発明では、上述のように耐食性を向上させるためC、N量を減らしていることにより、Cr量を低減することを実現している。これによって、経済的な利益を得ることができている。
<Cr: 5mass% or more and less than 10.5mass%>
Cr is an important element that affects the corrosion resistance, but it is desirable that Cr be low in terms of economy. In order to obtain the corrosion resistance and oxidation resistance necessary for a solar cell substrate, a content of 5 mass% or more is required. On the other hand, the upper limit is 10.5 mass% defined as the lower limit of stainless steel. In the present invention, the Cr amount is reduced by reducing the C and N amounts in order to improve the corrosion resistance as described above. As a result, economic benefits can be obtained.

<Ni:1.0mass%以下>
Niは、Cu含有による熱間加工性低下を防ぐ効果があるため、Cuを含む場合には含有させることが好ましい。また、隙間腐食を低減させる効果も有する。しかし、高価な元素であることに加え、1.0mass%を超えて含有させてもその効果は飽和し、過剰な含有はかえって熱間加工性を低下させる。このため、Niは1.0mass%以下とする。好ましい範囲は、0.1〜0.4mass%である。
<Ni: 1.0 mass% or less>
Since Ni has the effect of preventing the hot workability from being reduced by containing Cu, it is preferable to contain Ni when it contains Cu. It also has the effect of reducing crevice corrosion. However, in addition to being an expensive element, the effect is saturated even if it is contained in excess of 1.0 mass%, and excessive workability decreases the hot workability. For this reason, Ni is 1.0 mass% or less. A preferable range is 0.1 to 0.4 mass%.

<Al:0.01mass%以上0.05mass%以下>
Alは、通常は脱酸の効果を持つが、過度に含有すると、介在物の量が増加し表面性状が低下する。このため、Alの含有量を0.01mass%以上、0.05mass%以下の範囲とする。
<Al: 0.01 mass% or more and 0.05 mass% or less>
Al usually has a deoxidizing effect, but if it is contained excessively, the amount of inclusions increases and the surface properties deteriorate. For this reason, the content of Al is set to a range of 0.01 mass% to 0.05 mass%.

<Ti:4×(C+N)mass%以上0.40mass%以下>
Tiは、加工性や耐食性に有害なCやNをTiCやTiNとして無害化して耐食性を向上させる。この効果は特に溶接部で顕著である。また、連続焼鈍による鋭敏化を防止するためにもTiの添加が必要である。これらの効果を得るためには、4×(C+N)mass%以上の含有量が必要である。一方、0.40mass%を超えて過剰に含有させると熱延板の靭性を低下させる。よって、Tiは4×(C+N)mass%以上0.40mass%以下とする。また、好ましくは、8×(C+N)mass%以上、0.35mass%以下の範囲であり、表面性状の面からさらに好ましい上限は0.30mass%以下である。
<Ti: 4 x (C + N) mass% or more and 0.40 mass% or less>
Ti improves corrosion resistance by detoxifying C and N, which are harmful to workability and corrosion resistance, as TiC and TiN. This effect is particularly remarkable at the weld. In addition, addition of Ti is necessary to prevent sensitization by continuous annealing. In order to obtain these effects, a content of 4 × (C + N) mass% or more is required. On the other hand, when it contains excessively exceeding 0.40 mass%, the toughness of a hot-rolled sheet will fall. Therefore, Ti is 4 × (C + N) mass% or more and 0.40 mass% or less. Further, it is preferably in the range of 8 × (C + N) mass% or more and 0.35 mass% or less, and a more preferable upper limit is 0.30 mass% or less in terms of surface properties.

<表面の平均粗さRa:0.03μm以下>
表面の平均粗さをRaで0.03μm以下にするのは、絶縁層を形成することなく直接鋼板上に電極や化合物層を形成させても良好な発電効率を得ることができるようにするためである。
化合物系太陽電池においては、表面粗さが発電効率に影響することを知見しており、これについて検討したところ、表面の平均粗さRaを0.03μm以下にする必要があることを知見した。
表面平均粗さRaが0.03μmを超えると太陽電池としての発電効率が低下し、その結果として歩留まりが大きく低下するからである。
なお、表面平均粗さRaは、より好ましくは、0.02μm以下である。
<Average surface roughness Ra: 0.03 μm or less>
The reason why the average roughness of the surface is 0.03 μm or less in terms of Ra is that it is possible to obtain good power generation efficiency even if an electrode or a compound layer is formed directly on the steel plate without forming an insulating layer. is there.
In compound solar cells, we know that the surface roughness affects the power generation efficiency, and as a result, we have found that the average surface roughness Ra needs to be 0.03 μm or less.
This is because when the average surface roughness Ra exceeds 0.03 μm, the power generation efficiency as a solar cell is lowered, and as a result, the yield is greatly reduced.
The surface average roughness Ra is more preferably 0.02 μm or less.

