JP2003193202A - High elasticity metastable austenitic stainless steel sheet and production method therefor - Google Patents

High elasticity metastable austenitic stainless steel sheet and production method therefor

Info

Publication number
JP2003193202A
JP2003193202A JP2001392449A JP2001392449A JP2003193202A JP 2003193202 A JP2003193202 A JP 2003193202A JP 2001392449 A JP2001392449 A JP 2001392449A JP 2001392449 A JP2001392449 A JP 2001392449A JP 2003193202 A JP2003193202 A JP 2003193202A
Authority
JP
Japan
Prior art keywords
steel sheet
less
addition
martensite
austenite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001392449A
Other languages
Japanese (ja)
Other versions
JP3877590B2 (en
Inventor
Hiroki Tomimura
宏紀 冨村
Kenichi Morimoto
憲一 森本
Naoto Hiramatsu
直人 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2001392449A priority Critical patent/JP3877590B2/en
Publication of JP2003193202A publication Critical patent/JP2003193202A/en
Application granted granted Critical
Publication of JP3877590B2 publication Critical patent/JP3877590B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metastable austenitic stainless steel sheet which has a high Young's modulus of ≥200,000 N/mm<SP>2</SP>in both the T direction and the L direction. <P>SOLUTION: The steel sheet has a chemical composition containing, by mass, 0.01 to 0.20% C, 12.0 to 20.0% Cr, 4.0 to 12.0% Ni, and 0.01 to 0.20% N, and in which the valule of Md (N) defined as Md (N) =580-520C-2Si-16Mn-16 Cr-23Ni-26Cu-300N-10Mo reaches 0 to 125. The steel sheet has a fine austenite single phase structure having a mean particle diameter of ≤5 μm, a dual-phase structure of fine austenite+martensite where a part of the fine austenite phase is transformed into martensite, or a metallic structure obtained by subjecting these structures to cold rolling. The steel sheet is produced by using a method where a cold rolled steel sheet having the above chemical composition containing ≥60 vol.% martensite is heated at 550 to 850°C to inversely transform the martensite into austenite. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高強度を必要と
し、縦弾性係数(ヤング率)が大きいことが要求される
各種用途、例えば、鉄道車両のマクラハリや横ハリ材,
カーアンテナ,ドクターブレード等の各種ブレード,プ
リンターレールシャフト,ゴルフクラブヘッド部,スプ
リングバックの小さいばね,制振性が要求されるばね,
押しボタンスイッチとしての反発力が要求されるタクト
スイッチ,VTRカセットの押さえばね,ベアリングシ
ール材等に好適に使用できる、高弾性を有する高強度準
安定オーステナイト系ステンレス鋼板およびその製造法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to various applications which require high strength and a large longitudinal elastic modulus (Young's modulus), such as a railroad car's sharpening or horizontal breaking material,
Car antennas, various blades such as doctor blades, printer rail shafts, golf club heads, small springback springs, springs that require damping,
The present invention relates to a high-strength metastable austenitic stainless steel sheet having high elasticity, which can be suitably used for a tact switch that requires repulsive force as a push button switch, a pressing spring of a VTR cassette, a bearing seal material, and the like, and a method for manufacturing the same. .

【0002】[0002]

【従来の技術】金属材料の縦弾性係数を上昇させる手段
としては、理論的には高弾性を有する析出物を析出さ
せ、その体積率に応じて弾性率が向上する現象を利用す
る手法や、単結晶を用いて集合組織を制御する手法等が
ある。しかし、これらを工業的に実用化することはかな
り困難である。
2. Description of the Related Art As a means for increasing the longitudinal elastic modulus of a metal material, a method of theoretically depositing a precipitate having a high elasticity and utilizing the phenomenon that the elastic modulus is improved according to its volume ratio, There is a method of controlling the texture using a single crystal. However, it is quite difficult to commercialize them industrially.

【0003】一方、工業的手法により縦弾性係数の向上
を図った例として、SUS301系の準安定オーステナイト系
ステンレス鋼を用いて、冷間圧延によって生成させた加
工誘起マルテンサイトを利用する方法が知られている
(日本金属学会誌 第33巻 第5号 p.511〜515)。しか
し、この手法によれば、冷間圧延方向に対し直角方向
(T方向)の縦弾性係数は大きく向上する反面、冷間圧
延方向(L方向)の縦弾性係数はあまり上昇しないか逆
に下がる傾向がある。例えばSUS301 3/4H材の縦弾性係
数はT方向で200000N/mm2程度が得られるものの、L方
向では170000〜180000N/mm2程度である。すなわち、準
安定オーステナイト系ステンレス鋼を用いた高弾性化手
法では、鋼板内の特定方向だけしか縦弾性係数の十分な
向上が図れないという欠点があり、必ずしも安定して高
い縦弾性係数が得られていないのが現状である。
On the other hand, as an example in which the longitudinal elastic modulus is improved by an industrial method, there is known a method of using work-induced martensite produced by cold rolling using SUS301 series metastable austenitic stainless steel. (The Japan Institute of Metals, Vol. 33, No. 5, p. 511-515). However, according to this method, the longitudinal elastic modulus in the direction perpendicular to the cold rolling direction (T direction) is greatly improved, while the longitudinal elastic modulus in the cold rolling direction (L direction) is not so much increased or is decreased. Tend. For example SUS301 3 / modulus of longitudinal elasticity of 4H material although about 200000N / mm 2 in the T direction is obtained, the L direction is about 170000~180000N / mm 2. That is, the method of increasing elasticity using metastable austenitic stainless steel has a drawback that the longitudinal elastic coefficient can be sufficiently improved only in a specific direction within the steel sheet, and a stable high elastic modulus is not always obtained. The current situation is not.

【0004】[0004]

【発明が解決しようとする課題】前記各種用途に用いる
高強度ステンレス鋼板は、鋼板のT方向,L方向ともに
安定して200000N/mm2以上の高い縦弾性係数が得られる
ものであることが望まれる。本発明は、そのような高弾
性・高強度ステンレス鋼板を準安定オーステナイト系ス
テンレス鋼を用いて工業的に安定的に製造し、提供する
ことを目的とする。
It is desirable that the high-strength stainless steel sheets used for the above-mentioned various applications should stably obtain a high longitudinal elastic modulus of 200,000 N / mm 2 or more in both the T and L directions of the steel sheet. Be done. It is an object of the present invention to industrially stably produce and provide such a high-elasticity / high-strength stainless steel sheet using metastable austenitic stainless steel.

【0005】[0005]

【課題を解決するための手段】発明者らは種々研究の結
果、加工誘起マルテンサイトが高温でオーステナイトに
逆変態するときに生じる組織の微細化現象を積極的に利
用することにより、SUS301系のような準安定オーステナ
イト系ステンレス鋼においても、上記のような異方性の
少ない高弾性ステンレス鋼板の実現が可能であることを
見出した。
As a result of various studies, the inventors of the present invention have positively utilized the micronization phenomenon of the structure that occurs when the work-induced martensite undergoes the reverse transformation to austenite at high temperature. It has been found that even with such metastable austenitic stainless steel, it is possible to realize a highly elastic stainless steel sheet with little anisotropy as described above.

【0006】すなわち、上記目的は、質量%で、C:0.
01〜0.20%,Cr:12.0〜20.0%,Ni:4.0〜12.0%,
N:0.01〜0.20%を含有するとともに下記(1)式で定義
されるMd(N)の値が0〜125となる化学組成を有する鋼
板、好ましくはC:0.01〜0.20%,Cr:12.0〜20.0
%,Ni:4.0〜12.0%,N:0.01〜0.20%,Si:4.0%
以下,Mn:5.0%以下,P:0.040%以下,S:0.020%
以下,O:0.02%以下,Mo:0(無添加)〜5.0%,C
u:0(無添加)〜3.0%,Ti:0(無添加)〜0.50%,
Nb:0(無添加)〜0.50%,Al:0(無添加)〜0.20
%,B:0(無添加)〜0.015%,REM:0(無添加)〜0.
20%,Y:0(無添加)〜0.20%,Ca:0(無添加)〜
0.10%,Mg:0(無添加)〜0.10%で残部がFeおよび
不可避的不純物からなり、下記(1)式で定義されるMd
(N)の値が0〜125となる化学組成を有する鋼板であっ
て、平均粒径5μm以下の微細オーステナイト単相組織,
または平均粒径5μm以下の微細オーステナイト相の一部
がマルテンサイトに変態した微細オーステナイト+マル
テンサイト2相組織を呈し、鋼板のT方向およびL方向
の縦弾性係数がともに200000N/mm2以上である高弾性準
安定オーステナイト系ステンレス鋼板によって達成され
る。 Md(N)=580−520C−2Si−16Mn−16Cr−23Ni−26Cu−300N−10Mo … …(1)
That is, the above-mentioned object is C: 0.
01 to 0.20%, Cr: 12.0 to 20.0%, Ni: 4.0 to 12.0%,
A steel sheet containing N: 0.01 to 0.20% and having a chemical composition such that the value of Md (N) defined by the following formula (1) is 0 to 125, preferably C: 0.01 to 0.20%, Cr: 12.0 to 20.0
%, Ni: 4.0 to 12.0%, N: 0.01 to 0.20%, Si: 4.0%
Below, Mn: 5.0% or less, P: 0.040% or less, S: 0.020%
Below, O: 0.02% or less, Mo: 0 (no addition) to 5.0%, C
u: 0 (no additive) to 3.0%, Ti: 0 (no additive) to 0.50%,
Nb: 0 (no addition) to 0.50%, Al: 0 (no addition) to 0.20
%, B: 0 (no addition) to 0.015%, REM: 0 (no addition) to 0.
20%, Y: 0 (no addition) ~ 0.20%, Ca: 0 (no addition) ~
0.10%, Mg: 0 (no addition) to 0.10%, the balance consisting of Fe and inevitable impurities, and Md defined by the following formula (1)
A steel sheet having a chemical composition such that the value of (N) is 0 to 125, having a fine austenite single-phase structure with an average grain size of 5 μm or less,
Or, the fine austenite phase with an average grain size of 5 μm or less exhibits a fine austenite + martensite two-phase structure in which part of the fine austenite phase is transformed into martensite, and the longitudinal elastic moduli in the T direction and the L direction of the steel sheet are both 200,000 N / mm 2 or more. Achieved by a highly elastic metastable austenitic stainless steel sheet. Md (N) = 580-520C-2Si-16Mn-16Cr-23Ni-26Cu-300N-10Mo ... (1)

