JPH05329506A - Production of vibration damping structure having high toughness - Google Patents

Production of vibration damping structure having high toughness

Info

Publication number
JPH05329506A
JPH05329506A JP16000292A JP16000292A JPH05329506A JP H05329506 A JPH05329506 A JP H05329506A JP 16000292 A JP16000292 A JP 16000292A JP 16000292 A JP16000292 A JP 16000292A JP H05329506 A JPH05329506 A JP H05329506A
Authority
JP
Japan
Prior art keywords
vibration damping
steel plate
less
vibration
relief annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP16000292A
Other languages
Japanese (ja)
Inventor
Yukio Tomita
幸男 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP16000292A priority Critical patent/JPH05329506A/en
Publication of JPH05329506A publication Critical patent/JPH05329506A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To provide the process for production of the structure having excellent toughness and vibration damping performance. CONSTITUTION:An ingot or slab having a compsn. contg. <=0.005% C, <=0.04% Si, <=0.20% Mn, <=0.10% A and <=0.004% N is heated to 1050 to 1250 deg.C and is hot rolled at >=750 deg.C finishing temp. to a thick steel plate. The structure consisting of the thick steel plate is produced by subjecting the steel plate to stress relief annealing at 750 to 930 deg.C. Then, the vibration damping structure having the high toughness is economically produced. The objective structure is effective for preventing the noise and vibration of traffic organs, factories and construction site.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高靱性を有する制振構
造物の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a vibration damping structure having high toughness.

【0002】[0002]

【従来の技術】近年自動車,鉄道,車両等交通機関によ
る騒音や、工場,工事現場の騒音,あるいは振動の周辺
住民に与える影響は日毎に大きくなり、大きな社会問題
となっている。
2. Description of the Related Art In recent years, the influence of noise from transportation such as automobiles, railroads and vehicles, noise from factories and construction sites, or vibrations on nearby residents has become large every day, and has become a major social problem.

【0003】その解決の一手段として、材料自身が振動
吸収能を持つような振動吸収材料の研究開発が進めら
れ、振動吸収性が高く、用途に適した制振材料が車両,
船舶,産業機械や鉄橋等の構造材料として使用され、さ
らに用途の拡大に伴い、従来の薄板を表皮板として制振
材料だけでなく、厚板を使用した制振構造物が求められ
ている。
As one means for solving the problem, research and development of a vibration absorbing material in which the material itself has a vibration absorbing ability has been advanced, and a vibration damping material having a high vibration absorbing property and suitable for an application is used for a vehicle,
It is used as a structural material for ships, industrial machines, iron bridges and the like, and with further expansion of applications, not only a damping material using a conventional thin plate as a skin plate but also a damping structure using a thick plate is required.

【0004】[0004]

【発明が解決しようとする課題】ところでこのような構
造物では、製作に当たって一般に溶接,加工が行われる
が、これが靱性を低下させるため、厚板からなる構造物
では、応力除去焼鈍が必要である。
By the way, in such a structure, welding and working are generally carried out in manufacturing, but since this lowers the toughness, the stress relief annealing is necessary for the structure made of a thick plate. ..

【0005】従来の樹脂サンドウィッチ型制振鋼板で
は、樹脂が溶接により高温になって変質したり、加工に
より樹脂が剥離するため、溶接後熱処理をすることが不
可能である。従って、この熱処理に耐えうる構造物の製
造法が強く求められている。
In the conventional resin sandwich type vibration-damping steel plate, it is impossible to perform heat treatment after welding because the resin is heated to a high temperature to be deteriorated and the resin is peeled off by working. Therefore, there is a strong demand for a method of manufacturing a structure that can withstand this heat treatment.

【0006】本発明は上記課題に鑑みなされたもので、
応力除去焼鈍が確実に施工でき、靱性及び制振性能に優
れた構造物の製造方法を提供する。
The present invention has been made in view of the above problems,
Provided is a method for manufacturing a structure that can be surely subjected to stress relief annealing and has excellent toughness and vibration damping performance.