以上、本発明の太陽電池基板用クロム含有フェライト系鋼板の各成分の量的限定理由等について述べたが、本発明の合金設計の骨子は、C、Nの低減に加え、TiおよびSiを適量含有させることにある。
図1は、本発明の効果の一つを示す実験結果を示す写真であり、図1(a)がSUS409L 11Cr-0.3Ti、図1(b)が9.4Cr-0.1Si-Ti無添加、図1(c)が9.6Cr-1.5Si-0.2Ti(本発明例)である。実験は、各試験片の表面を600番のエメリー紙にて研磨した後、塩水噴霧試験にて耐食性を評価した。試験条件は、5%NaCl、35℃、24時間噴霧とした。
As described above, the reason for quantitative limitation of each component of the chromium-containing ferritic steel sheet for solar cell substrate of the present invention has been described, but the essence of the alloy design of the present invention is the appropriate amount of Ti and Si in addition to the reduction of C and N It is to contain.
FIG. 1 is a photograph showing experimental results showing one of the effects of the present invention. FIG. 1 (a) shows SUS409L 11Cr-0.3Ti, FIG. 1 (b) shows no 9.4Cr-0.1Si-Ti added, FIG. 1 (c) is 9.6Cr-1.5Si-0.2Ti (invention example). In the experiment, after the surface of each test piece was polished with No. 600 emery paper, the corrosion resistance was evaluated by a salt spray test. The test conditions were 5% NaCl, sprayed at 35 ° C. for 24 hours.

図1(a)に示されるように、10.5mass%以上のCrを含むことで定義されるステンレス鋼は、表面に安定的な不動態皮膜が形成されるため優れた耐食性を示している。これに対し、図1(b)に示すように、10.5mass%未満のCrしか含有しない鋼の耐食性は明らかに低下している。他方、図1(c)に示すように、C、Nの低減に加え、Ti、Siを含有させた本発明の成分鋼では、耐食性が図1(b)の場合よりも明らかに改善しており、SUS409L鋼に匹敵する耐食性を具備させることも可能であり、Crのような高価な合金含有量を低く抑えたままで、太陽電池用基板に必要な優れた耐食性を持つ太陽電池用Cr含有鋼を実現している。   As shown in FIG. 1A, stainless steel defined by containing 10.5 mass% or more of Cr exhibits excellent corrosion resistance because a stable passive film is formed on the surface. On the other hand, as shown in FIG. 1 (b), the corrosion resistance of steel containing only less than 10.5 mass% Cr is clearly reduced. On the other hand, as shown in FIG. 1 (c), in addition to the reduction of C and N, in the component steel of the present invention containing Ti and Si, the corrosion resistance is clearly improved as compared with the case of FIG. 1 (b). It is also possible to provide corrosion resistance comparable to SUS409L steel, and the Cr-containing steel for solar cells that has the excellent corrosion resistance required for solar cell substrates while keeping the content of expensive alloys such as Cr low. Is realized.

なお、必要に応じて、以下の元素を含むことができる。
<Cu:0.3mass%以上1.0mass%以下>
Cuは、耐食性を向上させる重要な元素であり、特に隙間腐食を低減させるために必要な元素である。この効果を得るには0.3mass%以上の含有量が有効である。一方、1.0mass%を超えて含有させると、熱間加工性が劣化する。よって、Cuは1.0mass%以下とする。好ましい範囲は、0.3mass%以上、0.8mass%未満である。
In addition, the following elements can be included as needed.
<Cu: 0.3 mass% or more and 1.0 mass% or less>
Cu is an important element for improving the corrosion resistance, and is an element particularly necessary for reducing crevice corrosion. To obtain this effect, a content of 0.3 mass% or more is effective. On the other hand, when it contains exceeding 1.0 mass%, hot workability will deteriorate. Therefore, Cu is 1.0 mass% or less. A preferable range is 0.3 mass% or more and less than 0.8 mass%.

<Mo:1.0mass%以下>
Moは、耐食性を向上させる元素であるが、高価な元素であることに加えて、熱延板の靭性を低下させて製造性を低下させる懸念がある。さらに、冷延焼鈍板を硬くして加工性を低下させるので、1.0mass%以下とする。
<Mo: 1.0 mass% or less>
Mo is an element that improves the corrosion resistance, but in addition to being an expensive element, there is a concern that the toughness of the hot-rolled sheet is lowered and the productivity is lowered. Further, since the cold-rolled annealed plate is hardened and the workability is lowered, it is set to 1.0 mass% or less.