【0007】ここで、Mo,Cu,Ti,Nb,Al,B,R
EM,Y,Ca,Mgの下限を0(無添加)としたのは、こ
れらの元素は、Si,Mn,N等と異なり、一般的な製鋼
プロセスにおいて原料から混入して来ないのが通常であ
るため、無添加の場合は0%(一般的な分析手法による
検出限界以下)となることを考慮したものである。オー
ステナイトやマルテンサイトの他には、析出物や介在物
が少量(概ね1体積%以下)存在していても構わない。
鋼板のT方向とは圧延方向に直角の方向、L方向とは圧
延方向に平行な方向をいう。 (1)式右辺のC,Si,Mn,Cr,Ni,Cu,N,Moの
箇所にはそれぞれ質量%で表された各元素の含有量が代
入される。なお、本明細書において「鋼板」には「鋼
帯」が含まれる。
Here, Mo, Cu, Ti, Nb, Al, B, R
The lower limit of EM, Y, Ca, and Mg was set to 0 (no addition) because these elements, unlike Si, Mn, N, etc., usually do not come from raw materials in a general steelmaking process. Therefore, in the case of no addition, it is considered to be 0% (below the detection limit by a general analytical method). In addition to austenite and martensite, a small amount of precipitates and inclusions (generally 1 vol% or less) may be present.
The T direction of the steel sheet is a direction perpendicular to the rolling direction, and the L direction is a direction parallel to the rolling direction. The content of each element expressed in mass% is substituted in the places of C, Si, Mn, Cr, Ni, Cu, N, Mo on the right side of the equation (1). In addition, in this specification, a "steel strip" is contained in a "steel plate."

【0008】また本発明では、上記化学組成を有する鋼
板であって、冷間加工されたオーステナイト単相組織,
冷間加工されたオーステナイト+マルテンサイト2相組
織,または冷間加工されたマルテンサイト単相組織の金
属組織を呈し、硬さがHv350以上であり、鋼板のT方向
およびL方向の縦弾性係数がともに200000N/mm2以上で
ある高弾性準安定オーステナイト系ステンレス鋼板を提
供する。
According to the present invention, a steel sheet having the above chemical composition, which is a cold-worked austenite single phase structure,
It has a cold-worked austenite + martensite two-phase structure or a cold-worked martensite single-phase structure, has a hardness of Hv350 or more, and has a longitudinal elastic modulus in the T and L directions of the steel sheet. A highly elastic metastable austenitic stainless steel sheet having a total of 200,000 N / mm 2 or more is provided.

【0009】また特に、上記金属組織が、下記i) ii)の
いずれかの組織を呈する鋼板を冷間圧延する方法で得ら
れる微細組織である鋼板を提供する。 i) 平均粒径5μm以下の微細オーステナイト単相組織。 ii) 平均粒径5μm以下の微細オーステナイト相の一部が
マルテンサイトに変態した微細オーステナイト+マルテ
ンサイト2相組織。
Further, in particular, the present invention provides a steel sheet having a fine structure obtained by the method of cold rolling a steel sheet having any one of the following structures i) and ii). i) Fine austenite single-phase structure with an average grain size of 5 μm or less. ii) Fine austenite + martensite two-phase structure in which part of the fine austenite phase having an average grain size of 5 μm or less is transformed into martensite.

【0010】さらに本発明では、上記のような高弾性を
有する準安定オーステナイト系ステンレス鋼板の製造法
として、以下の方法を提供する。すなわち、前記の化学
組成を有しかつ60体積%以上のマルテンサイトを含む準
安定オーステナイト系ステンレス冷延鋼板を用意し、こ
の冷延鋼板を550〜850℃の温度に加熱してマルテンサイ
トをオーステナイトに逆変態させることにより平均粒径
5μm以下の微細オーステナイト単相組織とし、その状態
から常温まで冷却する熱処理(逆変態処理)を行う製造
法を提供する。また、550〜850℃の保持時間を均熱0〜1
80秒とする製造法を提供する。ここで、「逆変態処理」
とは、昇温過程から冷却過程までを含む一連の過程をい
う。
Further, the present invention provides the following method as a method for producing a metastable austenitic stainless steel sheet having high elasticity as described above. That is, a metastable austenitic stainless cold-rolled steel sheet having the above chemical composition and containing 60 vol% or more of martensite is prepared, and the cold-rolled steel sheet is heated to a temperature of 550 to 850 ° C to austenite the martensite. Average particle size by reverse transformation to
Provided is a manufacturing method in which a fine austenite single-phase structure having a size of 5 μm or less is formed, and a heat treatment (reverse transformation process) is performed to cool the state to normal temperature. In addition, the holding time of 550 to 850 ℃ is soaked to 0 to 1
Providing a manufacturing method of 80 seconds. Here, "reverse transformation process"
Means a series of processes including a heating process and a cooling process.

【0011】また本発明では、上記の逆変態処理後に、
i) 90%以下の圧下率で最終冷間圧延を施す製造法、ii)
250〜540℃で時効処理を施す製造法、iii) 90%以下の
圧下率で最終冷間圧延を施し、さらに250〜540℃で時効
処理を施す製造法を提供する。
In the present invention, after the above reverse transformation treatment,
i) A manufacturing method in which final cold rolling is performed at a reduction rate of 90% or less, ii)
A method for aging at 250 to 540 ° C, iii) A method for final cold rolling at a reduction rate of 90% or less, and further aging at 250 to 540 ° C.

【0012】[0012]

【発明の実施の形態】本発明では、準安定オーステナイ
ト系ステンレス鋼を用いて、T方向およびL方向の縦弾
性係数がともに200000N/mm2以上である高弾性ステンレ
ス鋼板を実現する。そのために、加工誘起マルテンサイ
トが高温でオーステナイトに逆変態するときに生じる組
織の微細化現象を積極的に利用する(前述)。ただし、
単に加工誘起マルテンサイトを逆変態させるだけで、目
的とする高弾性鋼板が得られるわけではない。それに
は、化学組成や金属組織などに関して工夫が必要であ
る。以下、本発明を特定するための事項について説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a highly elastic stainless steel sheet having a longitudinal elastic modulus in the T direction and the L direction of 200,000 N / mm 2 or more is realized by using metastable austenitic stainless steel. For that purpose, the phenomenon of micronization of the structure that occurs when the work-induced martensite undergoes reverse transformation to austenite at high temperature is positively utilized (described above). However,
The desired high-elasticity steel sheet cannot be obtained simply by reverse-transforming the work-induced martensite. For that purpose, it is necessary to devise the chemical composition and the metal structure. Hereinafter, matters for specifying the present invention will be described.

【0013】〔合金元素〕Cは、オーステナイト形成元
素であり、マルテンサイトの強化に極めて有効である。
また、逆変態開始温度を低下させる作用があり、これが
逆変態処理において微細な逆変態オーステナイト粒の形
成に寄与する。これらの作用を十分に発揮させるには、
0.01質量%以上のC含有が必要である。0.018質量%以
上の含有が好ましく、0.05質量%以上の含有が一層好ま
しい。ただし、C含有量の増大に伴って逆変態処理の冷
却過程や時効処理で粒界にCr炭化物が析出しやすくな
り、粒界腐食や疲労特性低下の原因となる。これは熱処
理条件の制御により工業的にある程度回避できるが、そ
の点を考慮してもC含有量の上限は0.20質量%にすべき
である。
[Alloy Element] C is an austenite forming element and is extremely effective in strengthening martensite.
Further, there is an action of lowering the reverse transformation start temperature, which contributes to the formation of fine reverse transformation austenite grains in the reverse transformation treatment. To make full use of these effects,
It is necessary to contain 0.01% by mass or more of C. The content of 0.018 mass% or more is preferable, and the content of 0.05 mass% or more is more preferable. However, as the C content increases, Cr carbides tend to precipitate at grain boundaries during the cooling process of reverse transformation treatment and aging treatment, which causes intergranular corrosion and deterioration of fatigue properties. This can be avoided industrially to some extent by controlling the heat treatment conditions, but even considering this point, the upper limit of the C content should be 0.20% by mass.

【0014】Crは、ステンレス鋼としての耐食性を確
保する上で必須の元素である。前記各種用途に必要な耐
食性を付与するには少なくとも10.0質量%のCr含有を
必要とする。しかし、20.0質量%を超えて多量にCrを
含有させると鋼板の靱性が低下する。またマルテンサイ
トを十分に生成させる上でC,N,Ni,Mn,Cu等の
オーステナイト形成元素を多量に添加する必要が生じ、
これは鋼板のコスト増を招くだけでなく、室温でオース
テナイトを必要以上に安定化し高強度化を困難にする。
このため、Cr含有量の上限は20.0質量%とした。
Cr is an essential element for ensuring the corrosion resistance of stainless steel. At least 10.0 mass% of Cr must be contained in order to provide the corrosion resistance required for the above various uses. However, if a large amount of Cr is contained in excess of 20.0% by mass, the toughness of the steel sheet will decrease. Further, in order to sufficiently generate martensite, it becomes necessary to add a large amount of austenite forming elements such as C, N, Ni, Mn and Cu.
This not only increases the cost of the steel sheet, but also stabilizes austenite more than necessary at room temperature, making it difficult to increase strength.
Therefore, the upper limit of the Cr content is set to 20.0 mass%.