【0007】[0007]

【課題を解決するための手段】本発明は、重量%で、 C :0.005%以下 Si :0.04%以下 Mn :0.20%以下 Al :0.10%以下 N :0.004%以下 を含有し、残部鉄及び不可避的不純物元素からなる組成
を有する鋼片または鋳片を、1050〜1250℃に加
熱し、750℃以上の仕上温度にて熱間圧延を行って厚
鋼板とし、該厚鋼板からなる構造物を750〜930℃
で応力除去焼鈍する高靱性を有する制振構造物の製造方
法である。
The present invention, in% by weight, is C: 0.005% or less Si: 0.04% or less Mn: 0.20% or less Al: 0.10% or less N: 0.004 % Or less, and a steel slab or a slab having a composition of the balance iron and unavoidable impurity elements is heated to 1050 to 1250 ° C. and hot rolled at a finishing temperature of 750 ° C. or higher to form a thick steel plate. , A structure made of the thick steel plate at 750 to 930 ° C.
It is a method of manufacturing a vibration damping structure having high toughness, which is subjected to stress relief annealing at.

【0008】[0008]

【作用】以下本発明を作用とともに詳細に説明する。The operation of the present invention will be described in detail below.

【0009】制振構造体を構成する厚鋼板としては、構
造体製作後に高靱性を有すると同時に制振性能を有する
ことが求められている。本発明者は、この両者を満たす
ために種々の検討を行い、新たに以下の知見を得て本発
明を成した。
The thick steel plate that constitutes the vibration damping structure is required to have high toughness and high vibration damping performance after the structure is manufactured. The present inventor has conducted various studies in order to satisfy both of the above, and newly obtained the following findings to achieve the present invention.

【0010】即ち前者の高靱性に関しては、構造体を加
工,溶接で製作した場合の残留応力を除去するための応
力除去焼鈍が有効である。後者の制振性能に関しては、
構造体を製作した後の高靱性を確保するための応力除去
焼鈍により、フェライト結晶粒を粗大化させることが重
要であることを見出した。
That is, with respect to the former high toughness, stress relief annealing is effective for eliminating the residual stress when the structure is processed and welded. Regarding the damping performance of the latter,
It was found that it is important to coarsen ferrite crystal grains by stress relief annealing to secure high toughness after manufacturing the structure.

【0011】結晶粒の粗大化により粒界に発生する磁区
の乱れ(スパイク磁区)が減少し、磁区・磁壁構造が整
然と並び、磁壁の移動が容易となる。構造体の部材の変
形に際し、磁壁が容易に移動することにより振動エネル
ギーが吸収されて振動が減衰し、制振性能が向上するこ
とを見出した。
The disorder of the magnetic domain (spike magnetic domain) generated at the grain boundary due to the coarsening of the crystal grain is reduced, the magnetic domain / domain wall structure is arranged in order, and the domain wall is easily moved. It was found that when the members of the structure are deformed, the magnetic domain walls easily move to absorb the vibration energy and attenuate the vibration, thereby improving the vibration damping performance.

【0012】更に結晶粒を極限まで粗大化することが、
構造体を製作した後応力除去焼鈍した状態で、高靱性で
制振性能が高まることを見出した。
Further, it is necessary to coarsen the crystal grains to the limit,
It was found that the structure has high toughness and high vibration damping performance after being stress-relieved and annealed.

【0013】更に結晶粒を極限まで粗大化するために
は、C,Si,Mn,N等の各種成分元素を極限まで低
減することにより、応力除去焼鈍で構造物の構成部材中
の歪除去と、大幅なフェライト粒成長が図れる。その結
果制振性能が向上する。
In order to further coarsen the crystal grains to the limit, by reducing various constituent elements such as C, Si, Mn, and N to the limit, stress relief annealing can be performed to remove strain in the constituent members of the structure. A large ferrite grain growth can be achieved. As a result, the vibration damping performance is improved.

【0014】次に、溶接及び曲げ加工により構造物を製
作した後に応力除去焼鈍を行うのは、充分残留応力を除
去すると同時に、この熱処理の昇温過程及び最高温度で
の保持過程において結晶粒の粗大化を図り、制振性能を
高めるためである。このためには、適正な温度範囲で応
力除去焼鈍することが必要である。
Next, the stress relief annealing is carried out after the structure is manufactured by welding and bending to remove the residual stress sufficiently, and at the same time, the grain size of the crystal grains is increased during the heating process and the holding process at the maximum temperature of this heat treatment. This is for coarsening and improving the vibration damping performance. For this purpose, it is necessary to perform stress relief annealing in an appropriate temperature range.

【0015】図1に0.003%C−0.03%Si−
0.13%Mn−0.0032%N鋼での損失係数に及
ぼす応力除去焼鈍温度の影響を示す。応力除去焼鈍温度
としては、結晶粒の粗大化のため750℃以上必要であ
り、930℃を超えて焼鈍すると、変態によりむしろ結
晶粒が微細化するため損失係数が低下する。そこで温度
範囲は750〜950℃とする。
In FIG. 1, 0.003% C-0.03% Si-
The effect of stress relief annealing temperature on the loss factor in 0.13% Mn-0.0032% N steel is shown. The stress relieving annealing temperature needs to be 750 ° C. or higher for coarsening the crystal grains, and if annealing is performed at higher than 930 ° C., the crystal grains are rather refined due to the transformation and the loss factor is lowered. Therefore, the temperature range is set to 750 to 950 ° C.

【0016】次に成分の限定理由を述べる。Next, the reasons for limiting the components will be described.

【0017】Cは磁壁の移動を困難にし、制振性能を低
くする元素であり、極力押さえる必要があるため0.0
05%を上限とする。
C is an element that makes the movement of the domain wall difficult and reduces the vibration damping performance, and it is necessary to suppress it as much as 0.0.
The upper limit is 05%.

【0018】Siは磁壁の移動を困難にして、制振性能
を低くする元素であり、極力押さえる必要があるため
0.04%を上限とする。
Si is an element that makes it difficult to move the domain wall and lowers the vibration damping performance. Since it is necessary to suppress it as much as possible, the upper limit is 0.04%.

【0019】Mnは制振性能を低くする元素であり、極
力押さえる必要があるため0.20%を上限とする。
Mn is an element that lowers the vibration damping performance, and it is necessary to suppress it as much as possible, so the upper limit is 0.20%.

【0020】Alは脱酸上必要な元素であるが、0.1
0%を超えて添加すると靱性が低下するために、上限を
0.10%とする。
Al is an element necessary for deoxidation, but 0.1
If added over 0%, the toughness decreases, so the upper limit is made 0.10%.

【0021】Nは磁壁の移動を困難にすることにより、
制振性能を低くする元素であり、極力押さえる必要があ
るため0.004%を上限とする。
N makes it difficult to move the domain wall,
It is an element that lowers the vibration damping performance, and it is necessary to suppress it as much as possible, so 0.004% is made the upper limit.

【0022】他に不可避的不純物元素として、P,S等
を含有してもよいが、これらは少ない方が靱性上好まし
い。
In addition, P, S and the like may be contained as an unavoidable impurity element, but the smaller the content of these elements, the better the toughness.

【0023】この鋼を溶製するにあたっては、電気炉,
転炉の何れを用いてもよい。鋼板とするにあたっては、
熱間圧延の加熱温度を1050℃未満、あるいは圧延仕
上温度を750℃未満とすると、結晶粒の微細化により
制振性能が低くなる。また1250℃を超える加熱は、
燃料コストや炉のメンテナンス費用の上昇をきたすた
め、加熱温度は1050〜1250℃,圧延仕上温度は
750℃以上とする。
In melting this steel, an electric furnace,
Any of the converters may be used. When making a steel plate,
When the heating temperature of hot rolling is less than 1050 ° C or the rolling finishing temperature is less than 750 ° C, the vibration damping performance is lowered due to the refinement of crystal grains. Also, heating above 1250 ° C
In order to increase the fuel cost and the maintenance cost of the furnace, the heating temperature is set to 1050 to 1250 ° C and the rolling finishing temperature is set to 750 ° C or higher.

【0024】溶接及び曲げ加工により構造体を製作した
後の応力除去焼鈍は、充分残留応力を除去すると同時
に、この熱処理により結晶粒の粗大化を図り、制振性能
を高めるため、図1に示すように750〜930℃の範
囲で行う。
The stress relief annealing after the structure is manufactured by welding and bending is sufficient to remove the residual stress, and at the same time, the heat treatment is performed to coarsen the crystal grains and enhance the vibration damping performance. So that the temperature is in the range of 750 to 930 ° C.

【0025】[0025]

【実施例】表1に示す化学成分のうち1〜3は本発明
例,4〜13は比較例である。鋼の溶製は転炉により行
い、これをスラブとした後、表1に示す加熱,圧延を施
し厚鋼板を製造した。さらに厚鋼板を溶接し、H型構造
物を製作後、必要に応じて応力除去焼鈍を行った。
EXAMPLES Of the chemical components shown in Table 1, 1-3 are examples of the present invention, and 4-13 are comparative examples. Steel was melted by a converter, made into a slab, and then heated and rolled as shown in Table 1 to manufacture thick steel plates. Further, a thick steel plate was welded to produce an H-shaped structure, and then stress relief annealing was performed if necessary.

【0026】表1に、合わせて上記構造物の損失係数
と、シャルピー衝撃試験値を示す。
Table 1 also shows the loss factor of the above structure and the Charpy impact test value.

【0027】本発明例の1〜3は、C,N等の制振性能
阻害元素を低減し、結晶粒を極限まで粗粒化するための
加熱,圧延,応力除去焼鈍も適正であるため、損失係数
が高く、制振性能も良好で、かつ靱性も高い。
In Examples 1 to 3 of the invention, heating, rolling, and stress relief annealing for reducing the vibration damping performance-inhibiting elements such as C and N, and for coarsening the crystal grains to the limit are appropriate. It has a high loss coefficient, good vibration damping performance, and high toughness.

【0028】次に比較例としては、例4はCが高く、例
5はSiが高く、例6はMnが高く、損失係数が低い。
例7はAlが高く、損失係数が低く、靱性も低い。例8
はNが高く、例9は加熱温度が低く、例10は圧延仕上
温度が低く、損失係数が低い。例11は熱処理がないた
め、損失係数が低く、靱性も低い。例12は焼鈍温度が
低く、例13は応力除去焼鈍温度が高く、損失係数が低
い。
Next, as comparative examples, Example 4 has a high C content, Example 5 has a high Si content, Example 6 has a high Mn content, and a low loss coefficient.
Example 7 has a high Al content, a low loss coefficient, and a low toughness. Example 8
Has a high N, Example 9 has a low heating temperature, and Example 10 has a low rolling finish temperature and a low loss coefficient. Since Example 11 has no heat treatment, it has a low loss coefficient and low toughness. Example 12 has a low annealing temperature, and Example 13 has a high stress relief annealing temperature and a low loss coefficient.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【発明の効果】以上説明したように本発明によれば、制
振性能阻害元素を極力低減し、結晶粒を極限まで粗大化
するために適正な加熱,圧延,応力除去焼鈍を行うこと
により、高靱性を有する制振構造物を経済的に製造でき
るものであり、交通機関や工場,工事現場の騒音,振動
防止等に多大な効果を奏するものである。
As described above, according to the present invention, by appropriately reducing the vibration damping performance inhibiting element and performing the appropriate heating, rolling and stress relief annealing in order to coarsen the crystal grains to the limit, It is possible to economically manufacture a vibration damping structure having high toughness, and has a great effect on preventing noise and vibration in transportation facilities, factories and construction sites.

【図面の簡単な説明】[Brief description of drawings]

【図1】損失係数に及ぼす応力除去焼鈍温度の影響を示
す図面である。
FIG. 1 is a drawing showing the effect of stress relief annealing temperature on loss factor.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.005%以下 Si :0.04%以下 Mn :0.20%以下 Al :0.10%以下 N :0.004%以下 を含有し、残部鉄及び不可避的不純物元素からなる組成
を有する鋼片または鋳片を、1050〜1250℃に加
熱し、750℃以上の仕上温度にて熱間圧延を行って厚
鋼板とし、該厚鋼板からなる構造物を750〜930℃
で応力除去焼鈍する高靱性を有する制振構造物の製造方
法。
1. By weight%, C: 0.005% or less Si: 0.04% or less Mn: 0.20% or less Al: 0.10% or less N: 0.004% or less, and the balance iron And a steel slab or a slab having a composition consisting of unavoidable impurity elements are heated to 1050 to 1250 ° C., and hot rolled at a finishing temperature of 750 ° C. or higher to form a thick steel plate, and a structure made of the thick steel plate. 750-930 ° C
Of manufacturing a vibration-damping structure having high toughness in which stress-relief annealing is performed at high temperature.
JP16000292A 1992-05-28 1992-05-28 Production of vibration damping structure having high toughness Withdrawn JPH05329506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16000292A JPH05329506A (en) 1992-05-28 1992-05-28 Production of vibration damping structure having high toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16000292A JPH05329506A (en) 1992-05-28 1992-05-28 Production of vibration damping structure having high toughness

Publications (1)

Publication Number Publication Date
JPH05329506A true JPH05329506A (en) 1993-12-14

Family

ID=15705856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16000292A Withdrawn JPH05329506A (en) 1992-05-28 1992-05-28 Production of vibration damping structure having high toughness

Country Status (1)

Country Link
JP (1) JPH05329506A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097217A1 (en) * 2006-02-21 2007-08-30 Jfe Steel Corporation Damping alloy sheet and process for producing the same
WO2007097216A1 (en) * 2006-02-21 2007-08-30 Jfe Steel Corporation Damping alloy sheet and process for producing the same
JP2008163453A (en) * 2006-12-08 2008-07-17 Jfe Steel Kk Member excelling in damping capacity, process for producing the same and steel sheet employed as member excelling in damping capacity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097217A1 (en) * 2006-02-21 2007-08-30 Jfe Steel Corporation Damping alloy sheet and process for producing the same
WO2007097216A1 (en) * 2006-02-21 2007-08-30 Jfe Steel Corporation Damping alloy sheet and process for producing the same
JP2008163453A (en) * 2006-12-08 2008-07-17 Jfe Steel Kk Member excelling in damping capacity, process for producing the same and steel sheet employed as member excelling in damping capacity

Similar Documents

Publication Publication Date Title
JP4022958B2 (en) High toughness thick steel plate with excellent weld heat affected zone toughness and method for producing the same
JP5865516B2 (en) Ultra-high-strength cold-rolled steel sheet excellent in weldability and bending workability and manufacturing method thereof
JP2019505668A (en) High yield ratio type high strength cold-rolled steel sheet and manufacturing method thereof
US5634990A (en) Fe-Mn vibration damping alloy steel and a method for making the same
JPH05329506A (en) Production of vibration damping structure having high toughness
JP3299287B2 (en) High strength steel sheet for forming and its manufacturing method
KR101798772B1 (en) Medium manganese steel sheet having high-elongation and high-strength and manufacturing method for the same
JPH0649591A (en) High strength hot rolled steel plate excellent in workability and its production
JPS6150125B2 (en)
KR100435467B1 (en) A method for manufacturing high strength cold rolled steel sheet having superior ductility by continuous annealing
JPH0931534A (en) Production of high strength hot rolled steel plate excellent in workability and fatigue characteristic
JPH05331540A (en) Manufacture of high damping structure body with high toughness
JPH05329507A (en) Production of vibration damping structure having high toughness
JP2618563B2 (en) High strength electric resistance welded steel pipe which is hardly softened in welding heat affected zone and method of manufacturing the same
TWI711706B (en) Automobile steel material with high yield strength and method of manufacturing the same
JPH05331541A (en) Manufacture of high damping structure body with high toughness
JP3271508B2 (en) Manufacturing method of low yield point structural steel sheet
JP2784207B2 (en) Method of manufacturing hot rolled steel sheet for processing and thermomechanical processing method of hot rolled steel sheet
JPH1121625A (en) Production of thick steel plate excellent in strength and toughness
JPH05331542A (en) Manufacture of high damping structure with high toughness
JPH06122921A (en) Production of wide-flange shape steel excellent in toughness
JP3211637B2 (en) Steel plate for vibration damping device and method of manufacturing the same
JP3965760B2 (en) Low Young&#39;s modulus steel sheet for processing and manufacturing method thereof
JPS6366367B2 (en)
JPH051323A (en) Production of high tensile strength steel excellent in weldability and brittle crack propagation arresting property

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990803