JP5100144B2 - Steel plate for spring, spring material using the same, and manufacturing method thereof - Google Patents

Steel plate for spring, spring material using the same, and manufacturing method thereof Download PDF

Info

Publication number
JP5100144B2
JP5100144B2 JP2007029852A JP2007029852A JP5100144B2 JP 5100144 B2 JP5100144 B2 JP 5100144B2 JP 2007029852 A JP2007029852 A JP 2007029852A JP 2007029852 A JP2007029852 A JP 2007029852A JP 5100144 B2 JP5100144 B2 JP 5100144B2
Authority
JP
Japan
Prior art keywords
spring
phase
steel plate
less
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007029852A
Other languages
Japanese (ja)
Other versions
JP2008195976A (en
Inventor
保利 秀嶋
聡 鈴木
弘泰 松林
廣 藤本
明 弘中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2007029852A priority Critical patent/JP5100144B2/en
Publication of JP2008195976A publication Critical patent/JP2008195976A/en
Application granted granted Critical
Publication of JP5100144B2 publication Critical patent/JP5100144B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、金属製止め輪、皿ばね、波ワッシャー等、鋼板を素材として製造されるバネ材に好適なバネ用鋼板、およびそれを用いたバネ材に関する。   The present invention relates to a spring steel plate suitable for a spring material manufactured from a steel plate such as a metal retaining ring, a disc spring, and a wave washer, and a spring material using the same.

従来、金属製止め輪、皿ばね、波ワッシャー等のバネ材には、S65C等の特殊鋼にNi等のめっきを施したものが使用されてきた。しかし近年、コストダウンと環境問題からめっき工程が省略できる素材が求められている。耐食性が要求される用途ではSUS304やSUS301等のステンレス鋼素材が使用されているが、バネ性を付与するために加工硬化させた素材は硬いため、打抜きプレス等の製造工程で金型の負荷や摩耗が大きなり、寸法精度が悪くなるなど、大量生産においては問題が多い。   Conventionally, as a spring material such as a metal retaining ring, a disc spring, and a wave washer, a special steel such as S65C plated with Ni or the like has been used. However, in recent years, there is a demand for a material that can omit the plating step because of cost reduction and environmental problems. Stainless steel materials such as SUS304 and SUS301 are used in applications that require corrosion resistance. However, since the work-hardened material is hard to impart springiness, it is difficult to There are many problems in mass production, such as large wear and poor dimensional accuracy.

バネ用ステンレス鋼としては、SUS301に代表される加工硬化型オーステナイト系ステンレス鋼、17−7PHに代表される析出硬化型ステンレス鋼がある。これらのバネ用ステンレス鋼は、バネ特性を重視して硬さを高くしようとすると高度の冷間圧延を必要とし、打抜き性やバネ材への成形加工性が劣る結果になる。逆にバネ材への加工性を重視すると、高強度化に制約が生じ、バネ特性が犠牲になりやすい。すなわち、これらのステンレス鋼種でバネ材への加工性とバネ特性とを両立させることは容易でない。   As the spring stainless steel, there are a work hardening type austenitic stainless steel represented by SUS301 and a precipitation hardening stainless steel represented by 17-7PH. These stainless steels for springs require a high degree of cold rolling to increase the hardness with an emphasis on spring characteristics, resulting in poor punchability and formability to the spring material. On the other hand, if emphasis is placed on the workability of the spring material, there is a restriction on the increase in strength, and the spring characteristics tend to be sacrificed. That is, it is not easy to achieve both the workability to the spring material and the spring characteristics with these stainless steel types.

特許文献1、2には、時効析出型のマルテンサイト系ステンレス鋼が記載されている。これらの鋼は時効処理前の硬さが低く、靱性にも比較的優れることから、一般的なマルテンサイト系ステンレス鋼種に比べ打抜き加工性や成形加工性が改善されている。しかし、マトリクスがマルテンサイト相であるため、曲げ加工性に劣り、金属製止め輪、皿ばね、波ワッシャー等の用途に適用するには満足できるものではない。   Patent Documents 1 and 2 describe aging precipitation type martensitic stainless steel. Since these steels have low hardness before aging treatment and are relatively excellent in toughness, punching workability and formability are improved as compared with general martensitic stainless steel types. However, since the matrix is a martensite phase, it is inferior in bending workability and is not satisfactory for use in applications such as metal retaining rings, disc springs, and wave washers.

一方、特許文献3〜5に示されるように、加工硬化型オーステナイト系鋼種やマルテンサイト系鋼種ではなく、「オーステナイト相+マルテンサイト相」の複相組織を有する時効硬化性の鋼種も開発されている。   On the other hand, as shown in Patent Documents 3 to 5, an age-hardening steel type having a multiphase structure of “austenite phase + martensite phase” is developed instead of work hardening type austenitic steel type and martensitic steel type. Yes.

特開昭60−36649号公報JP 60-36649 A 特開平8−73931号公報JP-A-8-73931 特開昭51−141710号公報JP 51-141710 A 特開昭56−77364号公報JP-A-56-77364 特開平5−271878号公報JP-A-5-271878

特許文献3〜5に示されるような「オーステナイト相+マルテンサイト相」の複相組織を有する鋼は、マルテンサイト系鋼種に比べ加工性は良好である。しかし、例えば金属製止め輪、皿ばね、波ワッシャー等の締結部品に加工するステンレス鋼素材としては、15%以上の伸びを有するものが望まれる。これより加工性が悪いと、上述のように大量生産において問題が多くなる。特許文献3に記載の鋼材は80%といった高い圧延率で冷間圧延することによって時効処理後の強度レベルを高めたものであるが、冷間圧延率が高い分、加工性が犠牲になっている。特許文献4、5に記載の鋼材はC含有量が高い鋼を採用しているため、時効処理前の段階で伸び率5%以上の加工性を安定して確保することは困難である。   Steels having a multiphase structure of “austenite phase + martensite phase” as shown in Patent Documents 3 to 5 have better workability than martensitic steel types. However, as a stainless steel material to be processed into a fastening part such as a metal retaining ring, a disc spring, and a wave washer, a material having an elongation of 15% or more is desired. If the workability is lower than this, the problem increases in mass production as described above. The steel material described in Patent Document 3 is obtained by increasing the strength level after the aging treatment by cold rolling at a high rolling rate of 80%, but the workability is sacrificed due to the high cold rolling rate. Yes. Since the steel materials described in Patent Documents 4 and 5 employ steel having a high C content, it is difficult to stably secure workability with an elongation of 5% or more before the aging treatment.

本発明はこのような現状に鑑み、「オーステナイト相+マルテンサイト相」の複相組織を有する時効硬化性の鋼において、従来材より優れた加工性を有するものを提供すること、および、その鋼板を素材に用いて顕著な高強度化を図る技術を提供することを目的とする。   In view of the present situation, the present invention provides an age-hardening steel having a multiphase structure of “austenite phase + martensite phase”, which has workability superior to that of conventional materials, and a steel plate thereof An object of the present invention is to provide a technique for significantly increasing the strength by using the material as a material.

上記目的を達成するために、本発明では、質量%で、C:0.03%以下、N:0.03%以下、Si:0.5〜2.0%、Mn:0.5〜2.5%、Cu:1.0〜3.5%、Cr:15〜18%、Ni:6〜10%、Mo:3.5%以下好ましくは0.04〜3.5%を含有し、残部Feおよび不可避的不純物からなり、下記(1)式で定義されるMd値が−20〜30となるように成分調整された組成を有し、マトリクスが「オーステナイト相+20〜50体積%のマルテンサイト相」からなる複相組織を呈し、硬さが400HV以下、伸びが15%以上である加工性および時効硬化性に優れたバネ用鋼板が提供される。
Md=551−462(C+N)−9.2Si−8.1Mn−29(Ni+Cu)−13.7Cr−18.5Mo ……(1)
(1)式右辺の元素記号の箇所には、質量%で表された当該元素の含有量の値が代入される。前記複相組織はCuリッチ相の析出がない冷間圧延された加工組織である。
In order to achieve the above object, in the present invention, in mass%, C: 0.03% or less, N: 0.03% or less, Si: 0.5-2.0%, Mn: 0.5-2 0.5%, Cu: 1.0 to 3.5%, Cr: 15 to 18%, Ni: 6 to 10%, Mo: 3.5% or less, preferably 0.04 to 3.5%, The composition is composed of the balance Fe and unavoidable impurities, and the composition is adjusted so that the Md value defined by the following formula (1) is -20 to 30, and the matrix is "austenitic phase + 20-50% by volume martense. Provided is a steel plate for a spring that exhibits a multiphase structure composed of a “site phase”, has a hardness of 400 HV or less, an elongation of 15% or more, and excellent workability and age hardening.
Md = 551-462 (C + N) -9.2 Si-8.1 Mn-29 (Ni + Cu) -13.7Cr-18.5Mo (1)
The value of the content of the element expressed in mass% is substituted for the element symbol on the right side of the formula (1). The multi-phase structure is a cold-rolled processed structure with no Cu-rich phase precipitation.

このようなバネ用鋼板は、上記組成を有する鋼の冷間圧延材に対し、1050〜1250℃に加熱後、少なくとも200℃以下の温度域まで水冷する溶体化処理を兼ねた仕上焼鈍を施すことによりCuリッチ相の析出がないオーステナイト相組織の鋼板を得る工程、
前記オーステナイト相組織の鋼板に対し圧延率30〜75%の調質圧延を施すことによりマトリクスが「オーステナイト相+20〜50体積%のマルテンサイト相」からなる複相組織である鋼板を得る工程、
を有する製造法によって得られる。
Such a spring steel plate is subjected to finish annealing that also serves as a solution heat treatment for cooling to a temperature range of at least 200 ° C. after heating to 1050 to 1250 ° C., on a cold-rolled steel material having the above composition. A step of obtaining a steel sheet having an austenite phase structure free of Cu-rich phase precipitation,
A step of obtaining a steel sheet having a multi-phase structure in which the matrix is composed of “austenite phase + 20-50% by volume martensite phase” by subjecting the steel sheet of the austenite phase structure to temper rolling at a rolling rate of 30 to 75%;
Is obtained by a production process having

また、このバネ用鋼板を素材として塑性加工を施し、その後、400〜500℃の温度域における時効温度T(K)と時効時間t(h)が下記(2)式を満たす条件で時効処理を施す、バネ材の製造法が提供される。
14000≦T(logt+20)≦15500 ……(2)
このようにして得られたバネ材は、Cuリッチ相からなる析出物が分散したマルテンサイト相を有し、任意の部位の表面について測定される硬さが400HV以上を呈する。すなわち、バネ材表面のどの部分で測定しても、少なくとも400HV以上の硬さを呈する。
Also, plastic processing is performed using the spring steel plate as a raw material, and then aging treatment is performed under the condition that the aging temperature T (K) and the aging time t (h) in the temperature range of 400 to 500 ° C. satisfy the following expression (2). A method of manufacturing a spring material is provided.
14000 ≦ T (logt + 20) ≦ 15500 (2)
The spring material thus obtained has a martensite phase in which precipitates composed of a Cu-rich phase are dispersed, and the hardness measured on the surface of an arbitrary portion exhibits 400 HV or more. That is, the hardness of at least 400 HV or more is exhibited no matter what part of the spring material surface is measured.

なお、ここでいうCuリッチ相は、Cuを60原子%以上含む第2相であり、いわゆるε−Cu相がこれに含まれる。Cuリッチ相の析出の有無は、透過型電子顕微鏡(TEM)を用いた組織観察(例えば倍率10000倍以上)によって判定することができる。   The Cu-rich phase here is a second phase containing 60 atomic% or more of Cu, and includes a so-called ε-Cu phase. Presence or absence of precipitation of the Cu rich phase can be determined by structure observation (for example, magnification of 10,000 times or more) using a transmission electron microscope (TEM).

本発明のバネ用鋼板は伸びが高く、バネ材への加工性に優れる。しかも、加工後に適切な時効処理を施すことによって十分に高強度化(硬質化)が可能である。このような優れた加工性と高強度化特性の両立は、従来のステンレス鋼では困難であったことである。本発明は、特に金属製止め輪、皿ばね、波ワッシャー等の締結部品用途へのステンレス鋼の普及に寄与するものである。   The spring steel plate of the present invention has high elongation and is excellent in workability to a spring material. In addition, sufficient strength (hardening) can be achieved by applying an appropriate aging treatment after processing. Coexistence of such excellent workability and high strength properties is difficult with conventional stainless steel. The present invention contributes to the spread of stainless steel especially for fastening parts such as metal retaining rings, disc springs, and wave washers.

《化学組成》
本発明では、鋼の化学組成を以下のように限定する。化学組成における「%」は特に断らない限り「質量%」を意味する。
<Chemical composition>
In the present invention, the chemical composition of steel is limited as follows. “%” In the chemical composition means “% by mass” unless otherwise specified.

〔C:0.03%以下〕
Cは加工誘起マルテンサイト相を硬質化させる作用を有する。このため、加工性を改善するためには低C化が有利となる反面、バネ材に必要な高強度化を図るためには低C化は不利となる。本発明では後述のようにCuによる優れた時効硬化特性を利用するので、高強度化のためにC含有量を高くする必要はない。種々検討の結果、C含有量は0.03%以下に制限する。0.03%未満に制限することもできる。このようなC含有量の低減により、時効処理前におけるマルテンサイト相の硬質化が防止され、かつ、時効処理後の耐食性低下に対しても有利となる。
[C: 0.03% or less]
C has the effect of hardening the work-induced martensite phase. For this reason, lowering C is advantageous for improving workability, but lowering C is disadvantageous for increasing the strength required for the spring material. In the present invention, as described later, excellent age-hardening characteristics due to Cu are utilized, so that it is not necessary to increase the C content in order to increase the strength. As a result of various studies, the C content is limited to 0.03% or less. It can also be limited to less than 0.03%. Such a reduction in the C content prevents hardening of the martensite phase before the aging treatment, and is advantageous for a decrease in corrosion resistance after the aging treatment.

〔N:0.03%以下〕
NもCと同様に加工誘起マルテンサイト相の硬質化を招く。検討の結果、本発明ではN含有量を0.03%以下に制限する。
[N: 0.03% or less]
N, like C, leads to hardening of the work-induced martensite phase. As a result of the study, in the present invention, the N content is limited to 0.03% or less.

図1に、調質圧延後の伸びに及ぼすC、N含有量の影響を調査した結果の一例を示す。使用した鋼の組成は、Si=1.5%、Mn=2.0%、Ni=7.0%、Cr=16.5%、Cu=2.0%、Mo=0.1%で、CおよびN含有量を種々変化させ、残部はFeおよび不可避的不純物である。板厚2mmの仕上焼鈍材に70%の調質圧延を施した材料について、圧延方向の引張試験を行い、伸びを調べた結果をプロットしたものである。C、Nとも0.03%以下に低減された範囲で5%以上の良好な伸びが得られていることがわかる。   In FIG. 1, an example of the result of investigating the influence of C and N content on the elongation after temper rolling is shown. The composition of the steel used was Si = 1.5%, Mn = 2.0%, Ni = 7.0%, Cr = 16.5%, Cu = 2.0%, Mo = 0.1%. Various contents of C and N are changed, and the balance is Fe and inevitable impurities. The result of conducting a tensile test in the rolling direction and examining the elongation of a material obtained by subjecting a finish annealed material having a thickness of 2 mm to 70% temper rolling is plotted. It can be seen that good elongation of 5% or more is obtained in the range where both C and N are reduced to 0.03% or less.

〔Si:0.5〜2.0%〕
Siは脱酸剤として有効である。また、冷間加工によるマルテンサイト相の誘起に有効に作用し、Md点の調整のためにSiの含有が必要となる。さらにSiは時効処理による硬化にも有効である。種々検討の結果、時効処理による硬化作用を十分に発揮させるには0.5%以上のSi含有が必要である。しかし、Siをあまり多量に添加しても上記硬化作用は飽和し、不経済となる。一方、脱酸剤としての機能や、Md点の調整機能は0.5〜2.0%のSi含有量範囲で十分に発揮させることができる。したがってSi含有量は上記のとおりに規定する。
[Si: 0.5 to 2.0%]
Si is effective as a deoxidizer. In addition, it effectively works to induce a martensite phase by cold working, and it is necessary to contain Si in order to adjust the Md point. Further, Si is effective for hardening by aging treatment. As a result of various studies, it is necessary to contain 0.5% or more of Si in order to fully exhibit the hardening action by the aging treatment. However, even if Si is added in a large amount, the curing action is saturated, which is uneconomical. On the other hand, the function as a deoxidizer and the function of adjusting the Md point can be sufficiently exerted in the Si content range of 0.5 to 2.0%. Accordingly, the Si content is defined as described above.

〔Mn:0.5〜2.5%〕
Mnはオーステナイト相の安定化に大きく寄与する元素である。Si等の元素とのバランスを考慮して、オーステナイト相の安定化のためには0.5%以上のMn含有が必要である。ただし、過剰のMn含有は時効後のバネ特性を劣化させる要因となるので、Mn含有量の上限は2.5%に制限される。
[Mn: 0.5 to 2.5%]
Mn is an element that greatly contributes to the stabilization of the austenite phase. In consideration of the balance with elements such as Si, 0.5% or more of Mn content is necessary for stabilizing the austenite phase. However, since excessive Mn content causes deterioration of the spring characteristics after aging, the upper limit of Mn content is limited to 2.5 %.

〔Cu:1.0〜3.5%〕
Cuは時効処理によりマルテンサイト相中に析出し、バネ材の高強度化に寄与する。すなわち、Cuは仕上焼鈍によりオーステナイト相中に固溶し、続く調質圧延によって生じたマルテンサイト中では固溶限が低下するため、その後の時効処理でマルテンサイト相中にCuリッチ相として析出する。このCuリッチ相は、Cuを60原子%以上含む第2相であり、いわゆるε−Cu相と呼ばれるものが代表的である。マルテンサイト相中でのこのようなCuリッチ相の析出は、顕著な高強度化をもたらす。そのためには、1.0%以上のCu含有量を確保する必要があり、1.5%以上とすることがより好ましい。しかし、過剰のCu含有は熱間加工性を低下させる要因となるので、Cu含有量の上限は3.5%に制限される。
[Cu: 1.0-3.5%]
Cu precipitates in the martensite phase by aging treatment, and contributes to increasing the strength of the spring material. That is, Cu is solid-dissolved in the austenite phase by finish annealing, and the solid solubility limit is lowered in the martensite generated by the subsequent temper rolling, so that it precipitates as a Cu-rich phase in the martensite phase in the subsequent aging treatment. . This Cu-rich phase is a second phase containing 60 atomic% or more of Cu, and a so-called ε-Cu phase is representative. Precipitation of such a Cu-rich phase in the martensite phase results in a significant increase in strength. For that purpose, it is necessary to ensure a Cu content of 1.0% or more, and it is more preferable to set it to 1.5% or more. However, since excessive Cu content causes a decrease in hot workability, the upper limit of Cu content is limited to 3.5%.

〔Cr:15〜18%〕
Crはステンレス鋼に要求される耐食性を付与するために必須の元素である。種々検討の結果、金属製止め輪、皿ばね、波ワッシャー等の締結部品用途を考慮すると、15%以上のCr含有量を確保することが望まれる。しかし、Cr含有量が増大するとδフェライト相が生成しやすくなり、熱間加工性を低下させる要因となるので、Cr含有量の上限は18%に制限される。
[Cr: 15-18%]
Cr is an essential element for imparting the corrosion resistance required for stainless steel. As a result of various studies, it is desirable to secure a Cr content of 15% or more when considering the use of fastening parts such as metal retaining rings, disc springs, and wave washers. However, if the Cr content is increased, a δ ferrite phase is likely to be generated, which causes a decrease in hot workability, so the upper limit of the Cr content is limited to 18%.