【0015】Niは、オーステナイト形成元素であり、
冷間圧延で生成する加工誘起マルテンサイト量を適正化
する上で必須の元素である。また、Cと同様に逆変態温
度を低下させる作用があるため、逆変態オーステナイト
の微細化に寄与する。しかし、過剰のNi添加は加工誘
起マルテンサイトの生成を困難にする。これらの点を考
慮し、Ni含有量は4.0〜12.0質量%に規定した。なお、
4.0超え〜12.0質量%の範囲とすることが一層好まし
い。
Ni is an austenite forming element,
It is an essential element for optimizing the amount of work-induced martensite produced in cold rolling. Further, like C, it has the effect of lowering the reverse transformation temperature, and therefore contributes to the refinement of the reverse transformation austenite. However, excessive addition of Ni makes it difficult to form work-induced martensite. Considering these points, the Ni content is specified to be 4.0 to 12.0 mass%. In addition,
It is more preferable to set it in the range of more than 4.0 to 12.0 mass%.

【0016】Nは、オーステナイト形成元素であり、C
と同様にマルテンサイトを強化するとともに、逆変態開
始温度を低下させてオーステナイトの微細化に寄与す
る。その作用を有効に発揮させるためには0.01質量%以
上のN添加が必要である。しかし、過剰のN添加は製鋼
時にブローホール発生を招き、鋼材の表面疵の原因とな
る。また逆変態処理の冷却過程で粒界へのCr窒化物の
析出を促し、粒界腐食や疲労特性低下の原因となる。こ
のため、N含有量は0.20質量%以下とした。
N is an austenite forming element, and C
As well as strengthening martensite, it lowers the reverse transformation start temperature and contributes to the refinement of austenite. In order to exert its effect effectively, it is necessary to add 0.01% by mass or more of N. However, excessive addition of N causes the generation of blowholes during steelmaking, which causes surface defects on the steel material. Further, in the cooling process of the reverse transformation treatment, precipitation of Cr nitrides at the grain boundaries is promoted, which causes intergranular corrosion and deterioration of fatigue properties. Therefore, the N content is set to 0.20 mass% or less.

【0017】Siは、フェライト形成元素であり、マル
テンサイトを硬くするとともに、オーステナイト相にも
固溶しこれを硬化させ、冷間圧延後の強度向上に寄与す
る。また、ひずみ時効により時効硬化能を向上させる。
しかし、多量のSi添加は高温割れを誘発するなど、製
造上種々の問題を生じる。このため、Siを添加する場
合は4.0質量%以下の範囲で行うことが望ましい。
Si is a ferrite-forming element, which hardens martensite and also forms a solid solution in the austenite phase to harden it, contributing to the improvement of strength after cold rolling. In addition, strain aging improves age hardening ability.
However, addition of a large amount of Si causes various problems in manufacturing, such as inducing hot cracking. Therefore, when Si is added, it is desirable to add Si in an amount of 4.0 mass% or less.

【0018】Mnは、オーステナイト形成元素であり、
Niと同様に冷間圧延での加工誘起マルテンサイト量の
適正化に寄与し、またCと同様に逆変態温度を低下させ
オーステナイトの微細化に寄与する。しかし、過剰のM
n添加は冷間圧延での加工誘起マルテンサイトの生成を
困難にし、逆変態を利用した組織微細化ができなくな
る。このため、Mnを添加する場合は5.0質量%以下の範
囲で行うことが望ましい。
Mn is an austenite forming element,
Like Ni, it contributes to the optimization of the amount of work-induced martensite in cold rolling and, like C, lowers the reverse transformation temperature and contributes to the refinement of austenite. But the excess M
The addition of n makes it difficult to form work-induced martensite in cold rolling, and makes it impossible to refine the structure using reverse transformation. Therefore, when Mn is added, it is desirable to add it in a range of 5.0 mass% or less.

【0019】Moは、ステンレス鋼板の耐食性を向上さ
せるとともに、逆変態時に炭窒化物を微細に分散させる
作用を示す。また、Moはそれ自体のドラッグ効果によ
り結晶粒成長を抑制するので、逆変態を利用して組織の
微細化を狙う本発明においてMoの添加は非常に有効で
ある。ただし、多量のMo添加は高温でのδフェライト
生成を促し好ましくない。またMoは高価な元素であ
る。このため、Moを添加する場合は5.0質量%以下の範
囲で行うことが望ましい。
Mo has the effect of improving the corrosion resistance of the stainless steel sheet and finely dispersing the carbonitride during the reverse transformation. Further, since Mo suppresses the crystal grain growth by its own drag effect, the addition of Mo is very effective in the present invention which aims at the refinement of the structure by utilizing the reverse transformation. However, the addition of a large amount of Mo promotes the formation of δ-ferrite at high temperature, which is not preferable. Mo is an expensive element. Therefore, when Mo is added, it is desirable to add it in the range of 5.0 mass% or less.

【0020】Cuは、オーステナイト形成元素であり、
逆変態温度を低下させる。また逆変態時の時効硬化作用
を有する。しかし、過剰のCu添加は熱間加工性を劣化
させ耳割れ発生の原因になる。このため、Cuを添加す
る場合は3.0質量%以下の範囲で行うことが望ましい。
Cu is an austenite forming element,
Decrease reverse transformation temperature. It also has an age hardening effect during reverse transformation. However, excessive addition of Cu deteriorates the hot workability and causes the occurrence of ear cracks. Therefore, when Cu is added, it is desirable to add Cu in an amount of 3.0 mass% or less.

【0021】Tiは、逆変態時の強度上昇に有効である
が、多量の添加は製鋼スラブの表面疵発生を招く。この
ため、Tiを添加する場合は0.50質量%以下の範囲で行
うことが望ましい。Nbは、逆変態オーステナイト相の
粒成長を抑制する作用を有するが、多量の添加は高温強
度上昇による熱間加工性の低下を招く。このため、Nb
を添加する場合は0.50質量%以下の範囲で行うことが望
ましい。
Ti is effective in increasing the strength during reverse transformation, but addition of a large amount thereof causes surface flaws in the steelmaking slab. For this reason, when Ti is added, it is desirable to add Ti in an amount of 0.50% by mass or less. Nb has an action of suppressing grain growth of the reverse transformation austenite phase, but addition of a large amount thereof causes deterioration of hot workability due to increase in high temperature strength. Therefore, Nb
When added, it is desirable to add 0.50 mass% or less.

【0022】Alは、製鋼時の脱酸に有効な元素であ
り、プレス成形性に悪影響を及ぼすA2系介在物を大幅
に減少させる効果がある。しかし、0.20質量%を超えて
含有させてもその効果は飽和し、さらに表面欠陥の増加
を招くなどの弊害をもたらす。このため、Alを添加す
る場合は0.20質量%以下の範囲で行うことが望ましい。
Al is an element effective for deoxidation during steel making, and has an effect of significantly reducing A 2 type inclusions which adversely affect press formability. However, even if it is contained in an amount of more than 0.20 mass%, the effect is saturated, and there is a problem such as an increase in surface defects. Therefore, when Al is added, it is desirable to add Al in an amount of 0.20% by mass or less.

【0023】Bは、熱間加工性を改善する作用があり、
特にSに起因した熱間圧延時の耳割れ発生を防止する効
果が大きい。Bを添加する場合は0.015質量%以下の範
囲で行うことが望ましい。
B has a function of improving hot workability,
In particular, the effect of preventing the occurrence of edge cracks during hot rolling due to S is great. When B is added, it is desirable to add it in the range of 0.015% by mass or less.

【0024】REM(希土類元素),Y,Ca,Mgは、熱
間加工性や耐酸化性の向上に有効な元素である。これら
の元素を添加する場合は、REM,Yについては0.20質量
%以下、Ca,Mgについては0.10質量%以下の範囲で行
うことが望ましい。その他、逆変態オーステナイト相自
体の強度を上昇させ、かつ粒成長を抑える作用のあるV
を0.5質量%以下の範囲で含有させてもよい。
REM (rare earth element), Y, Ca and Mg are elements effective for improving hot workability and oxidation resistance. When these elements are added, it is desirable to add them in the range of 0.20 mass% or less for REM and Y and 0.10 mass% or less for Ca and Mg. In addition, V which has the effect of increasing the strength of the reverse transformation austenite phase itself and suppressing grain growth
May be contained in the range of 0.5 mass% or less.

【0025】Pは、固溶強化能の大きい元素であるが、
靱性に悪影響を及ぼすことがあるため、0.040質量%以
下に制限する。Sは、熱間圧延での耳割れ発生を助長す
るなどの弊害をもたらすので、0.020質量%以下に制限
する。Oは、酸化物系の非金属介在物を形成して鋼の清
浄度を低下させ、プレス成形性や曲げ加工性に悪影響を
与えるため、0.02質量%以下に制限する。
P is an element having a large solid solution strengthening ability,
Since it may adversely affect the toughness, it is limited to 0.040 mass% or less. S causes adverse effects such as promoting the occurrence of edge cracks in hot rolling, and is therefore limited to 0.020 mass% or less. O forms an oxide-based non-metallic inclusion to reduce the cleanliness of steel and adversely affects press formability and bendability, so O is limited to 0.02 mass% or less.

【0026】〔Md(N)値〕本発明では、冷間圧延で加工
誘起マルテンサイトを生成させ、これを逆変態させるこ
とにより微細なオーステナイト組織を得る。後述するよ
うに、逆変態処理に供する冷延鋼板は、鋼板中の全マル
テンサイト量が60体積%以上であることが必要である。
また、逆変態処理の冷却過程で約20体積%を超える焼入
れマルテンサイトが生成すると、目的とする高弾性が安
定的に得られない。このため本発明では前記(1)式で定
義されるオーステナイト安定度の指標Md(N)を用いて、
その値を0〜125に規定している。すなわち、Md(N)値が
0未満の鋼種では工業的に非常に困難な低温で冷間圧延
しなければ上記の望ましい組織は得られず、125を超え
る鋼種では逆変態処理の冷却過程で約20体積%を超える
多量のマルテンサイトが生成してしまい、残っている逆
変態オーステナイトの平均粒径が5μm以下であっても20
0000N/mm2以上の高い縦弾性係数を安定して得ることが
難しくなる。
[Md (N) Value] In the present invention, a work-induced martensite is produced by cold rolling, and this is subjected to reverse transformation to obtain a fine austenite structure. As described below, the cold-rolled steel sheet subjected to the reverse transformation treatment needs to have a total martensite content in the steel sheet of 60% by volume or more.
Further, if hardened martensite exceeding about 20% by volume is generated in the cooling process of the reverse transformation treatment, the desired high elasticity cannot be stably obtained. Therefore, in the present invention, by using the austenite stability index Md (N) defined by the equation (1),
Its value is specified as 0 to 125. That is, the Md (N) value is
For steel grades less than 0, the above desirable structure cannot be obtained unless cold rolling is performed at a low temperature, which is very difficult industrially.For steel grades over 125, a large amount of martens of more than about 20% by volume is used in the cooling process of the reverse transformation treatment. Even if the average grain size of the remaining reverse transformed austenite is 5 μm or less due to the formation of sites, 20
It becomes difficult to stably obtain a high longitudinal elastic modulus of 0000 N / mm 2 or more.

【0027】〔金属組織〕金属材料において結晶粒が微
細化すると引張強さや降伏強度(あるいは耐力)が向上
することは一般によく知られた現象である。しかしなが
ら、鋼板の縦弾性係数を向上させる手段として結晶粒の
微細化を積極的に利用する技術は確立されていない。そ
の原因として、平均結晶粒径が数μmレベルで、かつ方
向性の少ない組織状態を実現することは必ずしも容易で
ないことなどの理由により、鋼板の縦弾性係数に関し、
数μmレベルの微細組織についての研究が十分に行われ
ていないことが挙げられる。発明者らはマルテンサイト
の逆変態に着目し、準安定オーステナイト系鋼種におい
て極めて微細かつ等方的な組織状態を安定的に実現する
ことによって鋼板の縦弾性係数をT方鋼・L方向ともに
大幅に向上させることに成功した。
[Metal Structure] It is a well-known phenomenon that the tensile strength and the yield strength (or proof stress) of a metal material are improved when the crystal grains are refined. However, a technique for positively utilizing the refinement of crystal grains has not been established as a means for improving the longitudinal elastic modulus of a steel sheet. As a cause thereof, the average crystal grain size is at a level of several μm, and it is not always easy to realize a structural state with little directionality.
It can be argued that research on microstructures at the level of several μm has not been sufficiently conducted. The inventors have paid attention to the reverse transformation of martensite, and have realized a very fine and isotropic microstructure state in a metastable austenitic steel grade, thereby significantly increasing the longitudinal elastic modulus of the steel sheet in both T-steel and L-directions. Succeeded in improving.

【0028】具体的には、前記の化学組成に調整された
鋼板において、以下のいずかの組織状態を実現した。 a) 平均粒径5μm以下の微細オーステナイト単相組織 b) 平均粒径5μm以下の微細オーステナイト相の一部が
マルテンサイトに変態した微細オーステナイト+マルテ
ンサイト2相組織 このうちb)の組織中のマルテンサイトは、マルテンサイ
トを構成するブロックが小さくなっており、通常のマル
テンサイトとは形態を異にするものである。この点は電
子顕微鏡観察により識別される。これらa),b)の組織
は、高温のオーステナイト単相領域で生成した平均粒径
5μm以下の微細オーステナイト相に由来するものであ
る。なお、b)の組織中のマルテンサイトは、加工誘起マ
ルテンサイト,焼入れマルテンサイト,またはそれら両
者の混合相であるが、焼入れマルテンサイトが存在する
場合はその含有量は20体積%以下の範囲で許容される。
Specifically, in the steel sheet adjusted to the above chemical composition, one of the following microstructure states was realized. a) Fine austenite single-phase structure with an average grain size of 5 μm or less b) Fine austenite + martensite two-phase structure in which part of the fine austenite phase with an average grain size of 5 μm or less is transformed into martensite, of which martens in the structure of b) The site has a smaller block that constitutes martensite, and has a different morphology from ordinary martensite. This point is identified by electron microscopy. The structures a) and b) are the average grain size generated in the high temperature austenite single phase region.
It is derived from a fine austenite phase of 5 μm or less. The martensite in the structure of b) is work-induced martensite, hardened martensite, or a mixed phase of both of them, but when hardened martensite is present, its content is within 20% by volume or less. Permissible.

【0029】また、上記a)またはb)の組織を呈する鋼板
をベースに冷間圧延を施すと、高弾性特性を一層向上さ
せることができ、強度向上も図れる。その場合、冷間圧
延率がある程度大きくなると加工誘起マルテンサイトが
形成されるので、以下の3パターンの組織状態が出現す
る。 c) 冷間加工されたオーステナイト単相組織 d) 冷間加工されたオーステナイト+マルテンサイト2
相組織 e) 冷間加工されたマルテンサイト単相組織 このうちd),e)におけるマルテンサイトは主として加工
誘起マルテンサイトであるが、20体積%以下の焼入れマ
ルテンサイトが含まれていてもよい。
If cold rolling is performed on a steel sheet having the structure of a) or b) as a base, the high elastic properties can be further improved and the strength can be improved. In that case, when the cold rolling rate increases to some extent, work-induced martensite is formed, and therefore the following three patterns of microstructure appear. c) Cold-worked austenite single phase structure d) Cold-worked austenite + martensite 2
Phase structure e) Cold-worked martensite single-phase structure Of these, the martensite in d) and e) is mainly work-induced martensite, but may contain 20% by volume or less of quenched martensite.

【0030】これらc)〜e)の組織が上記a)またはb)から
生じたものであるかどうかは、冷間圧延率が比較的低い
場合は電子顕微鏡観察により調べることができる。た
だ、発明者らの詳細な検討の結果、上で規定した化学組
成を有し、上記c)〜e)の金属組織を呈する鋼板におい
て、硬さがHv350以上で、かつT方向,L方向の縦弾性
係数がともに200000N/mm2以上であれば、その鋼板の金
属組織は上記a)またはb)の組織から生じたものであると
言うことができる。
Whether the structures c) to e) are caused by the above a) or b) can be examined by electron microscope observation when the cold rolling ratio is relatively low. However, as a result of the detailed study by the inventors, in the steel sheet having the chemical composition defined above and exhibiting the metal structures of c) to e), the hardness is Hv350 or more, and the hardness in the T direction and the L direction is If both the longitudinal elastic moduli are 200,000 N / mm 2 or more, it can be said that the metal structure of the steel sheet is generated from the structure of a) or b).

【0031】これらの微細組織においては、単位体積あ
たりの粒界頻度が極めて高い。このため、弾性変形領域
での変形による変形歪は容易に粒界にパイルアップさ
れ、その変形歪による転位同士が互いに近い距離で干渉
し合う。この転位の干渉により、マクロ的に一定の弾性
変形を付与したときに発生する応力が高くなる。つま
り、弾性係数が大きくなるわけである。
In these fine structures, the frequency of grain boundaries per unit volume is extremely high. Therefore, the deformation strain due to the deformation in the elastic deformation region is easily piled up at the grain boundary, and the dislocations due to the deformation strain interfere with each other at a close distance. Due to the interference of the dislocations, the stress generated when a certain elastic deformation is applied macroscopically becomes high. That is, the elastic modulus increases.

【0032】〔T方向およびL方向の縦弾性係数がとも
に200000N/mm2以上〕鋼板からT方向の引張試験片とL
方向の引張試験片を採取してそれぞれ引張試験を行った
とき、いずれの縦弾性係数も200000N/mm2以上であるこ
とが、前記各種用途に非常に適した特性を有する鋼板で
あることの必要条件となる。
[Longitudinal elastic modulus in both T and L directions is 200,000 N / mm 2 or more] From a steel sheet, a tensile test piece in the T direction and L
When a tensile test piece in each direction is sampled and subjected to a tensile test, it is necessary that each longitudinal elastic modulus is 200,000 N / mm 2 or more, that the steel sheet has properties that are extremely suitable for the various applications. It becomes a condition.

【0033】〔硬さがHv350以上〕前記各種用途におい
てその使用範囲を広げるにはHv350以上の硬さを確保す
ることが望ましい。このような高い硬度は、逆変態処理
とその後の最終冷間圧延あるいは時効処理を組み合わせ
ること(後述)によって得られる。
[Hardness of Hv350 or More] It is desirable to secure a hardness of Hv350 or more in order to widen the range of use in the various applications mentioned above. Such high hardness is obtained by combining the reverse transformation treatment with the subsequent final cold rolling or aging treatment (described later).

【0034】次に、以上のような高弾性を有する準安定
オーステナイト系ステンレス鋼板の製造条件について説
明する。
Next, the manufacturing conditions of the metastable austenitic stainless steel sheet having high elasticity as described above will be described.

【0035】〔逆変態処理に供する出発材料〕出発材料
として、60体積%以上のマルテンサイトを含む準安定オ
ーステナイト系ステンレス冷延鋼板を用意する。この出
発材料は、溶体化処理を経た焼鈍鋼板を冷間圧延するこ
とによって得られる。本発明で規定する化学組成範囲で
は、溶体化処理後に最大約20体積%の焼入れマルテンサ
イトが存在し得る。この焼入れマルテンサイト自体も逆
変態処理においてオーステナイトになるものであるが、
発明者らの研究によれば、加工誘起マルテンサイトの存
在が組織の微細化に大きく寄与することがわかった。す
なわち、平均粒径5μm以下の微細オーステナイト組織を
得るには、逆変態処理前の段階において、加工誘起マ
ルテンサイトが存在していること、かつ全マルテンサ
イト量が60体積%以上になっていること、が必要であ
る。Md(N)値が低いものは溶体化処理後にオーステナイ
ト単相組織を呈するが、この場合は冷間圧延で60体積%
以上の加工誘起マルテンサイトを生成させておく必要が
ある。なお、ここでいう「冷延鋼板」とは、冷間圧延を
施した後、熱処理を受けていないものを意味する。
[Starting Material for Reverse Transformation] As a starting material, a metastable austenitic stainless cold-rolled steel sheet containing 60% by volume or more of martensite is prepared. This starting material is obtained by cold rolling an annealed steel sheet that has undergone solution treatment. Within the chemical composition range defined in the present invention, there may be up to about 20% by volume of quenched martensite after solution treatment. This quenched martensite itself also becomes austenite in the reverse transformation treatment,
According to the research conducted by the inventors, it was found that the presence of the processing-induced martensite greatly contributes to the refinement of the structure. That is, in order to obtain a fine austenite structure having an average grain size of 5 μm or less, in the stage before the reverse transformation treatment, the processing-induced martensite is present, and the total martensite amount is 60% by volume or more. ,is necessary. Those with a low Md (N) value exhibit an austenite single-phase structure after solution treatment, but in this case, 60% by volume was obtained by cold rolling.
It is necessary to generate the above-mentioned processing-induced martensite. The term "cold rolled steel sheet" as used herein means one that has not been subjected to heat treatment after being subjected to cold rolling.

【0036】〔逆変態処理〕逆変態処理では、鋼板中に
存在するマルテンサイトが全部オーステナイトに逆変態
する温度域に加熱する。ただし、そのような温度域であ
っても、550℃未満では逆変態オーステナイトの反応が
著しく遅いため、工業生産に不向きである。一方、850
℃を超えると生成した逆変態オーステナイトの粒成長の
速度が大きいため、平均粒径5μm以下の微細組織にコン
トロールすることが極めて難しい。このため、逆変態処
理の加熱温度は550〜850℃に規定した。この温度範囲に
おける保持時間は均熱0〜180秒とすることが望ましい。
ここで均熱0秒とは、材料の板厚中心部がこの温度範囲
に到達したのち直ちに冷却を開始する場合をいう。逆変
態処理の冷却過程では、最大20%の焼入れマルテンサイ
トの生成が許容される。
[Reverse Transformation Treatment] In the reverse transformation treatment, the martensite present in the steel sheet is heated to a temperature range where all the martensite undergoes reverse transformation to austenite. However, even in such a temperature range, if the reaction temperature is lower than 550 ° C., the reaction of the reverse transformed austenite is remarkably slow, which is not suitable for industrial production. On the other hand, 850
If the temperature exceeds ℃, the rate of grain growth of the reverse transformed austenite formed is high, so it is extremely difficult to control the microstructure to an average grain size of 5 μm or less. Therefore, the heating temperature of the reverse transformation treatment is specified to be 550 to 850 ° C. The holding time in this temperature range is preferably 0 to 180 seconds for soaking.
Here, 0 second soaking refers to the case where cooling is started immediately after the central portion of the plate thickness of the material reaches this temperature range. In the cooling process of the reverse transformation treatment, up to 20% of hardened martensite is allowed to be formed.

【0037】〔最終冷間圧延・時効処理〕逆変態処理を
終了した鋼板は、そのままでT方向,L方向ともに2000
00N/mm2以上の縦弾性係数を示すものであるが、これを
ベースにして更に「最終冷間圧延」,「時効処理」,ま
たは「最終冷間圧延+時効処理」を施すことにより上記
の高弾性特性を一層向上させることできる。最終冷間圧
延での歪みや時効処理での溶質原子の集積は弾性変形時
の可動転位の動きを抑え、縦弾性係数の向上に寄与す
る。また、同時に強度(硬度)も向上する。
[Final Cold Rolling / Aging Treatment] The steel sheet that has undergone the reverse transformation treatment is left as it is for 2000 in both T and L directions.
It exhibits a longitudinal elastic modulus of 00 N / mm 2 or more, and by further performing "final cold rolling", "aging treatment", or "final cold rolling + aging treatment" on the basis of this, the above High elasticity characteristics can be further improved. The strain in the final cold rolling and the accumulation of solute atoms in the aging treatment suppress the movement of mobile dislocations during elastic deformation and contribute to the improvement of the longitudinal elastic modulus. At the same time, the strength (hardness) is also improved.

【0038】一般に過度の冷間圧延は材質の異方性をも
たらすが、本発明の逆変態を利用した微細組織鋼板にお
いては、非常に高い冷延率でも異方性を生じにくい。こ
のため、最終冷間圧延の冷延率を90%程度まで高めるこ
とができる。この原因として、逆変態処理で生成したオ
ーステナイトは集合組織をもたない比較的ランダムな方
位を有していること、またそのような微細オーステナイ
ト組織鋼板を冷間圧延した場合に生成する加工誘起マル
テンサイトも、比較的方向性を持たないものとなること
が考えられる。
In general, excessive cold rolling brings about anisotropy of the material, but in the microstructured steel sheet utilizing the reverse transformation of the present invention, the anisotropy hardly occurs even at a very high cold rolling rate. Therefore, the cold rolling rate of the final cold rolling can be increased to about 90%. The reason for this is that the austenite produced by the reverse transformation process has a relatively random orientation with no texture, and the work-induced martensite produced when such a fine austenitic steel sheet is cold-rolled. It is possible that the site will also be relatively non-directional.

【0039】時効処理温度については、250℃未満では
縦弾性係数の向上に対する寄与が少なく、また540℃を
超えると加熱時間が短時間であっても逆変態処理後に過
飽和に固溶していたCがCr炭化物を形成して粒界およ
び粒内へ多量に析出し、材料強度の低下や耐食性の低下
を招く。このため、時効温度は250〜540℃に規定した。
時効処理時間は均熱0.5〜120分とすることが望ましい。
Regarding the aging treatment temperature, if it is less than 250 ° C., the contribution to the improvement of the longitudinal elastic modulus is small, and if it exceeds 540 ° C., C which is dissolved in supersaturation after the reverse transformation is dissolved even if the heating time is short. Form Cr carbides and precipitate in large amounts at grain boundaries and in the grains, leading to a decrease in material strength and a decrease in corrosion resistance. Therefore, the aging temperature is specified to be 250 to 540 ° C.
It is desirable that the aging treatment time is soaking 0.5 to 120 minutes.

【0040】[0040]

【実施例】表1に供試材の化学成分値(質量%)および
前記(1)式により求めたMd(N)値を示す。表1中の鋼No.
1〜8は化学組成が本発明規定範囲にある「発明対象
鋼」、鋼No.9〜13は「比較鋼」である。これらの鋼を真
空溶解炉を用いて溶製し、鍛造、熱延を経て板厚3.0mm
の熱延板とし、1050℃×60秒の熱延板焼鈍を行い、酸洗
し、次いで冷間圧延を行って板厚0.8mmの冷延鋼板を得
た。この冷延鋼板について種々の温度で均熱60秒の逆変
態処理を施した。逆変態処理のあと、適宜最終冷間圧延
あるいは時効処理(均熱60分)を施し、以下の4タイプ
製造履歴を有する鋼板サンプルを得た。 〔履歴1〕逆変態処理のまま 〔履歴2〕逆変態処理→最終冷間圧延 〔履歴3〕逆変態処理→時効処理 〔履歴4〕逆変態処理→最終冷間圧延→時効処理
[Examples] Table 1 shows the chemical component values (% by mass) of the test materials and the Md (N) values obtained by the above equation (1). Steel No. in Table 1
1 to 8 are "invention steels" having a chemical composition within the range specified by the present invention, and steel Nos. 9 to 13 are "comparative steels". These steels are melted using a vacuum melting furnace, forged and hot rolled, and then the plate thickness is 3.0mm.
As a hot-rolled sheet of No. 1, hot-rolled sheet was annealed at 1050 ° C. for 60 seconds, pickled, and then cold-rolled to obtain a cold-rolled steel sheet having a sheet thickness of 0.8 mm. The cold-rolled steel sheet was subjected to reverse transformation treatment at various temperatures for 60 seconds soaking. After the reverse transformation treatment, final cold rolling or aging treatment (soaking for 60 minutes) was appropriately performed to obtain a steel sheet sample having the following four types of manufacturing history. [History 1] Reverse transformation treatment as it is [History 2] Reverse transformation treatment → final cold rolling [History 3] Reverse transformation treatment → aging treatment [History 4] Reverse transformation treatment → final cold rolling → aging treatment

【0041】各サンプルについて、逆変態オーステナイ
トの平均粒径,硬さ,T方向とL方向の縦弾性係数を測
定した。逆変態オーステナイトの平均粒径の測定は、履
歴1,3のサンプルについては光学顕微鏡または電子顕
微鏡を用いてL-断面における板厚中心部の粒径を切片
法で求めた。履歴2,4のサンプルは最終冷間圧延によ
り逆変態オーステナイト結晶粒は偏平型になっているの
で、正六角形近似で面積近似して結晶粒径を換算した。
最終冷間圧延率が大きくて結晶粒径が測定できなかった
ものは、予め逆変態処理後、最終冷間圧延前に測定して
おいたオーステナイト平均粒径を表示した。縦弾性係数
は、JIS 13B号引張試験片にひずみゲージを貼り付け
て、応力−変位のグラフの傾きから求めた。実験条件お
よび測定結果を表2に示す。
For each sample, the average grain size, hardness, and longitudinal elastic modulus in the T and L directions of reverse transformed austenite were measured. The average grain size of the reverse transformed austenite was measured by measuring the grain size of the center portion of the plate thickness in the L-section using an optical microscope or an electron microscope for the samples of history 1 and 3. In the samples of History 2 and 4, the reverse-transformed austenite crystal grains were flattened by the final cold rolling. Therefore, the crystal grain size was converted by approximating the area by the regular hexagonal approximation.
For those for which the final cold rolling rate was large and the crystal grain size could not be measured, the austenite average grain size measured in advance after the reverse transformation treatment and before the final cold rolling was displayed. The longitudinal elastic modulus was obtained from the slope of the stress-displacement graph by attaching a strain gauge to a JIS 13B tensile test piece. Table 2 shows the experimental conditions and measurement results.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【表2】 [Table 2]

【0044】本発明例のものは、いずれもT方向および
L方向ともに縦弾性係数が200000N/mm2以上の優れた高
弾性特性を有していた。なかでも最終冷間圧延あるいは
時効処理を施したものは、縦弾性係数および硬さに一層
の向上が見られた。これに対し、比較例のNo.21,24は
逆変態温度が高すぎたためオーステナイト平均粒径が5
μmを超えて大きくなり、No.22,23は逆変態処理温度が
低すぎたため十分にオーステナイトへの逆変態が起こら
ず、いずれの場合も200000N/mm2以上の縦弾性係数を安
定して得ることはできなかった。比較例のNo.25〜29は
鋼の化学組成が本発明の規定を外れるものであり、いず
れも200000N/mm2以上の縦弾性係数を安定して得ること
はできなかった。このうちNo.26,28はMd(N)値が125を
超えて高かったため逆変態処理後に焼入れマルテンサイ
トが20体積%を超えて多量に生成したものであり、残部
の逆変態オーステナイトの平均粒径が5μm以下であるに
もかかわらず高弾性は得られていない。
Each of the examples of the present invention had excellent high elastic properties in which the longitudinal elastic modulus was 200,000 N / mm 2 or more in both the T and L directions. Among them, those subjected to the final cold rolling or the aging treatment were further improved in the longitudinal elastic modulus and the hardness. On the other hand, Comparative Examples Nos. 21 and 24 had an austenite average grain size of 5 because the reverse transformation temperature was too high.
Since the reverse transformation temperature of Nos. 22 and 23 was too low, the reverse transformation to austenite did not occur sufficiently, and in any case, a longitudinal elastic modulus of 200,000 N / mm 2 or more was stably obtained. I couldn't do that. In Comparative Examples Nos. 25 to 29, the chemical compositions of steels were out of the regulation of the present invention, and none of them could stably obtain the longitudinal elastic modulus of 200,000 N / mm 2 or more. Of these, Nos. 26 and 28 had a high Md (N) value of more than 125, and therefore a large amount of quenched martensite was produced in excess of 20% by volume after the reverse transformation treatment. High elasticity is not obtained even though the diameter is 5 μm or less.

【0045】[0045]

【発明の効果】本発明によれば、鋼板のT方向,L方向
ともに200000N/mm2以上の高い縦弾性係数を有する準安
定オーステナイト系ステンレス鋼板を工業的に安定して
製造し提供することが可能になった。本発明に係る鋼板
は、鉄道車両のマクラハリや横ハリ材,カーアンテナ,
ドクターブレード等の各種ブレード,プリンターレール
シャフト,ゴルフクラブヘッド部,スプリングバックの
小さいばね,制振性が要求されるばね,押しボタンスイ
ッチとしての反発力が要求されるタクトスイッチ,VT
Rカセットの押さえばね,ベアリングシール材等の各種
用途において望まれていた高弾性特性を実現したもので
あり、これらの用途において、材料面から性能向上に寄
与するものである。
Industrial Applicability According to the present invention, it is possible to industrially stably provide and provide a metastable austenitic stainless steel sheet having a high longitudinal elastic modulus of 200,000 N / mm 2 or more in both T and L directions. It became possible. The steel sheet according to the present invention is used for a railroad vehicle's railroad hull, horizontal rail material, car antenna,
Various blades such as doctor blades, printer rail shafts, golf club heads, small springback springs, springs that require vibration damping, tactile switches that require repulsive force as a push button switch, VT
It achieves the high elasticity characteristics desired for various applications such as the pressing spring of the R cassette and the bearing sealing material, and contributes to the performance improvement in terms of materials in these applications.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平松 直人 山口県新南陽市野村南町4976番地 日新製 鋼株式会社内 Fターム(参考) 4K037 EA01 EA02 EA05 EA06 EA12 EA13 EA15 EA16 EA17 EA18 EA19 EA20 EA21 EA22 EA23 EA25 EA27 EA28 EA31 EA36 EB02 EB06 EB07 EB08 EB09 FJ04 FJ05    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Naoto Hiramatsu             4976 Nomura-Minami-cho, Shinnanyo-shi, Yamaguchi Nissin             Within Steel Co., Ltd. F-term (reference) 4K037 EA01 EA02 EA05 EA06 EA12                       EA13 EA15 EA16 EA17 EA18                       EA19 EA20 EA21 EA22 EA23                       EA25 EA27 EA28 EA31 EA36                       EB02 EB06 EB07 EB08 EB09                       FJ04 FJ05

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、C:0.01〜0.20%,Cr:12.
0〜20.0%,Ni:4.0〜12.0%,N:0.01〜0.20%を含
有するとともに下記(1)式で定義されるMd(N)の値が0〜
125となる化学組成を有し、平均粒径5μm以下の微細オ
ーステナイト単相組織,または平均粒径5μm以下の微細
オーステナイト相の一部がマルテンサイトに変態した微
細オーステナイト+マルテンサイト2相組織を呈し、鋼
板のT方向およびL方向の縦弾性係数がともに200000N/
mm2以上である高弾性準安定オーステナイト系ステンレ
ス鋼板。 Md(N)=580−520C−2Si−16Mn−16Cr−23Ni−26Cu−300N−10Mo … …(1)
1. In mass%, C: 0.01 to 0.20%, Cr: 12.
0 to 20.0%, Ni: 4.0 to 12.0%, N: 0.01 to 0.20%, and the value of Md (N) defined by the following formula (1) is 0 to
It has a chemical composition of 125 and has a fine austenite single-phase structure with an average grain size of 5 μm or less, or a fine austenite + martensite two-phase structure in which a part of the fine austenite phase with an average grain size of 5 μm or less is transformed into martensite. , The longitudinal elastic modulus of the steel sheet in both the T and L directions is 200,000 N /
Highly elastic metastable austenitic stainless steel sheet with a size of mm 2 or more. Md (N) = 580-520C-2Si-16Mn-16Cr-23Ni-26Cu-300N-10Mo ... (1)
【請求項2】 質量%で、C:0.01〜0.20%,Cr:12.
0〜20.0%,Ni:4.0〜12.0%,N:0.01〜0.20%を含
有するとともに下記(1)式で定義されるMd(N)の値が0〜
125となる化学組成を有し、冷間加工されたオーステナ
イト単相組織,冷間加工されたオーステナイト+マルテ
ンサイト2相組織,または冷間加工されたマルテンサイ
ト単相組織を呈し、硬さがHv350以上であり、鋼板のT
方向およびL方向の縦弾性係数がともに200000N/mm2
上である高弾性準安定オーステナイト系ステンレス鋼
板。 Md(N)=580−520C−2Si−16Mn−16Cr−23Ni−26Cu−300N−10Mo … …(1)
2. C: 0.01 to 0.20% and Cr: 12.% by mass.
0 to 20.0%, Ni: 4.0 to 12.0%, N: 0.01 to 0.20%, and the value of Md (N) defined by the following formula (1) is 0 to
It has a chemical composition of 125 and exhibits a cold-worked austenite single-phase structure, a cold-worked austenite + martensite two-phase structure, or a cold-worked martensite single-phase structure with a hardness of Hv350. The above is the T of the steel plate.
A highly elastic metastable austenitic stainless steel sheet having a longitudinal elasticity coefficient of 200,000 N / mm 2 or more in both the L and L directions. Md (N) = 580-520C-2Si-16Mn-16Cr-23Ni-26Cu-300N-10Mo ... (1)
【請求項3】 金属組織が、下記i) ii)のいずれかの組
織を呈する鋼板を冷間圧延する方法で得られる微細組織
である、請求項2に記載の鋼板。 i) 平均粒径5μm以下の微細オーステナイト単相組織。 ii) 平均粒径5μm以下の微細オーステナイト相の一部が
マルテンサイトに変態した微細オーステナイト+マルテ
ンサイト2相組織。
3. The steel sheet according to claim 2, wherein the metallographic structure is a fine structure obtained by a method of cold rolling a steel sheet exhibiting any of the structures i) and ii) below. i) Fine austenite single-phase structure with an average grain size of 5 μm or less. ii) Fine austenite + martensite two-phase structure in which part of the fine austenite phase having an average grain size of 5 μm or less is transformed into martensite.
【請求項4】 化学組成が、質量%で、C:0.01〜0.20
%,Cr:12.0〜20.0%,Ni:4.0〜12.0%,N:0.01
〜0.20%,Si:4.0%以下,Mn:5.0%以下,P:0.04
0%以下,S:0.020%以下,O:0.02%以下,Mo:0
(無添加)〜5.0%,Cu:0(無添加)〜3.0%,Ti:0
(無添加)〜0.50%,Nb:0(無添加)〜0.50%,A
l:0(無添加)〜0.20%,B:0(無添加)〜0.015%,
REM:0(無添加)〜0.20%,Y:0(無添加)〜0.20
%,Ca:0(無添加)〜0.10%,Mg:0(無添加)〜0.
10%で残部がFeおよび不可避的不純物からなり、下記
(1)式で定義されるMd(N)の値が0〜125となるものであ
る請求項1〜3に記載の鋼板。 Md(N)=580−520C−2Si−16Mn−16Cr−23Ni−26Cu−300N−10Mo … …(1)
4. The chemical composition in mass% is C: 0.01 to 0.20.
%, Cr: 12.0 to 20.0%, Ni: 4.0 to 12.0%, N: 0.01
~ 0.20%, Si: 4.0% or less, Mn: 5.0% or less, P: 0.04
0% or less, S: 0.020% or less, O: 0.02% or less, Mo: 0
(No addition) ~ 5.0%, Cu: 0 (No addition) ~ 3.0%, Ti: 0
(No addition) ~ 0.50%, Nb: 0 (No addition) ~ 0.50%, A
l: 0 (no addition) to 0.20%, B: 0 (no addition) to 0.015%,
REM: 0 (no additive) to 0.20%, Y: 0 (no additive) to 0.20
%, Ca: 0 (no addition) to 0.10%, Mg: 0 (no addition) to 0.
The balance consists of Fe and inevitable impurities at 10%.
The steel sheet according to claim 1, wherein the value of Md (N) defined by the formula (1) is 0 to 125. Md (N) = 580-520C-2Si-16Mn-16Cr-23Ni-26Cu-300N-10Mo ... (1)
【請求項5】 質量%で、C:0.01〜0.20%,Cr:12.
0〜20.0%,Ni:4.0〜12.0%,N:0.01〜0.20%を含
有するとともに下記(1)式で定義されるMd(N)の値が0〜
125となる化学組成を有し、かつ60体積%以上のマルテ
ンサイトを含む準安定オーステナイト系ステンレス冷延
鋼板を用意し、この冷延鋼板を550〜850℃の温度に加熱
してマルテンサイトをオーステナイトに逆変態させるこ
とにより平均粒径5μm以下の微細オーステナイト単相組
織とし、その状態から常温まで冷却する熱処理(逆変態
処理)を行う、鋼板のT方向およびL方向の縦弾性係数
がともに200000N/mm2以上の高弾性準安定オーステナイ
ト系ステンレス鋼板の製造法。 Md(N)=580−520C−2Si−16Mn−16Cr−23Ni−26Cu−300N−10Mo … …(1)
5. C: 0.01 to 0.20% and Cr: 12.% by mass.
0 to 20.0%, Ni: 4.0 to 12.0%, N: 0.01 to 0.20%, and the value of Md (N) defined by the following formula (1) is 0 to
Prepare a metastable austenitic stainless cold-rolled steel sheet having a chemical composition of 125 and containing 60% by volume or more of martensite, and heat the cold-rolled steel sheet to a temperature of 550 to 850 ° C to convert martensite to austenite. By performing reverse transformation into a fine austenite single-phase structure with an average grain size of 5 μm or less, heat treatment (reverse transformation treatment) to cool from that state to room temperature is performed, and the longitudinal elastic moduli in the T and L directions of the steel sheet are both 200,000 N / A method for producing highly elastic metastable austenitic stainless steel sheets of mm 2 or more. Md (N) = 580-520C-2Si-16Mn-16Cr-23Ni-26Cu-300N-10Mo ... (1)
【請求項6】 逆変態処理に供する冷延鋼板の化学組成
が、質量%で、C:0.01〜0.20%,Cr:12.0〜20.0
%,Ni:4.0〜12.0%,N:0.01〜0.20%,Si:4.0%
以下,Mn:5.0%以下,P:0.040%以下,S:0.020%
以下,O:0.02%以下,Mo:0(無添加)〜5.0%,C
u:0(無添加)〜3.0%,Ti:0(無添加)〜0.50%,
Nb:0(無添加)〜0.50%,Al:0(無添加)〜0.20
%,B:0(無添加)〜0.015%,REM:0(無添加)〜0.
20%,Y:0(無添加)〜0.20%,Ca:0(無添加)〜
0.10%,Mg:0(無添加)〜0.10%で残部がFeおよび
不可避的不純物からなり、下記(1)式で定義されるMd
(N)の値が0〜125となるものである請求項5に記載の製
造法。 Md(N)=580−520C−2Si−16Mn−16Cr−23Ni−26Cu−300N−10Mo … …(1)
6. The chemical composition of the cold-rolled steel sheet subjected to reverse transformation treatment, in mass%, is C: 0.01 to 0.20%, Cr: 12.0 to 20.0.
%, Ni: 4.0 to 12.0%, N: 0.01 to 0.20%, Si: 4.0%
Below, Mn: 5.0% or less, P: 0.040% or less, S: 0.020%
Below, O: 0.02% or less, Mo: 0 (no addition) to 5.0%, C
u: 0 (no additive) to 3.0%, Ti: 0 (no additive) to 0.50%,
Nb: 0 (no addition) to 0.50%, Al: 0 (no addition) to 0.20
%, B: 0 (no addition) to 0.015%, REM: 0 (no addition) to 0.
20%, Y: 0 (no addition) ~ 0.20%, Ca: 0 (no addition) ~
0.10%, Mg: 0 (no addition) to 0.10%, the balance consisting of Fe and inevitable impurities, and Md defined by the following formula (1)
The method according to claim 5, wherein the value of (N) is 0 to 125. Md (N) = 580-520C-2Si-16Mn-16Cr-23Ni-26Cu-300N-10Mo ... (1)
【請求項7】 逆変態処理における550〜850℃での保持
時間が均熱0〜180秒である請求項5または6に記載の製
造法。
7. The production method according to claim 5, wherein the holding time at 550 to 850 ° C. in the reverse transformation treatment is soaking for 0 to 180 seconds.
【請求項8】 逆変態処理後に、90%以下の圧下率で最
終冷間圧延を施す請求項5〜7に記載の製造法。
8. The production method according to claim 5, wherein after the reverse transformation treatment, final cold rolling is performed at a reduction rate of 90% or less.
【請求項9】 逆変態処理後に、250〜540℃で時効処理
を施す請求項5〜7に記載の製造法。
9. The production method according to claim 5, wherein an aging treatment is performed at 250 to 540 ° C. after the reverse transformation treatment.
【請求項10】 逆変態処理後に、90%以下の圧下率で
最終冷間圧延を施し、さらに250〜540℃で時効処理を施
す請求項5〜7に記載の製造法。
10. The production method according to claim 5, wherein after the reverse transformation treatment, final cold rolling is performed at a reduction rate of 90% or less, and further aging treatment is performed at 250 to 540 ° C.
JP2001392449A 2001-12-25 2001-12-25 Highly elastic metastable austenitic stainless steel sheet and its manufacturing method Expired - Fee Related JP3877590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001392449A JP3877590B2 (en) 2001-12-25 2001-12-25 Highly elastic metastable austenitic stainless steel sheet and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001392449A JP3877590B2 (en) 2001-12-25 2001-12-25 Highly elastic metastable austenitic stainless steel sheet and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2003193202A true JP2003193202A (en) 2003-07-09
JP3877590B2 JP3877590B2 (en) 2007-02-07

Family

ID=27599768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001392449A Expired - Fee Related JP3877590B2 (en) 2001-12-25 2001-12-25 Highly elastic metastable austenitic stainless steel sheet and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3877590B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004244725A (en) * 2003-01-21 2004-09-02 Nikko Metal Manufacturing Co Ltd High strength austenitic stainless steel strip having excellent fatigue property
JP2006111932A (en) * 2004-10-15 2006-04-27 Nisshin Steel Co Ltd Austenitic stainless steel material with high proportional limit stress, and manufacturing method therefor
WO2006123408A1 (en) * 2005-05-18 2006-11-23 Hohwa Co., Ltd. High silicon stainless steel, spring manufactured by using same as raw material, and method for producing high silicon stainless steel
JP2007332395A (en) * 2006-06-12 2007-12-27 Fu Sheng Industrial Co Ltd Alloy of golf club head
JP2008139552A (en) * 2006-12-01 2008-06-19 Ricoh Co Ltd Developer regulating member, developing device, process cartridge, image forming apparatus, and manufacturing method of developer regulating member
US20090314394A1 (en) * 2007-01-17 2009-12-24 Outokumpu Oyj Method for manufacturing an austenitic steel object
JP2010209449A (en) * 2009-03-12 2010-09-24 Nippon Kinzoku Co Ltd Stainless steel sheet having excellent shape fixability and workability, method for producing the same and article
JP2012144807A (en) * 2011-01-13 2012-08-02 Fusheng Precision Co Ltd Alloy for golf club head and method for producing the same
CN103243274A (en) * 2012-02-02 2013-08-14 大田精密工业股份有限公司 Fe-Cr-Ni alloy of golf club head
WO2014157146A1 (en) * 2013-03-26 2014-10-02 日新製鋼株式会社 Austenitic stainless steel sheet and method for manufacturing high-strength steel material using same
KR20150024945A (en) * 2012-09-04 2015-03-09 신닛테츠스미킨 카부시키카이샤 Stainless steel sheet and method for producing same
JP2015199997A (en) * 2014-04-09 2015-11-12 日新製鋼株式会社 High elastic limit nonmagnetic austenitic stainless steel sheet and manufacturing method therefor
JP2015206124A (en) * 2013-02-28 2015-11-19 日新製鋼株式会社 Austenitic stainless steel sheet and high elastic limit nonmagnetic steel material
JP2020050940A (en) * 2018-09-28 2020-04-02 国立研究開発法人日本原子力研究開発機構 Method for producing austenitic fine-grained stainless steel
CN111235486A (en) * 2018-11-29 2020-06-05 株式会社特殊金属超越 Stainless steel band or foil and method for producing same
KR20200075656A (en) * 2018-12-18 2020-06-26 주식회사 포스코 High-strength stainless steel
CN111989418A (en) * 2018-06-13 2020-11-24 日铁不锈钢株式会社 Martensitic S free-cutting stainless steel
WO2023022351A1 (en) * 2021-08-18 2023-02-23 주식회사 포스코 Austenitic stainless steel and method for manufacturing same
CN116536500A (en) * 2023-05-16 2023-08-04 广东海洋大学 Austenite-deformation induced martensite duplex heterogeneous stainless steel and preparation method thereof

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004244725A (en) * 2003-01-21 2004-09-02 Nikko Metal Manufacturing Co Ltd High strength austenitic stainless steel strip having excellent fatigue property
JP2006111932A (en) * 2004-10-15 2006-04-27 Nisshin Steel Co Ltd Austenitic stainless steel material with high proportional limit stress, and manufacturing method therefor
JP4606113B2 (en) * 2004-10-15 2011-01-05 日新製鋼株式会社 Austenitic stainless steel with high proportional limit stress and manufacturing method
WO2006123408A1 (en) * 2005-05-18 2006-11-23 Hohwa Co., Ltd. High silicon stainless steel, spring manufactured by using same as raw material, and method for producing high silicon stainless steel
AU2005331823B2 (en) * 2005-05-18 2011-07-21 Hohwa Co., Ltd. High silicon stainless steel, spring manufactured by using same as raw material, and method for producing high silicon stainless steel
JP4669444B2 (en) * 2006-06-12 2011-04-13 復盛股▲分▼有限公司 Golf club head alloy
JP2007332395A (en) * 2006-06-12 2007-12-27 Fu Sheng Industrial Co Ltd Alloy of golf club head
JP2008139552A (en) * 2006-12-01 2008-06-19 Ricoh Co Ltd Developer regulating member, developing device, process cartridge, image forming apparatus, and manufacturing method of developer regulating member
US7945195B2 (en) 2006-12-01 2011-05-17 Ricoh Company, Ltd. Developing device having developer regulating member, and image forming apparatus using developing device
US9441281B2 (en) * 2007-01-17 2016-09-13 Outokumpu Oyj Method for manufacturing an austenitic steel object
US20090314394A1 (en) * 2007-01-17 2009-12-24 Outokumpu Oyj Method for manufacturing an austenitic steel object
JP2010516890A (en) * 2007-01-17 2010-05-20 オウトクンプ オサケイティオ ユルキネン Method for manufacturing austenitic steel articles
JP2010209449A (en) * 2009-03-12 2010-09-24 Nippon Kinzoku Co Ltd Stainless steel sheet having excellent shape fixability and workability, method for producing the same and article
JP2012144807A (en) * 2011-01-13 2012-08-02 Fusheng Precision Co Ltd Alloy for golf club head and method for producing the same
CN103243274A (en) * 2012-02-02 2013-08-14 大田精密工业股份有限公司 Fe-Cr-Ni alloy of golf club head
KR101707345B1 (en) 2012-09-04 2017-02-15 신닛테츠스미킨 카부시키카이샤 Stainless steel sheet for precision machining and method for producing same
KR20150024945A (en) * 2012-09-04 2015-03-09 신닛테츠스미킨 카부시키카이샤 Stainless steel sheet and method for producing same
JP2015206124A (en) * 2013-02-28 2015-11-19 日新製鋼株式会社 Austenitic stainless steel sheet and high elastic limit nonmagnetic steel material
JPWO2014157146A1 (en) * 2013-03-26 2017-02-16 日新製鋼株式会社 Austenitic stainless steel sheet and method for producing high-strength steel using the same
WO2014157146A1 (en) * 2013-03-26 2014-10-02 日新製鋼株式会社 Austenitic stainless steel sheet and method for manufacturing high-strength steel material using same
JP2015199997A (en) * 2014-04-09 2015-11-12 日新製鋼株式会社 High elastic limit nonmagnetic austenitic stainless steel sheet and manufacturing method therefor
CN111989418A (en) * 2018-06-13 2020-11-24 日铁不锈钢株式会社 Martensitic S free-cutting stainless steel
CN111989418B (en) * 2018-06-13 2022-02-22 日铁不锈钢株式会社 Martensitic S free-cutting stainless steel
JP2020050940A (en) * 2018-09-28 2020-04-02 国立研究開発法人日本原子力研究開発機構 Method for producing austenitic fine-grained stainless steel
US11597982B2 (en) 2018-09-28 2023-03-07 Japan Atomic Energy Agency Production process of fine-grained austenitic stainless steel
CN111235486A (en) * 2018-11-29 2020-06-05 株式会社特殊金属超越 Stainless steel band or foil and method for producing same
CN111235486B (en) * 2018-11-29 2021-11-12 株式会社特殊金属超越 Stainless steel band or foil and method for producing same
TWI704239B (en) * 2018-11-29 2020-09-11 日商特殊金屬超越股份有限公司 Stainless steel strip or stainless steel foil and manufacturing method thereof
KR102169457B1 (en) * 2018-12-18 2020-10-23 주식회사 포스코 High-strength stainless steel
CN113227431A (en) * 2018-12-18 2021-08-06 株式会社Posco High strength stainless steel
CN113227431B (en) * 2018-12-18 2022-12-20 株式会社Posco High strength stainless steel
KR20200075656A (en) * 2018-12-18 2020-06-26 주식회사 포스코 High-strength stainless steel
US11952649B2 (en) 2018-12-18 2024-04-09 Posco Co., Ltd High-strength stainless steel
WO2023022351A1 (en) * 2021-08-18 2023-02-23 주식회사 포스코 Austenitic stainless steel and method for manufacturing same
CN116536500A (en) * 2023-05-16 2023-08-04 广东海洋大学 Austenite-deformation induced martensite duplex heterogeneous stainless steel and preparation method thereof
CN116536500B (en) * 2023-05-16 2023-11-14 广东海洋大学 Austenite-deformation induced martensite duplex heterogeneous stainless steel and preparation method thereof

Also Published As

Publication number Publication date
JP3877590B2 (en) 2007-02-07

Similar Documents

Publication Publication Date Title
JP4324072B2 (en) Lightweight high strength steel with excellent ductility and its manufacturing method
JP5056985B2 (en) Austenitic stainless steel sheet and manufacturing method thereof
JP3877590B2 (en) Highly elastic metastable austenitic stainless steel sheet and its manufacturing method
JP4528137B2 (en) Manufacturing method of high strength and high ductility steel sheet with excellent hole expandability
JP4528769B2 (en) Method for producing cold rolled ferritic / martensitic duplex steel strip and steel strip obtained thereby
JP2005097725A (en) Steel sheet for hot press having hydrogen embrittlement resistance, automobile member and its production method
JP2010059452A (en) Cold-rolled steel sheet and producing method therefor
JP4367300B2 (en) High-strength cold-rolled steel sheet excellent in ductility and chemical conversion property and method for producing the same
KR20100027993A (en) Steel plate
KR20210149145A (en) Cold-rolled martensitic steel sheet and manufacturing method thereof
JP4085826B2 (en) Duplex high-strength steel sheet excellent in elongation and stretch flangeability and method for producing the same
JP2005120399A (en) High-strength and low-specific-gravity steel sheet having excellent ductility, and its manufacturing method
KR20200039611A (en) Carburizing steel sheet, and manufacturing method of carburizing steel sheet
KR101606946B1 (en) High-strength stainless steel material and process for production of the same
JP4589747B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties, its manufacturing method and strain relief annealing method
JP2003089851A (en) High strength duplex stainless steel sheet having high elasticity, and production method therefor
KR20220005572A (en) Cold-rolled martensitic steel sheet and manufacturing method thereof
JP3470660B2 (en) Chromium stainless steel material for spring and multi-layered structure for spring and method for producing the same
JP4214671B2 (en) Ferritic Cr-containing cold-rolled steel sheet excellent in ductility, workability and ridging resistance and method for producing the same
EP2220260A1 (en) Low chrome ferritic stainless steel with high corrosion resistance and stretchability and method of manufacturing the same
JP4606113B2 (en) Austenitic stainless steel with high proportional limit stress and manufacturing method
JP3606200B2 (en) Chromium-based stainless steel foil and method for producing the same
JP3603726B2 (en) Austenitic stainless steel sheet for electronic components
JP2004143470A (en) Steel sheet excellent in paint bake hardenability and retarded natural aging hardenability and its manufacturing process
JP3674502B2 (en) Bake-hardening cold-rolled steel sheet and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041130

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20061031

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061031

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees