JP2010121190A - Austenitic stainless welded pipe for high-pressure hydrogen transport, and method for producing the same - Google Patents

Austenitic stainless welded pipe for high-pressure hydrogen transport, and method for producing the same Download PDF

Info

Publication number
JP2010121190A
JP2010121190A JP2008297792A JP2008297792A JP2010121190A JP 2010121190 A JP2010121190 A JP 2010121190A JP 2008297792 A JP2008297792 A JP 2008297792A JP 2008297792 A JP2008297792 A JP 2008297792A JP 2010121190 A JP2010121190 A JP 2010121190A
Authority
JP
Japan
Prior art keywords
less
welded pipe
austenitic stainless
stainless steel
pressure hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008297792A
Other languages
Japanese (ja)
Inventor
Manabu Oku
学 奥
Hiroshi Fujimoto
廣 藤本
Kazu Shiroyama
和 白山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2008297792A priority Critical patent/JP2010121190A/en
Publication of JP2010121190A publication Critical patent/JP2010121190A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an austenitic stainless steel welded pipe which has excellent hydrogen embrittlement resistance and salt corrosion resistance at normal temperature, and is suitable for the transport of high-pressure hydrogen, e.g., under about 40 MPa without depending on the remarkable enlargement of thickness and diameter. <P>SOLUTION: The austenitic stainless steel welded pipe for high-pressure hydrogen transport has a composition comprising, by mass%, &le;0.15% C, &le;4.0% Si, &le;3.0% Mn, &le;0.10% P, &le;0.03% S, 6 to 20% Ni, 14 to 28% Cr and &le;0.25% N, and the balance Fe with inevitable impurities, wherein M value shown by expression; M=551-462(C+N)-9.2Si-8.1Mn-29(Ni+Cu)-13.7Cr-18.5Mo is controlled to &le;-100, and, D value shown by expression D=(Cr+1.5Si+0.5Nb+Mo)-(Ni+0.5Mn+30C+30N) is controlled to 6 to 10. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は,0.1MPa以上の高圧水素ガスに対して優れた耐水素脆化性を有し,かつ優れた耐食性を有する高圧水素輸送用オーステナイト系ステンレス鋼溶接管およびその製 造方法に関する。   The present invention relates to an austenitic stainless steel welded pipe for transporting high-pressure hydrogen having excellent hydrogen embrittlement resistance against high-pressure hydrogen gas of 0.1 MPa or more and excellent corrosion resistance, and a method for producing the same.

近年,地球環境保全の問題から,クリーンなエネルギー源として水素が注目されるとともに,化石燃料枯渇の問題から,高効率発電として燃料電池の研究が盛んに行われている。燃料電池は,定置型と可搬型に大別される。燃料となる水素は,定置型では利用する直前に化石燃料を改質して使用し,可搬型では水素を高圧容器に加圧,低温容器に液化,水素吸蔵合金に吸蔵する他,シクロヘキサンなどの水素含有物質を水素源として使用することが主流となりつつある。   In recent years, hydrogen has attracted attention as a clean energy source due to global environmental conservation problems, and fuel cells have been actively studied for high-efficiency power generation due to the problem of fossil fuel depletion. Fuel cells are roughly classified into stationary types and portable types. In the stationary type, fossil fuel is reformed immediately before use in the stationary type, and in the portable type, hydrogen is pressurized in a high-pressure vessel, liquefied in a low-temperature vessel, occluded in a hydrogen-absorbing alloy, and cyclohexane, etc. The use of hydrogen-containing materials as a hydrogen source is becoming mainstream.

可搬型の代表例として,燃料電池自動車が挙げられるが,貯蔵または充填した水素を効率よく電池に輸送するには,1MPa以上の高圧で取り扱うことが好ましい。水素を扱うプラントにおいては,配管にはCr−Mo鋼,Mn鋼などの厚肉大径管が使用されてきた。これらの鋼は強度が低いため肉厚を厚くする必要があるが,車載用としては省スペース化,軽量化の観点から必ずしも最適な材料とはいえない。   A typical example of the portable type is a fuel cell vehicle. In order to efficiently transport stored or filled hydrogen to the battery, it is preferable to handle it at a high pressure of 1 MPa or more. In plants that handle hydrogen, thick large-diameter pipes such as Cr-Mo steel and Mn steel have been used for piping. Since these steels have low strength, it is necessary to increase the wall thickness, but they are not necessarily the most suitable materials for automotive use in terms of space saving and weight reduction.

高圧水素ガスに適用する配管の薄肉化・軽量化を図るためには,耐水素脆性に優れ,かつ高強度を有する材料が求められる。高圧の水素ガスに触れる配管には,結晶構造が体心立方構造である普通鋼,フェライト系ステンレス鋼,マルテンサイト系ステンレス鋼は,水素の拡散係数が大きく,水素の溶解度が小さいので不向きであり,面心立方構造のオーステナイト系ステンレス鋼の採用が有利となる。そこで,前記のCr−Mo鋼,Mn鋼より高強度化が可能で,なおかつ耐水素脆化性に有利とされるオーステナイト系鋼を水素貯蔵用のタンク等に用いることが検討された。特許文献1および2には高Mnオーステナイト鋼を使用する手法が示されている。特許文献3にはMn,V,Nを添加したオーステナイト系ステンレス鋼が示されている。特許文献4には集合組織の制御を行う手法が示されている。特許文献5には水素と接する部分にアルミニウムを被覆する手法が示されている。   In order to reduce the thickness and weight of piping applied to high-pressure hydrogen gas, a material with excellent resistance to hydrogen embrittlement and high strength is required. For pipes that come into contact with high-pressure hydrogen gas, ordinary steel, ferritic stainless steel, and martensitic stainless steel with a body-centered cubic structure are not suitable because of their high hydrogen diffusion coefficient and low hydrogen solubility. , Adopting austenitic stainless steel with face-centered cubic structure is advantageous. Therefore, it has been studied to use austenitic steel, which is capable of higher strength than the Cr-Mo steel and Mn steel, and is advantageous in hydrogen embrittlement resistance, for a hydrogen storage tank. Patent Documents 1 and 2 show a technique using high Mn austenitic steel. Patent Document 3 discloses an austenitic stainless steel to which Mn, V, and N are added. Patent Document 4 discloses a technique for controlling texture. Patent Document 5 discloses a method of covering aluminum on a portion in contact with hydrogen.

国際特公開第2004/83477号パンフレットInternational Special Publication No. 2004/83477 Pamphlet 特開2007−126688号公報JP 2007-126688 A 国際特公開第2004/83476号パンフレットInternational Publication No. 2004/83476 Pamphlet 国際特公開第2004/111285号パンフレットInternational Special Publication No. 2004/111285 Pamphlet 特開2004−324800号公報JP 2004-324800 A

一方,自動車用途を考慮した場合,高圧タンクから減圧された後の部分の配管は,従来の排気ガス経路の部位に搭載される可能性があり,この場合には融雪塩に対する塩害腐食に対しても十分な耐久性を有することが好ましい。しかし,耐水索脆性を改善した既存のオーステナイト系ステンレス鋼は,塩害腐食に起出した耐応力腐食割れ性の観点からは必ずしも満足できる特性を有していない。また,溶接部を有さないシームレス管を用いるとコスト高を招くため,安価な溶接管を使用することが好ましい。前記特許文献1〜5の方法は,パイプの製造方法は明記されていないが,最高で70〜120MPaもの高圧を想定しているものであるため,その手法そのものがコスト増大を招きやすく,さらに簡単な手法で優れた耐水素脆化性を付与する技術の確立が望まれている。   On the other hand, when considering automotive applications, the pipe in the part after being depressurized from the high-pressure tank may be mounted on the site of the conventional exhaust gas path. It is preferable to have sufficient durability. However, existing austenitic stainless steels with improved water brittleness resistance do not always have satisfactory properties from the viewpoint of resistance to stress corrosion cracking caused by salt damage corrosion. In addition, it is preferable to use an inexpensive welded pipe because the use of a seamless pipe having no welded portion increases the cost. In the methods of Patent Documents 1 to 5, although the manufacturing method of the pipe is not specified, since a high pressure of 70 to 120 MPa is assumed at the maximum, the method itself tends to cause an increase in cost and is further simplified. It is desired to establish a technology that imparts excellent hydrogen embrittlement resistance by a simple method.

耐応力腐食割れ感受性を改善したオーステナイト系ステンレス鋼は,これまで多くの鋼が開発されており,JISでは,SUS315JlやSUS315J2が制定されている。しかし,これらのオーステナイト系ステンレス鋼の耐水素脆化性は,発明者らの検討によれば合金成分によっては必ずしも十分でなく,とくに溶接管の耐水素脆化性は必ずしも満足できるものではないことが判った。このため,これらの溶接管を例えば車載用の部材にそのまま適用することには困難といえる。   Many austenitic stainless steels with improved resistance to stress corrosion cracking have been developed so far, and JIS has established SUS315Jl and SUS315J2. However, the hydrogen embrittlement resistance of these austenitic stainless steels is not necessarily sufficient depending on the alloy composition according to the study by the inventors, and in particular, the hydrogen embrittlement resistance of welded pipes is not always satisfactory. I understood. For this reason, it can be said that it is difficult to directly apply these welded pipes to, for example, a vehicle-mounted member.

本発明は,耐水素脆化性および常温での耐塩害腐食性に優れ,大幅な厚肉大径化に頼ることなく,例えば40MPa程度の高圧水素の輸送に好適なオーステナイト系ステンレス鋼溶接管を提供しようというものである。   The present invention provides an austenitic stainless steel welded tube excellent in hydrogen embrittlement resistance and salt corrosion resistance at room temperature, and suitable for transporting high-pressure hydrogen of, for example, about 40 MPa without relying on a large increase in diameter. It is to provide.

発明者らは種々検討の結果、特定範囲に厳しく成分調整されたオーステナイト系ステンレス鋼を用い,溶接管の組織形態を厳しく制限することによって,コスト上昇を極力抑制し,耐水素脆化性および耐塩害腐食性に優れた溶接管を提供できることを見出した。   As a result of various studies, the inventors have used austenitic stainless steels whose components are strictly adjusted to a specific range, and severely restricted the structure of the welded pipe, thereby suppressing the increase in cost as much as possible, and preventing hydrogen embrittlement and resistance. The present inventors have found that a welded pipe having excellent salt corrosion resistance can be provided.

すなわち本発明では,質量%で,C:0.15%以下,Si:4.0%以下,Mn:3.0%以下,P:0.10%以下,S:0.03%以下,Ni:6〜20%,Cr:14〜28%,N:0.25%以下を含有し,残部がFeおよび不可避的不純物からなり,(1)式で示されるM値が−100以下,(2)式で示されるD値が6〜10に調整されている高圧水素輸送用オーステナイト系ステンレス鋼溶接管を提供する。
M=551−462(C+N)−9.2Si−8.1Mn−29(Ni+Cu)−13.7Cr−18.5Mo・・・(1)
D=(Cr+1.5Si+0.5Nb+Mo)−(Ni+0.5Mn+30C+30N)・・・(2)。
That is, in the present invention, by mass%, C: 0.15% or less, Si: 4.0% or less, Mn: 3.0% or less, P: 0.10% or less, S: 0.03% or less, Ni : 6 to 20%, Cr: 14 to 28%, N: 0.25% or less, with the balance being Fe and inevitable impurities, M value represented by formula (1) is -100 or less, (2 An austenitic stainless steel welded pipe for high-pressure hydrogen transport in which the D value represented by the formula is adjusted to 6 to 10 is provided.
M = 551-462 (C + N) -9.2Si-8.1Mn-29 (Ni + Cu) -13.7Cr-18.5Mo (1)
D = (Cr + 1.5Si + 0.5Nb + Mo) − (Ni + 0.5Mn + 30C + 30N) (2).

組成において、上記元素の他、さらに以下の元素のいずれかを単独または複合で選択的に含有するものが採用できる。(i)Nb≦1.0%,Ti≦1.0%,Mo≦4.0%,Cu≦4.0%を1種以上,(ii)Al≦1.0%,希土類およびアルカリ土類金属≦0.10%,B≦0.010%を1種以上。   In the composition, those containing any of the following elements in addition to the above elements, either alone or in combination, can be employed. (I) One or more of Nb ≦ 1.0%, Ti ≦ 1.0%, Mo ≦ 4.0%, Cu ≦ 4.0%, (ii) Al ≦ 1.0%, rare earth and alkaline earth One or more metals ≦ 0.10% and B ≦ 0.010%.

上記(1)式および(2)式の元素記号の箇所には質量%で表された各元素の含有量の値が代入される。「残部実質的にFe」とは本発明の効果を阻害しない範囲でその他の元素の混入が許容されることを意味し,「残部がFeおよび不可避的不純物からなる」ものが含まれる。C,Si,Mn,Nが無添加の場合には不可避的に含有された量を質量%で代入し,Nb,Mo,Cuが無添加の場合には0(ゼロ)を代入する。   The value of the content of each element expressed in mass% is substituted for the element symbol in the above formulas (1) and (2). “Remaining substantially Fe” means that other elements are allowed to be mixed within a range not impairing the effects of the present invention, and includes “remaining part consisting of Fe and inevitable impurities”. When C, Si, Mn, and N are not added, the amount inevitably contained is substituted by mass%, and when Nb, Mo, and Cu are not added, 0 (zero) is substituted.

また,その溶接管の製造法として、造管後に1050℃〜1150℃の範囲で均熱時間5分以下の焼きなまし熱処理を施す製造方法,さらに焼きなまし熱処理を施す前に,減面率10%〜50%で引き抜き加工を行う製造方法が提供される。   Further, as a method for manufacturing the welded pipe, a manufacturing method in which an annealing heat treatment is carried out in the range of 1050 ° C. to 1150 ° C. for a soaking time of 5 minutes or less after pipe forming, and further, a surface reduction rate of 10% to 50% before performing the annealing heat treatment. A manufacturing method is provided for drawing at%.

発明者らの検討によれば,上記のオーステナイト系ステンレス鋼溶接管において,溶接部のδフェライト相を面積%で0.5%以下としたとき,耐水素脆化性を顕著に改善することが可能になる。δフェライト相は,例えばフィッシャーインストルメンツ社製のフェライト含量計を用いて測定すれば簡易的に特定される。   According to the study by the inventors, in the above-mentioned austenitic stainless steel welded pipe, when the δ ferrite phase of the weld zone is 0.5% or less in area%, the hydrogen embrittlement resistance can be remarkably improved. It becomes possible. For example, the δ ferrite phase can be easily identified by measuring using a ferrite content meter manufactured by Fischer Instruments.

本発明によれば,オーステナイト系ステンレス鋼溶接管を用い溶接管の組織形態を厳しく制限することによって,コスト上昇を極力抑制し,耐水素脆化性および耐塩害腐食性に優れた溶接管を得ることが可能となった。この溶接管には,大幅な厚肉大径化に頼ることなく,例えば40MPa程度の高圧水素の輸送に好適な強度を具備させることができ,高圧水素輸送部位の小型・軽量化に適している。また,耐塩害腐食性を起点とする応力腐食割れ感受性にも優れる。したがって本発明は,自動車用の燃料電池システムの普及に大きく寄与できるものと期待される。   According to the present invention, the austenitic stainless steel welded pipe is used to severely limit the microstructure of the welded pipe, thereby suppressing the cost increase as much as possible and obtaining a welded pipe excellent in hydrogen embrittlement resistance and salt corrosion resistance. It became possible. This welded tube can be provided with strength suitable for transporting high-pressure hydrogen, for example, about 40 MPa without relying on a large increase in diameter and thickness, and is suitable for reducing the size and weight of high-pressure hydrogen transport sites. . It is also excellent in stress corrosion cracking susceptibility starting from salt corrosion resistance. Therefore, the present invention is expected to greatly contribute to the popularization of automobile fuel cell systems.

発明者らは、詳細な検討の結果,溶接部のδフェライト相を厳しく制限することによってオーステナイト系ステンレス鋼溶接管の耐水素脆化性を改善することが可能なことを見出した。一方,常温での塩害特性に対しては,Mnの含有量を低減するとともに,CrとNを適量含有させることが有効であることが判明した。以下,本発明を特定するための事項についてより詳しく説明する。   As a result of detailed studies, the inventors have found that the hydrogen embrittlement resistance of the austenitic stainless steel welded pipe can be improved by severely limiting the δ ferrite phase of the weld. On the other hand, for salt damage characteristics at room temperature, it has been found that it is effective to reduce the Mn content and to contain appropriate amounts of Cr and N. Hereinafter, matters for specifying the present invention will be described in more detail.

[溶接管のδフェライト量]
本発明では,後述の化学組成に調整されたオーステナイト系ステンレス銅において,溶接部のδフェライト相の面積%を0.5%以下とする必要がある。なお面積%は,前述したフェライト含量計で測定すれば体積%を簡易的に求められるが,溶接部では測定誤差を生じる。そこで,あらかじめ溶接部断面を切断,研磨したのち,水酸化ナトリウム水溶液にて電解エッチングし,δフェライト相を現出させ,面積%を求めればよい。
[Δ ferrite content of welded pipe]
In the present invention, in the austenitic stainless copper adjusted to the chemical composition described later, the area% of the δ ferrite phase of the welded portion needs to be 0.5% or less. The area% can be easily obtained by measuring the volume% with the above-mentioned ferrite content meter, but a measurement error occurs in the weld. Therefore, after cutting and polishing the welded section in advance, electrolytic etching is performed with an aqueous sodium hydroxide solution to reveal the δ ferrite phase, and the area% may be obtained.

体心立方構造を有するδフェライト相の面積%を減らすことにより,耐水素脆化性を改善することが可能となるが,化学組成においては,前記(2)式のD値をあらかじめ調整しておく必要がある。D値が10を超えると溶接部のδフェライト相が面積%で1.0%を超え,このままでは耐水素脆化性に劣る。熱処理によりδフェライト相を減少させることは可能であるが,δフェライト相を0.5%以下とした場合でも,σ相が生成している可能性があり,その後の加工性を著しく低下させる。D値を6以下とすれば溶接ままでもδフェライト相が存在しない反面,造管時に溶接高温割れを生じる可能性がある。割れが内在すると,その後の加工で破断する可能性および高圧水素輸送中に強度不足を生じ不具合をきたす可能性がある。   It is possible to improve the hydrogen embrittlement resistance by reducing the area% of the δ ferrite phase having a body-centered cubic structure. However, in the chemical composition, the D value in the formula (2) is adjusted in advance. It is necessary to keep. When the D value exceeds 10, the δ ferrite phase of the weld exceeds 1.0% in area%, and the hydrogen embrittlement resistance is poor as it is. Although it is possible to reduce the δ ferrite phase by heat treatment, even when the δ ferrite phase is 0.5% or less, the σ phase may be formed, and the subsequent workability is significantly reduced. If the D value is 6 or less, the δ ferrite phase does not exist even in the as-welded state, but on the other hand, there is a possibility that hot cracking will occur during pipe making. If cracks are inherent, there is a possibility that they will break during subsequent processing, and there is a possibility that the strength will be insufficient during high-pressure hydrogen transport, causing problems.

なお,前記(1)式のM値は,溶接管を加工する際に加工誘起マルテンサイト相を生成させないために調整しておく必要があり,−100以下に調整すれば通常の曲げ加工(曲げ半径が溶接管の直径と同程度)ではマルテンサイト相が生成せず,優れた耐水素脆性を維持することが可能となる。また,M値の値が小さいほどCとNを除いて耐食性に有効な元素が多く含有されることになるため,おおまかな目安として−50以下,好ましくは加工誘起マルテンサイト相の抑制条件である−100以下を満足すれば,良好な耐食性は確保できる。   Note that the M value in the above equation (1) needs to be adjusted in order to prevent the formation of a work-induced martensite phase when processing a welded pipe. If the radius is the same as the diameter of the welded pipe), no martensite phase is formed, and excellent hydrogen embrittlement resistance can be maintained. In addition, since the smaller the M value, the more elements effective for corrosion resistance except for C and N are contained. As a rough guide, it is -50 or less, preferably a condition for suppressing the processing-induced martensite phase. If -100 or less is satisfied, good corrosion resistance can be secured.

〔鋼の化学組成〕
本発明の溶接管は,成分元素の含有量が以下のように調整されたオーステナイト系ステンレス鋼で作られる。なお,鋼組成における「%」は,とくに断らない限り「質量%」を意味する。
C:0.15%以下
Cはオーステナイト形成元素であり,強度上昇に有効であるとともに,D値やM値の調整に利用することが可能である。しかし,過剰な添加は,熱処理条件によっては鋭敏化起因の粒界腐食を生じる原因となるため,上記範囲で含有させる。C含有量は,0.10%以下に管理しても構わない。
[Chemical composition of steel]
The welded pipe of the present invention is made of austenitic stainless steel in which the content of component elements is adjusted as follows. “%” In steel composition means “mass%” unless otherwise specified.
C: 0.15% or less C is an austenite forming element, which is effective in increasing the strength and can be used for adjusting the D value and the M value. However, excessive addition may cause grain boundary corrosion due to sensitization depending on the heat treatment conditions, so it is contained in the above range. The C content may be controlled to 0.10% or less.

Si:4.0%以下
Siは耐応力腐食割れ性を改善するとともに鋼の成形性を改善する元素である。しかし,過剰に添加すると,溶接管を造管する際に溶接高温割れが起こり易くなるとともに,加工時に積層欠陥が導入され易くなり,結果として耐水素脆化性を低下させる。また,σ相を生成し易くなり,溶接管の加工性に支障をきたす。したがって,鋼中のSi含有量は上記の範囲に規定される。
Si: 4.0% or less Si is an element that improves the resistance to stress corrosion cracking and improves the formability of steel. However, if added excessively, hot cracking is likely to occur when forming a welded pipe, and stacking faults are likely to be introduced during processing, resulting in reduced hydrogen embrittlement resistance. In addition, it becomes easier to generate the σ phase, which hinders the workability of the welded pipe. Therefore, the Si content in the steel is specified in the above range.

Mn:3.0%以下
Mnは,オーステナイト形成元素として耐水素脆性の改善に有効に作用する。しかし,過剰な添加は却って鋼の不動態皮膜を不安定化させる。また,MnSなどの介在物が形成 し易くなり,結果として応力腐食割れの起点となる孔食の発生を助長する。したがって,鋼中のMn含有量は,常温での耐塩害腐食性に対し悪影響を及ぼさないよう,上記範囲に限定される。Mn含有量は,2.0%以下,あるいは1.0%以下に管理しても構わない。
Mn: 3.0% or less Mn acts effectively as an austenite forming element to improve hydrogen embrittlement resistance. However, excessive addition destabilizes the passive film of steel. In addition, inclusions such as MnS are easily formed, and as a result, the occurrence of pitting corrosion, which is the starting point of stress corrosion cracking, is promoted. Therefore, the Mn content in the steel is limited to the above range so as not to adversely affect the salt corrosion resistance at room temperature. The Mn content may be controlled to 2.0% or less, or 1.0% or less.

P:0.10%以下
Pは溶接管を製造する際に溶接高温割れを助長するため,P含有量は低い方が好ましい。しかし,Crを含むステンレス鋼の精錬において脱Pは困難であることから,Pの低減には原料を厳選する必要を生じ,結果として鋼の高コスト化を招く。本発明では,D値を規定の範囲に調整すれば,溶接高温割れ感受性の観点から上記範囲でP含有量が許容される。
P: 0.10% or less P has a lower P content because it promotes welding hot cracking when manufacturing a welded pipe. However, since it is difficult to remove P in the refining of stainless steel containing Cr, it is necessary to carefully select raw materials for reducing P, resulting in high cost of steel. In the present invention, if the D value is adjusted to a specified range, the P content is allowed in the above range from the viewpoint of welding hot cracking sensitivity.

S:0.03%以下
Sは前記のとおり,孔食の起点となりやすいMnSを形成し易いため,応力腐食割れを助長する。また,溶接管を製造する際に溶接高温割れを助長するため,S含有量は低い方が好ましい。このためS含有量は上記の範囲に制限される。
S: 0.03% or less S, as described above, facilitates the formation of MnS, which tends to be the starting point of pitting corrosion, and promotes stress corrosion cracking. Moreover, in order to promote a hot crack in welding when manufacturing a welded pipe, it is preferable that the S content is low. For this reason, S content is restrict | limited to said range.

Ni:6〜20%
Niはオーステナイト形成元素として不可欠である。Mnの添加量を制限する場合,NiはD値およびM値の調整に必要となり,6%以上は必要となる。後述するNやCuなどのオーステナイト形成で成分調整する場合でも,8%以上のNi量を確保することがより好ましい。一方,Niは高価な元素であるため,過剰な添加は好ましくなく,上限は20%あるいは15%に管理しても構わない。
Ni: 6-20%
Ni is indispensable as an austenite forming element. When limiting the addition amount of Mn, Ni is necessary for adjusting the D value and the M value, and 6% or more is necessary. Even when the components are adjusted by forming austenite such as N or Cu, which will be described later, it is more preferable to secure a Ni content of 8% or more. On the other hand, since Ni is an expensive element, excessive addition is not preferable, and the upper limit may be controlled to 20% or 15%.

Cr:14〜28%
Crは不動態皮膜を構成する主要元素であり,その含有量が多くなるほど孔食の発生を抑制し,結果として耐応力腐食割れ性を改善する。一方,Crはフェライト形成元素であるため,過剰な添加はδフェライト相やσ相を生成し易くなり,溶接管の耐水素脆化性や加工性に支障をきたす。十分な耐孔食性を有し,なおかつ耐水素脆化性や加工性に悪影響を及ぼさぬよう,Cr含有量は上記範囲に規定される。十分な耐応力腐食割れ性と耐水素脆化性を確保するために,Cr含有量の範囲は,16〜25%あるいは18〜22%に管理しても構わない。
Cr: 14 to 28%
Cr is a main element constituting the passive film, and as its content increases, the occurrence of pitting corrosion is suppressed, and as a result, the stress corrosion cracking resistance is improved. On the other hand, since Cr is a ferrite-forming element, excessive addition tends to generate a δ ferrite phase or a σ phase, which hinders the hydrogen embrittlement resistance and workability of the welded pipe. The Cr content is specified in the above range so that it has sufficient pitting corrosion resistance and does not adversely affect hydrogen embrittlement resistance and workability. In order to ensure sufficient stress corrosion cracking resistance and hydrogen embrittlement resistance, the Cr content range may be controlled to 16 to 25% or 18 to 22%.

N:0.25%以下
Nはオーステナイト形成元素として耐水素脆化性の改善に有効であるとともに,鋼の高強度化に非常に有効な元素である。ただし,過剰なN含有は,溶接管の造管時にブローホールを発生させるとともに,溶接管の延性を損なうため,Nの含有量は上記範囲に規定される。より高い延性を確保するためには,Nの含有量は0.20%以下に管理しても構わない。
N: 0.25% or less N is an element that is effective in improving hydrogen embrittlement resistance as an austenite forming element and is extremely effective in increasing the strength of steel. However, excessive N content causes blowholes during the formation of the welded pipe and impairs the ductility of the welded pipe, so the N content is specified in the above range. In order to ensure higher ductility, the N content may be controlled to 0.20% or less.

Nb,Ti:1.0%以下
Cu,Mo:4.0%以下
NbおよびTiは,強力な炭化物生成元素であり,Cと結合することにより,耐粒界腐食性を改善するとともに,炭化物を微細分散させれば強度上昇にも有効に作用する。
MoおよびCuは,耐応力腐食割れ性を向上させるとともに,固溶強化元素として強度上昇に有効に作用する。このため,本発明ではこれらの元素の1種以上を必要に応じて添加することができる。
ただし,これらの元素を過剰に添加すると,溶接高温割れ感受性を増大させ,溶接管の造管時に割れが発生し易くなるとともに,製造コストの増大を招く。
したがって,Nb,Ti,Mo,Cuの1種以上を添加する場合には,それぞれの含有量を上記範囲とする。
Nb, Ti: 1.0% or less Cu, Mo: 4.0% or less Nb and Ti are powerful carbide-forming elements. By combining with C, the intergranular corrosion resistance is improved and the carbide is added. If it is finely dispersed, it will effectively increase the strength.
Mo and Cu improve the stress corrosion cracking resistance and effectively increase the strength as a solid solution strengthening element. For this reason, in this invention, 1 or more types of these elements can be added as needed.
However, if these elements are added excessively, the sensitivity to hot cracking of the weld is increased, cracks are likely to occur when the welded pipe is formed, and manufacturing costs are increased.
Therefore, when adding 1 or more types of Nb, Ti, Mo, Cu, each content shall be the said range.

Al:1.0%以下
希土類またはアルカリ土類金属の1種以上:0.10%以下
B:0.010%以下
Al,希土類およびアルカリ土類金属は,孔食の起点となりやすいMnSの形成を抑制し,耐応力腐食割れ性を改善する。また,Bは溶接高温割れを改善し溶接管の製造性を改善する。このため,本発明ではこれらの元素の1種以上を必要に応じて添加することできる。ただし,これらの元素を過剰に添加すると,却って溶接高温割れ感受性を増大させ,溶接管の造管時に割れが発生し易くなるとともに,製造コストの増大を招く。したがって,Al,希土類およびアルカリ土類金属,Bの1種以上を添加する場合には,それぞれの含有量を上記範囲とする。
Al: 1.0% or less One or more of rare earths or alkaline earth metals: 0.10% or less B: 0.010% or less Al, rare earths and alkaline earth metals form MnS that tends to start pitting corrosion. Suppress and improve stress corrosion cracking resistance. B also improves weld hot cracking and improves welded pipe manufacturability. For this reason, in this invention, 1 or more types of these elements can be added as needed. However, if these elements are added excessively, the sensitivity to hot cracking of the weld is increased, and cracks are likely to occur when the welded pipe is formed, and the manufacturing cost is increased. Therefore, when adding 1 or more types of Al, rare earths, alkaline-earth metals, and B, each content shall be the said range.

その他の合金元素は,母材の耐塩害腐食性および溶接部の溶接高温割れ感受性を損なわない範囲で必要に応じて含有させることができる。具体的には,固溶強化に有効なWは4.0%以下,あるいは炭化物生成に有効なZrやVはそれぞれ1.0%以下,耐食性に有効なSnは0.1%以下,溶接高温割れ感受性に有効なY,Caはそれぞれ0.1%以下の範囲でこれらの元素を含有することができる。   Other alloy elements can be included as required within a range that does not impair the salt corrosion resistance of the base metal and the weld hot cracking susceptibility of the weld. Specifically, W effective for solid solution strengthening is 4.0% or less, or Zr and V effective for carbide formation are 1.0% or less, Sn effective for corrosion resistance is 0.1% or less, welding high temperature Y and Ca effective for cracking sensitivity can each contain these elements in the range of 0.1% or less.

[溶接管の製造]
本発明の溶接管は,溶接部のδフェライト相が面積%で0.5%以下を満たすものである限り,造管における溶接方法は限定されるものではない。一般的には通常のオーステナイト系ステンレス鋼管の製造ラインにて鋼板素材を製造し,それをTIG溶接またはレーザー溶接によって造管することによって製造される。
[Manufacture of welded pipes]
The welding method of the present invention is not limited as long as the δ ferrite phase of the weld zone satisfies the area% of 0.5% or less. Generally, it is manufactured by manufacturing a steel plate material on a normal austenitic stainless steel pipe manufacturing line and then pipe-forming it by TIG welding or laser welding.

造管後に焼きなまし熱処理を行う場合には,造管で生成した加工ひずみの除去,δフェライト相の減少,ならびにσ相の生成抑制を目的として,1050〜1150℃の範囲で均熱5分以下にて行う。1050℃未満ではσ相が生成し易くなり,1150℃を超えるとδフェライト相の減少に対する顕著な効果が現れない。また均熱時間が5分を超えると,結晶粒の粗大化を生じ易くなり,結果として強度の低下を招く。焼きなまし熱処理を行うときの加熱および冷却速度はとくに規定しないが,炭化物の生成による鋭敏化を避けるため,500〜800℃の温度範囲を100℃/分以上の冷却速度で冷却するのが好ましい。焼きなまし熱処理の雰囲気もとくに規定しないが,焼鈍スケールが形成されない還元雰囲気,例えば水素100%や,水素75%と窒素25%の混合雰囲気にて実施するか,大気焼鈍雰囲気にて実施するのが好ましい。なお大気雰囲気にて焼きなまし処理を施す場合には,酸化スケールが形成されるため,その後に混酸,例えばフッ酸と硝酸の混合液で比率1:9の液にて酸洗処理を施すことが好ましい。   When annealing heat treatment is performed after pipe forming, the soaking temperature should be less than 5 minutes in the range of 1050 to 1150 ° C for the purpose of removing processing strain generated in pipe forming, reducing δ ferrite phase, and suppressing the formation of σ phase. Do it. If it is less than 1050 ° C., a σ phase is likely to be generated, and if it exceeds 1150 ° C., a remarkable effect on the reduction of the δ ferrite phase does not appear. On the other hand, if the soaking time exceeds 5 minutes, the crystal grains tend to be coarsened, resulting in a decrease in strength. The heating and cooling rates during the annealing heat treatment are not particularly specified, but it is preferable to cool at a cooling rate of 100 ° C./min or more in a temperature range of 500 to 800 ° C. in order to avoid sensitization due to the formation of carbides. Although the annealing heat treatment atmosphere is not particularly specified, it is preferably performed in a reducing atmosphere in which no annealing scale is formed, for example, in a 100% hydrogen, 75% hydrogen and 25% nitrogen mixed atmosphere, or in an air annealing atmosphere. . In the case where the annealing process is performed in an air atmosphere, an oxide scale is formed. Therefore, it is preferable to subsequently perform a pickling process with a mixed acid, for example, a mixed solution of hydrofluoric acid and nitric acid in a ratio of 1: 9. .

本特許では,焼きなまし熱処理にて造管時に生成したδフェライト相の減少させる場合,焼きなまし熱処理の前に減面率で10〜50%の引抜加工を行うことも可能である。ここで,減面率とは,引き抜き前後の断面積の減少率をあらわしており,複数回の引き抜きの間に焼きなまし熱処理を施しても構わない。引き抜き加工での減面率が小さすぎるとδフェライト相の減少に顕著な効果が現れなくなり,減面率が大きすぎると引き抜き加工時に溶接管が破断し易くなるため,上記範囲の減面率で引き抜き加工を行う。   In this patent, when the δ ferrite phase generated during pipe forming is reduced by annealing heat treatment, it is possible to perform a drawing process with a reduction in area of 10 to 50% before the annealing heat treatment. Here, the area reduction rate represents the reduction rate of the cross-sectional area before and after drawing, and annealing heat treatment may be performed between a plurality of drawing times. If the area reduction rate in the drawing process is too small, a remarkable effect will not appear in the reduction of the δ ferrite phase, and if the area reduction rate is too large, the welded tube will break easily during the drawing process. Perform drawing.

表1に示す化学成分の鋼を溶製し,熱間圧延にて板厚4.0mmとし,焼鈍,冷間圧延,焼鈍を経て,板厚1.5mmの冷延焼鈍材を得た。その後,溶接管の溶接部を模擬するために,平板2枚をTIG溶接にて突き合わせ溶接を行った。一部の冷延焼鈍板は,各素材鋼板をロール成形により管状にしていきTIGにより突き合わせ溶接を行う設備を備えた連続造管ラインに通して,外径12.7mmの溶接管を製造した。さらにその一部をロール成形により減面率約40%で引き抜き,外径9.35mm,板厚1.2mmの管とした。溶接板および管の一部は,大気雰囲気中にて焼きなまし熱処理を施し水冷したのち,フッ酸濃度5%,硝酸濃度95%の液温60℃の混酸液にて2分間浸漬し,酸化スケールを除去した。以上の種々の条件にて試作した試験片を供試材とした。   Steels having the chemical components shown in Table 1 were melted and hot rolled to a sheet thickness of 4.0 mm, and subjected to annealing, cold rolling, and annealing to obtain a cold rolled annealed material having a sheet thickness of 1.5 mm. Thereafter, in order to simulate the welded portion of the welded pipe, two flat plates were butt welded by TIG welding. Some of the cold-rolled annealed plates were made into a tube with a diameter of 12.7 mm by passing through a continuous tube-making line equipped with equipment for making each material steel plate into a tubular shape by roll forming and performing butt welding by TIG. Further, a part of the tube was drawn out by roll forming at a surface reduction rate of about 40% to obtain a tube having an outer diameter of 9.35 mm and a plate thickness of 1.2 mm. Welded plate and part of the tube are annealed in air and cooled with water, and then immersed in a mixed acid solution of 5% hydrofluoric acid concentration and 95% nitric acid concentration at 60 ° C for 2 minutes. Removed. Test specimens manufactured under various conditions as described above were used as test materials.

Figure 2010121190
Figure 2010121190

各供試材の金属組織を顕微鏡観察したところ,いずれもオーステナイト単相組織を呈しており,δフェライト相は0.1面積%未満であった。各供試材について,以下の方法でδフェライト相の面積%,溶接部の曲げ性,水素脆化絞り低下率,水素脆化強度低下率,ならびに耐食性評価を実施した。   When the metallographic structure of each test material was observed with a microscope, all of them exhibited an austenite single phase structure, and the δ ferrite phase was less than 0.1 area%. For each specimen, the area% of δ-ferrite phase, weld bendability, hydrogen embrittlement reduction rate, hydrogen embrittlement strength reduction rate, and corrosion resistance were evaluated by the following methods.

[δフェライト相の面積%]
溶接板および溶接管のいずれも図1に示すように溶接線に垂直に切断し,5断面分を切り出す。研磨したのち,30%水酸化ナトリウム水溶液にて6V10秒で電解エッチングし,δフェライト相を現出させる。溶接部全体の面積に対するδフェライト相の面積%が目視にて5%以下のときは,JISG0565(鋼の非金属介在物の銀微鏡試験方法)に準じ,点算法により面積%を算出する。 目視にて5%以上のときは,5%とする。
[Area% of ferrite phase]
As shown in FIG. 1, both the weld plate and the weld pipe are cut perpendicularly to the weld line, and five cross sections are cut out. After polishing, electrolytic etching is performed with a 30% aqueous sodium hydroxide solution at 6 V for 10 seconds to reveal a δ ferrite phase. When the area% of the δ ferrite phase with respect to the total area of the weld is 5% or less by visual observation, the area% is calculated by point calculation according to JIS G0565 (silver microscopic test method for nonmetallic inclusions in steel). If it is 5% or more by visual inspection, it shall be 5%.

[溶接部の曲げ性]
溶接板は,JISZ3122(突き合わせ溶接継手の曲げ試験方法)に記載の縦表曲げ試験片(長さ150mm,幅40mm,長手方向が溶接線と並行)を用い,JISZ2248(金属材料曲げ試験方法)に記載の押し曲げ法にて180°曲げを実施した。溶接高温割れ起因のクラックが発生しなかったものを○(良好),それ以外を×(不良)とした。溶接管は,JISG3459(配管用ステンレス鋼管)に記載のへん平試験にて曲げ性を評価した。へん平試験における平板間の距離Hは,5mmとした。溶接高温割れ起因のクラックが発生しなかったものを○(良好),それ以外を×(不良)とした。
[Bendability of welds]
The welding plate uses the vertical surface bending test piece (length 150 mm, width 40 mm, longitudinal direction parallel to the weld line) described in JISZ3122 (bend test method for butt weld joints), and JISZ2248 (metal material bending test method). 180 ° bending was carried out by the described push bending method. The case where cracks due to welding hot cracking did not occur was evaluated as ◯ (good), and the others were evaluated as x (defect). The welded pipe was evaluated for bendability by the flat test described in JISG3459 (stainless steel pipe for piping). The distance H between the flat plates in the flat test was 5 mm. The case where cracks due to welding hot cracking did not occur was evaluated as ◯ (good), and the others were evaluated as x (defect).

[水素脆化絞り低下率]
溶接板より,試験片の長手方向が溶接線と垂直になるよう切り出し,平行部長さ30mm,幅3mm,肩部半径10mm,掴み部の幅25mm試験片を作製した。試験は,−40℃の常圧大気中および40MPa水素中にて,クロスヘッド速度0.05mm/minでの引張試験を行った。それぞれの破断絞りをJISZ2241(金属材料引張試験法)にて求め,下記(3)式により水素脆化絞り低下率(%)を算出した。各供試材において,水素脆化絞り低下率が80%以上のものを○(良好),それ以外を×(不良)とした。 [水素脆化絞り低下率]=[高圧水素中での破断絞り]/[常圧大気中での破断絞り]×100・・・・・・(3)
[Hydrogen embrittlement reduction rate]
A test piece was cut from the weld plate so that the longitudinal direction of the test piece was perpendicular to the weld line, and a parallel part length 30 mm, a width 3 mm, a shoulder radius 10 mm, and a grip part width 25 mm. The test was conducted in a normal pressure atmosphere of −40 ° C. and 40 MPa hydrogen at a crosshead speed of 0.05 mm / min. Each fracture drawing was obtained by JISZ2241 (metal material tensile test method), and the hydrogen embrittlement drawing reduction rate (%) was calculated by the following equation (3). In each test material, those with a hydrogen embrittlement drawing reduction rate of 80% or more were evaluated as ◯ (good), and those other than that were evaluated as x (defective). [Hydrogen embrittlement reduction ratio] = [Breaking restriction in high-pressure hydrogen] / [Breaking restriction in atmospheric pressure] × 100 (3)

[水素脆化強度低下率]
溶接管よりJISZ2201(金属材料引張試験片)に記載の12C号試験片を採取し,あらかじめ30%の公称引張ひずみを付与し試験に供した。評価は,40℃の温水中でのJISZ2241(金属材料引張試験方法)による引張試験,ならびに40℃で水素チャージを行いながら定応力を付加するレバー式定荷重試験にて行った。水素チャージは,温度40℃の1規定硫酸中にて,陽極を白金,陰極を溶接管とし,電流密度0.5A/cm2の条件にて行った。溶接管に付与する応力を種々変動させ,それぞれの破断時間を求めた。下記(4)式によりそれぞれの条件下での耐力比を算出し,破断時間が1000時間となるときの耐力比を水素脆化強度低下率と定義し,これを求めた。各供試材において,水素脆化強度低下率が100%以上のものを○(良好),それ以外を×(不良〉 とした。 [耐力比]=[定荷重試験での負荷応力]/[0.2%耐力]×100・・・・・・(4)
[Hydrogen embrittlement strength reduction rate]
A 12C No. 12C test piece described in JISZ2201 (metallic material tensile test piece) was sampled from the welded tube, and a nominal tensile strain of 30% was applied in advance for the test. The evaluation was performed by a tensile test according to JISZ2241 (metal material tensile test method) in warm water at 40 ° C. and a lever type constant load test in which constant stress is applied while hydrogen charging is performed at 40 ° C. Hydrogen charging was performed in 1 N sulfuric acid at a temperature of 40 ° C. under conditions of a current density of 0.5 A / cm 2 with platinum as the anode and a welded tube as the cathode. The stress applied to the welded pipe was varied and the respective fracture times were determined. The yield strength ratio under each condition was calculated by the following equation (4), and the yield strength ratio when the rupture time was 1000 hours was defined as the hydrogen embrittlement strength reduction rate, which was obtained. In each test material, those with a hydrogen embrittlement strength reduction rate of 100% or more were evaluated as ○ (good), and the others were evaluated as × (defect) [Yield ratio] = [Load stress in constant load test] / [ 0.2% yield strength] x 100 (4)

[耐食性評価]
溶接板から30mm各の大片,冷延焼鈍板から15mm角の小片をそれぞれ切り出し,それらを重ねてスポット溶接により接合し,図2に示す形状のスポット溶接試験片を作製した。各試験片に「塩水噴霧(5%ナトリウム水溶液,35℃×15分)→乾燥(60℃,30%RH×1時間)→湿潤(50℃,90%RH×3時間)」を1サイクルとする塩乾湿試験を600サイクル施し,試験後のスポット溶接試験片から大片と小片を分離して,大片,小片それぞれについて腐食状況を目視にて観察した。各供試材とも試験数n=3にて実施し,3個のスポット溶接試験片の大片および小片いずれにも応力腐食割れが認められなかったものを○(良好),それ以外を×(不良)とした。
表2には溶接板の結果を,表3には溶接管の結果をそれぞれまとめて示す。
[Evaluation of corrosion resistance]
A large piece of 30 mm each from the weld plate and a small piece of 15 mm square from the cold-rolled annealed plate were cut out, overlapped, and joined by spot welding to produce a spot weld test piece having the shape shown in FIG. One cycle of “salt spray (5% sodium aqueous solution, 35 ° C. × 15 minutes) → drying (60 ° C., 30% RH × 1 hour) → wet (50 ° C., 90% RH × 3 hours)” on each test piece The salt dry / wet test was performed for 600 cycles, the large piece and the small piece were separated from the spot welded test piece after the test, and the corrosion state of each of the large piece and the small piece was visually observed. For each specimen, the number of tests was n = 3, and ○ (good) if no stress corrosion cracking was observed in both large and small pieces of the three spot weld specimens, and x (defective) ).
Table 2 summarizes the results of the welded plates, and Table 3 summarizes the results of the welded pipes.

Figure 2010121190
Figure 2010121190

Figure 2010121190
Figure 2010121190

表2からわかるように,所定の化学組成を有するオーステナイト系ステンレス鋼において,溶接部のδフェライト相の面積%を0.5%以下とした本発明例のものは,溶接部の加工性(曲げ性またはへん平性)に優れ,かつ水素脆化により絞りまたは強度の低下も認められず,塩乾湿環境下での耐応力腐食割れ性に優れていた。したがって,これらのオーステナイト系ステンレス鋼を用いて,溶接部の耐水素脆化性と耐食性(常温での塩害腐食を起点とした応力腐食割れ)に優れる高圧水素輸送用の溶接管を構築することができる。   As can be seen from Table 2, in the austenitic stainless steel having a predetermined chemical composition, the example of the present invention in which the area% of the δ ferrite phase of the weld is 0.5% or less, the workability of the weld (bending In addition, it was excellent in stress corrosion cracking resistance in a salty and wet environment. Therefore, using these austenitic stainless steels, it is possible to construct a welded pipe for high-pressure hydrogen transport that has excellent resistance to hydrogen embrittlement and corrosion resistance (stress corrosion cracking starting from salt corrosion at room temperature). it can.

これに対し,溶接板の比較例であるNo.13,16,18は,鋼No.I,L,NのM値が本発明で規定する値よりも大きいため,引張試験中に加工誘起マルテンサイト相が生成し,水素脆化絞り低下率が低く,耐水素脆化性に劣った。とくにNo.13,18は,鋼No.l,NのM値が−50以上であるため,耐食性評価で応力腐食割れが発生した。No.14,17は,鋼No.J,MのD値が本範囲で規定する範囲よりも小さいため,溶接中に溶接高温割れが発生したと考えられ,結果として曲げ性に劣った。No.15は鋼No.KのD値が本範囲で規定する範囲よりも大きいため,溶接部にδフェライト相が生成し,結果として耐水素脆化性に劣った。   On the other hand, No. which is a comparative example of a welded plate. Nos. 13, 16, and 18 are steel Nos. Since the M values of I, L, and N are larger than the values specified in the present invention, a work-induced martensite phase is generated during the tensile test, the hydrogen embrittlement drawing reduction rate is low, and the hydrogen embrittlement resistance is poor. . In particular, no. Nos. 13 and 18 are steel Nos. Since the M values of l and N were -50 or more, stress corrosion cracking occurred in the corrosion resistance evaluation. No. Nos. 14 and 17 are steel Nos. Since the D values of J and M were smaller than the range specified in this range, it was considered that hot cracking occurred during welding, resulting in poor bendability. No. 15 is steel No. 15; Since the D value of K is larger than the range specified in this range, a δ ferrite phase is formed in the welded portion, resulting in poor hydrogen embrittlement resistance.

一方,溶接管の比較例であるNo.26,27は,本発明で対象とする化学組成は有しているが,本発明の範囲よりもδフェライト相が多く発生した。これは,溶接管の焼きなまし熱処理条件が本発明で規定する範囲よりも長時間側(No.26)または高温側(No.27)であっため,δフェライト相が増加し,結果として溶接部の耐水素脆化性に劣った。   On the other hand, no. Although 26 and 27 have the chemical composition which is the object of the present invention, more δ ferrite phases were generated than the scope of the present invention. This is because the annealing heat treatment condition of the welded tube is longer (No. 26) or higher temperature (No. 27) than the range specified in the present invention, so that the δ ferrite phase increases, resulting in Inferior to hydrogen embrittlement resistance.

溶接管の外観および溶接部断面における溶接金属の形状を模式的に示した図A diagram schematically showing the appearance of the welded pipe and the shape of the weld metal in the weld cross section スポット溶接試験片の形状を模式的に示した図The figure which showed the shape of the spot welding test piece typically

符号の説明Explanation of symbols

1 母材
2 溶接ビード
3 溶接部断面
4 溶接金属
5 母材溶接界面
6 裏ビード
7 管外面
8 管内面
9 肉厚中心
10 大片
11 小片
12 TIG溶接部
13 スポット溶接部
DESCRIPTION OF SYMBOLS 1 Base material 2 Weld bead 3 Welding part cross section 4 Weld metal 5 Base material welding interface 6 Back bead 7 Pipe outer surface 8 Pipe inner surface 9 Thickness center 10 Large piece 11 Small piece 12 TIG welding part 13 Spot welding part

Claims (5)

質量%で,C:0.15%以下,Si:4.0%以下,Mn:3.0%以下,P:0.10%以下,S:0.03%以下,Ni:6〜20%,Cr:14〜28%,N:0.25%以下を含有し,残部がFeおよび不可避的不純物からなり,(1)式で示されるM値が−100以下,(2)式で示されるD値が6〜10に調整されているオーステナイト系ステンレス鋼溶接管において,溶接部のδフェライト相が面積%で0.5%以下に調整されていることを特徴とする高圧水素輸送用オーステナイト系ステンレス鋼溶接管。
M=551−462(C+N)−9.2Si−8.1Mn−29(Ni+Cu)−13.7Cr−18.5Mo ・・・(1)
D=(Cr+1.5Si+0.5Nb+Mo)−(Ni+0.5Mn+0.3Cu+30C+30N) ・・・(2)
ここで,(1)式および(2)式において,各元素記号の箇所にはその元素の含有量を質量%で代入する。Nb,Mo,Cuについては0(ゼロ)を代入する。C,Si,Mn,Nが無添加の場合には不可避的に含有された量を質量%で代入する。
In mass%, C: 0.15% or less, Si: 4.0% or less, Mn: 3.0% or less, P: 0.10% or less, S: 0.03% or less, Ni: 6 to 20% , Cr: 14 to 28%, N: 0.25% or less, with the balance being Fe and inevitable impurities, M value represented by formula (1) is −100 or less, and represented by formula (2) An austenitic stainless steel welded pipe having a D value adjusted to 6 to 10, wherein the δ-ferrite phase of the weld zone is adjusted to 0.5% or less in area%. Stainless steel welded pipe.
M = 551-462 (C + N) -9.2Si-8.1Mn-29 (Ni + Cu) -13.7Cr-18.5Mo (1)
D = (Cr + 1.5Si + 0.5Nb + Mo) − (Ni + 0.5Mn + 0.3Cu + 30C + 30N) (2)
Here, in the formulas (1) and (2), the content of the element is substituted by mass% for each element symbol. For Nb, Mo, Cu, 0 (zero) is substituted. When C, Si, Mn, and N are not added, the amount inevitably contained is substituted by mass%.
質量%で,Nb≦1.0%,Ti≦1.0%,Mo:≦4.0%,Cu≦4.0%を1種以上含む請求項1に記載の高圧水素輸送用オーステナイト系ステンレス鋼溶接管。
ここで,(1)式および(2)式において,Nb,Mo,Cuが無添加の場合には0(ゼロ)を代入する。
The austenitic stainless steel for high-pressure hydrogen transport according to claim 1, comprising at least one of Nb ≦ 1.0%, Ti ≦ 1.0%, Mo: ≦ 4.0%, and Cu ≦ 4.0% by mass%. Steel welded pipe.
Here, in the formulas (1) and (2), 0 (zero) is substituted when Nb, Mo, and Cu are not added.
質量%で,Al≦1.0%,希土類またはアルカリ土類金属の一種以上≦0.10%,B≦0.010%を1種以上含む請求項1,2に記載の高圧水素輸送用オーステナイト系ステンレス鋼溶接管。   The austenite for high-pressure hydrogen transport according to claim 1 or 2, comprising, by mass%, Al ≤ 1.0%, at least one rare earth or alkaline earth metal ≤ 0.10%, and B ≤ 0.010%. Stainless steel welded pipe. 造管後に1050℃〜1150℃の範囲で均熱時間5分以下の焼きなまし熱処理を施すことを特徴とする請求項1,2,3に記載の高圧水素輸送用オーステナイト系ステンレス鋼溶接管の製造方法。   The method for producing an austenitic stainless steel welded pipe for high-pressure hydrogen transport according to claim 1, 2 or 3, wherein an annealing heat treatment is carried out in the range of 1050 ° C to 1150 ° C after the pipe making and a soaking time of 5 minutes or less. . 請求項4に記載の焼きなまし熱処理を施す前に,減面率10%〜50%で引き抜き加工を行うことを特徴とする請求項1,2,3に記戟の高圧水素輸送用オーステナイト系ステンレス鋼溶接管の製造方法。   The austenitic stainless steel for high-pressure hydrogen transport according to claim 1, 2 or 3, wherein a drawing process is performed at a reduction in area of 10% to 50% before performing the annealing heat treatment according to claim 4. Manufacturing method of welded pipe.
JP2008297792A 2008-11-21 2008-11-21 Austenitic stainless welded pipe for high-pressure hydrogen transport, and method for producing the same Pending JP2010121190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008297792A JP2010121190A (en) 2008-11-21 2008-11-21 Austenitic stainless welded pipe for high-pressure hydrogen transport, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008297792A JP2010121190A (en) 2008-11-21 2008-11-21 Austenitic stainless welded pipe for high-pressure hydrogen transport, and method for producing the same

Publications (1)

Publication Number Publication Date
JP2010121190A true JP2010121190A (en) 2010-06-03

Family

ID=42322773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008297792A Pending JP2010121190A (en) 2008-11-21 2008-11-21 Austenitic stainless welded pipe for high-pressure hydrogen transport, and method for producing the same

Country Status (1)

Country Link
JP (1) JP2010121190A (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043877A1 (en) 2010-09-29 2012-04-05 新日鐵住金ステンレス株式会社 Austenite high-manganese stainless steel, manufacturing method therefor, and member using said steel
EP2460904A3 (en) * 2010-12-03 2012-11-28 Bayerische Motoren Werke AG Austenitic steel for hydrogen technology
WO2013005570A1 (en) * 2011-07-06 2013-01-10 新日鐵住金株式会社 Austenite steel welded joint
CN103060709A (en) * 2013-01-08 2013-04-24 江苏银环精密钢管股份有限公司 Precise stainless steel tube for nuclear power unit, and its making technology
KR101359221B1 (en) 2011-09-30 2014-02-05 주식회사 포스코 Method for improving pitting corrosion resistance in welds through surface modification and stainless steel comprising the welds
JP5579316B1 (en) * 2013-09-30 2014-08-27 大陽日酸株式会社 Welding method and welded structure
CN104033665A (en) * 2014-06-05 2014-09-10 陕西太合科技有限公司 Mining high-intensity non-magnetic metal composite pipe and preparation method thereof
KR101543938B1 (en) 2011-03-28 2015-08-11 신닛테츠스미킨 카부시키카이샤 High-strength austenitic stainless steel for high-pressure hydrogen gas
CN104831179A (en) * 2015-04-28 2015-08-12 苏州钢特威钢管有限公司 High-temperature resistant seamless austenitic stainless steel pipe and preparation method thereof
JP2016199782A (en) * 2015-04-08 2016-12-01 新日鐵住金株式会社 Austenite stainless steel
CN107883073A (en) * 2017-10-27 2018-04-06 合肥紫金钢管股份有限公司 A kind of prestressed concrete pipe pile construction longitudinal submerged arc welded pipe
CN107906268A (en) * 2017-10-27 2018-04-13 合肥紫金钢管股份有限公司 High-intensity weather-proof high longitudinal submerged arc welded pipe is used in a kind of outdoor building construction
WO2018088652A1 (en) * 2016-11-14 2018-05-17 주식회사 포스코 Austenitic stainless steel having improved hydrogen embrittlement resistance, and high-pressure hydrogen gas container comprising same
EP3382052A1 (en) * 2017-03-31 2018-10-03 LG Electronics Inc. Ductile stainless steel pipe and heat pump system comprising the same
CN109072377A (en) * 2016-04-07 2018-12-21 新日铁住金株式会社 Austenite stainless steel material
KR20190001113A (en) * 2017-06-26 2019-01-04 엘지전자 주식회사 Gas heat pump system
JP2019044243A (en) * 2017-09-05 2019-03-22 日新製鋼株式会社 Austenitic stainless weld member
JP2019044242A (en) * 2017-09-05 2019-03-22 日新製鋼株式会社 Austenitic stainless weld member
JP2019178417A (en) * 2018-03-30 2019-10-17 日鉄ステンレス株式会社 Ferrite austenite two phase stainless steel sheet and steel tube
JP2020510808A (en) * 2017-03-13 2020-04-09 エルジー エレクトロニクス インコーポレイティド Air conditioner
EP3598028A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598029A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598031A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598032A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598034A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598027A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598030A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598035A4 (en) * 2017-03-13 2021-01-13 LG Electronics Inc. Air conditioner
EP3598033A4 (en) * 2017-03-13 2021-01-13 LG Electronics Inc. Air conditioner
CN113322412A (en) * 2021-05-18 2021-08-31 沈阳融荣科技有限公司 High-strength austenite antibacterial stainless steel and preparation method thereof
CN113584382A (en) * 2021-07-06 2021-11-02 广东省科学院新材料研究所 Iron-based ceramic composite material and preparation method and application thereof
KR20220010184A (en) * 2020-07-17 2022-01-25 주식회사 포스코 High-nitrogen austenitic stainless steel with improved hydrogen embrittlement resistance
CN115127019A (en) * 2017-09-14 2022-09-30 山特维克原料技术德国公开股份有限公司 System for transporting liquid hydrogen, use thereof and method for producing same
US11457783B2 (en) 2019-06-05 2022-10-04 Lg Electronics Inc. Cleaner
US11486013B2 (en) 2017-03-13 2022-11-01 Lg Electronics Inc. Air conditioner
US11519642B2 (en) 2017-06-22 2022-12-06 Lg Electronics Inc. Air conditioner
CN115584444A (en) * 2022-10-17 2023-01-10 江苏图南合金股份有限公司 321 type heat-resistant stainless steel precision thin-walled tube and manufacturing method thereof
EP4403664A1 (en) 2023-01-20 2024-07-24 Daido Steel Co., Ltd. Austenitic stainless steel for high-pressure hydrogen gas or liquid hydrogen, and manufacturing method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02205291A (en) * 1989-02-03 1990-08-15 Nisshin Steel Co Ltd Production of flexible tube having excellent resistance to high-temperature salt damage and corrosion cracking
JPH08269641A (en) * 1995-03-31 1996-10-15 Nisshin Steel Co Ltd Austenitic stainless steel pipe for hot water supply pipe, excellent in stress corrosion cracking resistance
JP2003268503A (en) * 2002-03-08 2003-09-25 Sumitomo Metal Ind Ltd Austenitic stainless steel tube having excellent water vapor oxidation resistance and production method thereof
WO2004111285A1 (en) * 2003-06-10 2004-12-23 Sumitomo Metal Industries, Ltd. Austenitic stainless steel for hydrogen gas and method for production thereof
JP2005290449A (en) * 2004-03-31 2005-10-20 Sumitomo Metal Ind Ltd Fine inclusion-containing stainless steel and its production method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02205291A (en) * 1989-02-03 1990-08-15 Nisshin Steel Co Ltd Production of flexible tube having excellent resistance to high-temperature salt damage and corrosion cracking
JPH08269641A (en) * 1995-03-31 1996-10-15 Nisshin Steel Co Ltd Austenitic stainless steel pipe for hot water supply pipe, excellent in stress corrosion cracking resistance
JP2003268503A (en) * 2002-03-08 2003-09-25 Sumitomo Metal Ind Ltd Austenitic stainless steel tube having excellent water vapor oxidation resistance and production method thereof
WO2004111285A1 (en) * 2003-06-10 2004-12-23 Sumitomo Metal Industries, Ltd. Austenitic stainless steel for hydrogen gas and method for production thereof
JP2005290449A (en) * 2004-03-31 2005-10-20 Sumitomo Metal Ind Ltd Fine inclusion-containing stainless steel and its production method

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9175361B2 (en) 2010-09-29 2015-11-03 Nippon Steel & Sumikin Stainless Steel Corporation Austenitic high Mn stainless steel and method production of same and member using that steel
WO2012043877A1 (en) 2010-09-29 2012-04-05 新日鐵住金ステンレス株式会社 Austenite high-manganese stainless steel, manufacturing method therefor, and member using said steel
EP2460904A3 (en) * 2010-12-03 2012-11-28 Bayerische Motoren Werke AG Austenitic steel for hydrogen technology
US10260125B2 (en) 2011-03-28 2019-04-16 Nippon Steel & Sumitomo Metal Corporation High-strength austenitic stainless steel for high-pressure hydrogen gas
US10266909B2 (en) 2011-03-28 2019-04-23 Nippon Steel & Sumitomo Metal Corporation High-strength austenitic stainless steel for high-pressure hydrogen gas
KR101543938B1 (en) 2011-03-28 2015-08-11 신닛테츠스미킨 카부시키카이샤 High-strength austenitic stainless steel for high-pressure hydrogen gas
WO2013005570A1 (en) * 2011-07-06 2013-01-10 新日鐵住金株式会社 Austenite steel welded joint
JP5126703B1 (en) * 2011-07-06 2013-01-23 新日鐵住金株式会社 Austenitic steel welded joint
US9211601B2 (en) 2011-07-06 2015-12-15 Nippon Steel & Sumitomo Metal Corporation Austenitic steel welded joint
KR101359221B1 (en) 2011-09-30 2014-02-05 주식회사 포스코 Method for improving pitting corrosion resistance in welds through surface modification and stainless steel comprising the welds
CN103060709A (en) * 2013-01-08 2013-04-24 江苏银环精密钢管股份有限公司 Precise stainless steel tube for nuclear power unit, and its making technology
JP2015066586A (en) * 2013-09-30 2015-04-13 大陽日酸株式会社 Welding construction method and welding structure
JP5579316B1 (en) * 2013-09-30 2014-08-27 大陽日酸株式会社 Welding method and welded structure
CN104033665A (en) * 2014-06-05 2014-09-10 陕西太合科技有限公司 Mining high-intensity non-magnetic metal composite pipe and preparation method thereof
JP2016199782A (en) * 2015-04-08 2016-12-01 新日鐵住金株式会社 Austenite stainless steel
CN104831179A (en) * 2015-04-28 2015-08-12 苏州钢特威钢管有限公司 High-temperature resistant seamless austenitic stainless steel pipe and preparation method thereof
CN109072377A (en) * 2016-04-07 2018-12-21 新日铁住金株式会社 Austenite stainless steel material
WO2018088652A1 (en) * 2016-11-14 2018-05-17 주식회사 포스코 Austenitic stainless steel having improved hydrogen embrittlement resistance, and high-pressure hydrogen gas container comprising same
US11413713B2 (en) 2017-03-13 2022-08-16 Lg Electronics Inc. Air conditioner
EP3598033A4 (en) * 2017-03-13 2021-01-13 LG Electronics Inc. Air conditioner
US11608539B2 (en) 2017-03-13 2023-03-21 Lg Electronics Inc. Air conditioner
US11486013B2 (en) 2017-03-13 2022-11-01 Lg Electronics Inc. Air conditioner
US11447839B2 (en) 2017-03-13 2022-09-20 Lg Electronics Inc. Air conditioner
US11421308B2 (en) 2017-03-13 2022-08-23 Lg Electronics Inc. Air conditioner
US11421293B2 (en) 2017-03-13 2022-08-23 Lg Electronics Inc. Air conditioner
US11421292B2 (en) 2017-03-13 2022-08-23 Lg Electronics Inc. Air conditioner
US11408691B2 (en) 2017-03-13 2022-08-09 Lg Electronics Inc. Air conditioner
US11365893B2 (en) 2017-03-13 2022-06-21 Lg Electronics Inc. Air conditioner
JP2020510808A (en) * 2017-03-13 2020-04-09 エルジー エレクトロニクス インコーポレイティド Air conditioner
US11287146B2 (en) 2017-03-13 2022-03-29 Lg Electronics Inc. Air conditioner
EP3598028A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598029A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598031A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598032A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598034A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598027A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598030A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598035A4 (en) * 2017-03-13 2021-01-13 LG Electronics Inc. Air conditioner
US10830379B2 (en) 2017-03-31 2020-11-10 Lg Electronics Inc. Ductile stainless steel pipe and heat pump system comprising the same
CN108692116A (en) * 2017-03-31 2018-10-23 Lg电子株式会社 Soft stainless steel tube
EP3382052A1 (en) * 2017-03-31 2018-10-03 LG Electronics Inc. Ductile stainless steel pipe and heat pump system comprising the same
US11519642B2 (en) 2017-06-22 2022-12-06 Lg Electronics Inc. Air conditioner
KR102419898B1 (en) * 2017-06-26 2022-07-12 엘지전자 주식회사 Gas heat pump system
KR20190001113A (en) * 2017-06-26 2019-01-04 엘지전자 주식회사 Gas heat pump system
US11460223B2 (en) 2017-06-26 2022-10-04 Lg Electronics Inc. Gas heat pump system
JP2019044242A (en) * 2017-09-05 2019-03-22 日新製鋼株式会社 Austenitic stainless weld member
JP2019044243A (en) * 2017-09-05 2019-03-22 日新製鋼株式会社 Austenitic stainless weld member
CN115127019A (en) * 2017-09-14 2022-09-30 山特维克原料技术德国公开股份有限公司 System for transporting liquid hydrogen, use thereof and method for producing same
CN107883073B (en) * 2017-10-27 2019-09-27 合肥紫金钢管股份有限公司 A kind of prestressed concrete pipe pile construction longitudinal submerged arc welded pipe
CN107906268A (en) * 2017-10-27 2018-04-13 合肥紫金钢管股份有限公司 High-intensity weather-proof high longitudinal submerged arc welded pipe is used in a kind of outdoor building construction
CN107883073A (en) * 2017-10-27 2018-04-06 合肥紫金钢管股份有限公司 A kind of prestressed concrete pipe pile construction longitudinal submerged arc welded pipe
CN107906268B (en) * 2017-10-27 2019-09-27 合肥紫金钢管股份有限公司 A kind of outdoor building construction high-intensity weather-proof high longitudinal submerged arc welded pipe
JP2019178417A (en) * 2018-03-30 2019-10-17 日鉄ステンレス株式会社 Ferrite austenite two phase stainless steel sheet and steel tube
JP7262176B2 (en) 2018-03-30 2023-04-21 日鉄ステンレス株式会社 Ferritic and Austenitic Duplex Stainless Steel Sheets and Pipes
US11457783B2 (en) 2019-06-05 2022-10-04 Lg Electronics Inc. Cleaner
KR20220010184A (en) * 2020-07-17 2022-01-25 주식회사 포스코 High-nitrogen austenitic stainless steel with improved hydrogen embrittlement resistance
KR102448744B1 (en) 2020-07-17 2022-09-30 주식회사 포스코 High-nitrogen austenitic stainless steel with improved hydrogen embrittlement resistance
CN113322412A (en) * 2021-05-18 2021-08-31 沈阳融荣科技有限公司 High-strength austenite antibacterial stainless steel and preparation method thereof
CN113584382A (en) * 2021-07-06 2021-11-02 广东省科学院新材料研究所 Iron-based ceramic composite material and preparation method and application thereof
CN115584444A (en) * 2022-10-17 2023-01-10 江苏图南合金股份有限公司 321 type heat-resistant stainless steel precision thin-walled tube and manufacturing method thereof
EP4403664A1 (en) 2023-01-20 2024-07-24 Daido Steel Co., Ltd. Austenitic stainless steel for high-pressure hydrogen gas or liquid hydrogen, and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP2010121190A (en) Austenitic stainless welded pipe for high-pressure hydrogen transport, and method for producing the same
KR101339484B1 (en) High-strength stainless steel pipe
JP5765036B2 (en) Cr-containing steel pipe for line pipes with excellent intergranular stress corrosion cracking resistance in weld heat affected zone
JP6492163B2 (en) High strength austenitic stainless steel with excellent hydrogen embrittlement resistance and method for producing the same
WO2013002418A1 (en) Thick-walled high-strength seamless steel pipe with excellent sour resistance for pipe for pipeline, and process for producing same
KR102415777B1 (en) Two-phase stainless steel clad steel sheet and its manufacturing method
KR20040084807A (en) Hot-rolled steel strip for high strength electric resistance welding pipe and manufacturing method thereof
JP6466734B2 (en) Austenitic high Mn stainless steel welded joint for high-pressure hydrogen gas and liquid hydrogen and method for producing the same
WO2004111285A1 (en) Austenitic stainless steel for hydrogen gas and method for production thereof
JP2009068079A (en) Steel tube with excellent steam oxidation resistance
WO2011155296A1 (en) Austenitic stainless steel tube having excellent steam oxidation resistance, and method for producing same
WO2004083476A1 (en) Stainless steel for high pressure hydrogen gas, vessel and equipment comprising the steel
JPWO2011096592A1 (en) High nitrogen stainless steel pipes having high strength, high ductility, excellent corrosion resistance and heat resistance, and methods for producing them
JP2010116619A (en) Mo SAVING TYPE FERRITIC STAINLESS STEEL FOR AUTOMOTIVE EXHAUST SYSTEM MEMBER HAVING EXCELLENT CORROSION RESISTANCE AFTER HEATING
JP6326265B2 (en) Austenitic stainless steel excellent in hot workability and hydrogen embrittlement resistance and its production method
JP2016183412A (en) High strength austenitic stainless steel excellent in hydrogen embrittlement resistance, manufacturing method therefor, and device for hydrogen used in high pressure hydrogen gas and liquid hydrogen environment
JPWO2017171050A1 (en) Welded structural members
JP2021021093A (en) Austenite stainless steel
JP2009299174A (en) Pressure vessel for high pressure hydrogen gas and pipe
JPWO2018180788A1 (en) High Mn austenitic stainless steel for hydrogen excellent in weldability, welded joint and equipment for hydrogen using the same, and method of manufacturing welded joint
WO2017073093A1 (en) Ferritic stainless steel for fuel cell with excellent anti-creep strength and manufacturing method therefor
JP2019178364A (en) Ferritic stainless steel excellent in salt damage corrosion resistance
JP5640777B2 (en) Cr-containing steel pipe for line pipes with excellent intergranular stress corrosion cracking resistance in weld heat affected zone
JP2006016637A (en) High-strength stainless steel pipe for oil well superior in corrosion resistance to carbon dioxide gas
JP2018059157A (en) Two-phase stainless steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131203