JPS6366367B2 - - Google Patents

Info

Publication number
JPS6366367B2
JPS6366367B2 JP2374883A JP2374883A JPS6366367B2 JP S6366367 B2 JPS6366367 B2 JP S6366367B2 JP 2374883 A JP2374883 A JP 2374883A JP 2374883 A JP2374883 A JP 2374883A JP S6366367 B2 JPS6366367 B2 JP S6366367B2
Authority
JP
Japan
Prior art keywords
less
steel
temperature
ferrite
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2374883A
Other languages
Japanese (ja)
Other versions
JPS59150018A (en
Inventor
Kazutoshi Kunishige
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2374883A priority Critical patent/JPS59150018A/en
Priority to US06/507,009 priority patent/US4472208A/en
Priority to GB08317181A priority patent/GB2122644B/en
Priority to DE19833323255 priority patent/DE3323255A1/en
Priority to FR8310696A priority patent/FR2529231B1/en
Publication of JPS59150018A publication Critical patent/JPS59150018A/en
Publication of JPS6366367B2 publication Critical patent/JPS6366367B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、引張強さ:70Kg/mm2以上の高強度を
もち、かつ加工性および低温靭性のすぐれたTi
添加熱延高張力鋼板の製造方法に関するものであ
る。 近年、各種建造物や産業機械等の構造材とし
て、高強度でかつ加工性のすぐれた鋼材への要求
が高まつており、これらに対処するために各種の
鋼材が開発され、使用されるようになつてきた。
Nb添加鋼やV添加鋼、あるいはTi添加鋼等がそ
れである。そして、その中でも、製造価格が安く
しかも高強度が得られるとの理由で、Ti添加鋼
が注目されているが、Ti添加鋼はNb添加鋼やV
添加鋼と比較して靭性が劣るという問題点があつ
た。 一方、最近では、エネルギー事情の悪化などか
ら、極めて苛酷な環境下での資源開発のやむなき
に至つており、構造材としてもそのような環境下
での使用に耐え得るものでなければならない。例
えば、特に板厚が4.5mm以上の高張力鋼板の場合
には、冷間加工による塑性変形を加えて寒冷地で
使用すると塑性変形部から脆性破壊を生ずる危険
性があり、このような点からも、高強度かつ良加
工性という特性に加えて寒冷地での使用にも十分
耐えられるような、すぐれた低温靭性をも兼備し
た高張力鋼板が強く要望されている。 そこで、このような要望を満足する高張力鋼板
を提供するものとして、特公昭55−45614号や特
公昭57−47256号公報に記載されているような、
Ti添加鋼を熱間で制御圧延する方法や高温で巻
き取る方法が提案された。 ところで、Ti添加熱延高張力鋼板の特徴とす
るところは、TiCの析出強化を利用すると同時
に、A系介在物となるMnSをTiSに置き換えてC
系介在物となし、これによつて加工性の向上を図
るものであり、既にいくつかの論文(例えば、
L.Meyer et al:“Symposium、Low Alloy
High Strength Steels、Nuremberg、May、21
−23、1970、p.9;M.Korchynsky et al:
“Symposium、Low Alloy High Strength
Steels、Nuremberg、May、21−23、1970、
p.17)も報告されている。適切な条件下で製造す
ると、Ti添加高張力鋼板は高強度を有するとと
もに、端面を機械切削加工仕上げした供試材を使
用するJIS規格の曲げ試験では密着曲げまで可能
であるという、非常にすぐれた冷間加工性を有す
るものとされている。そして特公昭55−45614号
公報に記載されている方法は、このような特性を
有するTi添加熱延高張力鋼板の製造の際に制御
圧延を施すことによつて、されにその低温靭性の
改善を図つたものである。 すなわち、特公昭55−45614号および特公昭57
−47256号の開示する方法によれば、Ti(C、N)
の析出強化作用を利用するとともに、冷間加工性
および低温靭性を確保するために圧延終了温度を
880〜730℃とし1100〜980℃の間の温度域で1パ
スの圧下率が28%以上の大圧下を少なくとも1回
以上施すことにより微細オーステナイト粒を得、
次いで、ベイナイト組織の生成を阻止するため
に、熱間圧延後の巻取り温度を500〜680℃に制限
するとともに変態後に微細フエライト組織を得る
方法が好ましいことになる。かくして得られた
Ti添加鋼板は高強度を有するとともに、端面を
機械切削加工仕上げした供試材を使用するJIS規
格曲げ試験によれば密着曲げまで可能であるとい
う、非常にすぐれた冷間加工性を有するものとさ
れている。 ところで、JIS規格の曲げ試験においては、上
述のように供試材として端面の機械切削加工仕上
げしたものを用いるが、実際に各種の構造部材を
生産する場合には、所定の寸法に予めシヤーリン
グ(切断)して得たシヤー端面付の素材(すなわ
ち、シヤー切断面に何の加工も施していない素
材)がそのまま冷間加工に供されるのがほとんど
である。したがつて、実用面からは、冷間加工性
の指標としてシヤー端面付の供試材の曲げ性能の
良好さが冷間加工用鋼板に要求されることとな
る。 ところが、前記の特公昭55−45614号および特
公昭57−47256号公報に記載されている方法で得
られる鋼板をも含めて、Ti添加熱延鋼板は、一
般に、シヤー端面付の素材の曲げ試験性能が著し
く不良であり、曲げ加工の際に端面に割れを生ず
るという重大な問題のあることがその後の実用化
の段階で明らかとなつてきた。 本発明者は、上述のような観点から、引張強さ
が70Kg/mm2以上の高強度と、すぐれた加工性並び
に低温靭性を有することはもちろん、特に、シヤ
ー端面付の素材の加工性の良好な高張力鋼板を得
るべく、鋭意研究を重ねた結果、特定の化学成分
組成のTi添加鋼を制御圧延・制御冷却後、従来
の常識を破つた約400℃という低温で巻取れば、
引張強さが70Kg/mm2以上の高い値を示すととも
に、シヤー端面付の鋼板の曲げ割れが改善され、
低温靭性にもすぐれた高張力鋼板が得られること
を見出して本発明に至つた。 ここに本発明者の得た知見をまとめると次の通
りである: (a) 高強度を有するTi添加熱延鋼板を製造する
に際して、熱延後、通常の巻取り温度である約
600℃で巻取ると、確かに、JIS規格の曲げ試験
では密着曲げまで可能であつてすぐれた加工性
を有していると判断せざるを得ない。しかし、
シヤー端面付の素材を曲げた場合には、Ti添
加熱延鋼板の特有のフエライト粒界の脆さに誘
起された、シヤー端面に既に存在する割れに基
づく曲げ割れを回避するのが困難である。この
ように、シヤー端面にてフエライト粒界割れを
起こし易いのは、通常の製造法に基づいて得ら
れるTi添加熱延鋼板が、主に圧延後パーライ
トへの変態時に生じるTiCの析出強化を利用し
ているためである。このようにして圧延後析出
するTiCは主にフエライト粒内に生じて相対的
に粒界への析出が少ない。しかし圧延後高温で
巻取るためセメンタイトが粒界に析出してい
る。そのために粒内に対する粒界の相対的強度
が低下しており、シヤーリング時点で粒界に歪
が集中しやすくシヤー端面に多くの微小割れを
生成させるのである。そして、そのような割れ
を起点として曲げ加工時にフエライト粒界割れ
を引き起こすのである。 また、圧延後パーライト変態時に析出する
TiCはフエライト地と整合性を有する、つまり
多量の歪の導入を伴い、そしてそのような歪導
入によつて析出強化が図られていると一般に考
えられているが、このようにフエライト地と整
合性を持つたTiCの析出によつて低温靭性は劣
化するものである。したがつて、かかるTiCの
フエライト地への整合析出を抑制することは非
常に重要であると考えられる。そこで、巻取り
温度を500〜200℃の範囲に制御すると、上述の
ような脆化を生じるTiCの析出強化が抑制さ
れ、上述のような問題は回避される。しかも、
TiC析出により予想される強度低下も、そのよ
うな低温巻取りによるフエライトの細粒強化と
Tiの固溶に基ずく変態強化により十分補償さ
れることが分かつた。したがつて、フエライト
の細粒強化と第2相における変態強化が生じる
と共にフエライト粒界の脆化が抑制され、微細
に析出したフエライト相の周囲にベイナイト相
を析出し、フアセツト単位つまり脆性破壊の破
面単位が小さくなり、シヤルピー破面遷移温度
が改善されるばかりでなく、シヤー端面付の素
材の曲げ性能が著しく向上することを解明し
た。特に、900℃以下にて合計30%〜90%の圧
下を行い、800℃〜900℃の温度で圧延を終了す
るという制御圧延およびフエライトとオーステ
ナイトとの2相共存域まで急冷後、徐冷もしく
は保持することにより体積率で10%〜80%のフ
エライト相を得た後、再び更に5℃/秒〜50
℃/秒の急冷を行う制御冷却と結び付けること
により、上記各特性の極めて向上した高張力鋼
板が得られる; (b) そして、これに加えて、Ti添加鋼中のP成
分を低減すれば、上記(a)項で述べた各特性がよ
り向上する; (c) 該Ti添加鋼に、Ca、B、およびCrのうちの
1種または2種以上の特定量を含有せしめれ
ば、より優れた加工性と強靭化が図れる。 なお、本発明者は、これらの知見を得るに当た
つて、Ti添加鋼の機械的性質に及ぼす圧延後の
冷却および巻取り温度の影響を調査するための熱
延シミユレーシヨン実験法を確立し、各種実験を
繰り返した。ここに、この熱延シミユレーシヨン
実験法とは、鋼材の圧延後、所定温度まで水スプ
レーにより急冷して急冷圧延材を得、その後、予
めこの所定温度にまで昇温しておいた炉に上記の
急冷圧延材を投入して炉冷却(冷却速度:20℃/
hr)を行う方法である。そして、この際の「所定
温度」を巻取り温度に一致させれば、実作業にお
ける熱延・巻取りにおけると同様な組織並びに特
性を有する鋼板が得られる。 このような熱延シミユレーシヨン実験法により
820℃仕上げの制御圧延下でTi添加鋼の機械的性
質に及ぼす巻取り温度の影響を調査した結果を第
1図にグラフで示す。第1図は、0.10%C−0.30
%Si−1.65%Mn−0.002%S−0.17%Ti−0.025%
Al−0.0035%N鋼(以下、成分組成割合を示す
“%”は“重量%”である)に、900℃以下で50%
の圧下を加え、仕上げ温度:820℃にて6mm厚の
熱延鋼板を得た後、2種類の冷却パターン、すな
わち、650℃まで20℃/秒の水冷後、10秒の空冷
を行い、更に20℃/秒の水冷によつて各巻取り温
度にまで降温させた場合(冷却パターン)と、
圧延仕上げ温度から単に10℃/秒の水冷によつて
各巻取り温度にまで降温させた場合(冷却パター
ン)とにおける、各機械的性質に及ぼす巻取り
温度の影響を示すグラフである。第1図からは、
巻取り温度が400℃を越えるあたりから、シヤー
端面付の素材の曲げ性並びにシヤルピー破面遷移
温度の劣化が目立つようになり、特に、500℃を
越えると実用的に好ましくない程度にまでその劣
化傾向がはなはだしくなるが、巻取り温度が500
〜200℃の範囲では加工性並びに低温靭性が極め
て良好となることが分り、さらに巻取り温度を下
げて200℃未満とすると、再びにこれらの特性に
劣化傾向が見られるようになるということがあき
らかである。また、冷却パターンの場合のほう
が、冷却パターンの場合よりも、良好な特性を
有し、鋼中のP含有量も、上記の各特性に影響を
あたえ、その含有量が0.025%以下であれば、良
好な結果を得ることもわかる。なお、図中、黒丸
は0.025%Pの場合を、白抜き丸は0.006%Pの場
合をそれぞれ示す。 一方、第2図は、同様のTi添加鋼熱延材にお
ける従来の600℃巻取り材(第2図c)と、冷却
パターンでこれよりも低温の400℃で巻取つた
材料(第2図a)と、冷却パターンでやはり
400℃で巻取つた材料(第2図b)の光学顕微鏡
組織を示したもので、これら3者を比較すると、
600℃巻取り材はナイタル腐食を施すとフエライ
ト粒界腐食むらを起こしていることがわかる。す
なわち、 (1) Ti添加鋼を通常の巻取り温度である約600℃
で巻取ると、巻取り後の徐冷中、フエライト地
中にフエライト地と整合性を有するTiCの析出
が著しくなり、したがつて脆化を生じることと
なる。また、かかるTiCの析出はフエライト粒
内で主に生じるため相対的にフエライト粒界の
強度低下を生じることになり、外力に対して粒
界に歪が集中しやすくなる。更に、ナイタル腐
食によるフエライト粒界腐食むらは、フエライ
ト粒内でのTiCの析出に伴つて粒界に存在する
炭素が減少するという、粒界浄化作用の表れと
思われる。そして、かかる腐食むらを起こし易
い鋼材では、フエライト粒界が弱いことが知ら
れている。 上述のような鋼材の脆化、粒内に対する相対
的な粒界脆化が原因で、鋼板のシヤーリングの
時点で厳しい加工を受けるその端面に、微視的
にはフエライト粒界に割れを生じ、それがその
後の曲げ加工によつて大きな割れにつながるも
のと判断される。 しかしながら、低温巻取りを行えば、TiCの
析出が適当に抑制され、析出強化にかわつて変
態強化が生じるため、600℃程度の巻取りによ
つて生じる上記欠点を回避することができるも
のである。 (2) 圧延後の冷却パターンに関しては、冷却パタ
ーンの方が冷却パターンよりフエライト量
が多く、ベイナイト組織を明確に分断してい
る。 このことにより、冷却パターンの方でより
すぐれた諸特性が得られたものと思われる。な
お、前段の水冷に代えて空冷を行つてもよい。 (3) また、200℃より低い温度での巻取り材は、
巻取り後の徐冷による自己焼きなまし効果が少
ないので、曲げ性、並びにシヤルピー特性とも
不良となつたものと思われる。 (4) P含有量を極力少なくすることにより、シヤ
ー端面付の鋼板の曲げ性、およびシヤルピー特
性が向上する理由も、Pの存在よつて助長され
る焼戻し脆性に基ずくフエライト粒界の脆化
が、Pの減少によつて抑制されたためと考えら
れる。 かくして、本発明は上記知見に基ずいて、特
に、シヤー端面付のTi添加鋼熱延素材の加工性
と低温靭性の向上とを目ざしてなされたものであ
つて、その要旨とするところは; C:0.05−0.20%、Si:1.2以下、 Mn:0.5−2.0%、Ti:0.04−0.20%、 P:0.025%以下、S:0.015以下、 sol.Al:0.005−0.15%、 N:0.0080%以下、 さらに必要によりCa:0.0100%以下、B:
0.0030%以下およびCr:1.0%以下のうちの1種
以上、 を含み(以上重量%)、残部Feおよび不可避不純
物からなるキルド鋼に、900〜800℃の温度域での
合計の圧下率が30%〜90%となるような熱間圧延
を施し、800℃〜900℃で圧延を終了した後、フエ
ライトとオーステナイトの2相共存域まで空冷ま
たは急冷後、徐冷あるいは保持することにより、
体積率で10%〜80%のフエライト相を得た後、再
び更に5℃/秒〜50℃/秒の急冷を行つてから
500〜200℃で巻取ることを特徴とする、冷間加工
性のすぐれたTi添加熱延高張力鋼板の製造方法
にある。 本発明に係る熱延高張力鋼板の製造方法におい
て、鋼の化学組成および熱延・冷却・巻取り条件
を上述のように限定する理由を次に説明する。 炭素(C): 炭素には鋼の強度を確保する作用があり、引張
強さ:70Kg/mm2以上の強度を達成するためには欠
くことのできない成分であるが、その含有量が
0.05%未満では前記作用に対する所望の効果を得
るとができず、一方、0.20%を越えて含有せしめ
ると、本発明で採用するような低温巻取りで一部
生成するベイナイト状組織が高炭素含有ベイナイ
ト組織になつて、曲げ性や低温靭性を劣化させる
ようになること、また、溶接性能劣化を生じるこ
とから、その含有量を0.05〜0.20%と定めた。特
に、その効果は0.08〜0.20%で著しい。 ケイ素(Si): ケイ素成分は、固溶強化作用と脱酸作用を有し
ている。強度の増加のためには、0.05%程度以上
含有されていることが好ましいが、1.2%を越え
て含有させると靭性および溶接性を劣化するよう
になるので、その含有量を1.2%以下と定めた。 マンガン(Mn): マンガン成分には鋼を強靭化する作用があり、
重要な成分であるが、その含有量が0.5%未満で
は前記作用に所望の効果を得ることができず、ま
た一方、2.0%を越えて含有させるとA系介在物
が生じやすくなつて、C曲げ性能が劣化するよう
になるので、その含有量を0.5〜2.0%と定めた。 チタン(Ti): チタン成分には、固溶Tiによる変態強化や、
TiCの析出によつて鋼を強化させるほか、MnSか
ら成るA系介在物TiSから成るC系介在物へ変化
させてC曲げ性能を向上させる作用があるが、そ
の含有量が0.04%未満では鋼材に所望の強度を付
与できないばかりでなく、介在物の形状制御も不
十分となつて、C曲げ性能が劣化し、また一方、
0.20%を越えて含有させると、本発明に係るC:
0.05−0.20%の鋼においては著しい析出硬化によ
つて低温靭性に悪影響を及ぼすようになることか
ら、その含有量を0.04−0.20%、好ましくは0.08
−0.20%と定めた。 燐(P): 燐成分は、巻き取り後の徐冷中にフエライト粒
界に偏析して粒界脆化を生じやすい。したがつ
て、シヤー端面付の素材の曲げ性能劣化を生じる
こととなるので可能な限り少ない方が良いが、経
済性の面から許容できる範囲として、その含有量
を0.025%以下と定めた。しかしながら、0.010%
以下が好ましいものである。 硫黄(S): 硫黄成分は、鋼中においてMnと結合してA系
介在物を生じ易い不純物元素であり、たとえTi
添加鋼であつてもその含有量が0.015%を越える
とMnと結合してA系介在物を生じて曲げ性能を
劣化することとなる可能性が大きいので、その含
有量を0.015%以下と定めた。好ましくは0.005%
以下である。 sol.Al: sol.Al成分には、添加されるTiの有効性を確保
する作用があるが、その含有量が0.005%未満で
はTi添加の効果が十分に発揮されず、一方、0.15
%を越えて含有させると非金属介在物の量が増加
して鋼が脆化するようになることから、その含有
量は0.005〜0.15%と定めた。 窒素(N): 窒素成分は鋼中でTiNを生成し易いため、析
出硬化に有効なTiCの形でのTi、あるいは非金属
介在物の球状化に有効なTiSの形でのTiの量を減
少させることになるので、可能な限り少ない方が
良い不純物であるが、経済性との兼ね合いで許容
できる範囲として、その含有量の上限を0.0080%
と定めた。しかしながら、0.0050%以下が好まし
い。 カルシウム(Ca): カルシウム成分は、Al−O系のB系介在物と
結合して、これをC系介在物として加工性を向上
させる作用がある。すなわち、TiによりA系介
在物を減少させ、CaによりB系介在物をも減少
できるため、Ti添加鋼におけるCa添加は介在物
の形状制御の上で非常に好ましいものであるの
で、特に加工性をより向上させる必要がある場合
に、好ましくは0.0008%以上含有させるのが望ま
しい。しかし、0.0100%を越えて含有させると介
在物が許容範囲以上に増加することとなるので、
その含有量を0.0100%以下と定めた。 ボロン(B): ボロン成分は鋼の焼入れ性を向上し、強靭性を
付与する作用を有しており、特に、本発明に係る
高張力鋼板の製造方法のように、低温巻取りによ
り一部生成するベイナイト状組織による強化機構
を利用する場合には、Bの微量添加による鋼の焼
入性向上効果の影響は非常に有効である。したが
つて、より強靭性が要求される場合に、好ましく
は0.0001%以上含有させるのが望ましい。しか
し、0.0030%を越えて含有させても、それ以上の
向上効果が得られないことから、その含有量を
0.0030%以下と定めた。 クロム(Cr): クロム成分には、Mnと同様に鋼を強靭化する
作用があり、鋼の強靭性をより向上せしめる必要
がある場合に、好ましくは0.1%以上添加するの
が望ましいが、1.0%を越えて含有させてもそれ
以上の向上効果が得られないことから、また、溶
接性能が劣化することから、その含有量を1.0%
以下と定めた。 熱延・巻取り条件 (i) 熱延条件: Ti添加鋼では、TiCの析出硬化と、粗大な
TiNの存在によつて低温靭性が劣下するので、
この対策として、本発明にあつては900℃以下
での合計30%〜90%の圧下を行い、800℃〜900
℃で圧延を終了するという制御圧延を実施す
る。この場合、900℃より高い圧延終了温度あ
るいは30%未満の圧下では、目的とする十分な
細粒組織が得られず、構造物素材として必要な
低温靭性を確保するのが困難となる。細粒フエ
ライトが得られやすいという点で合計圧下率は
大きいほどよいが実用上その上限を90%とす
る。一方、800℃より低い温度で圧延を終了す
ると、集合組織が発達して異方性が生じるばか
りでなく、C曲げ性能も劣化することとなる。
したがつて、本発明にあつては、前述のよう
に、900〜800℃の温度域での合計の圧下率が30
%〜90%となるような、そして仕上げ温度が
800℃〜900℃となるような熱間圧延を施すこと
を条件とすることとした。 (ii) 熱延後、巻取りまでの冷却速度: 本発明にあつては、上述のような制御圧延
後、フエライトとオーステナイトの2相共存域
まで空冷または急冷した後、徐冷またはその温
度に保持することにより、体積率で10%〜80%
のフエライト相を生成させる。本発明において
規定する化学組成からは80%超のフエライト相
を生成させることは困難であり、またフエライ
ト体積率が高くなると強度低下を生じる。オー
ステナイト領域での制御圧延後、上述のよう
に、フエライトとオーステナイトとの2相共存
域まで空冷または急冷されるため、微晶結晶粒
がそのまま持ち来たされ、引き続いて行われる
徐冷またはその温度での保持(高温変態を引き
起こす)によつて得られるフエライト相は著し
く微細なものとなり、そのフエライト細粒組織
による組織強化が図られる。生成フエライト相
は体積率で10%〜80%、好ましくは10〜50%で
ある。次いで、急冷後、後述する巻取り温度に
保持してベイナイト状組織を得るのであるが、
その急冷の際、上述のように10%以上のフエラ
イト相を生成させずに5℃/秒〜50℃/秒の急
冷を行うと、ベイナイトなどの低温変態組織の
体積率が著しく高くなつて、所望の特性が得ら
れない。一方、5℃/秒未満の徐冷ではベイナ
イト状組織の生成による変態強化作用がほとん
ど生ぜず、所望の高強度および低温靭性を得る
ことが困難となるので、5℃/秒以上の急冷を
施すこととした。冷却速度は大きいほど緻密な
ベイナイト状組織が得られて強靭性、加工性の
点から好ましいが、実用上その上限は50℃/秒
とする。 (iii) 巻取り温度: 前述のように、巻取り温度が500℃を超えた
場合には、シヤー端面付の素材の曲げ性および
シヤルピー破面遷移温度の劣化が著しくなり、
一方、200℃未満となつた場合にも、やはり該
特性に劣化傾向が表れてくることから、本発明
にあつては、巻取り温度を500〜200℃と定め
た。好ましくは、400〜200℃である。 次に、本発明を実施例に関連させて説明する
が、それらは単に例示のために示すのであつて、
本発明を制御するためのものではない。 実施例 1 第1表に示す化学組成を有する各種の鋼を高周
波炉を用いた溶解・鋳造法によつて調製した。同
表の鋼種A〜Hは本発明に係る方法において規定
する範囲内の鋼組成を有するものであり、一方、
鋼種I〜Sは本発明の範囲外の比較用のものであ
る。本発明で規定する組成範囲を外れた成分につ
いては*印を付して示してある。 次に、これらの鋼材を第2表に示した各条件に
て熱間圧延し、厚さ:6mmの熱延鋼板を製造し
た。なお、第2表においても本発明の範囲外の条
件は*印を付けて示す。 このようにして得られた熱延鋼板の機械的性質
について試験を行い、そのとき得られた結果を第
2表に併せて示す。 第2表に示す結果からも明らかなように、使用
鋼材の化学組成範囲および熱延・巻取り条件が本
発明で定めた範囲内にある試験番号1〜9の熱延
鋼板は、いずれも高強度を有するとともに、すぐ
れた低温靭性ならびにシヤー端面付の素材でのす
ぐれた曲げ性能を有していることが明らかであ
り、他方、使用鋼材の化学組成範囲および熱延・
巻取り条件が本発明で定めた範囲外にある比較用
の試験番号10〜23の熱延鋼板は低温靭性やシヤー
端面付の素材に対する曲げ性能が劣つていること
が分かる。特に、試験番号10、11の比較例のよう
に、制御圧延または制御冷却を行わずに、単に低
温巻取りのみを行うと、得られる鋼板の組織は前
述の第2図aに示すような、体積率で10%以上の
細粒フエライトと微細ベイナイト組織の混合組織
とはならず、ほとんど粗大なベイナイト組織とな
つて大幅な靭性劣化を生じることも分かつた。な
お、巻取り温度が本発明の範囲から外れた場合の
実験結果は、前述の第1図の各グラフに示したと
おり、良好なものではなかつた。また、Caを添
加した第1表中のD鋼、F鋼、G鋼およびH鋼で
は、曲げ性能が極めて向上していることが確認さ
れた。 このように、特定の化学成分組成のTi添加鋼
に、所定の制御圧延・制御冷却と低温巻取りとを
組み合わせて施すことにより、体積率で10%以上
の細粒フエライトと微細ベイナイト組織の混合組
織(細粒フエライトと微細ベイナイト組織が分断
されている)が得られ、したがつて、強靭性が確
保できるとともに、加工性にもすぐれた特性が得
られるのである。 上述のように、本発明によれば、格別な後処理
を施すことなく、引張強さ70Kg/mm2以上の高強度
と、シヤー端面付の素材であつても割れを生じる
ことなく良好に冷間加工し得るすぐれた加工性
と、これに加えて極めてすぐれた低温靭性とを兼
ね備えた熱延高張力鋼板を、比較的簡単な手段に
て得ることができ、寒冷地その他で使用する建造
物や産業機械等の構造材に適用することによつて
これまで以上の成果を挙げることが期待できるな
ど、工業上有用な効果がもたらされるのである。
The present invention is based on Ti, which has a high tensile strength of 70 kg/mm 2 or more and has excellent workability and low-temperature toughness.
The present invention relates to a method for producing additive hot-rolled high-strength steel sheets. In recent years, there has been an increasing demand for steel materials with high strength and excellent workability as structural materials for various buildings and industrial machinery, and various steel materials have been developed and used to meet these demands. I'm getting used to it.
Examples include Nb-added steel, V-added steel, and Ti-added steel. Among these, Ti-added steel is attracting attention because of its low manufacturing cost and high strength.
There was a problem that the toughness was inferior compared to additive steel. On the other hand, in recent years, due to the deterioration of the energy situation, it has become unavoidable to develop resources in extremely harsh environments, and structural materials must also be able to withstand use in such environments. For example, especially in the case of high-strength steel plates with a thickness of 4.5 mm or more, if they are plastically deformed by cold working and used in cold regions, there is a risk of brittle fracture occurring from the plastically deformed parts. In addition to the characteristics of high strength and good workability, there is also a strong demand for high-strength steel sheets that have excellent low-temperature toughness so that they can withstand use in cold regions. Therefore, in order to provide a high tensile strength steel plate that satisfies such demands, we have developed a steel plate as described in Japanese Patent Publication No. 55-45614 and Japanese Patent Publication No. 57-47256.
A controlled hot rolling method and a high temperature coiling method for Ti-added steel have been proposed. By the way, the feature of Ti-added hot-rolled high-strength steel sheet is that it utilizes precipitation strengthening of TiC, and at the same time replaces MnS, which is an A-based inclusion, with TiS.
This method aims to improve processability by forming system inclusions, and has already been published in several papers (e.g.
L. Meyer et al: “Symposium, Low Alloy
High Strength Steels, Nuremberg, May 21
−23, 1970, p.9; M.Korchynsky et al:
“Symposium, Low Alloy High Strength
Steels, Nuremberg, May, 21-23, 1970,
p.17) has also been reported. When manufactured under appropriate conditions, Ti-added high-strength steel sheets have high strength and are extremely superior in that they are capable of close bending in JIS standard bending tests using specimens with machined edges. It is said to have good cold workability. The method described in Japanese Patent Publication No. 55-45614 involves performing controlled rolling during the production of Ti-added hot-rolled high-strength steel sheets having such characteristics, and improving the low-temperature toughness of the steel sheets. This is what we are trying to achieve. Namely, Special Publication No. 55-45614 and Special Publication No. 57
According to the method disclosed in No.-47256, Ti(C,N)
In addition to utilizing the precipitation strengthening effect of
Fine austenite grains are obtained by applying large reduction at least once at a temperature range of 880 to 730°C and 1100 to 980°C with a rolling reduction rate of 28% or more per pass,
Next, in order to prevent the formation of a bainite structure, it is preferable to limit the coiling temperature after hot rolling to 500 to 680°C and obtain a fine ferrite structure after transformation. thus obtained
Ti-added steel sheets not only have high strength, but also have excellent cold workability, as according to JIS standard bending tests using specimens with machined edges, it is possible to bend them in close contact. has been done. By the way, in the bending test according to the JIS standard, as mentioned above, specimens whose end faces have been machined and finished are used, but when actually producing various structural members, shearing ( In most cases, the material with a shear end surface obtained by cutting) (that is, the material with no processing applied to the shear cut surface) is directly subjected to cold working. Therefore, from a practical standpoint, a steel plate for cold working is required to have good bending performance of a test material with a shear end surface as an index of cold workability. However, Ti-added hot-rolled steel sheets, including the steel sheets obtained by the methods described in Japanese Patent Publication No. 55-45614 and Japanese Patent Publication No. 57-47256, are generally subjected to bending tests of materials with sheared edges. At the subsequent stage of practical application, it became clear that the performance was extremely poor and that there was a serious problem of cracking on the end face during bending. From the above-mentioned viewpoints, the present inventor has found that not only does it have high tensile strength of 70 kg/mm 2 or more, excellent workability and low-temperature toughness, but also the workability of materials with shear end surfaces. As a result of extensive research in order to obtain good high-strength steel sheets, we have found that if Ti-added steel with a specific chemical composition is rolled and cooled at a low temperature of approximately 400℃, which breaks conventional wisdom,
In addition to exhibiting a high tensile strength of 70Kg/mm2 or more , bending cracking of steel plates with shear edges has been improved.
The present invention was achieved by discovering that a high-strength steel plate with excellent low-temperature toughness can be obtained. The findings obtained by the present inventors are summarized as follows: (a) When producing a Ti-added hot rolled steel sheet with high strength, after hot rolling, it is necessary to
When wound at 600°C, it is certainly possible to perform close bending in the JIS standard bending test, and it must be judged that it has excellent workability. but,
When bending a material with a shear end face, it is difficult to avoid bending cracks caused by cracks that already exist on the shear end face, which are induced by the brittleness of the ferrite grain boundaries peculiar to Ti-added hot rolled steel sheets. . Thus, the reason why ferrite grain boundary cracking is likely to occur at the shear end face is that Ti-added hot rolled steel sheets obtained based on normal manufacturing methods mainly utilize the precipitation strengthening of TiC that occurs during transformation to pearlite after rolling. This is because they are doing so. The TiC that precipitates after rolling occurs mainly within the ferrite grains, and relatively little precipitates at the grain boundaries. However, since it is coiled at a high temperature after rolling, cementite precipitates at grain boundaries. For this reason, the relative strength of the grain boundaries with respect to the inside of the grains is reduced, and strain tends to concentrate at the grain boundaries during shearing, causing many microcracks to be generated at the shear end faces. These cracks are then used as starting points to cause ferrite intergranular cracks during bending. Also, it precipitates during pearlite transformation after rolling.
It is generally believed that TiC is compatible with ferrite, that is, it requires the introduction of a large amount of strain, and is strengthened by precipitation through the introduction of such strain. Low-temperature toughness deteriorates due to the precipitation of TiC, which has strong properties. Therefore, it is considered to be very important to suppress the coherent precipitation of TiC on the ferrite ground. Therefore, if the winding temperature is controlled within the range of 500 to 200°C, the precipitation strengthening of TiC that causes embrittlement as described above is suppressed, and the above-mentioned problems are avoided. Moreover,
The expected decrease in strength due to TiC precipitation is due to the fine grain strengthening of ferrite due to such low-temperature winding.
It was found that this was sufficiently compensated by transformation strengthening based on solid solution of Ti. Therefore, fine-grain strengthening of ferrite and transformation strengthening in the second phase occur, and embrittlement of ferrite grain boundaries is suppressed, and a bainite phase is precipitated around the finely precipitated ferrite phase, resulting in the formation of facet units, that is, brittle fracture. It was found that not only the fracture surface unit becomes smaller and the shear pie fracture transition temperature is improved, but also the bending performance of the material with shear end faces is significantly improved. In particular, controlled rolling is performed in which a total reduction of 30% to 90% is performed at a temperature of 900°C or less and rolling is finished at a temperature of 800°C to 900°C, and after rapid cooling to a two-phase coexistence region of ferrite and austenite, slow cooling or After obtaining a ferrite phase with a volume fraction of 10% to 80% by holding, the temperature is further increased to 5°C/sec to 50°C.
By combining this with controlled cooling that performs rapid cooling at a rate of °C/sec, a high-strength steel sheet with extremely improved properties can be obtained; (b) In addition to this, if the P component in the Ti-added steel is reduced, Each of the properties described in item (a) above will be further improved; (c) If the Ti-added steel contains a specific amount of one or more of Ca, B, and Cr, the properties will be even better. Improved workability and toughness. In order to obtain these findings, the present inventor established a hot rolling simulation experimental method to investigate the effects of post-rolling cooling and coiling temperature on the mechanical properties of Ti-added steel. Various experiments were repeated. Here, this hot rolling simulation experimental method means that after rolling a steel material, it is rapidly cooled to a predetermined temperature by water spray to obtain a rapidly cooled rolled material, and then the above-mentioned steel material is placed in a furnace that has been heated to this predetermined temperature in advance. The rapidly cooled rolled material is charged into the furnace and cooled (cooling rate: 20℃/
hr). If the "predetermined temperature" at this time is made to match the coiling temperature, a steel plate having the same structure and characteristics as in actual hot rolling and coiling can be obtained. Through this hot rolling simulation experiment method,
Figure 1 shows the results of an investigation into the effect of coiling temperature on the mechanical properties of Ti-added steel under controlled rolling at 820°C. Figure 1 shows 0.10%C-0.30
%Si-1.65%Mn-0.002%S-0.17%Ti-0.025%
Al-0.0035%N steel (hereinafter, "%" indicating the composition ratio is "weight%"), 50% at 900℃ or less
After obtaining a hot-rolled steel plate with a thickness of 6 mm at a finishing temperature of 820℃, two types of cooling patterns were applied: water cooling at 20℃/second to 650℃, air cooling for 10 seconds, and further cooling. When the temperature is lowered to each winding temperature by water cooling at 20℃/second (cooling pattern),
It is a graph showing the influence of the winding temperature on each mechanical property when the temperature is lowered from the finishing rolling temperature to each winding temperature simply by water cooling at 10° C./second (cooling pattern). From Figure 1,
When the winding temperature exceeds 400℃, the bendability of the material with shear end faces and the shear pie fracture transition temperature begin to deteriorate.In particular, when the winding temperature exceeds 500℃, the deterioration reaches a level that is not practical. The tendency becomes more pronounced, but when the winding temperature is 500
It was found that workability and low-temperature toughness were extremely good in the range of ~200°C, and when the winding temperature was further lowered to less than 200°C, there was a tendency for these properties to deteriorate again. It's obvious. In addition, the cooling pattern has better properties than the cooling pattern, and the P content in steel also affects each of the above properties, and if the content is 0.025% or less, , it can also be seen that good results are obtained. In the figure, black circles indicate the case of 0.025% P, and open circles indicate the case of 0.006% P. On the other hand, Figure 2 shows a conventional hot-rolled Ti-added steel material rolled at 600℃ (Figure 2c) and a material rolled at a lower temperature of 400℃ with a cooling pattern (Figure 2c). a) and the cooling pattern as expected.
This shows the optical microstructure of the material rolled up at 400℃ (Figure 2b), and when these three are compared,
It can be seen that when the 600℃ rolled material is subjected to nital corrosion, uneven ferrite intergranular corrosion occurs. In other words, (1) Ti-added steel is rolled at approximately 600°C, which is the normal coiling temperature.
If the material is rolled up, TiC, which has consistency with the ferrite ground, will significantly precipitate in the ferrite ground during slow cooling after winding, resulting in embrittlement. Further, since such TiC precipitation mainly occurs within the ferrite grains, the strength of the ferrite grain boundaries is relatively reduced, and strain tends to concentrate at the grain boundaries in response to external forces. Furthermore, the unevenness of ferrite grain boundary corrosion due to nital corrosion is thought to be an expression of the grain boundary purification effect, in which carbon present at the grain boundaries decreases as TiC precipitates within the ferrite grains. It is known that steel materials that are prone to such uneven corrosion have weak ferrite grain boundaries. Due to the above-mentioned embrittlement of the steel material and relative embrittlement of the grain boundaries to the inside of the grains, microscopic cracking occurs at the ferrite grain boundaries on the end face of the steel sheet, which undergoes severe processing during shearing. It is considered that this will lead to large cracks during the subsequent bending process. However, if low-temperature winding is performed, TiC precipitation is appropriately suppressed and transformation strengthening occurs instead of precipitation strengthening, so the above-mentioned drawbacks caused by winding at about 600°C can be avoided. (2) Regarding the cooling pattern after rolling, the amount of ferrite is higher in the cooling pattern than in the cooling pattern, and the bainite structure is clearly divided. This seems to be the reason why the cooling pattern achieved better characteristics. Note that air cooling may be performed instead of water cooling in the previous stage. (3) In addition, the material to be rolled at a temperature lower than 200℃ is
It is thought that because the self-annealing effect due to slow cooling after winding was small, both bendability and sharpie properties were poor. (4) The reason why the bendability and shear strength properties of steel sheets with shear edges are improved by reducing the P content as much as possible is due to the embrittlement of ferrite grain boundaries due to tempering embrittlement promoted by the presence of P. This is thought to be due to the fact that this was suppressed by the decrease in P. Thus, the present invention has been made based on the above findings, with a particular aim of improving the workability and low-temperature toughness of a Ti-added hot-rolled steel material with a shear end face, and its gist is as follows: C: 0.05-0.20%, Si: 1.2 or less, Mn: 0.5-2.0%, Ti: 0.04-0.20%, P: 0.025% or less, S: 0.015 or less, sol.Al: 0.005-0.15%, N: 0.0080% Below, if necessary, Ca: 0.0100% or less, B:
Killed steel containing one or more of 0.0030% or less and Cr: 1.0% or less (more than 1% by weight), the balance being Fe and unavoidable impurities, with a total rolling reduction of 30% in the temperature range of 900 to 800℃. % to 90%, and after finishing the rolling at 800℃ to 900℃, air cooling or rapid cooling to a two-phase coexistence region of ferrite and austenite, and then slow cooling or holding.
After obtaining a ferrite phase with a volume fraction of 10% to 80%, quenching is performed again at a rate of 5°C/sec to 50°C/sec.
The present invention provides a method for producing a Ti-added hot-rolled high-strength steel sheet with excellent cold workability, which is characterized by winding at 500 to 200°C. The reason why the chemical composition of the steel and the hot rolling, cooling and winding conditions are limited as described above in the method for manufacturing a hot rolled high tensile strength steel sheet according to the present invention will be explained below. Carbon (C): Carbon has the effect of ensuring the strength of steel, and is an essential component in order to achieve tensile strength of 70 kg/mm 2 or more, but its content is
If the content is less than 0.05%, it will not be possible to obtain the desired effect on the above-mentioned action, while if the content exceeds 0.20%, the bainite-like structure partially generated during low-temperature winding as employed in the present invention will have a high carbon content. The content was determined to be 0.05 to 0.20% because it becomes a bainite structure and deteriorates bendability and low-temperature toughness, and also causes deterioration of welding performance. In particular, the effect is remarkable at 0.08-0.20%. Silicon (Si): The silicon component has a solid solution strengthening effect and a deoxidizing effect. In order to increase the strength, it is preferable that the content be about 0.05% or more, but if the content exceeds 1.2%, toughness and weldability will deteriorate, so the content is set at 1.2% or less. Ta. Manganese (Mn): Manganese has the effect of toughening steel.
Although it is an important component, if the content is less than 0.5%, the desired effect cannot be obtained in the above action, and on the other hand, if the content exceeds 2.0%, A-based inclusions are likely to occur, and C Since the bending performance deteriorates, the content was set at 0.5 to 2.0%. Titanium (Ti): The titanium component has transformation strengthening with solid solution Ti,
In addition to strengthening the steel through the precipitation of TiC, it has the effect of changing the A-based inclusions made of MnS to the C-based inclusions made of TiS to improve the C bending performance, but if the content is less than 0.04%, the steel Not only is it not possible to impart the desired strength to the steel, but the shape of the inclusions is also insufficiently controlled, resulting in poor C-bending performance, and, on the other hand,
When the content exceeds 0.20%, C according to the present invention:
In steel with a concentration of 0.05-0.20%, significant precipitation hardening will adversely affect low-temperature toughness, so the content should be reduced to 0.04-0.20%, preferably 0.08%.
-0.20%. Phosphorus (P): The phosphorus component segregates at ferrite grain boundaries during slow cooling after winding, and tends to cause grain boundary embrittlement. Therefore, since it causes deterioration in the bending performance of the material with a shear end surface, it is better to reduce the amount as much as possible, but from an economic point of view, the content is set at 0.025% or less as an allowable range. However, 0.010%
The following are preferred. Sulfur (S): Sulfur component is an impurity element that easily combines with Mn in steel to form A-based inclusions.
Even with additive steel, if the content exceeds 0.015%, there is a high possibility that it will combine with Mn and form A-based inclusions, deteriorating bending performance, so the content is set at 0.015% or less. Ta. Preferably 0.005%
It is as follows. sol.Al: The sol.Al component has the effect of ensuring the effectiveness of the added Ti, but if the content is less than 0.005%, the effect of Ti addition will not be fully exhibited;
If the content exceeds 0.005% to 0.15%, the amount of nonmetallic inclusions increases and the steel becomes brittle, so the content was set at 0.005 to 0.15%. Nitrogen (N): Since the nitrogen component easily forms TiN in steel, the amount of Ti in the form of TiC, which is effective for precipitation hardening, or in the form of TiS, which is effective in spheroidizing nonmetallic inclusions, is determined. Therefore, it is better to reduce the amount of impurities as much as possible, but the upper limit of the content is set at 0.0080% as an allowable range considering economic efficiency.
It was determined that However, it is preferably 0.0050% or less. Calcium (Ca): The calcium component has the effect of combining with Al-O-based B-based inclusions and converting them into C-based inclusions to improve processability. In other words, since Ti can reduce A-based inclusions and Ca can also reduce B-based inclusions, the addition of Ca in Ti-added steel is very favorable for controlling the shape of inclusions, and is particularly effective in improving workability. When it is necessary to further improve the content, it is desirable to contain it in an amount of 0.0008% or more. However, if the content exceeds 0.0100%, the number of inclusions will increase beyond the allowable range.
Its content was set at 0.0100% or less. Boron (B): The boron component has the effect of improving the hardenability of steel and imparting toughness. In particular, as in the method for producing high-strength steel sheets according to the present invention, some parts are When utilizing the strengthening mechanism due to the generated bainitic structure, the effect of improving the hardenability of steel by adding a small amount of B is very effective. Therefore, when higher toughness is required, it is desirable to contain 0.0001% or more. However, even if the content exceeds 0.0030%, no further improvement effect can be obtained.
It is set at 0.0030% or less. Chromium (Cr): Similar to Mn, chromium has the effect of toughening steel, and when it is necessary to further improve the toughness of steel, it is desirable to add 0.1% or more, but 1.0 If the content exceeds 1.0%, no further improvement effect can be obtained, and the welding performance deteriorates, so the content was reduced to 1.0%.
It was determined as follows. Hot rolling/coiling conditions (i) Hot rolling conditions: In Ti-added steel, precipitation hardening of TiC and coarse
Since the presence of TiN deteriorates low temperature toughness,
As a countermeasure for this, in the present invention, a total reduction of 30% to 90% is performed at a temperature of 900°C or less, and a total reduction of 30% to 90% is performed at a temperature of 800°C to
Controlled rolling is performed in which rolling is finished at ℃. In this case, if the rolling end temperature is higher than 900°C or the rolling reduction is less than 30%, the desired sufficient fine grain structure cannot be obtained, making it difficult to secure the low-temperature toughness required as a structural material. The higher the total rolling reduction, the better, since it is easier to obtain fine-grained ferrite, but for practical purposes, the upper limit is set at 90%. On the other hand, if rolling is finished at a temperature lower than 800°C, not only will the texture develop and anisotropy occur, but the C-bending performance will also deteriorate.
Therefore, in the present invention, as mentioned above, the total rolling reduction in the temperature range of 900 to 800°C is 30
%~90%, and the finishing temperature is
The condition was that hot rolling be performed at a temperature of 800°C to 900°C. (ii) Cooling rate after hot rolling until coiling: In the present invention, after the above-mentioned controlled rolling, air cooling or rapid cooling to a two-phase coexistence region of ferrite and austenite is performed, followed by gradual cooling or cooling to that temperature. By holding 10%~80% in volume ratio
ferrite phase is generated. It is difficult to generate more than 80% ferrite phase from the chemical composition specified in the present invention, and when the ferrite volume fraction increases, strength decreases. After controlled rolling in the austenite region, as mentioned above, the microcrystalline grains are brought in as they are because they are air-cooled or rapidly cooled to the two-phase coexistence region of ferrite and austenite, and the subsequent slow cooling or temperature The ferrite phase obtained by holding at (causing high-temperature transformation) becomes extremely fine, and the structure is strengthened by the fine ferrite grain structure. The volume fraction of the produced ferrite phase is 10% to 80%, preferably 10 to 50%. Then, after rapid cooling, a bainitic structure is obtained by maintaining the coiling temperature as described below.
During the rapid cooling, if the rapid cooling is performed at 5°C/sec to 50°C/sec without generating 10% or more of the ferrite phase as described above, the volume fraction of low-temperature transformed structures such as bainite becomes significantly high. Desired characteristics cannot be obtained. On the other hand, slow cooling at a speed of less than 5°C/second hardly produces any transformation strengthening effect due to the formation of a bainitic structure, making it difficult to obtain the desired high strength and low-temperature toughness. I decided to do so. The higher the cooling rate, the more dense the bainitic structure can be obtained, which is preferable from the viewpoints of toughness and workability, but for practical purposes, the upper limit is 50°C/sec. (iii) Winding temperature: As mentioned above, if the winding temperature exceeds 500℃, the bendability of the material with shear end faces and the shear pie fracture transition temperature will deteriorate significantly.
On the other hand, even when the temperature is lower than 200°C, the characteristics tend to deteriorate, so in the present invention, the winding temperature is set at 500 to 200°C. Preferably it is 400-200°C. The invention will now be described in connection with examples, which are given by way of illustration only and include:
It is not intended to control the present invention. Example 1 Various steels having the chemical compositions shown in Table 1 were prepared by melting and casting using a high frequency furnace. Steel types A to H in the same table have steel compositions within the range specified in the method according to the present invention, and on the other hand,
Steel types I to S are for comparison outside the scope of the present invention. Components outside the composition range defined in the present invention are marked with *. Next, these steel materials were hot rolled under the conditions shown in Table 2 to produce hot rolled steel sheets having a thickness of 6 mm. In Table 2 as well, conditions outside the scope of the present invention are marked with *. The mechanical properties of the hot rolled steel sheets thus obtained were tested, and the results obtained are also shown in Table 2. As is clear from the results shown in Table 2, the hot rolled steel sheets of test numbers 1 to 9, in which the chemical composition range of the steel materials used and the hot rolling/coiling conditions were within the ranges specified by the present invention, all had high It is clear that it has high strength, excellent low-temperature toughness, and excellent bending performance in materials with sheared edges.
It can be seen that the hot-rolled steel sheets of comparative test numbers 10 to 23, in which the winding conditions were outside the range defined by the present invention, were inferior in low-temperature toughness and bending performance for materials with sheared edges. In particular, if only low-temperature winding is performed without controlled rolling or controlled cooling, as in the comparative examples of test numbers 10 and 11, the structure of the resulting steel sheet will be as shown in Figure 2a above. It was also found that the mixed structure of fine ferrite and fine bainite structure with a volume fraction of 10% or more did not result, but instead became an almost coarse bainite structure, resulting in a significant deterioration of toughness. The experimental results when the winding temperature was outside the range of the present invention were not good, as shown in the graphs in FIG. 1 above. Furthermore, it was confirmed that the bending performance of D steel, F steel, G steel, and H steel in Table 1 to which Ca was added was significantly improved. In this way, by subjecting Ti-added steel with a specific chemical composition to a combination of predetermined controlled rolling, controlled cooling, and low-temperature winding, a mixture of fine-grained ferrite and fine bainite structure with a volume fraction of 10% or more is achieved. A structure (in which fine-grained ferrite and fine bainite structure are separated) is obtained, which ensures not only toughness but also excellent workability. As described above, according to the present invention, it is possible to achieve high tensile strength of 70 Kg/mm 2 or more without any special post-treatment, and to cool well without cracking even when the material has a shear end surface. Hot-rolled high-strength steel sheets that have excellent workability that can be machined and, in addition, extremely excellent low-temperature toughness, can be obtained by relatively simple means, and are suitable for buildings used in cold regions and other areas. By applying it to the structural materials of industrial machines, etc., it can be expected to achieve better results than ever before, and it will bring about industrially useful effects.

【表】【table】

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図はTi添加鋼の機械的性質に及ぼす巻取
り温度の影響を示したグラフ;第2図aはTi添
加鋼を制御圧延した後、冷却パターンで冷却
し、次いで400℃で巻取つた鋼板のナイタル腐食
による光学顕微鏡組織写真;第2図bはTi添加
鋼を制御圧延した後、冷却パターンで冷却し、
次いで400℃で巻取つた鋼板のナイタル腐食によ
る光学顕微鏡組織写真;および第2図cはTi添
加鋼を制御圧延した後、600℃で巻取つた鋼板の
ナイタル腐食による光学顕微鏡組織写真である。
Figure 1 is a graph showing the effect of coiling temperature on the mechanical properties of Ti-added steel; Figure 2a is a graph showing the effect of coiling temperature on the mechanical properties of Ti-added steel; Figure 2-a shows Ti-added steel that was controlled rolled, cooled in a cooling pattern, and then rolled at 400°C. Optical micrograph of the structure of a steel plate due to nital corrosion; Figure 2b shows Ti-added steel that is controlled rolled and then cooled using a cooling pattern.
Then, an optical micrograph of the structure of a steel plate rolled at 400° C. due to nital corrosion; and FIG. 2c is an optical micrograph of the structure of a steel plate rolled at 600° C. after controlled rolling of Ti-added steel.

Claims (1)

【特許請求の範囲】 1 C:0.05−0.20%、Si:1.2以下、 Mn:0.5−2.0%、Ti:0.04−0.20%、 P:0.025%以下、S:0.015以下、 sol.Al:0.005−0.15%、 N:0.0080%以下 を含み(以上重量%)、残部Feおよび不可避不純
物からなるキルド鋼に、900〜800℃の温度域での
合計の圧下率が30%〜90%となるような熱間圧延
を施し、800℃〜900℃で圧延を終了した後、フエ
ライトとオーステナイトの2相共存域まで空冷ま
たは急冷後、徐冷あるいは保持により、体積率で
10%〜80%のフエライト相を得た後、再び更に5
℃/秒〜50℃/秒の急冷を行つてから500〜200℃
で巻取ることを特徴とする、冷間加工性のすぐれ
たTi添加熱延高張力鋼板の製造方法。 2 C:0.05−0.20%、Si:1.2以下、 Mn:0.5−2.0%、Ti:0.04−0.20%、 P:0.025%以下、S:0.015以下、 sol.Al:0.005−0.15%、 N:0.0080%以下 さらにCa:0.0100%以下、B:0.0030%以下お
よびCr:1.0%以下のうちの1種以上、 を含み(以上重量%)、残部Feおよび不可避不純
物からなるキルド鋼に、900〜800℃の温度域での
合計の圧下率が30%〜90%となるような熱間圧延
を施し、800℃〜900℃で圧延を終了した後、フエ
ライトとオーステナイトの2相共存域まで空冷ま
たは急冷後、徐冷あるいは保持により、体積率で
10%〜80%のフエライト相を得た後、再び更に5
℃/秒〜50℃/秒の急冷を行つてから500〜200℃
で巻取ることを特徴とする、冷間加工性のすぐれ
たTi添加熱延高張力鋼板の製造方法。
[Claims] 1 C: 0.05-0.20%, Si: 1.2 or less, Mn: 0.5-2.0%, Ti: 0.04-0.20%, P: 0.025% or less, S: 0.015 or less, sol.Al: 0.005- 0.15%, N: 0.0080% or less (weight%), and the balance is Fe and unavoidable impurities. After hot rolling and finishing rolling at 800°C to 900°C, air cooling or rapid cooling to a two-phase coexistence region of ferrite and austenite, and then gradual cooling or holding to reduce the volume fraction.
After obtaining 10% to 80% ferrite phase, again 5 more
℃/sec~50℃/sec after rapid cooling to 500~200℃
A method for producing a Ti-added hot-rolled high-strength steel sheet with excellent cold workability, which is characterized by winding the steel sheet. 2 C: 0.05-0.20%, Si: 1.2 or less, Mn: 0.5-2.0%, Ti: 0.04-0.20%, P: 0.025% or less, S: 0.015 or less, sol.Al: 0.005-0.15%, N: 0.0080 % or less and one or more of Ca: 0.0100% or less, B: 0.0030% or less, and Cr: 1.0% or less (weight% or more), and the balance is Fe and unavoidable impurities. After hot rolling with a total rolling reduction of 30% to 90% in the temperature range of 800°C to 900°C, air cooling or quenching to the two-phase coexistence region of ferrite and austenite. , by slow cooling or holding, by volume percentage.
After obtaining 10% to 80% ferrite phase, again 5 more
℃/sec~50℃/sec after rapid cooling to 500~200℃
A method for producing a Ti-added hot-rolled high-strength steel sheet with excellent cold workability, which is characterized by winding the steel sheet.
JP2374883A 1982-06-28 1983-02-17 Production of ti-added hot rolled high tension steel sheet having good processability Granted JPS59150018A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2374883A JPS59150018A (en) 1983-02-17 1983-02-17 Production of ti-added hot rolled high tension steel sheet having good processability
US06/507,009 US4472208A (en) 1982-06-28 1983-06-23 Hot-rolled high tensile titanium steel plates and production thereof
GB08317181A GB2122644B (en) 1982-06-28 1983-06-24 Hot-rolled high tensile titanium steel plates and production thereof
DE19833323255 DE3323255A1 (en) 1982-06-28 1983-06-28 HOT-ROLLED, HIGH-STRENGTH TITANIUM STEEL SHEET AND METHOD FOR THE PRODUCTION THEREOF
FR8310696A FR2529231B1 (en) 1982-06-28 1983-06-28 HOT ROLLED TITANIUM STEEL SHEETS WITH HIGH TENSILE STRENGTH AND THEIR MANUFACTURING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2374883A JPS59150018A (en) 1983-02-17 1983-02-17 Production of ti-added hot rolled high tension steel sheet having good processability

Publications (2)

Publication Number Publication Date
JPS59150018A JPS59150018A (en) 1984-08-28
JPS6366367B2 true JPS6366367B2 (en) 1988-12-20

Family

ID=12118930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2374883A Granted JPS59150018A (en) 1982-06-28 1983-02-17 Production of ti-added hot rolled high tension steel sheet having good processability

Country Status (1)

Country Link
JP (1) JPS59150018A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61106715A (en) * 1984-10-29 1986-05-24 Sumitomo Metal Ind Ltd Manufacture of steel plate having superior carburizing property
JP2662485B2 (en) * 1991-11-26 1997-10-15 新日本製鐵株式会社 Steel sheet having good low-temperature toughness and method for producing the same

Also Published As

Publication number Publication date
JPS59150018A (en) 1984-08-28

Similar Documents

Publication Publication Date Title
US4521258A (en) Method of making wrought high tension steel having superior low temperature toughness
JP5277648B2 (en) High strength steel sheet with excellent delayed fracture resistance and method for producing the same
JPH0441616A (en) Production of low-hardness water-resistant steel excellent in wear resistance and bendability
JP2003321727A (en) Low yield ratio high-tensile steel plate of excellent bendability and method for manufacturing the same
JP2004300452A (en) Method for producing high strength cold-rolled steel sheet having excellent impact property and shape-fixability
JP2010100896A (en) High strength cold rolled steel sheet having excellent stability in mechanical property and method of producing the same
JPH0413406B2 (en)
JPH02149646A (en) High strength hot rolled steel sheet having excellent workability and weldability
JPS5952687B2 (en) Manufacturing method of tempered high-strength steel plate with excellent low-temperature toughness
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
JP2621744B2 (en) Ultra-high tensile cold rolled steel sheet and method for producing the same
JPS63241120A (en) Manufacture of high ductility and high strength steel sheet having composite structure
JPH0225968B2 (en)
JPH08209239A (en) Production of thick steel for low temperature use having brittle fracture propagation stop characteristic at lower than-50×c
JPS6366367B2 (en)
JPS6320414A (en) Production of high-toughness high-tensile steel plate
KR100370584B1 (en) Manufacturing method of high strength thick steel sheet with resistance ratio
JPH0118967B2 (en)
KR100435467B1 (en) A method for manufacturing high strength cold rolled steel sheet having superior ductility by continuous annealing
JPS6152317A (en) Manufacture of hot rolled steel plate having superior toughness at low temperature
JPS602364B2 (en) Manufacturing method of non-thermal high tensile strength steel plate with excellent low-temperature toughness
JPS624450B2 (en)
JPS6119733A (en) Preparation of super 70kg grade high strength hot rolled steel plate excellent in elongation flange property
JPS6338518A (en) Production of steel plate having excellent hydrogen induced cracking resistance
JPH08225883A (en) Production of high tensile strength steel plate excellent in strength and toughness