CuやMoは高価であるため、必要に応じて含有させればよく、逆に言えばCuやMoを積極的に添加しない場合には本発明の太陽電池基板用クロム含有フェライト系鋼板を安価に製造することができる。   Since Cu and Mo are expensive, it may be contained as needed. Conversely, if Cu or Mo is not actively added, the chromium-containing ferritic steel sheet for solar cell substrate of the present invention is inexpensive. Can be manufactured.

<V:0.5mass%以下>
Vは、C、Nを無害化する働きを持つが、過度に含むと加工性が低下するため、含有させる場合の上限は0.5mass%とする。
<V: 0.5 mass% or less>
V has the function of detoxifying C and N, but if it is excessively contained, the workability is lowered, so the upper limit when it is contained is 0.5 mass%.

<Nb:0.5mass%以下>
Nbは、熱延板の結晶粒を微細化させることにより、熱延板の靭性を向上させる効果をもつ。しかし、0.5mass%を超えて含有させると硬化が著しくなるため、含有量を0.5mass%以下に限定する。なお、Nbは、再結晶温度を上昇させるため、過剰に含有させると高速冷延板焼鈍ラインでは焼鈍が不十分となり、焼鈍後の加工性が不十分となる。このため、生産性を重視する際には、上限を0.01mass%以下とする必要があり、好ましくは、0.005mass%以下とする。
このようにNbは再結晶の温度を上昇させ軟質化を困難にするという性質を有することから、逆にNbを積極的には添加しないようにすることで、熱延板の連続焼鈍ラインでの焼鈍、および冷延板の高速連続焼鈍ラインでの焼鈍を容易に行うことができ、高効率な製造が可能となる。
<Nb: 0.5 mass% or less>
Nb has the effect of improving the toughness of the hot-rolled sheet by refining the crystal grains of the hot-rolled sheet. However, since hardening will become remarkable when it contains exceeding 0.5 mass%, content is limited to 0.5 mass% or less. In addition, since Nb raises recrystallization temperature, when it contains excessively, in a high-speed cold-rolled sheet annealing line, annealing will become inadequate and the workability after annealing will become inadequate. For this reason, when emphasizing productivity, the upper limit needs to be 0.01 mass% or less, and preferably 0.005 mass% or less.
In this way, Nb has the property of raising the temperature of recrystallization and making it difficult to soften, so conversely, by not actively adding Nb, in the continuous annealing line of hot-rolled sheet Annealing and the annealing in the high-speed continuous annealing line of a cold-rolled sheet can be performed easily, and highly efficient manufacture is attained.

次に、本発明の太陽電池基板用クロム含有フェライト系鋼板の製造方法について説明する。
本発明鋼の高効率な製造方法としては、スラブに連続鋳造し、1000〜1200℃に加熱して熱間圧延を行い熱延コイルとして、これを熱延板の連続焼鈍・酸洗ラインで800〜1000℃の温度で焼鈍・酸洗を行い、次に普通銅と兼用の高速タンデム圧延機あるいはステンレス専用の多段ロール圧延機を用いて冷間圧延を施し冷延板として、普通鋼と兼用の冷延板の高速連続焼鈍ラインで効率的な冷延板の焼鈍と酸洗を行う方法が推奨される。
詳細には以下の通りである。
Next, the manufacturing method of the chromium containing ferritic steel plate for solar cell substrates of this invention is demonstrated.
As a highly efficient manufacturing method of the present invention steel, it is continuously cast on a slab, heated to 1000 to 1200 ° C. and hot-rolled as a hot-rolled coil. Perform annealing and pickling at a temperature of ~ 1000 ° C, and then cold rolling using a high-speed tandem rolling mill that is also used with ordinary copper or a multi-stage roll rolling mill that is exclusively for stainless steel. An efficient cold-rolled sheet annealing and pickling method is recommended in the high-speed continuous annealing line for cold-rolled sheets.
Details are as follows.

まず、本発明の成分組成に調整した溶鋼を、転炉または電気炉等の公知の溶製炉にて溶製したのち、真空脱ガス(RH法)、VOD(Vacuum Oxygen Decarburization)法、AOD(Argon Oxygen Decarburization)法等の公知の精錬方法で精練し、次いで、連続鋳造法あるいは造塊−分塊法で鋼スラブ(鋼素材)とする。鋳造法は、生産性、品質の観点から連続鋳造が好ましい。また、スラブ厚は、後述する熱間粗圧延での圧下率を確保するためには、100mm以上とするのが好ましい。   First, molten steel adjusted to the component composition of the present invention is melted in a known melting furnace such as a converter or an electric furnace, and then vacuum degassing (RH method), VOD (Vacuum Oxygen Decarburization) method, AOD ( A known smelting method such as Argon Oxygen Decarburization) is used, and then a steel slab (steel material) is obtained by a continuous casting method or an ingot-splitting method. The casting method is preferably continuous casting from the viewpoint of productivity and quality. Further, the slab thickness is preferably set to 100 mm or more in order to secure a reduction ratio in hot rough rolling described later.

次いで、鋼スラブを1000〜1200℃の温度に加熱した後、熱間圧延して熱延鋼板とする。スラブ加熱温度は、リジング・ローピング特性を改善するためには高い方が望ましいが、1200℃を超えると、スラブ垂れが著しくなり、また結晶粒が粗大化して熱延板の靭性が低下する。一方、1000℃未満の加熱温度では、熱間圧延での負荷が高くなるうえ、熱延中の再結晶が不十分となり、リジング・ローピング特性が低下し、鋼板の表面性状が低下する。   Subsequently, after heating a steel slab to the temperature of 1000-1200 degreeC, it hot-rolls to make a hot-rolled steel plate. The slab heating temperature is preferably higher in order to improve the ridging and roping characteristics, but if it exceeds 1200 ° C., the slab sag drastically increases, and the crystal grains become coarse and the toughness of the hot-rolled sheet decreases. On the other hand, when the heating temperature is less than 1000 ° C., the load in hot rolling becomes high, and recrystallization during hot rolling becomes insufficient, ridging / roping characteristics are lowered, and the surface properties of the steel sheet are lowered.

熱間粗圧延の工程は、本発明においては、950℃超の温度域で、圧下率が30%以上である圧延を少なくとも1パス以上行うことが好ましい。この強圧下圧延により、鋼板の結晶組織が微細化され、リジング特性が向上する。また、熱間圧延後の焼鈍を省略する場合には、巻取り温度を、700℃以上とし、巻取り後の自己焼鈍を促進させることが好ましい。   In the hot rough rolling step, in the present invention, it is preferable to perform at least one pass of rolling with a rolling reduction of 30% or more in a temperature range exceeding 950 ° C. This strong rolling reduces the crystal structure of the steel sheet and improves the ridging characteristics. Moreover, when omitting the annealing after hot rolling, it is preferable to set the winding temperature to 700 ° C. or higher to promote self-annealing after winding.

熱間圧延により板厚を2.0〜6.0mmとした後、800〜1000℃の温度で熱延板を連続焼鈍してから酸洗を施す。熱延板の焼鈍温度は、800℃未満では圧延による歪みが残留して硬くなるため十分な加工性が得られない。一方、1000℃を越えると結晶粒の粗大化が著しくなり靭性が低下する。このため熱延板の連続焼鈍の温度範囲は800〜1000℃とするのが好ましい。
なお、Nbの含有量を0.1mass%以上とした場合の好ましい焼鈍温度範囲は、900〜1100℃である。
After the sheet thickness is set to 2.0 to 6.0 mm by hot rolling, the hot rolled sheet is continuously annealed at a temperature of 800 to 1000 ° C. and then pickled. If the annealing temperature of the hot-rolled sheet is less than 800 ° C., sufficient workability cannot be obtained because strain due to rolling remains and becomes hard. On the other hand, if the temperature exceeds 1000 ° C., the crystal grains become extremely coarse and the toughness decreases. For this reason, it is preferable that the temperature range of continuous annealing of a hot-rolled sheet shall be 800-1000 degreeC.
A preferable annealing temperature range when the Nb content is 0.1 mass% or more is 900 to 1100 ° C.

酸洗後の熱延板を、冷間圧延、仕上げ焼鈍、酸洗の各工程を順次経て、板厚0.02〜1.5mmの冷延焼鈍板とする。冷間圧延時の圧下率は特に限定されないが、靭性などの機械的特性の面からは、25%以上が好ましい。より好ましくは50%以上である。
冷延まま、あるいは冷延焼鈍後に、鋼板の表面粗さをRaで0.03μm以下とすることにより、絶縁層を形成させることなく直接鋼板上に電極や化合物層を形成させても良好な発電効率を得ることが可能となる。
The hot-rolled sheet after pickling is made into a cold-rolled annealed sheet having a thickness of 0.02 to 1.5 mm through the respective steps of cold rolling, finish annealing and pickling. The rolling reduction during cold rolling is not particularly limited, but is preferably 25% or more from the viewpoint of mechanical properties such as toughness. More preferably, it is 50% or more.
Power generation efficiency is good even if an electrode or compound layer is formed directly on the steel sheet without forming an insulating layer by keeping the surface roughness of the steel sheet to 0.03μm or less with Ra after cold rolling or after cold rolling annealing Can be obtained.

Raを0.03μm以下とするためには、各種製造工程でのロールの粗度管理が重要である。通常のロール研磨工程に加えて、ラッピング研磨等を施したり、セラミックス製のロールを用いたりするなど、工程上の工夫が必要である。
本発明の鋼は、冷間圧延のままで基板用材料として用いることができる。また、冷間圧延は1回または中間焼鈍を含む2回以上の冷間圧延としても良い。冷間圧延、仕上げ焼鈍、酸洗の各工程は繰り返し行っても良い。冷延板の焼鈍温度は、十分な再結晶と適正な結晶粒径を得るために、800〜1000℃とするのが好ましい。
さらに、普通鋼と兼用の冷延板の高速連続焼鈍ラインで効率的な冷延焼鈍と酸洗を行う方法が推奨される。もっとも、生産性は低下するものの、一般的なステンレス鋼の冷延板焼鈍・酸洗ラインで冷延板焼鈍・酸洗を行っても良い。また、必要に応じて、光輝焼鈍ラインで光輝焼鈍を行っても良い。
以上説明した鋼板を溶接する場合には、TIG、MIGをはじめとするアーク溶接、シーム溶接、スポット溶接等の抵抗溶接、レーザー溶接など、通常の溶接方法はすべて適用可能である。
In order to make Ra 0.03 μm or less, it is important to manage the roughness of the rolls in various manufacturing processes. In addition to the normal roll polishing process, it is necessary to devise processes such as lapping polishing or using a ceramic roll.
The steel of the present invention can be used as a substrate material while being cold-rolled. Further, the cold rolling may be performed once or twice or more cold rolling including intermediate annealing. Each process of cold rolling, finish annealing, and pickling may be repeated. The annealing temperature of the cold rolled sheet is preferably 800 to 1000 ° C. in order to obtain sufficient recrystallization and an appropriate crystal grain size.
Furthermore, an efficient cold rolling annealing and pickling method is recommended in a high-speed continuous annealing line for cold-rolled sheets that are also used for ordinary steel. However, although the productivity is lowered, cold rolling annealing and pickling may be performed in a general stainless steel cold rolling annealing and pickling line. Moreover, you may perform bright annealing by a bright annealing line as needed.
When welding the steel plates described above, all ordinary welding methods such as arc welding including TIG and MIG, seam welding, resistance welding such as spot welding, and laser welding can be applied.

表1に示す組成を有するCr含有鋼を転炉−VOD−連続鋳造法により製造し、200mm厚のスラブとした。スラブの表面を専用のグラインダーにて削ってから、1100℃の温度に加熱した後、熱間圧延により板厚2.5mmの熱延板とした。
なお、表1においては請求の範囲に記載した成分範囲を併せて示すと共に、成分範囲が本発明範囲から外れているものには下線を付している。また、表1の欄において「-」を付したものは、当該成分が含まれていない又は検出限界以下であることを示している。
Cr-containing steel having the composition shown in Table 1 was manufactured by a converter-VOD-continuous casting method to obtain a slab having a thickness of 200 mm. The surface of the slab was shaved with a dedicated grinder, heated to a temperature of 1100 ° C., and then hot rolled into a hot rolled sheet with a thickness of 2.5 mm.
In addition, in Table 1, while showing the component range described in the claim together, what is outside the scope of the present invention is underlined. In addition, those marked with “-” in the column of Table 1 indicate that the component is not contained or is below the detection limit.

次いで、到達温度が900℃となる連続焼鈍ラインで焼鈍した後、酸洗を行ったものについて、表面の検査を行い肌荒れの有無を判定した。肌荒れが無く表面が良好であったものについてはそのまま、肌荒れの著しかったものについては、再酸洗あるいはグラインダー研削を行った後に、冷間圧延および中間焼鈍を行い、板厚0.05mmの冷延板とした。
次いで、到達温度が900℃となる仕上焼鈍を行ってから酸洗、スキンパス圧延を行い、冷延焼鈍板を作製した。一部のものについては、冷間圧延ままの状態で試験に供した。
Next, after annealing in a continuous annealing line where the ultimate temperature was 900 ° C., pickling was carried out to inspect the surface and determine the presence or absence of rough skin. Cold-rolled sheets with a thickness of 0.05 mm were subjected to cold rolling and intermediate annealing after re-acid pickling or grinder grinding for those with rough skin as they were without rough skin. It was.
Next, after finishing annealing to reach an ultimate temperature of 900 ° C., pickling and skin pass rolling were performed to produce a cold-rolled annealed plate. Some were subjected to the test in the cold-rolled state.

得られた冷延焼鈍板について、耐食性を評価した。具体的には、冷延焼鈍板から幅70mm×長さ150mmの矩形サンプルを切り出し、その表面を600番のエメリー紙にて研磨した後、塩水噴霧試験にて耐食性を評価した。試験条件は、5%NaCl、35℃、24時間噴霧とし、試験後の錆び面積率で評価した。評価の指標として、A:10%未満、B:10〜50%未満、C:50%以上として評価した。また、表面粗さRaは、JIS B 0601の規定に準拠し、触針式表面粗さ計を用いて、冷延焼鈍版の圧延方向に垂直な方向にそって測定し、算術平均粗さRaにて示した。表1に結果を併せて示す。   About the obtained cold-rolled annealing board, corrosion resistance was evaluated. Specifically, a rectangular sample having a width of 70 mm and a length of 150 mm was cut out from the cold-rolled annealed plate, the surface was polished with No. 600 emery paper, and then the corrosion resistance was evaluated by a salt spray test. The test conditions were 5% NaCl, sprayed at 35 ° C. for 24 hours, and the rust area ratio after the test was evaluated. As evaluation indexes, A: less than 10%, B: less than 10 to 50%, and C: 50% or more were evaluated. In addition, the surface roughness Ra is measured along the direction perpendicular to the rolling direction of the cold-rolled annealed plate using a stylus type surface roughness meter in accordance with the provisions of JIS B 0601, and the arithmetic average roughness Ra Indicated. Table 1 also shows the results.

成分範囲が本発明範囲であるNo.1〜6に示す鋼では冷延まま、あるいは冷延焼鈍板の状態で優れた耐食性を示した。ただし、表面粗さが本発明の範囲から外れるNo.3に示す鋼では耐食性が劣った。
一方、成分範囲が本発明の範囲から外れる、No.7および8に示す鋼では、表面粗さが本発明の範囲内であっても耐食性が劣る結果となった。
The steels shown in Nos. 1 to 6 whose component ranges are the scope of the present invention exhibited excellent corrosion resistance in the state of cold rolling or in the state of cold rolled annealing plates. However, the steel shown in No. 3 whose surface roughness is out of the scope of the present invention was inferior in corrosion resistance.
On the other hand, the steels shown in Nos. 7 and 8 whose component range deviated from the range of the present invention resulted in poor corrosion resistance even when the surface roughness was within the range of the present invention.

以上の結果から、成分範囲を本発明範囲内にすることで、冷延まま、あるいは冷延焼鈍板の状態で優れた耐食性を示し、太陽電池用基板として要求される耐食性を満たすことが実証された。また、表面粗さについても耐食性に影響することが判明し、この意味で、本発明では表面粗さRaを0.03μm以下にしていることから、これによる耐食性の向上の効果も得られている。   From the above results, by setting the component range within the range of the present invention, it has been demonstrated that it exhibits excellent corrosion resistance as it is cold-rolled or in the state of cold-rolled annealed plate, and satisfies the corrosion resistance required as a substrate for solar cells. It was. Further, it has been found that the surface roughness also affects the corrosion resistance. In this sense, since the surface roughness Ra is set to 0.03 μm or less in the present invention, the effect of improving the corrosion resistance is also obtained.

Claims (3)

C:0.03mass%以下、N:0.03mass%以下、C+N:0.05mass%以下、Si:0.2mass%以上3.0mass%以下、Mn:0.8mass%以下、P:0.04mass%以下、S:0.02mass%以下、Cr:5mass%以上10.5mass%未満、Ni:1.0mass%以下、Al:0.01mass%以上0.05mass以下、Ti:4×(C+N)mass%以上0.40mass%以下を含有し、残部がFeおよび不可避的不純物からなり、かつ表面の平均粗さRaが0.03μm以下であることを特徴とする太陽電池基板用クロム含有フェライト系鋼板。   C: 0.03 mass% or less, N: 0.03 mass% or less, C + N: 0.05 mass% or less, Si: 0.2 mass% to 3.0 mass%, Mn: 0.8 mass% or less, P: 0.04 mass% or less, S: 0.02 mass %: Less than, Cr: 5mass% or more and less than 10.5mass%, Ni: 1.0mass% or less, Al: 0.01mass% or more and 0.05mass or less, Ti: 4 × (C + N) mass% or more and 0.40mass% or less, A chromium-containing ferritic steel sheet for a solar cell substrate, wherein the balance is Fe and inevitable impurities, and the average roughness Ra of the surface is 0.03 μm or less. Cu及び/又はMoを含有し、Cu:0.3mass%以上1.0mass%以下、Mo:1.0mass%以下(範囲下限値の零を含まず)であることを特徴とする請求項1記載の太陽電池基板用クロム含有フェライト系鋼板。   2. The solar cell according to claim 1, comprising Cu and / or Mo, Cu: 0.3 mass% to 1.0 mass%, Mo: 1.0 mass% or less (excluding zero of the range lower limit value). Chrome-containing ferritic steel sheet for substrates. V及び/又はNbを含有し、V:0.5mass%以下(範囲下限値の零を含まず)、Nb:0.5mass%以下であることを特徴とする請求項1又は2に記載の太陽電池基板用クロム含有フェライト系鋼板。   3. The solar cell substrate according to claim 1, comprising V and / or Nb, wherein V is 0.5 mass% or less (not including the lower limit of zero) and Nb is 0.5 mass% or less. Chrome-containing ferritic steel sheet for use.
JP2010248056A 2010-11-05 2010-11-05 Chrome-containing ferritic steel sheet for solar cell substrates Expired - Fee Related JP5625765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010248056A JP5625765B2 (en) 2010-11-05 2010-11-05 Chrome-containing ferritic steel sheet for solar cell substrates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010248056A JP5625765B2 (en) 2010-11-05 2010-11-05 Chrome-containing ferritic steel sheet for solar cell substrates

Publications (2)

Publication Number Publication Date
JP2012097341A true JP2012097341A (en) 2012-05-24
JP5625765B2 JP5625765B2 (en) 2014-11-19

Family

ID=46389580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010248056A Expired - Fee Related JP5625765B2 (en) 2010-11-05 2010-11-05 Chrome-containing ferritic steel sheet for solar cell substrates

Country Status (1)

Country Link
JP (1) JP5625765B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014107510A (en) * 2012-11-29 2014-06-09 Showa Shell Sekiyu Kk Compound thin film solar cell
WO2014181768A1 (en) * 2013-05-10 2014-11-13 新日鐵住金ステンレス株式会社 Stainless steel substrate for solar battery having excellent insulation properties and small thermal expansion coefficient, and process for producing same
JP2014218727A (en) * 2013-05-10 2014-11-20 新日鐵住金ステンレス株式会社 Stainless steel material for solar battery substrate excellent in insulation property and low in thermal expansion coefficient
JP2015214753A (en) * 2015-06-29 2015-12-03 新日鐵住金株式会社 Steel member and method of manufacturing steel member

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145359A (en) * 1983-12-12 1985-07-31 アームコ、インコーポレーテッド High temperature ferrite steel
JPS613474A (en) * 1984-06-15 1986-01-09 Sumitomo Special Metals Co Ltd Metallic substrate for thin film battery
JPH04232231A (en) * 1990-12-28 1992-08-20 Nisshin Steel Co Ltd High strength chromium-containing steel sheet excellent in corrosion resistance and workability
JPH09263902A (en) * 1996-03-26 1997-10-07 Nisshin Steel Co Ltd Stainless steel stock for high hardness soft magnetic parts improved in workability
JP2000017397A (en) * 1998-06-30 2000-01-18 Kawasaki Steel Corp Stainless steel material excellent in antibacterial characteristic
JP2003247078A (en) * 2002-02-20 2003-09-05 Nippon Steel Corp Inorganic-organic hybrid film-coated stainless foil
JP2006140414A (en) * 2004-11-15 2006-06-01 Matsushita Electric Ind Co Ltd Substrate for solar cell, and solar cell using same
JP2007217716A (en) * 2006-02-14 2007-08-30 Nisshin Steel Co Ltd Welded ferritic stainless steel pipe for spinning process, and its manufacturing method
JP2010239129A (en) * 2009-03-10 2010-10-21 Fujifilm Corp Photoelectric converting element, solar battery, and manufacturing method of photoelectric converting element
US20100269887A1 (en) * 2007-08-31 2010-10-28 Arcelormittal-Stainless And Nickel Alloys Crystallographically textured metal substrate, crystallographically textured device, cell and photovoltaic module including such device and thin layer deposition method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145359A (en) * 1983-12-12 1985-07-31 アームコ、インコーポレーテッド High temperature ferrite steel
JPS613474A (en) * 1984-06-15 1986-01-09 Sumitomo Special Metals Co Ltd Metallic substrate for thin film battery
JPH04232231A (en) * 1990-12-28 1992-08-20 Nisshin Steel Co Ltd High strength chromium-containing steel sheet excellent in corrosion resistance and workability
JPH09263902A (en) * 1996-03-26 1997-10-07 Nisshin Steel Co Ltd Stainless steel stock for high hardness soft magnetic parts improved in workability
JP2000017397A (en) * 1998-06-30 2000-01-18 Kawasaki Steel Corp Stainless steel material excellent in antibacterial characteristic
JP2003247078A (en) * 2002-02-20 2003-09-05 Nippon Steel Corp Inorganic-organic hybrid film-coated stainless foil
JP2006140414A (en) * 2004-11-15 2006-06-01 Matsushita Electric Ind Co Ltd Substrate for solar cell, and solar cell using same
JP2007217716A (en) * 2006-02-14 2007-08-30 Nisshin Steel Co Ltd Welded ferritic stainless steel pipe for spinning process, and its manufacturing method
US20100269887A1 (en) * 2007-08-31 2010-10-28 Arcelormittal-Stainless And Nickel Alloys Crystallographically textured metal substrate, crystallographically textured device, cell and photovoltaic module including such device and thin layer deposition method
JP2010239129A (en) * 2009-03-10 2010-10-21 Fujifilm Corp Photoelectric converting element, solar battery, and manufacturing method of photoelectric converting element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014107510A (en) * 2012-11-29 2014-06-09 Showa Shell Sekiyu Kk Compound thin film solar cell
WO2014181768A1 (en) * 2013-05-10 2014-11-13 新日鐵住金ステンレス株式会社 Stainless steel substrate for solar battery having excellent insulation properties and small thermal expansion coefficient, and process for producing same
JP2014218727A (en) * 2013-05-10 2014-11-20 新日鐵住金ステンレス株式会社 Stainless steel material for solar battery substrate excellent in insulation property and low in thermal expansion coefficient
US9837567B2 (en) 2013-05-10 2017-12-05 Nippon Steel & Sumikin Stainless Steel Corporation Stainless steel substrate for solar cell having superior insulating properties and low thermal expansion coefficient and method of producing the same
JP2015214753A (en) * 2015-06-29 2015-12-03 新日鐵住金株式会社 Steel member and method of manufacturing steel member

Also Published As

Publication number Publication date
JP5625765B2 (en) 2014-11-19

Similar Documents

Publication Publication Date Title
CN102822371B (en) Steel sheet with high tensile strength and superior ductility and method for producing same
CN104093871B (en) Heatproof ferrite series stainless steel cold-rolled steel sheet, cold rolling base material ferrite-group stainless steel hot rolled steel plate and manufacture method thereof
JP5659061B2 (en) Ferritic stainless steel sheet excellent in heat resistance and workability and manufacturing method thereof
CN110499453B (en) High-strength double-sided stainless steel composite board and manufacturing method thereof
WO2005073422A1 (en) Austenitic-ferritic stainless steel
CN111989417A (en) Duplex stainless steel clad steel sheet and method for manufacturing same
JP5119710B2 (en) High strength non-oriented electrical steel sheet and manufacturing method thereof
WO2013122191A1 (en) Ferrite-based stainless steel plate having excellent resistance against scale peeling, and method for manufacturing same
JP6093210B2 (en) Heat-resistant ferritic stainless steel sheet with excellent low-temperature toughness and method for producing the same
JPWO2016035235A1 (en) Stainless steel for cold rolled steel
JP5625765B2 (en) Chrome-containing ferritic steel sheet for solar cell substrates
CN111433382B (en) Ferritic stainless steel having excellent high-temperature oxidation resistance and method for producing same
CN104419874A (en) Hot rolled double-faced enamel steel with excellent fish scaling resistance and manufacture method of hot rolled double-faced enamel steel
JP2010100877A (en) Method for manufacturing hot-rolled ferritic stainless steel sheet excellent in toughness
JP2011214063A (en) Ferritic stainless steel sheet and method for manufacturing the same
JP2016113670A (en) Ferritic stainless steel and method for producing the same
JP3247244B2 (en) Fe-Cr-Ni alloy with excellent corrosion resistance and workability
JP5589777B2 (en) Chrome-containing ferritic steel sheet for solar cell substrates
JP2011246813A (en) Ferritic stainless steel sheet and method of manufacturing the same
JP5589776B2 (en) Chrome-containing ferritic steel sheet for solar cell substrates
JPS6054374B2 (en) Method for manufacturing austenitic steel plates and steel strips
JP2011246814A (en) Ferritic stainless steel sheet and method of manufacturing the same
JP2007146246A (en) High-strength hot-dip galvanized steel sheet superior in spot weldability and formability
JPH10237602A (en) Niobium-containing ferritic stainless steel excellent in low temperature toughness of hot rolled sheet
CN109563600A (en) Economizing type two phase stainless steel with excellent bendability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140915

R150 Certificate of patent or registration of utility model

Ref document number: 5625765

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees