JP2005290449A - Fine inclusion-containing stainless steel and its production method - Google Patents

Fine inclusion-containing stainless steel and its production method Download PDF

Info

Publication number
JP2005290449A
JP2005290449A JP2004105278A JP2004105278A JP2005290449A JP 2005290449 A JP2005290449 A JP 2005290449A JP 2004105278 A JP2004105278 A JP 2004105278A JP 2004105278 A JP2004105278 A JP 2004105278A JP 2005290449 A JP2005290449 A JP 2005290449A
Authority
JP
Japan
Prior art keywords
inclusions
less
stainless steel
composition
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004105278A
Other languages
Japanese (ja)
Other versions
JP4285302B2 (en
Inventor
Masahiro Yamazaki
正弘 山崎
Kazuhiko Adachi
和彦 安達
Takemichi Mizusawa
武道 水澤
Shuji Yoshida
修二 吉田
Kenichi Goshokubo
賢一 御所窪
Takayuki Nishi
隆之 西
Isato Kita
勇人 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004105278A priority Critical patent/JP4285302B2/en
Publication of JP2005290449A publication Critical patent/JP2005290449A/en
Application granted granted Critical
Publication of JP4285302B2 publication Critical patent/JP4285302B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide austenitic stainless steel whose workability in etching working, mechanical working such as deep drawing, further, welding working or the like is improved by controlling inclusions. <P>SOLUTION: The inclusions in the stainless steel are composed of CaO-SiO<SB>2</SB>-MgO-Al<SB>2</SB>O<SB>3</SB>-MnO-Cr<SB>2</SB>O<SB>3</SB>. The average composition thereof is allowed to satisfy 1 to 55% Cr<SB>2</SB>O<SB>3</SB>, ≤50% Al<SB>2</SB>O<SB>3</SB>, and ≤15% MgO, and also, the maximum diameter of the equivalent circle in the inclusions is controlled to the fine one of ≤20 μm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ステンレス鋼、特に介在物の大きさ、組成を規定したステンレス鋼とその製造方法に関する。
本発明にかかるステンレス鋼は、多くの用途に使用可能であるが、2、3例を挙げると、電子機器や精密機器に使用される金属製精密部品の成型に用いられるエッチング加工に適するステンレス鋼板として、ならびに深絞り、張出し、曲げ等により成形されるシンク、浴槽、フレキシブル管等に最適であるステンレス鋼板として、さらには、表面性状、耐食性に優れる医療用の注射針、電車内や階段等の手摺りとして使用される化粧パイプ等、あるいは化学機器、食品用機器等、幅広い用途において配管等に使用される溶接管等にも適するステンレス鋼板として、利用が可能である。
The present invention relates to stainless steel, in particular, stainless steel in which the size and composition of inclusions are defined, and a method for producing the same.
The stainless steel according to the present invention can be used for many applications. To name a few, a stainless steel plate suitable for etching used for molding metal precision parts used in electronic equipment and precision equipment. As a stainless steel plate that is most suitable for sinks, bathtubs, flexible pipes, etc. formed by deep drawing, overhanging, bending, etc., as well as medical injection needles with excellent surface properties and corrosion resistance, in trains and stairs, etc. It can be used as a stainless steel plate suitable for a decorative pipe used as a handrail, or a welded pipe used for piping in a wide range of applications such as chemical equipment and food equipment.

これらの用途に用いるステンレス鋼は、概ね、次のようにして製造されている。その一例を以下に説明する。
例えば電気炉で所望組成となるように各成分原料を溶解して粗溶鋼を製造した後、例えばVOD炉に移送して、真空アルゴン−酸素ガスによる脱炭精錬を行って〔C〕濃度を目標値に調整する。その後、不可避的に酸化してスラグに移行した〔Cr〕を回収するために、SiあるいはAl等を添加して還元精錬を行う。この時に、Si、Mn等の成分の調整も実施する。その後、上記溶鋼を連続鋳造にて鋳造し、得られた鋳片に熱間圧延、冷間圧延を行って所望厚みの板材としたあと、それぞれの用途に用いられる。
Stainless steel used for these applications is generally manufactured as follows. One example will be described below.
For example, each component raw material is melted to produce a desired composition in an electric furnace to produce crude molten steel, then transferred to, for example, a VOD furnace, and decarburized and refined with vacuum argon-oxygen gas to achieve a target [C] concentration. Adjust to the value. Thereafter, in order to recover [Cr] that inevitably oxidized and transferred to slag, reduction refining is performed by adding Si or Al. At this time, adjustment of components such as Si and Mn is also performed. Thereafter, the molten steel is cast by continuous casting, and the obtained slab is hot-rolled and cold-rolled to obtain a plate material having a desired thickness, and then used for each application.

この溶製過程では、溶鋼中に不可避的に酸化物系の各種非金属介在物(以下、単に介在物という)が生成する。例えば、前記還元精錬時に還元剤としてSiを使用する場合にはSiO2系の介在物、Alを使用する場合にはAl2O3系の介在物が生成する。また、原料成分中のMnおよびCrも一部MnO、Cr2O3 系の介在物になる。 In the melting process, various non-metallic oxide inclusions (hereinafter simply referred to as inclusions) are inevitably generated in the molten steel. For example, when Si is used as the reducing agent during the reductive refining, SiO 2 inclusions are generated, and when Al is used, Al 2 O 3 inclusions are generated. In addition, Mn and Cr in the raw material components are partially MnO and Cr 2 O 3 inclusions.

ステンレス鋼板に含まれる介在物は、例えばエッチング加工を阻害する要因となるため、できるだけ数が少なく、微細であることが望ましい。特に近年は機器の小型化、高性能化にともない、そこに使用される部品は従来よりも高精度の加工が要求されるようになり、従来よりもさらに介在物を微細化する必要が生じてきた。   Inclusions included in the stainless steel plate are, for example, a factor that hinders etching processing, and are desirably as small and fine as possible. In particular, in recent years, with the miniaturization and high performance of equipment, the parts used there have been required to be processed with higher precision than before, and it has become necessary to further refine the inclusions than before. It was.

ここに、エッチング加工とは金属の腐食溶解現象を利用した加工方法である。はじめに被加工金属薄板を脱脂洗浄し、その表面に感光性のフォトレジストを被覆する。次いでフォトレジスト上に目的とする製品形状を露光焼付けし、これを現像してフォトレジストパターンを形成させる。次いで、エッチング液をスプレー噴霧して不要な金属露出部分を溶解することで所望の製品形状に加工し、最後にフォトレジスト膜を剥離することにより目的製品を得るのである。  Here, the etching process is a process method that utilizes the phenomenon of metal corrosion and dissolution. First, a thin metal plate to be processed is degreased and cleaned, and a photosensitive photoresist is coated on the surface. Next, the desired product shape is exposed and baked on the photoresist and developed to form a photoresist pattern. Next, an etching solution is sprayed to dissolve unnecessary metal exposed portions so as to be processed into a desired product shape, and finally the photoresist film is peeled to obtain a target product.

一方、オ−ステナイト系ステンレス鋼では、これらの介在物の中でMgOを多量に含んだCaO-SiO2-MgO系の介在物やAl2O3単体の介在物等の硬質の大きな介在物が鋳片中に多量に存在した場合には、そのような介在物が塑性変形しづらいために、成形性が劣る材料となる。したがって、成形用に用いる鋼板に対しても、溶製時に硬質介在物の生成量を減少させると共に、介在物が軟質介在物となるように介在物組成を制御するという努力がなされてきた。 On the other hand, in austenitic stainless steel, there are large hard inclusions such as CaO-SiO 2 -MgO inclusions containing a large amount of MgO or inclusions of Al 2 O 3 alone. When a large amount is present in the slab, such inclusions are difficult to plastically deform, resulting in a material with poor formability. Therefore, efforts have also been made to reduce the amount of hard inclusions produced during melting and control the composition of inclusions so that the inclusions become soft inclusions in the steel sheet used for forming.

また、注射針、化粧パイプにはSUS304やSUS316ステンレス鋼薄板を素材とする溶接管が数多く使用され、安全(表面傷による痛み、怪我)、衛生(表面傷による錆やばい菌の発生)、外観上の問題等から、溶接後に鏡面等への表面仕上げが施されていた。しかし、このような用途においても鋼板中に粗大な介在物が存在し、溶接時の溶融部表面ないしその近傍に介在物が浮上した場合、研削や研磨での表面仕上げ時に穴やささくれ状の不良が発生する問題があった。また、介在物を起点とする早期腐食(錆発生)の問題があった。しかも、注射針、化粧パイプ等は、不特定多数の人々に適用される、ないし触れる製品であることから、それらの問題の発生率を極力低くするという高い信頼性が必要不可避であった。   In addition, a lot of welded pipes made of SUS304 or SUS316 stainless steel sheet are used for injection needles and decorative pipes. Due to this problem, the surface finish was applied to the mirror surface after welding. However, even in such applications, if there are coarse inclusions in the steel sheet, and inclusions float on the surface of the melted part during welding or in the vicinity thereof, there will be defects such as holes and whiskers during surface finishing in grinding and polishing. There was a problem that occurred. There was also a problem of early corrosion (rust generation) starting from inclusions. Moreover, since the injection needle, the cosmetic pipe, and the like are products that are applied to or touched by an unspecified number of people, it is necessary to have high reliability for reducing the occurrence rate of those problems as much as possible.

従来にあっても、上述のようないろいろの問題があることから、介在物、特にオーステナイト系ステンレス鋼における介在物については、その低減手段あるいは制御手段に関連して多くの提案がされており、以下においてそれらの従来技術について概括する。   Even in the past, because of the various problems as described above, for inclusions, particularly inclusions in austenitic stainless steel, many proposals have been made in relation to the reduction means or control means, The prior art will be summarized below.

特許文献1には、SとOの含有量をppmS<42-0.094(ppmO)に規制し、S系またはO系介在物の生成を抑制することでエッチングピットの発生を防止したエッチング加工用のマルテンサイト系ステンレスが開示されている。   In Patent Document 1, the contents of S and O are regulated to ppmS <42-0.094 (ppmO), and the generation of etching pits is prevented by suppressing the generation of S-based or O-based inclusions. Martensitic stainless steel is disclosed.

特許文献2には、C含有量<0.01%、かつ断面清浄度<0.017%に規制したエッチング加工用Fe-Ni系合金が開示されている。断面清浄度は、JIS G 0555で定義される。
特許文献3には、厚さ25μm以下のステンレス箔において、最大直径5μm以上の介在物の平均個数が圧延方向断面1mm2あたり3個以下となるように規制することによりエッチング加工中の割れをともなうトンネル状の局部腐食を防止する方法が開示されている。一般にエッチング用材料としては25μmを超える板厚が多用されるから、これは それをさらに薄くする極薄材料を目的とする。
Patent Document 2 discloses an Fe—Ni alloy for etching processing in which the C content <0.01% and the cross-sectional cleanliness <0.017% are regulated. The cross-sectional cleanliness is defined by JIS G 0555.
In Patent Document 3, a stainless foil having a thickness of 25 μm or less is accompanied by cracks during etching by restricting the average number of inclusions having a maximum diameter of 5 μm or more to 3 or less per 1 mm 2 in the rolling direction cross section. A method for preventing tunnel-like local corrosion is disclosed. In general, a plate thickness exceeding 25 μm is often used as an etching material, and this is intended to be an ultra-thin material to make it thinner.

一方、成形用ステンレス鋼については、例えば、特許文献4に記載されているように、圧延鋼材のL断面において長さ(ι)と幅(d) の比がι/d≦5の延伸性の小さい非金属介在物の平均組成がSiO2 20〜60%、MnO 10〜80%、CaO 50%以下、MgO 15%以下からなるアノ−サイトを主成分とした高清浄度鋼が知られている。 On the other hand, for forming stainless steel, for example, as described in Patent Document 4, the ratio of length (ι) to width (d) is L / d ≦ 5 in the L section of the rolled steel material. average composition SiO 2 20 to 60% of small non-metallic inclusions, 10~80% MnO, CaO 50% or less, Ano consisting of 15% MgO - high cleanliness steel is known as a main component site .

また、特許文献5に記載されているように、圧延鋼材のL断面において長さ(ι)と幅(d) の比がι/d≦5の延伸性の小さい介在物の平均組成がSiO2 35〜75%、Al2O3 30%以下、CaO 50%以下、MgO 25%以下からなるスペサタイトを主成分とした高清浄度鋼が知られている。 Further, as described in Patent Document 5, the average composition of inclusions with small stretchability having a ratio of length (ι) to width (d) of ι / d ≦ 5 in the L cross section of the rolled steel material is SiO 2. A high cleanliness steel mainly composed of spesite composed of 35 to 75%, Al 2 O 3 30% or less, CaO 50% or less, and MgO 25% or less is known.

しかしながら、これらの従来技術に示された介在物は、ステンレス鋼の場合には、鋼組成中にCrが多く含まれるため、実際の製造においてはCr2O3が多く含まれた粗大で硬質な介在物が含まれる複合介在物となり、十分な効果が得られない。 However, in the case of stainless steel, the inclusions shown in these prior arts contain a large amount of Cr in the steel composition. Therefore, in actual production, the inclusions are coarse and hard with a large amount of Cr 2 O 3. It becomes a composite inclusion containing inclusions, and a sufficient effect cannot be obtained.

さらに、強加工により素材厚みが薄くなるほど介在物の大きさが臨界的な影響をおよぼすため、従来にあっても、鋼材中に残存する介在物の軟質化の努力はなされてきたが、介在物の大きさと冷間加工性の関係については十分には解明されていなかった。   Furthermore, since the size of inclusions has a critical effect as the thickness of the material decreases as a result of strong processing, efforts have been made to soften the inclusions remaining in steel materials. The relationship between the size and cold workability has not been fully elucidated.

また、注射針、化粧パイプ等には、最近では特許文献6、特許文献7、特許文献8、特許文献9において、C、 P、 S 等の元素を調整して溶接性と溶接部での耐食性を改善したステンレス鋼が数多く報告されている。   In addition, for injection needles, decorative pipes, etc., recently, in Patent Literature 6, Patent Literature 7, Patent Literature 8, and Patent Literature 9, elements such as C, P, and S are adjusted to improve weldability and corrosion resistance at the welded portion. Many stainless steels have been reported that improve the above.

なお、介在物の影響に関しては、特許文献10等の報告も見られる。
特開昭60-92449号公報 特開昭61-84356号公報 特開2000-273586号公報 特公平6-74485号公報 特公平6-74484号公報 特開平05-17852号公報 特開平10-81940号公報 特開2000-178697号公報 特開2003-64453号公報 特開平08-246105号公報
Regarding the influence of inclusions, a report such as Patent Document 10 is also seen.
JP 60-92449 A JP-A-61-84356 Japanese Unexamined Patent Publication No. 2000-273586 Japanese Patent Publication No. 6-74485 Japanese Examined Patent Publication No. 6-74484 JP 05-17852 A Japanese Patent Laid-Open No. 10-81940 JP 2000-178697 JP 2003-64453 A Japanese Unexamined Patent Publication No. 08-246105

本発明は、上記問題点を解決するため、介在物を制御することによりエッチング加工や深絞りなどの機械加工、さらには溶接加工などを含む加工性を改善したオ−ステナイト系ステンレス鋼を提案する。    In order to solve the above-mentioned problems, the present invention proposes an austenitic stainless steel having improved workability including etching, deep drawing, and other machinability, as well as welding, by controlling inclusions. .

本発明者らは、介在物調査に関して、母材を腐食除去・抽出後に分析・観察するという方法を導入することで、組成、形態について従来に比べてさらに詳細に調査した。
ここに、本発明者らは、ステンレス鋼、特にエッチング加工に供されるステンレス鋼板に関して、介在物を起点とするエッチング欠陥や製品使用中の破損を防止することを目的に鋭意検討した結果、介在物の最大円相当径を20μm以下にすればよいことを見出した。
The present inventors investigated the composition and form in more detail than before by introducing a method of analyzing and observing the base material after removing and extracting the corrosion with respect to the inclusion investigation.
Here, as a result of intensive investigations aimed at preventing etching defects starting from inclusions and breakage during product use, the present inventors have made extensive investigations on stainless steel, particularly stainless steel sheets used for etching. It has been found that the maximum equivalent circle diameter of an object may be 20 μm or less.

そのような微細介在物に制限することで、今度は、一般の加工性、ならびに耐食性、外観性、特に溶接部の表面性状、耐食性が顕著に改善されることを見出した。
さらに、検討の結果、そのような介在物の臨界的な大きさにまで微細化する方法について以下のような点を見出した。
By limiting to such fine inclusions, it has now been found that general workability, as well as corrosion resistance and appearance, particularly surface properties and corrosion resistance of welds, are significantly improved.
Furthermore, as a result of the study, the following points were found for a method for miniaturizing such inclusions to a critical size.

すなわち、材料の製造方法において、溶製時に、(1) 溶鋼保持により疲労特性に特に悪影響をおよぼす粗大介在物を比重差による浮上分離を強化する、(2) 二次精錬でのスラグ組成制御により酸化物系非金属介在物を軟質組成に調整し、必要により、その後の加工において破砕する、という二重の対策を施すことにより、粗大介在物を消失させ、優れた加工特性を安定確保、信頼性の高い加工性に富むオ−ステナイト系ステンレス鋼を提供できることを見出した。   That is, in the manufacturing method of the material, during melting, (1) strengthen the floating separation due to the difference in specific gravity of coarse inclusions that have a particularly adverse effect on fatigue properties by holding molten steel, (2) by controlling the slag composition in secondary refining By adjusting the oxide-based non-metallic inclusions to a soft composition and, if necessary, taking the double measures of crushing in subsequent processing, the coarse inclusions disappear, ensuring excellent processing characteristics and ensuring reliability. It has been found that austenitic stainless steel having high workability and high workability can be provided.

本発明によれば介在物を微細化できるためステンレス鋼の本来有する諸特性を十分に発揮することができ、例えば次のような具体的用途に適した材料とすることができる。
本発明にかかるステンレス鋼板を用いることにより、電子機器や精密機械に使われる高精細なエッチング製品の製造が可能となる。
According to the present invention, inclusions can be miniaturized, so that various characteristics inherent to stainless steel can be sufficiently exhibited. For example, a material suitable for the following specific application can be obtained.
By using the stainless steel plate according to the present invention, it becomes possible to manufacture high-definition etching products used in electronic equipment and precision machines.

本発明での介在物の安定制御により、優れた成形性が安定して得られる信頼性の高いオ−ステナイト系ステンレス鋼を工業的に安価かつ安定して提供できる。
本発明での介在物の安定制御により、溶接部の表面性状、耐食性に優れ、信頼性の高いステンレス鋼板および同鋼板製製品(注射針、化粧パイプ他)を工業的に安価かつ安定して提供できる。
By the stable control of inclusions in the present invention, highly reliable austenitic stainless steel that can stably obtain excellent formability can be provided industrially at low cost.
Through stable control of inclusions in the present invention, it is possible to provide stainless steel sheets and products made of the same steel sheets (injection needles, decorative pipes, etc.) with excellent surface properties and corrosion resistance of welds and at low cost and stably industrially. it can.

本発明にかかるステンレス鋼における介在物の組成・形状の限定理由は次の通りである。
介在物の大きさは圧延加工時の伸展、分断の度合に大きく影響を受けるが、その伸展、分断の度合はステンレス鋼では非金属介在物のCr2O3含有量により関連付けられることを見い出したものである。更に正確に言えば、本発明によれば、Cr2O3量を増加することにより硬質な介在物を形成するAl2O3、MgO の含有量を抑制し、微細化することが可能になる。
The reasons for limiting the composition and shape of the inclusions in the stainless steel according to the present invention are as follows.
The size of inclusions is greatly affected by the degree of extension and division during rolling, but the degree of extension and division was found to be related to the Cr 2 O 3 content of nonmetallic inclusions in stainless steel. Is. More precisely, according to the present invention, by increasing the amount of Cr 2 O 3, the content of Al 2 O 3 and MgO that form hard inclusions can be suppressed and refined. .

一方、加工特性は介在物の組成ではなく、大きさに依存し、微細化することにより向上する、最大円相当径で20μm以下においては、介在物を起点とする割れが見られなくなるという臨界的な挙動を確認した。   On the other hand, the processing characteristics depend on the size of the inclusions, not the composition of inclusions, and are improved by miniaturization. The critical circle diameter is 20 μm or less at the maximum equivalent circle diameter, and cracks starting from inclusions are not seen. The behavior was confirmed.

これらより、本発明においては非金属介在物の最大円相当径を20μm以下に規定した。更に、好ましくは15μm以下である。
また、介在物組成を限定する理由は次の通りである。なお、本明細書において「%」は特にことわりがない限り、「質量%」である。
Therefore, in the present invention, the maximum equivalent circle diameter of the nonmetallic inclusion is specified to be 20 μm or less. Furthermore, it is preferably 15 μm or less.
The reason for limiting the inclusion composition is as follows. In the present specification, “%” is “% by mass” unless otherwise specified.

Cr2O3 の制御は、Al2O3、MgOおよびCr2O3からなる硬質な介在物の生成を抑制し、加工による効率的な微細化を可能にする。このため、CaO-SiO2-MgO-Al2O3-MnO-Cr2O3で構成される介在物の平均組成での実績より、1%以上 55%以下 とした。 Control of Cr 2 O 3 is to suppress the formation of Al 2 O 3, the hard inclusions of MgO and Cr 2 O 3, to allow efficient miniaturization due to processing. For this reason, the content of inclusions composed of CaO—SiO 2 —MgO—Al 2 O 3 —MnO—Cr 2 O 3 is determined to be 1% or more and 55% or less, based on the results of the average composition.

Al2O3、MgOは硬質な介在物を生成し、加工にて効率的に微細化することが困難となると考えられる。このことから、CaO-SiO2-MgO-Al2O3-MnO-Cr2O3で構成される介在物の平均組成での実績より、各々を50%以下、15%以下とした。なお、それ以外の合金成分は含有量が少なかったことから無視した。 Al 2 O 3 and MgO generate hard inclusions, and it is considered difficult to refine them efficiently by processing. From this result, the average composition of inclusions composed of CaO—SiO 2 —MgO—Al 2 O 3 —MnO—Cr 2 O 3 was determined to be 50% or less and 15% or less, respectively. The other alloy components were ignored because of their low content.

なお、本明細書では組成分析結果(合金元素量)より介在物組成をCaO-SiO2-MgO-Al2O3-MnO-Cr2O3として換算した。
上記の組成は、最終製品素材である冷延鋼板での組成である。すなわち、上記の組成を有する微細な介在物が残存していれば、臨界的な非金属介在物径である20μm超の介在物は通常存在しない。
In this specification, the inclusion composition was converted as CaO—SiO 2 —MgO—Al 2 O 3 —MnO—Cr 2 O 3 from the composition analysis result (alloy element amount).
Said composition is a composition in the cold rolled steel plate which is a final product raw material. That is, if fine inclusions having the above composition remain, inclusions exceeding 20 μm, which is a critical nonmetallic inclusion diameter, usually do not exist.

本発明が対象とするステンレス鋼は特に成分を限定するものではなく、例えばSUS304に代表されるオーステナイト系ステンレスやSUS430に代表されるフェライト系ステンレスなど、要はエッチング加工に供されるもの全てに適用可能である。その形態は冷間圧延により板厚0.5mm以下とした薄板とする。   The stainless steel targeted by the present invention is not particularly limited in its components. For example, it is applicable to all materials used for etching, such as austenitic stainless steel represented by SUS304 and ferritic stainless steel represented by SUS430. Is possible. The form is a thin plate having a thickness of 0.5 mm or less by cold rolling.

しかし、本発明にかかるステンレス鋼の好適組成は、次の通りである。
ステンレス鋼母相としての組成は、主に高強度と加工性を維持するという点から、以下の理由により下記組成の準安定γ系ステンレス鋼が好ましい。
However, the preferred composition of the stainless steel according to the present invention is as follows.
The composition of the stainless steel matrix is preferably a metastable γ-based stainless steel having the following composition for the following reasons, mainly from the viewpoint of maintaining high strength and workability.

Cは、侵入型固溶強化元素であり、Nと共に材料を強化する最も有効な元素である。ただし、過度に添加した場合にクロム炭化物を発生する等により、ステンレス鋼として必要な耐食性が得られない、粗大な場合に加工特性が低下する等の問題を生じる。このため、0.01%以上 0.15%以下 とした。好ましくは、0.01〜0.12%である。   C is an interstitial solid solution strengthening element and is the most effective element that strengthens the material together with N. However, when it is added excessively, chromium carbide is generated, and therefore, the corrosion resistance necessary for stainless steel cannot be obtained, and when it is coarse, the processing characteristics are deteriorated. For this reason, it was set to 0.01% or more and 0.15% or less. Preferably, it is 0.01 to 0.12%.

Siは、固溶強化元素であり、材料を強化する有効な元素である。下限として、不可避に混入および脱酸剤として不可欠な元素である。ただし、過度に含有した場合、加工性を劣化させる。このため、0.1%以上 3.0%以下 とした。更に、好ましくは0.2%以上 2.6%以下である。   Si is a solid solution strengthening element and is an effective element for strengthening the material. As a lower limit, it is an indispensable element as a mixing and deoxidizing agent. However, when it contains excessively, workability will deteriorate. For this reason, it was set to 0.1% or more and 3.0% or less. Furthermore, it is preferably 0.2% or more and 2.6% or less.

Mnは、γ安定化元素である。 他の元素とのバランスを考えて0.1%以上添加されるが、過度に添加した場合、加工誘起α’相量が減少して強度不足となる場合がある。ただし、Nの固溶量を増加し、材料を強化できる側面もある。下限として、不可避に混入および熱間加工性確保として不可欠な元素である。このため、上限は特に4.0%以下とした。更に、好ましくは0.2%以上2.5%以下である。   Mn is a gamma stabilizing element. In consideration of the balance with other elements, 0.1% or more is added. However, when excessively added, the amount of processing-induced α ′ phase may decrease and the strength may be insufficient. However, there is an aspect in which the solid solution amount of N can be increased and the material can be strengthened. As a lower limit, it is an indispensable element for ensuring mixing and hot workability. For this reason, the upper limit was made 4.0% or less. Furthermore, it is preferably 0.2% or more and 2.5% or less.

P は熱間加工性および溶接性を損なうため少ない方が望ましく、0.050%以下とした。更に、好ましくは、0.040%以下である。
Sは熱間加工性および耐食性を損なうため少ない方が望ましく、0.020%以下とした。更に、好ましくは、0.015%以下である。
P is preferably as small as possible since it impairs hot workability and weldability, and is set to 0.050% or less. Furthermore, it is preferably 0.040% or less.
S is less desirable because it impairs hot workability and corrosion resistance, and is set to 0.020% or less. Furthermore, it is preferably 0.015% or less.

Crは、ステンレス鋼の基本元素であり、10.0%以上 添加する。ただし、Crはフェライト安定化元素でもあり、多量に添加した場合には鋼中へのフェライト相の残存を招く。一方で、Crは、Nの固溶量を増加し、材料を強化できる側面もある。このため、25.0%以下 とした。更に、好ましくは14.0%以上 24.0%以下である。    Cr is a basic element of stainless steel, and is added at 10.0% or more. However, Cr is also a ferrite stabilizing element, and when added in a large amount, the ferrite phase remains in the steel. On the other hand, Cr can increase the solid solution amount of N and strengthen the material. For this reason, it was set at 25.0% or less. Furthermore, it is preferably 14.0% or more and 24.0% or less.

Niは、合金元素中で最も強力なオーステナイト安定化元素の一つであり、室温においてオーステナイト相組織を得るため必須である。その有効範囲は、下限3.0%、上限を22.0%と考えられる。更に、好ましくは4.4%以上12.0%以下である。   Ni is one of the most powerful austenite stabilizing elements among the alloy elements, and is essential for obtaining an austenite phase structure at room temperature. The effective range is considered to be a lower limit of 3.0% and an upper limit of 22.0%. Furthermore, it is preferably 4.4% or more and 12.0% or less.

Nは、侵入型固溶強化元素であり、Cと共に材料を強化する最も有効な元素である。Mn、Cr等の添加量によりある程度の調整が可能であるが、過度に添加した場合、粗大な窒素化合物を発生し、加工特性が低下する等の問題を生じる。このため、0.01%以上 0.30%以下 とした。更に、好ましくは0.02%以上 0.24%以下である。
Ti、 Nb、V については、
Ti、Nb、V は溶接時に微細な炭、窒化物(Cr等の他合金元素を含む場合有)を析出して粒成長を抑制し、溶接部の結晶粒微細化による強度と加工性のバランス、耐食性の改善が期待される。また、これらにより耐食性劣化の原因となるクロム炭化物の析出が抑制される。同効果を得るため、少なくとも1種それぞれ0.01% 以上が添加される。ただし、過度の添加した場合、粗大な析出物を発生し、板の製造性が劣化する等の問題を生じる場合がある。また、高価な元素であり、多量に添加した場合に材料も高価なものとなる。このため、それぞれ上限を0.5%とした。更に、好ましくは、それぞれ0.04%以上、0.46%以下である。
N is an interstitial solid solution strengthening element and is the most effective element that strengthens the material together with C. Although some adjustment is possible depending on the amount of addition of Mn, Cr, etc., when it is added excessively, coarse nitrogen compounds are generated, resulting in problems such as deterioration in processing characteristics. For this reason, it was made 0.01% or more and 0.30% or less. Furthermore, it is preferably 0.02% or more and 0.24% or less.
For Ti, Nb, V
Ti, Nb, V precipitates fine carbon and nitride (may include other alloying elements such as Cr) during welding to suppress grain growth, and balance between strength and workability due to refinement of weld grain Improvement in corrosion resistance is expected. Moreover, precipitation of chromium carbide which causes corrosion resistance deterioration is suppressed by these. In order to obtain the same effect, at least one of each is added in an amount of 0.01% or more. However, when excessively added, coarse precipitates are generated, which may cause problems such as deterioration of the productivity of the plate. Moreover, it is an expensive element, and when it is added in a large amount, the material becomes expensive. For this reason, the upper limit was 0.5% respectively. Furthermore, it is preferably 0.04% or more and 0.46% or less, respectively.

鋼組成の残部はFeおよび不可避的不純物元素からなる。
なお、上記成分以外に、MoおよびCuをγ安定度調整のため、所望により、1種以上いずれも0.5%以下添加しても良い。また、工業的側面からの添加元素、例えば溶製時脱酸剤として使用されるAl、CaあるいはREM(希土類元素)、熱間加工性の改善が見込まれるB等を必要に応じて0.05%以下含有しても差し支えない。また、介在物を形成する主元素の一つであるMgは特に添加するものでなく、主に溶製時に様々な部位に使用される耐熱材料よりAl、Ca等とともに侵入するものであり、0.02%以下含有しても差し支えない。
The balance of the steel composition consists of Fe and inevitable impurity elements.
In addition to the above components, Mo and Cu may be added in an amount of 0.5% or less, if desired, for adjusting γ stability. Additive elements from the industrial side, such as Al, Ca or REM (rare earth elements) used as a deoxidizer during melting, B, etc., where improvement in hot workability is expected, are 0.05% or less as required. It may be contained. In addition, Mg, which is one of the main elements forming inclusions, is not particularly added, but mainly penetrates with Al, Ca, etc. from heat-resistant materials used in various parts during melting, 0.02 % Or less may be contained.

このような鋼組成のステンレス鋼の溶製は、例えば、次のような条件下で行うことができる。
(1) 溶鋼保持での粗大介在物の浮上分離強化のため、保持時間≧1hr 、溶鋼攪拌動力≦40W/ton、
(2) その後の加工での介在物の効率的微細化のため、二次精錬でのスラグ組成を塩基度CaO/SiO2を1.4 以上1.8 以下、Al2O3 ≦2%、MgO≦10%とする、
のような方法で実現できる。ただし、この方法に限るものではない。
The melting of the stainless steel having such a steel composition can be performed, for example, under the following conditions.
(1) Holding time ≧ 1hr, molten steel stirring power ≦ 40W / ton, for strengthening floating separation of coarse inclusions in holding molten steel,
(2) For efficient refinement of inclusions in subsequent processing, the basic slag composition in secondary refining is basic CaO / SiO 2 1.4 to 1.8, Al 2 O 3 ≦ 2%, MgO ≦ 10% And
It can be realized by the following method. However, the method is not limited to this method.

上記条件(1) は粗大介在物の浮上分離の強化、条件(2) は加工での分断、破砕を可能にする延性介在物の生成のために行うものである。なお、条件(2) は溶鋼での分析時から凝固、熱間圧延および冷間圧延、焼鈍の繰返しによる介在物の成分変化等を考慮した上で経験的に決定した値である。   The above condition (1) is for strengthening the floating separation of coarse inclusions, and the condition (2) is for producing ductile inclusions that can be broken and crushed in processing. Condition (2) is an empirically determined value from the analysis of molten steel, taking into account the change in inclusion components due to repeated solidification, hot rolling and cold rolling, and annealing.

これらより本発明鋼の製造に際して同工程の実施が効果的と考え、本発明において溶製時の製造方法(同工程)についても限定した。その他条件は一般的なステンレス鋼の溶解と特に大きな違いは無い。   From these, it was considered that the implementation of the same step was effective when producing the steel of the present invention, and the production method (same step) at the time of melting was also limited in the present invention. The other conditions are not particularly different from general melting of stainless steel.

次いで、熱間および冷間圧延と焼鈍を繰返しにより厚さt1mm前後の鋼板を製造した。圧延比は次工程の調質圧延を含めて合計で60以上、特に熱間圧延比を35以上とすることが望ましい。中間および最終焼鈍は900〜1200℃にて厚さ1mm 当たりで60sec.程度保持すれば良い。   Subsequently, a steel sheet having a thickness of about t1 mm was manufactured by repeating hot and cold rolling and annealing. It is desirable that the rolling ratio is 60 or more in total including the temper rolling in the next step, and particularly the hot rolling ratio is 35 or more. Intermediate and final annealing may be held at 900 to 1200 ° C for about 60 seconds per 1 mm thickness.

次いで、熱間および冷間圧延と焼鈍の繰返しにより厚さt0.4mmの薄板を製造する。圧延比は次工程の調質圧延を含めて75以上、特に熱間圧延比を35以上とすることが望ましい。
ここで、エッチング加工を例にとり、本発明をさらに具体的に説明すると次の通りである。
Next, a thin plate having a thickness of t0.4 mm is manufactured by repeating hot and cold rolling and annealing. The rolling ratio is preferably 75 or more including the temper rolling in the next step, and particularly the hot rolling ratio is preferably 35 or more.
Here, taking the etching process as an example, the present invention will be described more specifically as follows.

ステンレス鋼板に含まれる介在物はエッチング液に直接溶けることはないが、エッチング端面に溶け残るか、もしくはエッチング中に脱落して周辺部分の意図しない部分が溶けて形状を損なうなどのエッチング欠陥を生じてしまい、歩留りを悪化させる原因となる。   Inclusions contained in the stainless steel sheet do not melt directly into the etching solution, but remain undissolved at the etching end face, or fall off during the etching and cause etching defects such as the unintended part of the peripheral part melting and the shape being damaged. Will cause the yield to deteriorate.

さらにエッチング加工後に曲げ加工をしたときにエッチング欠陥を起点として割れが生じることがある。あるいはジンバルバネのような繰返し応力のかかるような環境で使用しているときにエッチング欠陥部を起点として破損するなどの重大な欠陥をもたらす危険性もある。本発明によれば介在物の最大円相当径を20μm以下とすることでそのような問題は解消できる。   Furthermore, when bending is performed after etching, cracks may occur starting from etching defects. Alternatively, there is a risk of causing a serious defect such as damage starting from an etching defect when used in an environment where a repetitive stress such as a gimbal spring is applied. According to the present invention, such a problem can be solved by setting the maximum equivalent circle diameter of inclusions to 20 μm or less.

従来、エッチング加工におけるレジストパターンの最小幅は従来は50μm程度であったが、最近はレジスト樹脂および露光・現像装置の改良が進んで30μm以下の幅でも解像可能となってきた。レジストパターンの高精細化が進むと、介在物の大きさの影響が大きくなり、本発明によれば、介在物の大きさはレジストパターンの最小幅の少なくとも1/2以下、すなわち最大円相当径で好ましくは15μm以下、さらに好ましくは10μm以下に規制することで高精細なエッチング加工を歩留りよく実施できる。   Conventionally, the minimum width of a resist pattern in etching processing has conventionally been about 50 μm, but recently, the resist resin and the exposure / development apparatus have been improved, and resolution has become possible even with a width of 30 μm or less. As the resist pattern increases in definition, the effect of the size of inclusions increases, and according to the present invention, the size of the inclusions is at least 1/2 or less of the minimum width of the resist pattern, that is, the maximum equivalent circle diameter. Therefore, it is possible to perform high-definition etching with a high yield by restricting the thickness to 15 μm or less, more preferably to 10 μm or less.

本発明においてエッチング加工用に用いるときは、次の方法で溶製されたものを使用するのが好ましい。
(1)二次精錬スラグ組成 AlO≦2%、T.CaO/SiO 1.4〜1.8、MgO 10%
(2)非晶質層と低融点介在物の比率を保ち介在物を生成させる。
When used for etching processing in the present invention, it is preferable to use a material melted by the following method.
(1) Secondary refining slag composition Al 2 O 3 ≦ 2%, T.CaO / SiO 2 1.4-1.8, MgO 10%
(2) The inclusion is generated while maintaining the ratio of the amorphous layer and the low melting point inclusion.

(3)取鍋内溶鋼撹拌動力≦40W/ton、溶鋼保持時間≧2.0hrs
(4)圧延比を75以上とる(熱間圧延比>30)
上記工程で製造した薄板について介在物の組成・形状を調査した結果、介在物を起点とするエッチング欠陥は、最大円相当径15μm 以下において殆ど見られなくなる。
(3) Molten steel stirring power in ladle ≤ 40 W / ton, molten steel holding time ≥ 2.0 hrs
(4) Take a rolling ratio of 75 or more (hot rolling ratio> 30)
As a result of investigating the composition and shape of the inclusions in the thin plate produced in the above process, etching defects starting from the inclusions are hardly seen at the maximum equivalent circle diameter of 15 μm or less.

次に、実施例によって本発明の作用効果をさらに具合的に説明する。    Next, the function and effect of the present invention will be described more specifically by way of examples.

表1に示す組成のステンレス鋼を電気炉→VOD→LF→CCMにより溶製し、スラグ組成の塩基度はCaO/SiO2、AlO3量、MgO量により制御した。No.1〜No.12はLFにおいて溶鋼を恒温で4時間保持し、40W/ton以下の動力にて攪拌した。比較鋼No.13とNo.14はVODから出鋼したのち、LFでの溶鋼保持を行わずに、直ちにCCMで鋳込みを行った。 Stainless steel having the composition shown in Table 1 was melted by an electric furnace → VOD → LF → CCM, and the basicity of the slag composition was controlled by the amounts of CaO / SiO 2 , AlO 3 and MgO. In No. 1 to No. 12, the molten steel was held at LF at a constant temperature for 4 hours and stirred with a power of 40 W / ton or less. The comparative steels No. 13 and No. 14 were cast from the VOD and immediately cast by CCM without holding the molten steel at LF.

上述の方法で得たスラブを熱間圧延して厚さ4mmとした鋼帯をさらに冷間圧延と焼鈍を繰り返して、最終的に板厚0.10mmのステンレス薄板を得た。
調査は以下の方法で実施した。
The steel strip obtained by hot rolling the slab obtained by the above-described method to a thickness of 4 mm was further subjected to cold rolling and annealing to finally obtain a stainless steel plate having a thickness of 0.10 mm.
The survey was conducted as follows.

まず、5gの試料を10%臭素メタノールにより母材部を腐食除去した後、所定のフィルターを通して抽出し、走査型電子顕微鏡(SEM:Scanning Electron Microscope)を用いて形状を調査し、エネルギー分散X線検出器 (EDX:Energy-Dispersive X-Ray Spectrometer)を用いて組成分析を実施した。   First, after removing the base material part from a 5g sample by corrosive removal with 10% bromine-methanol, it is extracted through a specified filter, and the shape is investigated using a scanning electron microscope (SEM), and energy dispersive X-rays are obtained. Composition analysis was performed using a detector (EDX: Energy-Dispersive X-Ray Spectrometer).

介在物の形状は以下の円相当径により算出し、そのうちの最大値(最大円相当径)により表示した。
d=(dmax×dmin)1/2
d:円相当径(μm)、dmax、dmin:介在物の長径と短径(μm)
組成は分析結果(合金元素量)をCaO-SiO-MgO-AlO-MnO-CrOとして換算した。
The shape of the inclusion was calculated from the following equivalent circle diameter, and the maximum value (maximum equivalent circle diameter) of them was displayed.
d = (dmax × dmin) 1/2
d: equivalent circle diameter (μm), dmax, dmin: major axis and minor axis of inclusion (μm)
The composition was converted from the analysis result (alloy element amount) as CaO—SiO 2 —MgO—Al 2 O 3 —MnO—Cr 2 O 3 .

上述の方法で製造したステンレス薄板を前処理(アルカリ脱脂洗浄)を行ない、次いでアクリル樹脂系フォトレジストをディップコート方式で塗布・乾燥して、乾燥膜厚を10μmとした。   The stainless steel plate manufactured by the above-mentioned method was pretreated (alkali degreasing cleaning), and then an acrylic resin-based photoresist was applied and dried by a dip coating method to a dry film thickness of 10 μm.

ここに、図1に示すドットパターン(表面φ0.1mm、裏面φ0.03mm、ドットピッチ0.3mm)を露光・焼付けした。図2(a) はレジスト現象後のその断面図であり、図2(b) はエッチング加工後の同じく断面図である。   The dot pattern shown in FIG. 1 (front surface φ0.1 mm, back surface φ0.03 mm, dot pitch 0.3 mm) was exposed and baked. FIG. 2A is a cross-sectional view after the resist phenomenon, and FIG. 2B is a cross-sectional view after the etching process.

エッチング液(47ボーメ塩化第二鉄溶液、50℃)を両面からスプレー噴霧して貫通させた後、最後にレジスト膜を剥離した。
エッチング加工性の評価はドットパターンの50視野を光学顕微鏡(倍率400倍)で観察し、ドットの真円度不良もしくは壁面に介在物欠落あるいは介在物残存にともなう形状不良が認められたものを孔欠陥として数えた。
An etching solution (47 Baume ferric chloride solution, 50 ° C.) was sprayed from both sides to penetrate, and finally the resist film was peeled off.
The etching processability was evaluated by observing 50 dot views of the dot pattern with an optical microscope (400x magnification), and drilling holes with defective roundness of the dots or missing shapes on the wall surface due to inclusions missing or remaining inclusions. Counted as a defect.

孔欠陥が50視野のうち1視野以下であればエッチング加工性は良好(○印)、2視野以上ある場合はエッチング加工性不良(×印)と判定した。
実施例No.1〜No.7はいずれも本発明に規定した介在物組成であり、介在物の最大円相当径も15μm以下であり、これらは孔欠陥が1視野以下であり、エッチング加工性はいずれも良好と判定された。
If the hole defect is 1 field or less out of 50 visual fields, the etching processability is good (marked with ◯).
Examples No. 1 to No. 7 are inclusion compositions defined in the present invention, the maximum equivalent circle diameter of inclusions is 15 μm or less, and these have a hole defect of one field of view or less, and etching processability Were determined to be good.

比較鋼No.8とNo.10は本発明に規定する介在物組成に対してMgOが多く、No.9とNo.11は同様にAl2O3が多い。これらはいずれも硬質介在物であるため圧延での破壊が進まず最大円相当径が15μmを超える粗大な介在物が存在した。 Comparative steels No. 8 and No. 10 have a large amount of MgO with respect to the inclusion composition specified in the present invention, and No. 9 and No. 11 have a large amount of Al 2 O 3 as well. Since these were all hard inclusions, there was a coarse inclusion with a maximum equivalent circle diameter exceeding 15 μm without breaking during rolling.

比較鋼No.12とNo.13は溶鋼中の介在物の浮上分離が不十分なため最大円相当径が15μmを超える粗大な介在物が存在した。
これらはいずれも粗大な介在物に起因した孔欠陥が2視野を超えており、エッチング性が劣ると判定された。
The comparative steels No. 12 and No. 13 had coarse inclusions with a maximum equivalent circle diameter exceeding 15 μm due to insufficient floating separation of inclusions in the molten steel.
In any of these cases, the hole defects due to coarse inclusions exceeded two fields of view, and it was determined that the etching property was inferior.

Figure 2005290449
Figure 2005290449

本例における厚さt0.4mm前後に調質圧延した焼鈍材における介在物の円相当径と加工割れの影響を図3に示す。加工割れは、介在物の円相当径が20μm以下で皆無となる。
厚さt0.4mm前後の調質圧延した焼鈍材の加工特性におよぼす介在物の組成、最大円相当径の影響を表2に示す。介在物はCr2O3量の増加、Al2O3、MgO 量の減少により微細化する。また、加工特性は介在物組成に依然せず、微細化により向上する。これらより、溶鋼保持+組成制御により介在物を微細化した材料の加工割れは皆無となった。
FIG. 3 shows the influence of the equivalent circle diameter of the inclusions and the processing crack in the annealed material tempered and rolled to a thickness of about 0.4 mm in this example. There are no processing cracks when the equivalent circle diameter of inclusions is 20 μm or less.
Table 2 shows the influence of the composition of inclusions and the maximum equivalent circle diameter on the processing characteristics of the temper-rolled annealed material with a thickness of about 0.4 mm. Inclusions are refined by increasing Cr 2 O 3 content and decreasing Al 2 O 3 and MgO content. Further, the processing characteristics do not depend on the inclusion composition, but are improved by miniaturization. As a result, there was no work cracking in the material whose inclusions were refined by holding the molten steel and controlling the composition.

なお、供試材の製造は実施例1を繰り返して行った。
また、LFにおいて溶鋼を恒温保持した。保持中の溶鋼の攪拌動力は40W/ton以下とした。そして、熱間および冷間圧延と焼鈍の繰返しにより板厚t0.4mmとした。同工程の各圧延での加工率は同一にした。
The sample material was manufactured by repeating Example 1.
In addition, the molten steel was held at a constant temperature in LF. The stirring power of the molten steel being held was 40 W / ton or less. The thickness t0.4 mm was obtained by repeating hot and cold rolling and annealing. The processing rate in each rolling in the same process was the same.

介在物調査は実施例1と同じ要領により実施した。
加工試験は、絞り比3の多段深絞り加工を行い、加工割れの発生を調査した。評価は、加工部における割れ無し、亀裂、開口の3段階とした。
Inclusion investigation was carried out in the same manner as in Example 1.
In the processing test, multistage deep drawing with a drawing ratio of 3 was performed to investigate the occurrence of processing cracks. The evaluation was made in three stages: no cracking in the processed part, cracking and opening.

Figure 2005290449
Figure 2005290449

溶接部の研削性、耐食性におよぼす介在物の組成、最大円相当径の影響を表3に示す。
発明材No.1〜No.7の介在物は本発明で規定する組成を満たし、最大円相当径(最大径)で18μm以下となる。また、研削性、耐食性も優れた結果を示す。
Table 3 shows the influence of the inclusion composition and the maximum equivalent circle diameter on the grindability and corrosion resistance of the weld.
The inclusions of the inventive materials No. 1 to No. 7 satisfy the composition defined in the present invention, and the maximum equivalent circle diameter (maximum diameter) is 18 μm or less. In addition, the results show excellent grindability and corrosion resistance.

一方、比較材No.8〜No.18は介在物の最大径が22μm以上となり、耐食性に劣る。また、最大径が30μ以上のNo.12、No.14、No.18材は溶接部研削性も不良となった。これは、No.12、No.13材が溶鋼保持を施さなかったため、No.17材が多量のAl2O3、MgOを含有し、圧延時の破砕、微細化が不充分であり、粗大な介在物が残存したことに起因すると推定される。なお、これらは粗大介在物を起点として、研削後の板表面、耐食性に不良を乗じたものである。 On the other hand, Comparative Materials No. 8 to No. 18 have a maximum inclusion diameter of 22 μm or more, and are inferior in corrosion resistance. The No. 12, No. 14, and No. 18 materials with a maximum diameter of 30μ or more also had poor weld grindability. This is because the No. 12 and No. 13 materials did not hold molten steel, the No. 17 material contained a large amount of Al 2 O 3 and MgO, and crushing and miniaturization during rolling were insufficient, which was coarse. It is presumed that this is due to the remaining inclusions. Note that these are obtained by multiplying the plate surface after grinding and corrosion resistance by a defect starting from coarse inclusions.

これらより、溶鋼保持×(組成制御+圧延での破砕)により介在物を微細化した材料での問題発生は皆無であることが確認される。
以下、上記の試験方法について補足説明する。
From these, it is confirmed that there is no problem in the material in which inclusions are refined by holding molten steel × (composition control + crushing by rolling).
Hereinafter, the above test method will be described supplementarily.

試料は実機溶製材および実験室レベルの小型鋳塊より製造したt4mmの熱間圧延板を用いて、同一工程にて製造したt1mm前後の薄板とした。なお、実機溶製は電気炉→VOD(Vacuum-Oxygen Decarburization furnace)→LF(Ladle Furnace)→CCM(Continuous Casting machine)により溶製し、スラグ組成を塩基度CaO/Si02、Al2O3 量、MgO量により制御した。また、LFでは溶鋼を恒温保持し、40W/ton以下の動力にて攪拌した。一方、小型鋳塊は真空溶解炉を用い、17Kg前後にて製造した。そして、実機ないし実験室レベルの設備によりt4mmに熱間圧延、焼鈍後、実験室レベルの設備により冷間圧延→焼鈍を1回ないし2回繰返してt1mmの薄板とした。そして、溶接部の研削性、耐食性を調査するためにTIG溶接を施した。TIG溶接は電流80A、速度0.5M/min.、シールガスとしてAr(10L/min.)を使用し、ビードオンプレートで実施した。なお、溶接は圧延方向と平行に板幅中心部付近で3回実施し、各ビード間が幅方向に約15mm程度ずつ離れるように実施した。 The sample was a thin plate of about t1 mm manufactured in the same process using a hot rolled plate of t4 mm manufactured from an actual melted material and a small ingot at the laboratory level. Note that actual melting electric furnace → VOD (Vacuum-Oxygen Decarburization furnace ) → LF (Ladle Furnace) → CCM (Continuous Casting machine) were melted by, basicity CaO / Si0 2 the slag composition, Al 2 O 3 amount The amount of MgO was controlled. In LF, the molten steel was kept at a constant temperature and stirred with a power of 40 W / ton or less. On the other hand, the small ingot was manufactured at around 17 kg using a vacuum melting furnace. And after hot rolling and annealing to t4mm with actual equipment or laboratory level equipment, cold rolling → annealing was repeated once or twice with laboratory level equipment to make a thin sheet of t1mm. Then, TIG welding was performed to investigate the grindability and corrosion resistance of the weld. TIG welding was carried out with a bead-on plate using an electric current of 80 A, a speed of 0.5 M / min., Ar (10 L / min.) As a sealing gas. Welding was performed three times in the vicinity of the center of the plate width in parallel with the rolling direction so that the beads were separated by about 15 mm in the width direction.

その後、3本のビード部を含む所定寸法の試験片を採取し、以下の試験を実施した。
介在物調査は実施例1に準じて行った。
溶接部の研削性:
溶接後の焼鈍材より板幅中心部にビードを含むようにW20mm×L20mmの試験片を採取し、湿式研磨機を用いて#400、#800、 #1000、 #1200 番の研磨紙の順で研磨した。その後、SEM を用いて表面を観察し、介在物を起点とする穴やささくれ状の欠陥の有無を確認した。評価は無の場合を○、有の場合を×とした。
Thereafter, a test piece having a predetermined size including three bead portions was collected, and the following tests were performed.
The inclusion investigation was conducted according to Example 1.
Grindability of welds:
Take a W20mm × L20mm test piece from the annealed material after welding so that a bead is included in the center of the plate width, and use a wet polishing machine in the order of # 400, # 800, # 1000, # 1200 abrasive paper. Polished. Then, the surface was observed using SEM, and the presence or absence of a hole or a crest-like defect starting from inclusions was confirmed. In the case of no evaluation, the evaluation was ○, and the evaluation was ×.

溶接部の耐食性:
溶接後の焼鈍材より板幅中心部に3本のビードを含むように角100mmの試 験片を採取し、60℃に保持した0.1%NaCl水溶液に100hr.浸漬した。その後、SEM を用いて表面を観察し、介在物を起点とする発錆の有無を確認した。評価は無の場合を○、有の場合を×とした。
Corrosion resistance of welds:
A specimen with a 100 mm square was taken from the annealed material so that it contained three beads at the center of the plate width, and was immersed in a 0.1% NaCl aqueous solution maintained at 60 ° C. for 100 hr. Then, the surface was observed using SEM and the presence or absence of rusting from the inclusion was confirmed. In the case of no evaluation, the evaluation was ○, and the evaluation was ×.

Figure 2005290449
Figure 2005290449

ドット状パターンの平面模式図である。It is a plane schematic diagram of a dot pattern. 図2(a) はレジストパターンを現像したあとの断面模式図、図2(b) はエッチング加工後の断面模式図である。2A is a schematic cross-sectional view after developing the resist pattern, and FIG. 2B is a schematic cross-sectional view after etching. 介在物の円相当径と加工割れの影響を示すグラフである。It is a graph which shows the influence of the circle equivalent diameter of an inclusion, and a processing crack.

Claims (4)

介在物を含むステンレス鋼において、前記介在物が、CaO-SiO2-MgO-Al2O3-MnO-Cr2O3で構成され、該非金属介在物の平均組成が
Cr2O3 :1%以上55%以下、
Al2O3 :50%以下、
MgO :15%以下
であり、かつ、前記介在物の最大円相当径が20μm 以下からなることを特徴とするステンレス鋼。
In the stainless steel containing inclusions, the inclusions are composed of CaO—SiO 2 —MgO—Al 2 O 3 —MnO—Cr 2 O 3 , and the average composition of the nonmetallic inclusions is
Cr 2 O 3 : 1% to 55%,
Al 2 O 3 : 50% or less,
Stainless steel characterized in that MgO: 15% or less, and the maximum equivalent circle diameter of the inclusions is 20 μm or less.
前記ステンレス鋼の鋼組成が、質量%で、
C : 0.01%以上0.15%以下、 Si : 0.1%以上 3.0%以下
Mn : 0.1%以上4.0%以下、 P : 0.050% 以下
S : 0.020%以下、 Cr :10.0%以上25.0%以下
Ni : 3.0%以上22.0%以下、 N :0.01%以上0.30%以下
残部実質的にFe
であることを特徴とする請求項1に記載のステンレス鋼。
The steel composition of the stainless steel is mass%,
C: 0.01% to 0.15%, Si: 0.1% to 3.0%
Mn: 0.1% to 4.0%, P: 0.050% or less S: 0.020% or less, Cr: 10.0% or more, 25.0% or less
Ni: 3.0% or more and 22.0% or less, N: 0.01% or more and 0.30% or less The balance is substantially Fe
The stainless steel according to claim 1, wherein:
前記鋼組成が、質量%で、さらに
Ti : 0.01%以上0.5%以下、 Nb : 0.01%以上0.5% 以下
V : 0.01%以上0.5%以下
の少なくとも1種を含むことを特徴とする請求項2に記載のステンレス鋼。
The steel composition is mass%, and
The stainless steel according to claim 2, comprising at least one of Ti: 0.01% to 0.5%, Nb: 0.01% to 0.5%, and V: 0.01% to 0.5%.
溶製時に保持時間:1hr以上、溶鋼攪拌動力:40W/ton以下で溶鋼を保持し、二次精錬でのスラグ組成を塩基度CaO/Si02 : 1.4 以上1.8 以下、 Al2O3 : 2%以下、MgO: 10%以下とする工程を含むことを特徴とする請求項1〜3のいずれかに記載のステンレス鋼の製造方法。 Retention time at the time of melting: 1hr above, molten steel stirring power: holding the molten steel below 40W / ton, secondary refining slag composition at basicity CaO / Si0 2: 1.4 to 1.8, Al 2 O 3: 2% The method for producing stainless steel according to claim 1, further comprising a step of making MgO: 10% or less.
JP2004105278A 2004-03-31 2004-03-31 Stainless steel containing fine inclusions and method for producing the same Expired - Lifetime JP4285302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004105278A JP4285302B2 (en) 2004-03-31 2004-03-31 Stainless steel containing fine inclusions and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004105278A JP4285302B2 (en) 2004-03-31 2004-03-31 Stainless steel containing fine inclusions and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005290449A true JP2005290449A (en) 2005-10-20
JP4285302B2 JP4285302B2 (en) 2009-06-24

Family

ID=35323717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004105278A Expired - Lifetime JP4285302B2 (en) 2004-03-31 2004-03-31 Stainless steel containing fine inclusions and method for producing the same

Country Status (1)

Country Link
JP (1) JP4285302B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008013305A1 (en) 2006-07-28 2008-01-31 Sumitomo Metal Industries, Ltd. Stainless steel sheet for parts and process for manufacturing the same
JP2010121190A (en) * 2008-11-21 2010-06-03 Nisshin Steel Co Ltd Austenitic stainless welded pipe for high-pressure hydrogen transport, and method for producing the same
KR101239555B1 (en) * 2009-12-24 2013-03-06 주식회사 포스코 The method for manufacturing the Ti bearing ferritic stainless steel improved the equiaxed structure ratio
KR101239428B1 (en) 2009-12-15 2013-03-06 주식회사 포스코 method of manufacturing ferritic stainless steel with good surface quality
JP2015001008A (en) * 2013-06-14 2015-01-05 新日鐵住金ステンレス株式会社 Austenitic stainless steel for fuel reformer excellent in adhesion of oxide film and production method thereof
JP6005234B1 (en) * 2015-09-29 2016-10-12 日新製鋼株式会社 High-strength stainless steel sheet with excellent fatigue characteristics and method for producing the same
JP2016191124A (en) * 2015-03-31 2016-11-10 日本冶金工業株式会社 HIGH Mn CONTAINING Fe-Cr-Ni ALLOY AND METHOD FOR MANUFACTURING THE SAME
JP2016194109A (en) * 2015-03-31 2016-11-17 日新製鋼株式会社 Austenite stainless steel with taper shape for manufacturing pipe and manufacturing method therefor
WO2022014307A1 (en) * 2020-07-17 2022-01-20 日立金属株式会社 Stainless steel foil, spring for switch, substrate for flexible display, and manufacturing method of stainless steel foil
CN114959423A (en) * 2022-06-07 2022-08-30 甘肃酒钢集团宏兴钢铁股份有限公司 Smelting method of high-silicon titanium-containing austenitic stainless steel
WO2022244744A1 (en) * 2021-05-17 2022-11-24 日鉄ケミカル&マテリアル株式会社 Stainless steel foil with planarization film
WO2022244701A1 (en) * 2021-05-17 2022-11-24 日鉄ケミカル&マテリアル株式会社 Ferrous alloy foil, manufacturing method therefor, and component using same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2048256A4 (en) * 2006-07-28 2016-07-13 Nippon Steel & Sumitomo Metal Corp Stainless steel sheet for parts and process for manufacturing the same
WO2008013305A1 (en) 2006-07-28 2008-01-31 Sumitomo Metal Industries, Ltd. Stainless steel sheet for parts and process for manufacturing the same
JP2010121190A (en) * 2008-11-21 2010-06-03 Nisshin Steel Co Ltd Austenitic stainless welded pipe for high-pressure hydrogen transport, and method for producing the same
KR101239428B1 (en) 2009-12-15 2013-03-06 주식회사 포스코 method of manufacturing ferritic stainless steel with good surface quality
KR101239555B1 (en) * 2009-12-24 2013-03-06 주식회사 포스코 The method for manufacturing the Ti bearing ferritic stainless steel improved the equiaxed structure ratio
JP2015001008A (en) * 2013-06-14 2015-01-05 新日鐵住金ステンレス株式会社 Austenitic stainless steel for fuel reformer excellent in adhesion of oxide film and production method thereof
JP2016194109A (en) * 2015-03-31 2016-11-17 日新製鋼株式会社 Austenite stainless steel with taper shape for manufacturing pipe and manufacturing method therefor
JP2016191124A (en) * 2015-03-31 2016-11-10 日本冶金工業株式会社 HIGH Mn CONTAINING Fe-Cr-Ni ALLOY AND METHOD FOR MANUFACTURING THE SAME
KR20180075528A (en) * 2015-09-29 2018-07-04 닛신 세이코 가부시키가이샤 High Strength Stainless Steel Sheet Excellent in Fatigue Property and Manufacturing Method Thereof
WO2017056618A1 (en) * 2015-09-29 2017-04-06 日新製鋼株式会社 High-strength stainless steel sheet having excellent fatigue characteristics, and method for manufacturing same
JP6005234B1 (en) * 2015-09-29 2016-10-12 日新製鋼株式会社 High-strength stainless steel sheet with excellent fatigue characteristics and method for producing the same
US20180272397A1 (en) * 2015-09-29 2018-09-27 Nissan Motor Co., Ltd. High strength stainless steel sheet excellent in fatigue characteristics, and production method therefor
EP3358029A4 (en) * 2015-09-29 2019-05-22 Nisshin Steel Co., Ltd. High-strength stainless steel sheet having excellent fatigue characteristics, and method for manufacturing same
KR102531813B1 (en) * 2015-09-29 2023-05-16 닛테츠 스테인레스 가부시키가이샤 High-strength stainless steel sheet with excellent fatigue properties and manufacturing method thereof
WO2022014307A1 (en) * 2020-07-17 2022-01-20 日立金属株式会社 Stainless steel foil, spring for switch, substrate for flexible display, and manufacturing method of stainless steel foil
CN115698360A (en) * 2020-07-17 2023-02-03 日立金属株式会社 Stainless steel foil, spring for switch, substrate for flexible display, and method for manufacturing stainless steel foil
WO2022244744A1 (en) * 2021-05-17 2022-11-24 日鉄ケミカル&マテリアル株式会社 Stainless steel foil with planarization film
WO2022244701A1 (en) * 2021-05-17 2022-11-24 日鉄ケミカル&マテリアル株式会社 Ferrous alloy foil, manufacturing method therefor, and component using same
CN114959423A (en) * 2022-06-07 2022-08-30 甘肃酒钢集团宏兴钢铁股份有限公司 Smelting method of high-silicon titanium-containing austenitic stainless steel
CN114959423B (en) * 2022-06-07 2023-04-14 甘肃酒钢集团宏兴钢铁股份有限公司 Smelting method of high-silicon titanium-containing austenitic stainless steel

Also Published As

Publication number Publication date
JP4285302B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
KR100957664B1 (en) Austenitic-ferritic stainless steel sheet
EP3358029B1 (en) High-strength stainless steel sheet having excellent fatigue characteristics, and method for manufacturing same
WO2012018074A1 (en) Ferritic stainless steel
JP4673343B2 (en) Stainless steel sheet excellent in corrosion resistance, weldability and surface properties and method for producing the same
JP4363403B2 (en) Steel for line pipe excellent in HIC resistance and line pipe manufactured using the steel
JP2008190035A (en) Ferritic stainless steel sheet for water heater
JP4285302B2 (en) Stainless steel containing fine inclusions and method for producing the same
EP2990498A1 (en) H-shaped steel and method for producing same
JP6222806B2 (en) High corrosion resistance duplex stainless steel with excellent brittleness resistance
JP2004149833A (en) Stainless steel excellent in corrosion resistance, weldability, and surface properties and its production method
CN111868282A (en) Steel plate
JP2011117057A (en) Thick steel plate having superior toughness at weld heat-affected zone and superior uniformity of strength
JP4285303B2 (en) Continuously variable transmission belt and stainless cold-rolled steel sheet therefor
JP2009030081A (en) High-tension cold-rolled steel sheet and producing method therefor
JP7223210B2 (en) Precipitation hardening martensitic stainless steel sheet with excellent fatigue resistance
KR101940427B1 (en) Ferritic stainless steel sheet
JP2003268498A (en) H-type steel excellent in fillet section toughness and its production method
JP4273457B2 (en) Structural stainless steel plate with excellent hole expansion workability
JP3440710B2 (en) H-section steel excellent in toughness of fillet portion and method for producing the same
JP5653269B2 (en) Stainless steel wire and steel wire excellent in corrosion resistance, strength, and ductility, and methods for producing them.
JP4192576B2 (en) Martensitic stainless steel sheet
EP1378580A1 (en) Structural Fe-Cr steel sheet, manufacturing method thereof, and structural shaped steel
JP2003328070A (en) Ultra thick steel material and manufacturing method therefor
JP6191783B2 (en) Stainless steel
JP6823221B1 (en) Highly corrosion resistant austenitic stainless steel and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4285302

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350