JP2005320587A - Stainless steel sheet for photoetching and its production method - Google Patents

Stainless steel sheet for photoetching and its production method Download PDF

Info

Publication number
JP2005320587A
JP2005320587A JP2004139744A JP2004139744A JP2005320587A JP 2005320587 A JP2005320587 A JP 2005320587A JP 2004139744 A JP2004139744 A JP 2004139744A JP 2004139744 A JP2004139744 A JP 2004139744A JP 2005320587 A JP2005320587 A JP 2005320587A
Authority
JP
Japan
Prior art keywords
less
stainless steel
photoetching
steel plate
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004139744A
Other languages
Japanese (ja)
Other versions
JP4324509B2 (en
Inventor
Hiroyuki Fujii
宏之 藤井
Toshihiko Yanai
俊彦 谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP2004139744A priority Critical patent/JP4324509B2/en
Publication of JP2005320587A publication Critical patent/JP2005320587A/en
Application granted granted Critical
Publication of JP4324509B2 publication Critical patent/JP4324509B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stainless steel sheet for photoetching in which the smoothness of the face to be etched can be securely and remarkably improved, thus electrolytic polishing can be made needless, and to provide its production method. <P>SOLUTION: A stainless steel sheet having a composition comprising, by mass, ≤0.03% C, ≤2.0% Mn, 5.0 to 15% Ni, 15 to 20% Cr, 0.01 to 0.03% Nb, 0.03 to 0.2% V and ≤0.30% N, and in which the content of Si is limited to ≤1.0%, P to ≤0.045% and S to ≤0.05%, respectively, and the balance Fe with inevitable impurities is cold-rolled at rolling ratio of ≥30%, and is thereafter heat-treated at 700 to 900°C, so as to be an average crystal grain size of ≤10 μm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、エッチングされる面(以下、エッチング面と称する)の平滑性に優れ、フォトエッチング加工に好適に使用されるステンレス鋼板およびその製造方法に関する。   The present invention relates to a stainless steel plate excellent in smoothness of a surface to be etched (hereinafter referred to as an etched surface) and suitably used for photoetching and a method for producing the same.

フォトエッチング加工は、フォトレジスト法によって金属表面に耐酸性のレジスト皮膜を製品形状に形成し、不要部分をエッチング液で溶解した後、レジスト皮膜を除去して製品を得るもので、複雑形状の部品の多品種少量生産に適していることから、ステンレス箔の加工に広く採用されている。   Photo-etching is a process that forms an acid-resistant resist film on a metal surface by the photoresist method into a product shape, dissolves unnecessary portions with an etching solution, and then removes the resist film to obtain a product. It is widely used for the processing of stainless steel foil because it is suitable for the production of a wide variety of products.

このような加工方法を用いて生産されている部品としては、ハードディスクのジンバルバネ、ロータリーエンコーダのスリット、ICやLSIを生産する際に治具として用いられる真空蒸着用のメタルマスク、インクジェットプリンタの紙送り用拍車等、数多くが挙げられる。   Parts manufactured using such processing methods include hard disk gimbal springs, rotary encoder slits, metal masks for vacuum evaporation used as jigs in the production of ICs and LSIs, and paper feed for inkjet printers. There are many such as spurs.

例えば、上記紙送り用拍車においては、印刷画像の高品質化に伴い、専用の光沢紙等が使用されるようになってきたことから、その拍車による印刷紙への疵付きが問題となっている。また、拍車が印刷紙面を擦ることにより紙粉が発生する場合があるが、その場合、紙粉が拍車に付着し、さらにその紙粉がインクを吸収して印刷紙面を汚すといった問題が生じる。   For example, in the above-mentioned spurs for paper feeding, since glossy paper or the like for exclusive use has come to be used along with the improvement of the quality of printed images, the spurs on the printed paper due to the spurs become a problem. Yes. In addition, paper dust may be generated due to the spur rubbing the surface of the printing paper. In this case, the paper dust adheres to the spur, and further, the paper dust absorbs ink and stains the printing paper surface.

拍車においては、印刷紙面に接触する部分である周面およびその近傍部分は、エッチングによって平滑に処理されているものが多い。ところが、上記の各問題点は、いずれも印刷紙面への接触部のエッチング面の平滑の度合いが低いために起こることが判っている。そこで従来は、拍車のエッチング面をより平滑とするために、エッチング後に電解研磨を施す場合があった。しかしながら電解研磨を施すことは、工程およびコストの増加を招くため、できれば避けたい工程である。そこで、結晶粒径を微細化することによりエッチング速度を速め、これによってエッチング面をより平滑にすることが考えられた。   In spurs, the peripheral surface, which is a portion in contact with the printing paper surface, and the vicinity thereof are often processed smoothly by etching. However, it has been found that each of the problems described above occurs because the degree of smoothness of the etched surface of the contact portion with the printing paper surface is low. Therefore, conventionally, in order to make the etched surface of the spur smoother, there has been a case where electropolishing is performed after the etching. However, applying electropolishing leads to an increase in process and cost, and is a process that should be avoided if possible. Therefore, it has been considered to increase the etching rate by reducing the crystal grain size, thereby making the etched surface smoother.

例えば特許文献1には、オーステナイト系ステンレス鋼を500〜850℃の温度で10秒以上熱処理することにより、結晶粒度を6以上に微細化してエッチング面を平滑に処理することが記載されている。また、特許文献2には、炭化物からなるスマットと呼ばれる腐食生成物に起因して生じるマスキング効果を抑制するために、C量を0.03質量%以下とし、粒界のエッチング速度を速めることを目的として平均結晶粒径を15μm以下に微細化し、さらに、粗大な炭化物と結晶粒成長を抑制するために、Nbを0.01〜0.3質量%含有させることが記載されている。   For example, Patent Document 1 describes that an austenitic stainless steel is heat-treated at a temperature of 500 to 850 ° C. for 10 seconds or more, thereby reducing the crystal grain size to 6 or more and processing the etched surface smoothly. Patent Document 2 discloses that in order to suppress a masking effect caused by a corrosion product called a carbide smut, the amount of C is set to 0.03% by mass or less, and the etching rate of grain boundaries is increased. For the purpose, it is described that Nb is contained in an amount of 0.01 to 0.3% by mass in order to refine the average crystal grain size to 15 μm or less and further suppress coarse carbide and crystal grain growth.

特許第2754225号公報Japanese Patent No. 2754225 特開2003−3244号公報Japanese Patent Laid-Open No. 2003-3244

しかしながら、上記従来技術のうち、前者の場合には、結晶粒径を微細化するための熱処理により、結晶粒界に炭化物が析出し、結晶粒界近傍にクロム欠乏層が形成されることにより、耐食性が劣化し、これを補うために、不働態化処理等を必要とする場合があった。また、後者の技術で到達可能な表面粗さは、Raでせいぜい0.3μm程度であり、電解研摩が省略可能とされるRa:≦0.20μmまで平滑にすることは困難であった。   However, among the above prior arts, in the former case, carbide is precipitated in the crystal grain boundary by the heat treatment for reducing the crystal grain size, and a chromium-deficient layer is formed in the vicinity of the crystal grain boundary. In some cases, the corrosion resistance deteriorates, and in order to compensate for this, a passivation treatment or the like is required. In addition, the surface roughness that can be reached by the latter technique is at most about 0.3 μm in Ra, and it has been difficult to smooth the surface to Ra: ≦ 0.20 μm, in which electrolytic polishing can be omitted.

よって本発明は、エッチング面の平滑性を確実かつ大幅に向上させることができ、これによって電解研磨を不要とすることが可能なフォトエッチング加工用ステンレス鋼板およびその製造方法を提供することを目的としている。   Accordingly, an object of the present invention is to provide a stainless steel plate for photoetching processing that can reliably and significantly improve the smoothness of the etched surface, and can eliminate the need for electrolytic polishing, and a method for manufacturing the same. Yes.

改めて従来方法の概要を記載すると、結晶粒径を微細化することによってエッチングされやすい結晶粒界の単位面積当たりの存在頻度(密度)を増加させるということである。しかしながら、この方法では、電解研磨が不要とされるエッチング面の表面粗さ:Ra≦0.20μmに到達することが難しかったわけである。そこで本発明者らは、その目的のエッチング面の表面粗さ:Ra≦0.20μmを達成するために鋭意研究を重ねた結果、次のような知見を得た。   The outline of the conventional method is described again by increasing the existence frequency (density) per unit area of the crystal grain boundary that is easily etched by reducing the crystal grain size. However, with this method, it is difficult to reach the surface roughness Ra ≦ 0.20 μm of the etched surface that does not require electropolishing. Therefore, as a result of intensive studies in order to achieve the target etching surface roughness: Ra ≦ 0.20 μm, the present inventors have obtained the following knowledge.

まず、Nbの炭化物は、Crの炭化物と同様にエッチング液に溶解しないためスマットとなり、エッチング面の粗面化の原因となり得る。ただし、Nbの炭化物はCrの炭化物よりも微細であるため、影響の程度は小さい。また、Vは、Nbと同様に微細な炭化物を形成するので、結晶粒の微細化効果があるが、Cとの親和力はNbほどではないため、母材中のC量が同一の場合でも、炭化物の生成量が少ない。   First, the carbide of Nb does not dissolve in the etching solution like the carbide of Cr, so that it becomes a smut and may cause a roughened etching surface. However, since the carbide of Nb is finer than the carbide of Cr, the degree of influence is small. Further, V forms fine carbides similarly to Nb, so there is an effect of refining crystal grains. However, since affinity with C is not as high as Nb, even when the amount of C in the base material is the same, There is little production of carbide.

上記の知見に基づいてなされた本発明は、下記のフォトエッチング加工用ステンレス鋼板およびその製造方法を要旨としている。
すなわち、本発明のフォトエッチング加工用ステンレス鋼板は、質量%で、C:0.03%以下、Mn:2.0%以下、Ni:5.0%以上15%以下、Cr:15%以上20%以下、Nb:0.01%以上0.03%以下、V:0.03%以上0.2%以下、N:0.30%以下の範囲でそれぞれの元素を含有し、また、Si:1.0%以下、P:0.045%以下、S:0.05%以下にそれぞれの元素が制限され、残部がFeおよび不可避的不純物からなり、かつ、圧延方向に直交する断面での板幅方向の平均結晶粒径が10μm以下であることを特徴としている。この発明では、さらに、ビッカース硬さが300以上であることが好ましい条件である。
The gist of the present invention made based on the above findings is the following stainless steel plate for photoetching and a manufacturing method thereof.
That is, the stainless steel plate for photoetching of the present invention is in mass%, C: 0.03% or less, Mn: 2.0% or less, Ni: 5.0% or more and 15% or less, Cr: 15% or more and 20 %: Nb: 0.01% or more and 0.03% or less, V: 0.03% or more and 0.2% or less, and N: 0.30% or less. 1.0% or less, P: 0.045% or less, S: 0.05% or less, each element is limited, the balance is made of Fe and unavoidable impurities, and the plate has a cross section perpendicular to the rolling direction. The average crystal grain size in the width direction is 10 μm or less. In the present invention, it is further preferable that the Vickers hardness is 300 or more.

また、本発明のフォトエッチング加工用ステンレス鋼板の製造方法は、質量%で、C:0.03%以下、Mn:2.0%以下、Ni:5.0%以上15%以下、Cr:15%以上20%以下、Nb:0.01%以上0.03%以下、V:0.03%以上0.2%以下、N:0.30%以下の範囲でそれぞれの元素を含有し、また、Si:1.0%以下、P:0.045%以下、S:0.05%以下にそれぞれの元素が制限され、残部がFeおよび不可避的不純物からなるステンレス鋼板を、圧延率が30%以上で冷間圧延した後、700℃以上900℃以下の温度で熱処理することによって平均結晶粒径を10μm以下とすることを特徴としている。この製造方法では、上記熱処理の後に、20%以上80%以下の圧延率で冷間圧延(調質圧延)し、この後、さらに、550℃以上700℃以下の温度で熱処理する条件を付加することが、より好ましい形態である。   Moreover, the manufacturing method of the stainless steel plate for photoetching processing of this invention is the mass%, C: 0.03% or less, Mn: 2.0% or less, Ni: 5.0% or more and 15% or less, Cr: 15 %: 20% or less, Nb: 0.01% or more, 0.03% or less, V: 0.03% or more, 0.2% or less, N: 0.30% or less. , Si: not more than 1.0%, P: not more than 0.045%, S: not more than 0.05%, and a stainless steel plate made of Fe and inevitable impurities in the balance, with a rolling rate of 30% After the cold rolling as described above, the heat treatment is performed at a temperature of 700 ° C. or more and 900 ° C. or less to make the average crystal grain size 10 μm or less. In this manufacturing method, after the heat treatment, cold rolling (temper rolling) is performed at a rolling rate of 20% or more and 80% or less, and thereafter, a condition for heat treatment at a temperature of 550 ° C. or more and 700 ° C. or less is added. Is a more preferable form.

本発明によれば、含有元素と、素材であるステンレス鋼板の圧延条件および熱処理条件とを特定することにより、エッチング面の平滑性が確実かつ大幅に向上し、これによって電解研磨を不要とすることが可能なフォトエッチング加工用ステンレス鋼板を得ることができるといった効果を奏する。   According to the present invention, the smoothness of the etched surface is reliably and greatly improved by specifying the contained elements and the rolling conditions and heat treatment conditions of the stainless steel plate as a material, thereby eliminating the need for electrolytic polishing. It is possible to obtain a stainless steel plate for photoetching that can be processed.

本発明に係るステンレス鋼板が含有する各成分の含有量範囲(質量%)について、以下に限定理由を説明する。
C:0.03%以下
Cは結晶粒径を微細化するために低温で焼鈍すると炭化物を形成しやすくなるが、Cr炭化物の周囲には脱Cr層が形成され、耐食性を劣化させる。また、この炭化物はスマットの原因となり、マスキング効果でエッチング面を粗面化させる。ただし、0.03%以下では炭化物の析出に要する時間が長くなり、通常の生産設備での焼鈍時間以内に炭化物が生成することはなくなるので、Cの上限を0.03%とした。
The reasons for limitation will be described below with respect to the content range (mass%) of each component contained in the stainless steel plate according to the present invention.
C: 0.03% or less C is easy to form carbide when annealed at a low temperature in order to make the crystal grain size fine, but a Cr-free layer is formed around Cr carbide and deteriorates corrosion resistance. In addition, this carbide causes smut and roughens the etched surface by a masking effect. However, if it is 0.03% or less, the time required for the precipitation of carbides becomes long, and no carbides are generated within the annealing time in normal production equipment, so the upper limit of C was made 0.03%.

Mn:2.0%以下
Mnは熱間加工性を向上させるために添加するが、2.0%を超えて含有量が多くなるとその効果も飽和し、かつコスト高となるので、2.0%を上限とした。
Mn: 2.0% or less Mn is added to improve hot workability. However, if the content exceeds 2.0%, the effect is saturated and the cost is increased. % Was the upper limit.

Ni:5.0%以上15%以下
Niはステンレス鋼の耐食性ならびに強度の向上に必要な元素であるが、含有量が5.0%を下回ると耐食性が劣化し、15%を超えるとコスト高となるため、5.0%以上15%以下に限定した。
Ni: 5.0% or more and 15% or less Ni is an element necessary for improving the corrosion resistance and strength of stainless steel. However, if the content is less than 5.0%, the corrosion resistance deteriorates, and if it exceeds 15%, the cost is high. Therefore, it is limited to 5.0% or more and 15% or less.

Cr:15%以上20%以下
Crは耐食性向上に最も重要な元素であり、含有量が15%を下回ると耐食性が劣化し、20%を超えるとコスト高となるため、15%以上20%以下に限定した。
Cr: 15% or more and 20% or less Cr is the most important element for improving the corrosion resistance. If the content is less than 15%, the corrosion resistance deteriorates, and if it exceeds 20%, the cost increases, so 15% or more and 20% or less. Limited to.

Nb:0.01%以上0.03%以下、
Nbは強力な炭化物を形成する元素であるため、同一C量の場合、スマットの原因となる炭化物量がV添加の場合よりも多くなり、最小限とするべきであることから、上限を0.03%とした。しかしながら、不可避的不純物として混入してくるNbを除去したり、低Nb含有量の原料を選択して使用することはコスト上昇の原因となるので、下限を0.01%とした。
Nb: 0.01% or more and 0.03% or less,
Since Nb is an element that forms a strong carbide, the amount of carbide causing smut is larger than that in the case of V addition when the amount of C is the same, and the upper limit should be set to 0.00. 03%. However, removing Nb mixed as an unavoidable impurity or selecting and using a raw material having a low Nb content causes an increase in cost, so the lower limit was made 0.01%.

V:0.03%以上0.2%以下、
Vは炭化物を形成する元素であり、また、微細に析出して結晶粒径を微細化する効果がある元素である。これらの効果は、含有量が0.03%未満では効果が小さい。また、含有量が0.2%を超えると効果が飽和し、コスト上昇の要因となる。したがって、Vの含有量は0.03%以上0.2%以下とした。
V: 0.03% to 0.2%,
V is an element that forms carbides, and is an element that has the effect of being finely precipitated and reducing the crystal grain size. These effects are small when the content is less than 0.03%. On the other hand, when the content exceeds 0.2%, the effect is saturated, which causes an increase in cost. Therefore, the content of V is set to 0.03% or more and 0.2% or less.

N:0.30%以下
Nはステンレス鋼の耐食性ならびに強度の向上に有効な元素であり、また、結晶粒径を微細化するために低温で焼鈍した時に炭化物の析出を抑制する効果があるため、添加することが好ましい。しかしながら、0.30%以上添加すると窒化物を形成するようになり、これはスマット化してマスキング効果によりエッチング面を粗面化する。したがって、Nは上限を0.30%とした。
N: 0.30% or less N is an element effective for improving the corrosion resistance and strength of stainless steel, and also has the effect of suppressing carbide precipitation when annealed at a low temperature in order to refine the crystal grain size. It is preferable to add. However, when 0.30% or more is added, a nitride is formed, which is smutted and roughens the etched surface by a masking effect. Therefore, the upper limit of N is 0.30%.

Si:1.0%以下
Siは脱酸材として使用されるが、1.0%を超えて含有量が多くなるとエッチング速度を低下させるため、1.0%を上限とした。
Si: 1.0% or less Si is used as a deoxidizing material, but when the content exceeds 1.0% and the etching rate decreases, 1.0% was made the upper limit.

P:0.045%以下
Pは0.045%を超えて含有量が多くなると熱間加工性を劣化させるので、上限を0.045%とした。
P: 0.045% or less Since the P content exceeds 0.045% and the hot workability deteriorates when the content increases, the upper limit is made 0.045%.

S:0.05%以下
Sは0.05%を超えて含有量が多くなると熱間加工性を劣化させるので、上限を0.05%とした。
S: 0.05% or less Since S deteriorates hot workability when the content exceeds 0.05% and the content increases, the upper limit was made 0.05%.

次に、圧延方向に直交する断面での板幅方向の平均結晶粒径が10μm以下とした理由は、結晶粒界は結晶粒内に比べてエッチングされやすく、さらに結晶方位の影響も受けないため、単位面積当たりの結晶粒界の存在割合を増加させれば、エッチング面が平滑になるからである。また、圧延によってビッカース硬度を300以上の高硬度とすると、結晶粒内に転位が導入され、この転位をエッチングの起点とすることによって結晶粒界と結晶粒内のエッチング速度差が減少し、その結果、エッチング面がより平滑になりやすいので好ましい。   Next, the reason why the average grain size in the plate width direction in the cross section perpendicular to the rolling direction is 10 μm or less is that the grain boundaries are more easily etched than in the grains and are not affected by the crystal orientation. This is because the etching surface becomes smooth if the existence ratio of the crystal grain boundaries per unit area is increased. Also, when the Vickers hardness is set to a high hardness of 300 or more by rolling, dislocations are introduced into the crystal grains, and by using this dislocation as the starting point of etching, the difference in etching rate between the crystal grain boundaries and the crystal grains is reduced. As a result, the etched surface tends to be smoother, which is preferable.

次に、本発明の製造方法に掲げた条件の限定理由について述べる。
まず、最初の冷間圧延での30%以上の圧延率の理由は、圧延率が30%未満では、再結晶の駆動力となる十分な歪みが入らず、その後の熱処理において混粒組織となり、エッチング面が粗面化する。したがって、圧延率を30%以上とした。
Next, the reasons for limiting the conditions listed in the production method of the present invention will be described.
First, the reason for the rolling rate of 30% or more in the first cold rolling is that when the rolling rate is less than 30%, sufficient strain that becomes a driving force for recrystallization does not enter, and a mixed grain structure is formed in the subsequent heat treatment, The etched surface becomes rough. Therefore, the rolling rate is set to 30% or more.

本発明に係る熱処理は焼鈍であり、上記冷間圧延後の焼鈍においては、700℃未満では再結晶しないため、エッチング後に冷間加工する場合に混粒組織を残留させるという問題が生じる場合がある。また、平均結晶粒径を10μm以下とするためには、焼鈍温度を900℃以下とする必要がある。   The heat treatment according to the present invention is annealing, and in the annealing after the cold rolling, since recrystallization does not occur at less than 700 ° C., there may be a problem that a mixed grain structure remains when cold working after etching. . In order to make the average crystal grain size 10 μm or less, the annealing temperature needs to be 900 ° C. or less.

本発明の製造方法における好ましい付加的条件は、上記熱処理の後に、20%以上80%以下の圧延率で冷間圧延し、この後、さらに、550℃以上700℃以下の温度で熱処理するものである。この場合の冷間圧延は調質圧延であって、この調質圧延の圧延率が20%未満であると、かえってエッチング面が粗面化する場合があり、80%を超えると、圧延中に耳割れが発生しやすくなって破断する危険が増大する。したがって、この2回目の冷間圧延の圧延率は20%以上80%以下が適切である。   A preferred additional condition in the production method of the present invention is that after the heat treatment, cold rolling is performed at a rolling rate of 20% or more and 80% or less, and then heat treatment is performed at a temperature of 550 ° C. or more and 700 ° C. or less. is there. The cold rolling in this case is temper rolling, and if the rolling rate of this temper rolling is less than 20%, the etched surface may be roughened. If it exceeds 80%, Ear cracks easily occur and the risk of breakage increases. Accordingly, the rolling rate of the second cold rolling is appropriately 20% or more and 80% or less.

また、調質圧延後の熱処理は応力除去焼鈍であり、この時の温度が550℃未満では、圧延時にステンレス鋼板内部の残留応力が均質化しないことに起因してエッチング時に反りが生じる場合がある。また、700℃を越える温度では、調質圧延の効果がなくなり、軟質化してしまう。したがって、この2回目の熱処理温度は、550℃以上700℃以下が適切である。   Further, the heat treatment after temper rolling is stress relief annealing, and if the temperature at this time is less than 550 ° C., warping may occur during etching due to the residual stress inside the stainless steel plate not being homogenized during rolling. . Moreover, at the temperature exceeding 700 degreeC, the effect of temper rolling is lost and it softens. Accordingly, the second heat treatment temperature is suitably 550 ° C. or higher and 700 ° C. or lower.

次に、本発明の効果を実証する実施例を説明する。
表1に示す合金成分A,B,C,D,E,Fをそれぞれ有する6種の鋼塊10kgを7mmの厚さに鍛造した後、固溶化熱処理、冷間圧延により2.5mmの厚さとし、さらに、1100℃で1分間の熱処理後、水冷して、試験用のステンレス鋼板(素材)を得た。
Next, examples that demonstrate the effects of the present invention will be described.
After forging 6 kg of steel ingots each having the alloy components A, B, C, D, E, and F shown in Table 1 to a thickness of 7 mm, a thickness of 2.5 mm is obtained by solution heat treatment and cold rolling. Further, after heat treatment at 1100 ° C. for 1 minute, it was cooled with water to obtain a test stainless steel plate (material).

Figure 2005320587
Figure 2005320587

上記各素材を1mmの厚さまで冷間圧延した後、表2に示す条件で、焼鈍−調質圧延−SR処理(応力除去焼鈍)を施し、試験片を得た。   Each of the above materials was cold-rolled to a thickness of 1 mm, and then subjected to annealing-temper rolling-SR treatment (stress removal annealing) under the conditions shown in Table 2 to obtain a test piece.

Figure 2005320587
Figure 2005320587

次に、それぞれの試験片について平均結晶粒径、ビッカース硬さ(Hv)、エッチング面粗さを調べた。
平均結晶粒径は、圧延方向に直交する断面での板幅方向の結晶粒径であり、これは、調質圧延前の焼鈍状態の平均結晶粒径に相当するものである。この平均結晶粒径の調査方法は、JIS G 0551(鋼のオーステナイト結晶粒度試験方法)計数方法により、測定した。また、ビッカース硬さはビッカース硬度計(明石製作所社製、AVK)を用いて調べた。
Next, the average crystal grain size, Vickers hardness (Hv), and etched surface roughness of each test piece were examined.
The average crystal grain size is a crystal grain size in the sheet width direction in a cross section orthogonal to the rolling direction, and this corresponds to the average crystal grain size in the annealed state before temper rolling. The average crystal grain size was measured by the JIS G 0551 (steel austenite grain size test method) counting method. Further, the Vickers hardness was examined using a Vickers hardness meter (manufactured by Akashi Seisakusho, AVK).

エッチング面粗さ(Ra)の測定は、塩化第二鉄溶液(温度:50℃、液比重:1.49、酸化還元電位:646mV)を素材表面に圧力:2.5kg/mmで2分間スプレーしてエッチングした表面を、接触式の表面粗さ計(東京精密社製、サーフコム1400A)を用いて、圧延方向と直交する方向に沿って測定した。 Etching surface roughness (Ra) is measured with a ferric chloride solution (temperature: 50 ° C., liquid specific gravity: 1.49, oxidation-reduction potential: 646 mV) on the material surface at a pressure of 2.5 kg / mm 2 for 2 minutes. The surface etched by spraying was measured along a direction orthogonal to the rolling direction using a contact-type surface roughness meter (Surfcom 1400A, manufactured by Tokyo Seimitsu Co., Ltd.).

以上の試験結果を表2に併記する。
表2によれば、本発明例であるNo.1〜6のステンレス鋼板は、いずれも表面粗さ(Ra)が0.20μm以下で平滑なエッチング面となっている。しかしながら、No.7のステンレス鋼板は、焼鈍温度が925℃と本発明の条件よりも高温であったため平均結晶粒径が大きくなり、エッチング面が粗面化した。No.8のステンレス鋼板は、C含有量が0.054%と本発明成分よりも多く、これによって炭化物が生成したため、エッチング中にスマットが発生し、そのマスキング効果によってエッチング面が粗面化した。
The above test results are also shown in Table 2.
According to Table 2, no. Each of the stainless steel plates 1 to 6 has a smooth etching surface with a surface roughness (Ra) of 0.20 μm or less. However, no. The stainless steel plate No. 7 had an annealing temperature of 925 ° C., which was higher than the conditions of the present invention, so the average crystal grain size was increased and the etched surface was roughened. No. The stainless steel plate No. 8 had a C content of 0.054%, which was higher than the component of the present invention, and as a result, carbides were generated. Thus, smut was generated during etching, and the etched surface was roughened by the masking effect.

No.9のステンレス鋼板は、Nb含有量が0.06%と本発明成分よりも多いため、Nb炭化物が生成し、これがエッチング時にスマットとなり粗面化した。No.10のステンレス鋼板は、V含有量が0.01%と本発明成分よりも少ないため、結晶粒が10μm以上となり、粗面化した。No.11のステンレス鋼板は、N含有量が0.33%と本発明成分よりも多いため、CrとVの窒化物が生成し、これがエッチング時にスマットとなり、そのマスキング効果によって粗面化した。
No. Since the stainless steel plate No. 9 has a Nb content of 0.06%, which is higher than the component of the present invention, Nb carbide was generated, which became a smut and roughened during etching. No. Since the stainless steel plate No. 10 had a V content of 0.01%, which was less than the component of the present invention, the crystal grains became 10 μm or more and were roughened. No. Since the stainless steel plate of No. 11 has a N content of 0.33%, which is higher than the component of the present invention, a nitride of Cr and V was formed, which became a smut during etching and was roughened by its masking effect.

Claims (4)

質量%で、C:0.03%以下、Mn:2.0%以下、Ni:5.0%以上15%以下、Cr:15%以上20%以下、Nb:0.01%以上0.03%以下、V:0.03%以上0.2%以下、N:0.30%以下の範囲でそれぞれの元素を含有し、
また、Si:1.0%以下、P:0.045%以下、S:0.05%以下にそれぞれの元素が制限され、
残部がFeおよび不可避的不純物からなり、
かつ、圧延方向に直交する断面での板幅方向の平均結晶粒径が10μm以下であることを特徴とするフォトエッチング加工用ステンレス鋼板。
In mass%, C: 0.03% or less, Mn: 2.0% or less, Ni: 5.0% to 15%, Cr: 15% to 20%, Nb: 0.01% to 0.03 % Or less, V: 0.03% or more and 0.2% or less, N: 0.30% or less in each range,
Further, each element is limited to Si: 1.0% or less, P: 0.045% or less, S: 0.05% or less,
The balance consists of Fe and inevitable impurities,
A stainless steel plate for photoetching, wherein the average grain size in the plate width direction in a cross section perpendicular to the rolling direction is 10 μm or less.
さらに、ビッカース硬さが300以上であることを特徴とする請求項1に記載のフォトエッチング加工用ステンレス鋼板。   Furthermore, the Vickers hardness is 300 or more, The stainless steel plate for photo-etching processing according to claim 1 characterized by things. 質量%で、C:0.03%以下、Mn:2.0%以下、Ni:5.0%以上15%以下、Cr:15%以上20%以下、Nb:0.01%以上0.03%以下、V:0.03%以上0.2%以下、N:0.30%以下の範囲でそれぞれの元素を含有し、
また、Si:1.0%以下、P:0.045%以下、S:0.05%以下にそれぞれの元素が制限され、
残部がFeおよび不可避的不純物からなるステンレス鋼板を、
圧延率が30%以上で冷間圧延した後、700℃以上900℃以下の温度で熱処理することによって平均結晶粒径を10μm以下とすることを特徴とするフォトエッチング加工用ステンレス鋼板の製造方法。
In mass%, C: 0.03% or less, Mn: 2.0% or less, Ni: 5.0% or more and 15% or less, Cr: 15% or more and 20% or less, Nb: 0.01% or more and 0.03 % Or less, V: 0.03% or more and 0.2% or less, N: containing each element in the range of 0.30% or less,
Further, each element is limited to Si: 1.0% or less, P: 0.045% or less, S: 0.05% or less,
A stainless steel plate with the balance being Fe and inevitable impurities,
A method for producing a stainless steel sheet for photoetching, wherein the average grain size is 10 μm or less by performing a heat treatment at a temperature of 700 ° C. or more and 900 ° C. or less after cold rolling at a rolling rate of 30% or more.
前記ステンレス鋼板を、前記熱処理の後、20%以上80%以下の圧延率で冷間圧延し、この後、さらに、550℃以上700℃以下の温度で熱処理することを特徴とする請求項3に記載のフォトエッチング加工用ステンレス鋼板の製造方法。
The stainless steel sheet is cold-rolled at a rolling rate of 20% or more and 80% or less after the heat treatment, and then further heat-treated at a temperature of 550 ° C or more and 700 ° C or less. The manufacturing method of the stainless steel plate for photoetching processes of description.
JP2004139744A 2004-05-10 2004-05-10 Stainless steel sheet for photo-etching and method for producing the same Active JP4324509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004139744A JP4324509B2 (en) 2004-05-10 2004-05-10 Stainless steel sheet for photo-etching and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004139744A JP4324509B2 (en) 2004-05-10 2004-05-10 Stainless steel sheet for photo-etching and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005320587A true JP2005320587A (en) 2005-11-17
JP4324509B2 JP4324509B2 (en) 2009-09-02

Family

ID=35468063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004139744A Active JP4324509B2 (en) 2004-05-10 2004-05-10 Stainless steel sheet for photo-etching and method for producing the same

Country Status (1)

Country Link
JP (1) JP4324509B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008013305A1 (en) 2006-07-28 2008-01-31 Sumitomo Metal Industries, Ltd. Stainless steel sheet for parts and process for manufacturing the same
WO2012118113A1 (en) * 2011-03-01 2012-09-07 住友金属工業株式会社 Metal plate for laser processing and method for producing stainless steel plate for laser processing
KR20150024945A (en) 2012-09-04 2015-03-09 신닛테츠스미킨 카부시키카이샤 Stainless steel sheet and method for producing same
WO2015122523A1 (en) * 2014-02-17 2015-08-20 新日鉄住金マテリアルズ株式会社 Stainless steel foil and method for manufacturing same
WO2016043125A1 (en) * 2014-09-17 2016-03-24 新日鐵住金株式会社 Austenitic stainless steel plate
KR20170057412A (en) 2014-09-25 2017-05-24 신닛테츠스미킨 카부시키카이샤 Austenitic stainless steel sheet and method for producing same
JP2020158815A (en) * 2019-03-26 2020-10-01 日本製鉄株式会社 Stable austenitic stainless steel sheet

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008013305A1 (en) 2006-07-28 2008-01-31 Sumitomo Metal Industries, Ltd. Stainless steel sheet for parts and process for manufacturing the same
WO2012118113A1 (en) * 2011-03-01 2012-09-07 住友金属工業株式会社 Metal plate for laser processing and method for producing stainless steel plate for laser processing
JP5482962B2 (en) * 2011-03-01 2014-05-07 新日鐵住金株式会社 Manufacturing method of metal plate for laser processing and stainless steel plate for laser processing
EP2682490A4 (en) * 2011-03-01 2015-08-19 Nippon Steel & Sumitomo Metal Corp Metal plate for laser processing and method for producing stainless steel plate for laser processing
US10744600B2 (en) 2011-03-01 2020-08-18 Nippon Steel Corporation Metal plate for laser processing and method for producing stainless steel plate for laser processing
KR20150024945A (en) 2012-09-04 2015-03-09 신닛테츠스미킨 카부시키카이샤 Stainless steel sheet and method for producing same
JP6005293B2 (en) * 2014-02-17 2016-10-12 新日鉄住金マテリアルズ株式会社 Stainless steel foil and manufacturing method thereof
CN105829567A (en) * 2014-02-17 2016-08-03 新日铁住金高新材料株式会社 Stainless steel foil and method for manufacturing same
WO2015122523A1 (en) * 2014-02-17 2015-08-20 新日鉄住金マテリアルズ株式会社 Stainless steel foil and method for manufacturing same
US11198918B2 (en) 2014-02-17 2021-12-14 Nippon Steel Chemical & Material Co., Ltd. Stainless steel foil and method of production of same
JP5939370B1 (en) * 2014-09-17 2016-06-22 新日鐵住金株式会社 Austenitic stainless steel sheet
WO2016043125A1 (en) * 2014-09-17 2016-03-24 新日鐵住金株式会社 Austenitic stainless steel plate
KR20170057412A (en) 2014-09-25 2017-05-24 신닛테츠스미킨 카부시키카이샤 Austenitic stainless steel sheet and method for producing same
JP2020158815A (en) * 2019-03-26 2020-10-01 日本製鉄株式会社 Stable austenitic stainless steel sheet
JP7218643B2 (en) 2019-03-26 2023-02-07 日本製鉄株式会社 Stable austenitic stainless steel sheet

Also Published As

Publication number Publication date
JP4324509B2 (en) 2009-09-02

Similar Documents

Publication Publication Date Title
JP5960809B2 (en) Stainless steel sheet for precision machining and manufacturing method thereof
JP4475352B2 (en) Stainless steel sheet for parts and manufacturing method thereof
JP5482962B2 (en) Manufacturing method of metal plate for laser processing and stainless steel plate for laser processing
JP2010214447A (en) Method for manufacturing material for etching, and material for etching
KR101620252B1 (en) Stainless steel sheet and method for producing same
JP4324509B2 (en) Stainless steel sheet for photo-etching and method for producing the same
JP2020020024A (en) Austenite stainless steel sheet and manufacturing method therefor
JP5777387B2 (en) Bright annealing method for duplex stainless steel
JP4332670B2 (en) Stainless steel sheet for photo-etching and method for producing the same
JP2011012334A (en) Stainless steel sheet for photoetching-processing and manufacturing method therefor
JP2005314772A (en) Stainless steel sheet to be photo-etched and manufacturing method therefor
TW573019B (en) Fe-Cr-Ni alloy material for electrode of electron gum
JP5426764B2 (en) Stainless steel plate and metal mask for metal mask
JP4737614B2 (en) Fe-Ni alloy plate and method for producing Fe-Ni alloy plate
JP3562492B2 (en) Stainless steel plate for photoetching and method of manufacturing the same
CN114450431B (en) Austenitic stainless steel sheet
JP3211569B2 (en) High strength and low thermal expansion alloy sheet for electronics with excellent etching and surface treatment properties and its manufacturing method
TWI763436B (en) Wostian iron-based stainless steel plate and method for producing the same
JP2007302972A (en) High-strength nonmagnetic stainless steel sheet superior in age hardening characteristics, and manufacturing method therefor
JP2000239800A (en) High strength metastable austenitic stainless steel sheet for blade having high elasticity and its production
JP2004277811A (en) Steel for iron golf club head and its manufacturing method, and iron golf club head and its manufacturing method
JP3783961B2 (en) Manufacturing method of steel strip for metal belt
JP3858131B2 (en) Method for removing surface oxide layer of Fe-Ni alloy hot-rolled sheet and method for producing Fe-Ni alloy thin sheet for electronic parts
JP2000017371A (en) MANUFACTURE OF Fe-Ni ALLOY EXCELLENT IN BLANKABILITY
JP2007308781A (en) Heat treatment method of guide shoe for rolling seamless steel tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090608

R150 Certificate of patent or registration of utility model

Ref document number: 4324509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250