〔Ni:6〜10%〕
Niは仕上焼鈍後にオーステナイト組織を得るために必須の元素であり、少なくとも6%以上の含有が必要である。しかし、あまり多量に添加する必要はなく、過剰添加はコスト増を招くので好ましくない。種々検討の結果、Ni含有量は10%以下の範囲とすればよい。
[Ni: 6 to 10%]
Ni is an essential element for obtaining an austenite structure after finish annealing, and at least 6% or more is necessary. However, it is not necessary to add too much, and excessive addition is not preferable because it causes an increase in cost. As a result of various studies, the Ni content may be in the range of 10% or less.

〔Mo:3.5%以下〕
Moは高Cr鋼において耐食性を向上させる元素である。要求される耐食性レベルに応じてMo含有量を調整すれば良い。通常、0.04%以上のMo含有量を確保することが好ましい。高い耐食性を得たい場合は0.5%以上とすればよい。ただし、Moを過剰に含有させても耐食性向上の効果が小さく、コスト増を招くので、Mo含有量は3.5%以下の範囲とする。
[Mo: 3.5% or less]
Mo is an element that improves corrosion resistance in high Cr steel. The Mo content may be adjusted according to the required corrosion resistance level. Usually, it is preferable to secure a Mo content of 0.04% or more. When it is desired to obtain high corrosion resistance, the content may be 0.5% or more. However, even if Mo is contained excessively, the effect of improving the corrosion resistance is small and the cost is increased, so the Mo content is set to a range of 3.5% or less.

〔(1)式〕
下記(1)式は、焼鈍された状態でのオーステナイト相の安定度を示す指標である。すなわち、(1)式の値が大きくなるほどオーステナイト相は不安定となり、加工誘起マルテンサイト相が生成しやすくなる。
Md=551−462(C+N)−9.2Si−8.1Mn−29(Ni+Cu)−13.7Cr−18.5Mo ……(1)
[(1) Formula]
The following formula (1) is an index indicating the stability of the austenite phase in the annealed state. That is, as the value of the formula (1) increases, the austenite phase becomes unstable, and a work-induced martensite phase is easily generated.
Md = 551-462 (C + N) -9.2 Si-8.1 Mn-29 (Ni + Cu) -13.7Cr-18.5Mo (1)

本発明では、このMd値が−20〜30の範囲になるように各合金元素の含有量を調整する。Md値が−20より小さいと仕上焼鈍後のオーステナイト相が安定になりすぎ、時効硬化に大きく寄与する加工誘起マルテンサイト相の生成量を十分に確保するためには調質圧延率をかなり高くしたり低温で圧延したりする必要が生じ、圧延での負荷が大きくなって製造性が低下する。一方、Md値が30を超えて大きくなるとオーステナイト相が過度に不安定となり、調質圧延での圧延率のバラツキや成分のバラツキによって、調質圧延後の加工誘起マルテンサイト量にバラツキが生じやすい。その結果、時効処理後のバネ材の品質が安定しにくくなる。   In the present invention, the content of each alloy element is adjusted so that the Md value is in the range of -20 to 30. If the Md value is less than −20, the austenite phase after finish annealing becomes too stable, and the temper rolling ratio is made considerably high in order to sufficiently secure the amount of work-induced martensite phase that greatly contributes to age hardening. Or rolling at a low temperature is required, and the load in rolling increases, resulting in a decrease in productivity. On the other hand, when the Md value exceeds 30 and the austenite phase becomes excessively unstable, the amount of work-induced martensite after temper rolling tends to vary due to variations in rolling rate and components in temper rolling. . As a result, the quality of the spring material after the aging treatment becomes difficult to stabilize.

図2に、調質圧延後の伸びおよび時効処理後の硬さに及ぼすMd値およびCu含有量の影響を調査した結果の一例を示す。使用した鋼の組成は、Ni=7.0%、Cr=16.0%、Mo=0.1%で、C、N、Si、Mnを上記本発明規定範囲とし、Cu含有量を種々変化させ、残部はFeおよび不可避的不純物である。板厚2mmの仕上焼鈍材に70%の調質圧延を施した材料について圧延方向の引張試験を行って伸びを調べ、各調質圧延材に450℃×1hの時効処理を施した材料についてビッカース硬さを調べた結果をプロットしたものである。Md値が30以下、かつCu含有量が1.0〜3.5%の範囲でのみ、バネ用鋼板(すなわち調質圧延材)としての優れた加工性と、バネ材(すなわち時効処理材)におけ高強度が両立できることがわかる。   FIG. 2 shows an example of the results of investigating the effects of Md value and Cu content on elongation after temper rolling and hardness after aging treatment. The composition of the steel used is Ni = 7.0%, Cr = 16.0%, Mo = 0.1%, C, N, Si, Mn are within the range specified in the present invention, and the Cu content is variously changed. The balance is Fe and inevitable impurities. A material with 70% temper rolling on a finish annealed material with a thickness of 2 mm is subjected to a tensile test in the rolling direction to examine the elongation, and each temper rolled material is subjected to 450 ° C. × 1 h aging treatment and Vickers The results of examining the hardness are plotted. Only when the Md value is 30 or less and the Cu content is in the range of 1.0 to 3.5%, excellent workability as a spring steel plate (ie, temper rolled material) and spring material (ie, aging treatment material) It can be seen that high strength can be achieved at the same time.

《バネ用鋼板の金属組織》
ここでいうバネ用鋼板は、バネ材に加工するための素材鋼板である。その金属組織は、マトリクスが「オーステナイト相+20〜50体積%のマルテンサイト相」からなる複相組織である。このマルテンサイト相は仕上焼鈍後のオーステナイト相から調質圧延によって生成させた加工誘起マルテンサイト相である。マルテンサイト相の量が20体積%より少ないと、バネ材に加工した後に行われる時効処理においてマルテンサイト相中にCuリッチ相が十分に析出した場合でも、400HV以上の硬さを得ることが難しく、高強度化が不十分となりやすい。一方、マルテンサイト相の量が多くなりすぎると、バネ材への加工性が低下するので、マルテンサイト相の量は多くとも50体積%以下に調整されている必要があり、30体積%以下であることが特に好ましい。このバネ用鋼板は、仕上焼鈍によって溶体化処理されているので、マトリクス中にCuリッチ相の析出は見られない。また、冷間で調質圧延されているので、冷間圧延された加工組織を呈している。
<Metal structure of steel plate for spring>
The spring steel plate here is a material steel plate for processing into a spring material. The metal structure is a multiphase structure in which the matrix is composed of “austenite phase + 20-50% by volume martensite phase”. This martensite phase is a work-induced martensite phase formed by temper rolling from the austenite phase after finish annealing. When the amount of the martensite phase is less than 20% by volume, it is difficult to obtain a hardness of 400 HV or higher even when the Cu-rich phase is sufficiently precipitated in the martensite phase in the aging treatment performed after processing into the spring material. High strength tends to be insufficient. On the other hand, if the amount of the martensite phase becomes too large, the workability to the spring material decreases, so the amount of the martensite phase needs to be adjusted to 50% by volume or less at most, and 30% by volume or less. It is particularly preferred. Since this spring steel plate is subjected to a solution treatment by finish annealing, no precipitation of a Cu-rich phase is observed in the matrix. Moreover, since it is cold-tempered, it has a cold-rolled processed structure.

《バネ用鋼板の特性》
このバネ用鋼板は、バネ材への加工性を確保するために硬さが400HV以下であることが望ましい。また、圧延方向に対し平行方向に引張試験を行った場合の伸びが15%以上であることが望ましい。
<Characteristics of spring steel plate>
This spring steel plate desirably has a hardness of 400 HV or less in order to ensure workability to the spring material. Further, it is desirable that the elongation when the tensile test is performed in a direction parallel to the rolling direction is 15% or more.

《バネ用鋼板の製造法》
本発明のバネ用鋼板は、例えば以下のような方法で製造できる。
まず、上記の化学組成になるように成分調整された鋼の冷間圧延材を、一般的なステンレス鋼板の製造工程に従って用意する。
<Production method of spring steel plate>
The spring steel plate of the present invention can be manufactured, for example, by the following method.
First, a cold-rolled steel material whose components are adjusted to have the above chemical composition is prepared in accordance with a general stainless steel plate manufacturing process.

次いで、この冷間圧延材に対し溶体化処理を兼ねた仕上焼鈍を施す。仕上焼鈍は、1050〜1250℃に加熱後、少なくとも200℃以下の温度域まで水冷する。上記の化学組成に調整されていることにより、この熱処理後にはCuリッチ相の析出がないオーステナイト相組織(再結晶組織)を呈する焼鈍鋼板が得られる。   Next, the cold-rolled material is subjected to finish annealing that also serves as a solution treatment. In the finish annealing, after heating to 1050 to 1250 ° C., water cooling is performed to a temperature range of at least 200 ° C. By adjusting to the above chemical composition, an annealed steel sheet exhibiting an austenite phase structure (recrystallized structure) without Cu-rich phase precipitation after this heat treatment is obtained.

その後、この焼鈍鋼板に対し調質圧延を施し、20〜50体積%好ましくは20〜30体積%の加工誘起マルテンサイト相を生成させる。このとき、調質圧延率は30〜75%の範囲で設定することが好ましい。この範囲において所望の特性を得やすい。30〜70%の範囲とすることがより好ましい。加工誘起マルテンサイト相の生成量は圧延パススケジュールや圧延温度に依存するので、組成および使用する圧延機に応じて、上記圧延率の範囲で適切な圧延条件を採用することによって、加工誘起マルテンサイト量をコントロールすることができる。この調質圧延によって目的とするバネ材に適した最終板厚(概ね2.0〜0.1mm)となるように、上記の冷間圧延後の板厚を調整しておく必要がある。このようにして、バネ材に加工するためのバネ用鋼板が得られる。   Thereafter, the annealed steel sheet is temper-rolled to produce a work-induced martensite phase of 20 to 50% by volume, preferably 20 to 30% by volume. At this time, it is preferable to set the temper rolling ratio in the range of 30 to 75%. Desirable characteristics are easily obtained in this range. More preferably, it is in the range of 30 to 70%. Since the amount of work-induced martensite phase depends on the rolling pass schedule and rolling temperature, depending on the composition and rolling mill used, by adopting appropriate rolling conditions within the above rolling ratio range, work-induced martensite The amount can be controlled. It is necessary to adjust the plate thickness after the cold rolling so that the final plate thickness (generally 2.0 to 0.1 mm) suitable for the target spring material is obtained by this temper rolling. In this way, a spring steel plate for processing into a spring material is obtained.

表1に、調質圧延材の伸び・硬さと時効処理材の硬さ・バネ限界値に及ぼす調質圧延材の加工誘起マルテンサイト(α’)量の影響を調べた結果の一例を示す。使用した鋼の組成は、C=0.020%、N=0.011%、Si=1.45%、Mn=2.01%、Ni=7.05%、Cr=16.31%、Cu=1.98%、Mo=0.09%、残部はFeおよび不可避的不純物である。表1中には板厚1mmの仕上焼鈍材に種々の圧延率で調質圧延を施した材料の組織・特性、およびその調質圧延材に450℃×1hの時効処理を施した材料の特性を示してある。   Table 1 shows an example of the results of examining the influence of the work-induced martensite (α ′) amount of the tempered rolled material on the elongation / hardness of the tempered rolled material and the hardness / spring limit value of the aging treated material. The composition of the steel used is as follows: C = 0.020%, N = 0.011%, Si = 1.45%, Mn = 2.01%, Ni = 7.05%, Cr = 16.31%, Cu = 1.98%, Mo = 0.09%, the balance being Fe and inevitable impurities. Table 1 shows the structure and characteristics of materials that have been subjected to temper rolling at various rolling rates on a finish annealed material with a thickness of 1 mm, and the characteristics of materials that have been subjected to aging treatment at 450 ° C. for 1 h. Is shown.

Figure 0005100144
Figure 0005100144

表1からわかるように、この組成の鋼では、加工誘起マルテンサイト(α’)量が20体積%未満だとバネ限界値が低く、バネ用鋼板として使用できない。これに対し加工誘起マルテンサイト量が20体積%以上になるとバネ限界値が急激に向上する。一方、加工誘起マルテンサイト量が50体積%を超えると伸びが5%を下回り、バネ用鋼板としての加工性が不足する。すなわち、加工誘起マルテンサイト量を20〜50体積%の範囲に調整することにより、バネ用鋼板としての優れた加工性と時効後の高強度化が両立できる。   As can be seen from Table 1, when the amount of work-induced martensite (α ′) is less than 20% by volume, the spring limit value is low and the steel plate for this composition cannot be used as a spring steel plate. On the other hand, when the amount of work-induced martensite is 20% by volume or more, the spring limit value is rapidly improved. On the other hand, if the amount of work-induced martensite exceeds 50% by volume, the elongation is less than 5%, and the workability as a spring steel plate is insufficient. That is, by adjusting the amount of work-induced martensite in the range of 20 to 50% by volume, both excellent workability as a spring steel plate and high strength after aging can be achieved.

《バネ材の組織・特性》
上記本発明のバネ用鋼板を素材として、金属製止め輪、皿ばね、波ワッシャー等のバネ材が構築される。このバネ材は、Cuリッチ相からなる析出物が分散したマルテンサイト相を有し、任意の部位の表面について測定される硬さが400HV以上を呈する。すなわち、バネ材への加工時にほとんど塑性変形を受けていない部位(バネ用鋼板をそのまま時効処理した場合に相当する組織状態の部位)において400HV以上の硬さを有し、塑性変形を受けた部位ではさらに高い硬さを有する。また、バネ限界値(同様の時効処理を受けた鋼板試料によって測定される)は700N/mm2以上である。このような特性値を示すものは、金属製止め輪、皿ばね、波ワッシャー等のバネ材に望まれる良好なバネ特性を有するといえる。
<Structure and characteristics of spring material>
Spring materials such as metal retaining rings, disc springs, wave washers and the like are constructed using the steel plate for springs of the present invention as a raw material. This spring material has a martensite phase in which precipitates composed of a Cu-rich phase are dispersed, and exhibits a hardness of 400 HV or more measured on the surface of an arbitrary part. That is, a part that has a hardness of 400 HV or more and is subjected to plastic deformation in a part that is hardly subjected to plastic deformation when processed into a spring material (a part in a structural state corresponding to the case of aging treatment of a spring steel plate as it is). Then, it has higher hardness. Further, the spring limit value (measured by a steel plate sample subjected to the same aging treatment) is 700 N / mm 2 or more. Those exhibiting such characteristic values can be said to have good spring characteristics desired for spring materials such as metal retaining rings, disc springs, and wave washers.

《バネ材の製造法》
このような特性のバネ材を得るためには、上記本発明のバネ用鋼板を素材として所定の形状に塑性加工した後、時効処理を施す。ただし、本発明の上記バネ用鋼板は良好な加工性を確保するためにあまり高い調質圧延率を採用していない。したがって、時効処理においては十分な高強度化が実現できるように、時効処理条件を絞ることが重要である。種々検討の結果、時効温度は400〜500℃の温度域とし、かつ、時効温度T(K)と時効時間t(h)が下記(2)式を満たす条件とすることが好ましい。
14000≦T(logt+20)≦15500 ……(2)
<Method of manufacturing spring material>
In order to obtain a spring material having such characteristics, an aging treatment is performed after plastic working into a predetermined shape using the spring steel plate of the present invention as a material. However, the spring steel plate of the present invention does not employ a very high temper rolling ratio in order to ensure good workability. Therefore, it is important to narrow down the aging treatment conditions so that sufficient strength can be achieved in the aging treatment. As a result of various investigations, the aging temperature is set to a temperature range of 400 to 500 ° C., and it is good preferable that the aging temperature T (K) and the aging time t (h) is a condition that satisfies the following equation (2).
14000 ≦ T (logt + 20) ≦ 15500 (2)

図3に、時効処理後の硬さに及ぼす時効条件の影響を調べた結果の一例を示す。使用した鋼の組成は、C=0.020%、N=0.011%、Si=1.45%、Mn=2.01%、Ni=7.05%、Cr=16.31%、Cu=1.98%、Mo=0.09%、残部はFeおよび不可避的不純物である。板厚1mmの仕上焼鈍材に40%の調質圧延を施し、その後、これに種々の条件で時効処理を施した材料の硬さをプロットした。上記(2)式を満たす範囲で顕著な硬化が認められ、(2)’式を満たす範囲で一層顕著な硬化が認められる。   FIG. 3 shows an example of the results of examining the influence of aging conditions on the hardness after aging treatment. The composition of the steel used is as follows: C = 0.020%, N = 0.011%, Si = 1.45%, Mn = 2.01%, Ni = 7.05%, Cr = 16.31%, Cu = 1.98%, Mo = 0.09%, the balance being Fe and inevitable impurities. The finish annealed material having a thickness of 1 mm was subjected to temper rolling at 40%, and thereafter, the hardness of the material subjected to aging treatment under various conditions was plotted. Remarkable curing is recognized within the range satisfying the above expression (2), and further remarkable curing is recognized within the range satisfying the expression (2) ′.

表2に示す鋼を真空溶解炉で溶製し、鋳片を熱間鍛造して厚さ40mmのスラブを得た。このスラブを熱間圧延して板厚3.6mmの熱延鋼板とし、焼鈍、酸洗、冷間圧延を経て板厚1mmの冷間圧延材を得た。この冷間圧延材に対し、1150℃に加熱後、水冷する方法で仕上焼鈍を施した。このとき、材料は水冷により200℃以下の温度まで急冷された。この仕上焼鈍材に40%の調質圧延を施すことによって調質圧延材(バネ用鋼板に相当)を得た。その後、上記調質圧延材に対して、450℃×1hの時効処理を施すことにより時効処理材(バネ材に相当)を得た。   Steel shown in Table 2 was melted in a vacuum melting furnace, and the slab was hot forged to obtain a slab having a thickness of 40 mm. This slab was hot-rolled to obtain a hot-rolled steel sheet having a thickness of 3.6 mm, and a cold-rolled material having a thickness of 1 mm was obtained through annealing, pickling, and cold rolling. The cold-rolled material was subjected to finish annealing by heating to 1150 ° C. and then water cooling. At this time, the material was rapidly cooled to a temperature of 200 ° C. or less by water cooling. A temper rolled material (corresponding to a spring steel plate) was obtained by subjecting this finish annealed material to temper rolling of 40%. Thereafter, an aging treatment material (corresponding to a spring material) was obtained by subjecting the temper rolled material to an aging treatment at 450 ° C. × 1 h.

Figure 0005100144
Figure 0005100144

調質圧延材について、加工誘起マルテンサイト相(α’)の量をフェライト含量計を用いて測定した。また、圧延方向に平行方向の引張試験をJIS Z2241に準拠して13B号試験片を用いて行い、伸びを測定した。また、板表面(圧延面)のビッカース硬さをJIS Z2244に準拠して試験荷重98.07N(HV10)で測定した。   With respect to the temper rolled material, the amount of work-induced martensite phase (α ′) was measured using a ferrite content meter. In addition, a tensile test in the direction parallel to the rolling direction was performed using a No. 13B test piece in accordance with JIS Z2241, and the elongation was measured. Further, the Vickers hardness of the plate surface (rolled surface) was measured with a test load of 98.07 N (HV10) in accordance with JIS Z2244.

時効処理材について、上記と同様の方法でビッカース硬さを測定した。また、時効処理材から長手方向が圧延方向に対し直角方向となる短冊状試験片(幅10mm、長さ200mm)を採取し、これ用いてJIS H3130に準じた方法により、永久たわみ量が0.1mmとなるときの応力値を測定することによりバネ限界値を求めた。
これらの結果を表3に示す。
About the aging treatment material, the Vickers hardness was measured by the method similar to the above. Further, a strip-shaped test piece (width 10 mm, length 200 mm) whose longitudinal direction is perpendicular to the rolling direction is taken from the aging-treated material, and the permanent deflection amount is set to 0. 0 by using a method according to JIS H3130. The spring limit value was determined by measuring the stress value at 1 mm.
These results are shown in Table 3.

Figure 0005100144
Figure 0005100144

表3からわかるように、本発明例の調質圧延材は加工誘起マルテンサイト相(α’)の量が20〜50体積%に収まり、5%以上の良好な伸びと400HV以下の硬さを呈した。これらはバネ材への良好な加工性を有すると判断される。また、時効処理後には400HV以上の硬さと700N/mm2以上の良好なバネ限界値を呈した。なお、本発明例の調質圧延材をTEM観察したところ、Cuリッチ相は見られなかった。 As can be seen from Table 3, the tempered rolled material of the example of the present invention has a work-induced martensite phase (α ′) amount of 20-50% by volume, good elongation of 5% or more, and hardness of 400 HV or less. Presented. These are judged to have good workability to the spring material. Moreover, after the aging treatment, a hardness of 400 HV or higher and a favorable spring limit value of 700 N / mm 2 or higher were exhibited. In addition, when the tempered rolled material of the example of the present invention was observed by TEM, a Cu rich phase was not observed.

一方、比較例No.21はC含有量が高すぎ、No.22はN含有量が高すぎ、またNo.25はMd値が高くなりすぎたたことにより、これらの調質圧延材はいずれも硬質化しているために加工性に劣った。No.23はCu含有量が低すぎ、またNo.24はMd値が低くなりすぎたことにより、これらはいずれも時効処理材の硬さが低く、バネ限界値にも劣った。   On the other hand, Comparative Example No. 21 has too high C content, No. 22 has too high N content, and No. 25 has too high Md value. Since it was hardened, it was inferior in workability. In No. 23, the Cu content was too low, and in No. 24, the Md value was too low.

調質圧延後の伸びに及ぼすC、N含有量の影響を示したグラフ。The graph which showed the influence of C and N content which gives to the elongation after temper rolling. 調質圧延後の伸びおよび時効処理後の硬さに及ぼすMd値およびCu含有量の影響を示したグラフ。The graph which showed the influence of the Md value and the Cu content on the elongation after temper rolling and the hardness after aging treatment. 時効処理後の硬さに及ぼす時効条件の影響を示すグラフ。The graph which shows the influence of the aging conditions on the hardness after an aging treatment.

Claims (8)

質量%で、C:0.03%以下、N:0.03%以下、Si:0.5〜2.0%、Mn:0.5〜2.5%、Cu:1.0〜3.5%、Cr:15〜18%、Ni:6〜10%、Mo:3.5%以下を含有し、残部Feおよび不可避的不純物からなり、下記(1)式で定義されるMd値が−20〜30となるように成分調整された組成を有し、マトリクスが「オーステナイト相+20〜50体積%のマルテンサイト相」からなる複相組織を呈し、硬さが400HV以下である加工性および時効硬化性に優れたバネ用鋼板。
Md=551−462(C+N)−9.2Si−8.1Mn−29(Ni+Cu)−13.7Cr−18.5Mo ……(1)
C: 0.03% or less, N: 0.03% or less, Si: 0.5-2.0%, Mn: 0.5-2.5%, Cu: 1.0-3. 5%, Cr: 15 to 18%, Ni: 6 to 10%, Mo: 3.5% or less, the balance being Fe and unavoidable impurities, Md value defined by the following formula (1) is − Workability and aging with composition adjusted to 20-30, matrix having a multiphase structure consisting of "austenite phase + 20-50% by volume martensite phase" and hardness of 400HV or less Spring steel plate with excellent curability.
Md = 551-462 (C + N) -9.2 Si-8.1 Mn-29 (Ni + Cu) -13.7Cr-18.5Mo (1)
Mo含有量が0.04〜3.5%である請求項1に記載のバネ用鋼板。   The steel plate for a spring according to claim 1, wherein the Mo content is 0.04 to 3.5%. 前記複相組織はCuリッチ相の析出がない冷間圧延された加工組織であり、マトリクス中の前記マルテンサイト相は加工誘起マルテンサイト相である請求項1または2に記載のバネ用鋼板。   The steel sheet for a spring according to claim 1 or 2, wherein the multiphase structure is a cold-rolled processed structure free from precipitation of a Cu-rich phase, and the martensite phase in the matrix is a work-induced martensite phase. 5%以上の伸びを呈する請求項1〜3のいずれかに記載のバネ用鋼板。   The steel plate for a spring according to any one of claims 1 to 3, which exhibits an elongation of 5% or more. 質量%で、C:0.03%以下、N:0.03%以下、Si:0.5〜2.0%、Mn:0.5〜2.5%、Cu:1.0〜3.5%、Cr:15〜18%、Ni:6〜10%、Mo:3.5%以下を含有し、残部Feおよび不可避的不純物からなり、下記(1)式で定義されるMd値が−20〜30となるように成分調整された組成を有する鋼の冷間圧延材に対し、1050〜1250℃に加熱後、少なくとも200℃以下の温度域まで水冷する溶体化処理を兼ねた仕上焼鈍を施すことによりCuリッチ相の析出がないオーステナイト相組織の鋼板を得る工程、
前記オーステナイト相組織の鋼板に対し圧延率30〜75%の調質圧延を施すことによりマトリクスが「オーステナイト相+20〜50体積%のマルテンサイト相」からなる複相組織である鋼板を得る工程、
を有する請求項1〜4のいずれかに記載のバネ用鋼板の製造法。
Md=551−462(C+N)−9.2Si−8.1Mn−29(Ni+Cu)−13.7Cr−18.5Mo ……(1)
C: 0.03% or less, N: 0.03% or less, Si: 0.5-2.0%, Mn: 0.5-2.5%, Cu: 1.0-3. 5%, Cr: 15 to 18%, Ni: 6 to 10%, Mo: 3.5% or less, the balance being Fe and unavoidable impurities, Md value defined by the following formula (1) is − For steel cold-rolled material having a composition adjusted to 20-30, after heating to 1050-1250 ° C, finish annealing also serves as a solution treatment for water cooling to a temperature range of at least 200 ° C or less. A step of obtaining a steel sheet having an austenite phase structure without Cu-rich phase precipitation by applying,
A step of obtaining a steel sheet having a multi-phase structure in which the matrix is composed of “austenite phase + 20-50% by volume martensite phase” by subjecting the steel sheet of the austenite phase structure to temper rolling at a rolling rate of 30 to 75%;
The manufacturing method of the steel plate for springs in any one of Claims 1-4 which has these.
Md = 551-462 (C + N) -9.2 Si-8.1 Mn-29 (Ni + Cu) -13.7Cr-18.5Mo (1)
前記仕上焼鈍に供する鋼は、Mo含有量が0.04〜3.5%である請求項5に記載のバネ用鋼板の製造法。   The method for producing a spring steel plate according to claim 5, wherein the steel subjected to the finish annealing has a Mo content of 0.04 to 3.5%. 請求項1〜4のいずれかに記載のバネ用鋼板を素材として塑性加工されたバネ材であって、Cuリッチ相からなる析出物が分散したマルテンサイト相を有し、任意の部位の表面について測定される硬さが400HV以上であるバネ材。   A spring material plastically processed using the spring steel plate according to any one of claims 1 to 4, having a martensite phase in which precipitates made of a Cu-rich phase are dispersed, and the surface of an arbitrary part A spring material having a measured hardness of 400 HV or more. 請求項1〜4のいずれかに記載のバネ用鋼板を素材として塑性加工を施し、その後、400〜500℃の温度域における時効温度T(K)と時効時間t(h)が下記(2)式を満たす条件で時効処理を施す、バネ材の製造法。
14000≦T(logt+20)≦15500 ……(2)
The steel plate for spring according to any one of claims 1 to 4 is subjected to plastic working, and thereafter the aging temperature T (K) and the aging time t (h) in the temperature range of 400 to 500 ° C are the following (2): A spring material manufacturing method that applies an aging treatment under conditions that satisfy the equation.
14000 ≦ T (logt + 20) ≦ 15500 (2)
JP2007029852A 2007-02-08 2007-02-08 Steel plate for spring, spring material using the same, and manufacturing method thereof Active JP5100144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007029852A JP5100144B2 (en) 2007-02-08 2007-02-08 Steel plate for spring, spring material using the same, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007029852A JP5100144B2 (en) 2007-02-08 2007-02-08 Steel plate for spring, spring material using the same, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008195976A JP2008195976A (en) 2008-08-28
JP5100144B2 true JP5100144B2 (en) 2012-12-19

Family

ID=39755190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007029852A Active JP5100144B2 (en) 2007-02-08 2007-02-08 Steel plate for spring, spring material using the same, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5100144B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5421611B2 (en) * 2009-02-18 2014-02-19 日新製鋼株式会社 Stainless steel plate for age-hardening springs
JP6235721B2 (en) * 2013-12-13 2017-11-22 オウトクンプ オサケイティオ ユルキネンOutokumpu Oyj Production method of high-strength duplex stainless steel
US20230250522A1 (en) * 2020-05-13 2023-08-10 Nippon Steel Stainless Steel Corporation Austenite stainless steel material, method for producing same, and plate spring
WO2022180869A1 (en) * 2021-02-24 2022-09-01 日鉄ステンレス株式会社 Austenitic stainless steel material, method for producing same, and leaf spring

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742550B2 (en) * 1990-10-09 1995-05-10 新日本製鐵株式会社 Stainless steel with excellent strength and ductility
JP3251648B2 (en) * 1992-07-14 2002-01-28 日新製鋼株式会社 Precipitation hardening type martensitic stainless steel and method for producing the same
JP3289980B2 (en) * 1993-01-27 2002-06-10 日新製鋼株式会社 Method for producing high-strength austenitic stainless steel with excellent toughness
JP3734428B2 (en) * 2001-04-13 2006-01-11 新日鐵住金ステンレス株式会社 Austenitic stainless steel plate with excellent press formability and corrosion resistance
JP4204956B2 (en) * 2003-11-20 2009-01-07 日新製鋼株式会社 Martensite-containing high Cr steel sheet with improved conductivity and spring characteristics and method for producing the same

Also Published As

Publication number Publication date
JP2008195976A (en) 2008-08-28

Similar Documents

Publication Publication Date Title
KR100682802B1 (en) Ultra-high strength metastable austenitic stainless steel containing Ti and a method of producing the same
WO2011062152A1 (en) Austenite stainless steel sheet and method for producing same
JP2009221553A (en) Stainless steel for low nickel springs excellent in settling resistance and bendability
KR101606946B1 (en) High-strength stainless steel material and process for production of the same
JP7049142B2 (en) Martensitic stainless steel sheet and its manufacturing method and spring members
JP6223124B2 (en) High-strength duplex stainless steel sheet and its manufacturing method
TW202146675A (en) Austenitic-based stainless steel material and manufacturing method thereof, and leaf spring having high strength and high ductility and excellent fatigue resistance
JP6815766B2 (en) Stainless steel
JP5100144B2 (en) Steel plate for spring, spring material using the same, and manufacturing method thereof
CN104726789A (en) Low-nickel containing stainless steels
CN110088323B (en) Article comprising a duplex stainless steel and use thereof
JP4327030B2 (en) Low Ni austenitic stainless steel with excellent overhanging and rust resistance
JP5421611B2 (en) Stainless steel plate for age-hardening springs
JP2018178144A (en) Precipitation-hardened stainless steel having excellent hot workability
JP2014019925A (en) Ni SAVING TYPE AUSTENITIC STAINLESS STEEL
WO2014157146A1 (en) Austenitic stainless steel sheet and method for manufacturing high-strength steel material using same
JP4841308B2 (en) High-strength nonmagnetic stainless steel sheet and method for producing the same
JP2016060936A (en) Dual-phase stainless steel for spring and production method therefor
EP3395996A1 (en) Lean duplex stainless steel having improved corrosion resistance and machinability, and manufacturing method therefor
JP6111109B2 (en) Low Ni austenitic stainless steel sheet with excellent age hardening characteristics and method for producing the same
JP2022181634A (en) Austenitic stainless steel and method for producing the same, and processed product
JP4331731B2 (en) Austenitic stainless steel and springs made of that steel
US20180363112A1 (en) Lean duplex stainless steel and method of manufacturing the same
JP2000129400A (en) Annealed martensitic stainless steel excellent in strength, toughness, and spring characteristic
JP2012201924A (en) Stainless steel sheet and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5100144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250