JP4092791B2 - Low loss and low noise iron core and manufacturing method thereof - Google Patents

Low loss and low noise iron core and manufacturing method thereof Download PDF

Info

Publication number
JP4092791B2
JP4092791B2 JP28402898A JP28402898A JP4092791B2 JP 4092791 B2 JP4092791 B2 JP 4092791B2 JP 28402898 A JP28402898 A JP 28402898A JP 28402898 A JP28402898 A JP 28402898A JP 4092791 B2 JP4092791 B2 JP 4092791B2
Authority
JP
Japan
Prior art keywords
iron core
silicon steel
tension
low
magnetostriction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28402898A
Other languages
Japanese (ja)
Other versions
JP2000114064A (en
Inventor
俊郎 富田
繁雄 上野谷
直幸 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP28402898A priority Critical patent/JP4092791B2/en
Publication of JP2000114064A publication Critical patent/JP2000114064A/en
Application granted granted Critical
Publication of JP4092791B2 publication Critical patent/JP4092791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は変圧器などに使用される鋼板を積層して形成される積み鉄心に関する。さらに詳しくは、低損失低騒音の特長を有する鉄心およびその製造方法に関する。
【0002】
【従来の技術】
変圧器は、鉄心とそれに鎖交する二つ以上の巻線を有し、一つ以上の回路から交流電力を受けて電磁誘導作用により電圧および電流を変成し、他の回路に交流電力を供給するものである。このエネルギー変換効率をよくするために、鉄損が低い鉄心が求められている。
【0003】
変圧器には低損失特性に加えて低騒音特性が求められている。変圧器による騒音は、鉄心素材が交流磁化された際に生じる磁歪現象に基づく振動音である。この騒音は変圧器の作動中常時発生し、静粛な生活環境が損なわれる要因となる。磁歪に伴う騒音の防止には、鉄心素材の磁歪を減少させるのが最も望ましい方法であるが、磁歪を完全に無くするのが困難であるため、鉄心の振動防止や騒音の遮断など多大の費用を要する騒音対策が施されるのが現状である。
【0004】
エネルギー変換効率を向上させるために、変圧器の鉄心素材として一方向性珪素鋼板が広く使用されている。一方向性珪素鋼板は、圧延方向の磁化特性が優れており、圧延方向に磁化して使用する場合には低損失で、磁歪が小さいという特性を有している。しかしながら、圧延方向以外の方向に磁化した場合には、これらの特性は好ましくないものである。
【0005】
比較的小型の鉄心では、磁化方向が圧延方向のみになるように、鋼板を巻き重ねて鉄心とした巻鉄心が使用される場合がある。巻鉄心には、製造工程が簡単なことに加えて、磁化方向を圧延方向のみにすることにより最良の磁化特性が得られるという効果がある。
【0006】
図1は、三相三脚型変圧器の鉄心片の積層状況の例を示す斜視図である。鉄心1は、複数の脚部2と脚部間を連結する上下のヨーク部3から構成され、磁束8は破線で示すように、脚部2、コーナー部4、ヨーク部3およびコーナー部4T を経由する閉回路を形成する。
【0007】
脚部2およびヨーク部3は、一方向性珪素鋼板から採取された脚部用鉄心片およびヨーク部用鉄心片が積層されている。図1に示すような、巻鉄心構造でない変圧器においては、最良の磁化特性を得るために、脚部およびヨーク部の鉄心片は、それぞれの直辺部5が圧延方向(RD)に平行になるように板取りされる。一方向性珪素鋼板には、特性を向上させるために、通常、無機物系の張力コーティングが施され、鋼板に張力(引張応力)が付加されている。張力コーティングは、一方向性珪素鋼板製造時の高温焼鈍の際に鋼板表面に密着して形成されるフォルステライト皮膜と、その上に形成される無機系皮膜を利用し、高温からの冷却時に鋼板とコーティング皮膜との熱膨張差を利用して鋼板面内で等方的な張力を付加するものである。
【0008】
この鋼板面内の張力は鉄心素材の圧延方向の鉄損や磁歪を低減する作用がある。しかしながら、一方向性珪素鋼板を素材とする場合には、コーナー部4で磁束方向が圧延方向から外れる部分があるため、この部分で磁化特性が阻害されるという問題がある。
【0009】
一般に、三相三脚積み鉄心の損失は、鉄心素材の一方向性珪素鋼板の圧延方向の鉄損よりも15〜20%劣化することが知られている。鉄心素材の鉄損に対する変圧器鉄心の鉄損の比率はビルディングファクター(以下、「BF」とも記す)と称され、この数値が小さいほど、鉄心素材を変圧器鉄心に加工した時の鉄損の劣化度が小さく、好ましいとされている。一方向性珪素鋼板を三相三脚型積み鉄心に使用した際のBFは、1.15〜1.2となることが知られている。
【0010】
BFが1を超えるのは、図1に示したように、鉄心コーナー部4で、磁束の方向が圧延方向からずれることに起因していると考えられている。特に、ヨーク部と脚部がT型に接合されているコーナー部4T でのずれの影響が大きい。
【0011】
また、従来の一方向性珪素鋼板においては、その表面に張力コーティング皮膜を備えることによりにより素材の磁歪を抑制しているが、この方法では、磁束が圧延方向からずれる鉄心コーナー部での磁歪現象を抑制することができない。このため、一方向性珪素鋼板を用いた三相三脚型積み鉄心では磁歪騒音も巻鉄心に比べて大きいとされている。
【0012】
さらに、張力コーティング方法では、コーティング皮膜と鋼板との間の密着性を確保するために、鋼板表面直下に数μmの厚さを有する内部酸化層(フォルステライト層)を生成させるが、このような内部酸化層が存在すると鉄損が悪くなるという問題もある。
【0013】
以上述べたように、従来の一方向性電磁鋼板を使用して組み上げた鉄心の鉄損や磁歪レベルは必ずしも十分なものではなかった。
【0014】
【発明が解決しようとする課題】
圧延方向と、これに直角な方向(以下、単に「 幅方向」 と記す)との二方向ともに優れた磁気特性を有する電磁鋼板として、二方向性珪素鋼板が知られている。二方向性珪素鋼板は、結晶構造の(001)面が圧延面に平行で、磁化容易軸である<100>方向が圧延方向および幅方向に高度に集積した集合組織を持つものである。
【0015】
二方向性珪素鋼板を積み鉄心素材として用いれば、脚部とヨーク部の直辺部が共に磁化容易方向となる。従って、分割構造としなくても、磁化特性が優れた鉄心を得ることができる。あるいは、分割した鉄心片を組み合わせる場合であっても、その分割数を大幅に低減することができる。
【0016】
二方向性珪素鋼板では、鉄心のコーナー部で磁束が圧延方向からずれることによる鉄心性能の劣化が軽減できるという利点もある。珪素鋼においては〔100〕方向が磁化容易方向であり、〔111〕方向は磁化が困難な方向、〔110〕方向は前記2方向の中間的な磁化特性を示す。鉄心のコーナー部4または4T での磁束の方向変化は、二方向性珪素鋼板の場合は〔100〕方向から〔110〕方向への回転であるのに対し、一方向性珪素鋼板では〔100〕方向から〔111〕方向へ回転する。このため、磁束が圧延方向から回転する場合の磁気特性の劣化は、二方向性珪素鋼板の方が一方向性珪素鋼板よりも少ない。従って、前述の三相三脚型積み鉄心のBFは、一方向性珪素鋼板に替えて二方向性珪素鋼板を用いることで低下させることができる。
【0017】
しかしながら、従来の二方向性珪素鋼板を交流で磁化した際に発生する磁歪の飽和値(消磁状態から磁気飽和までの間に磁化方向に現れる単位長さあたりの伸び歪み)は10-5程度であり、良好な一方向性珪素鋼板の圧延方向の磁歪が10-6であることからわかるように、一方向性珪素鋼板に比較して大きいという問題がある。
【0018】
この問題点を改善するために、一方向性珪素鋼板と同様に張力コーティングを施す方法が開示されている。しかしながら、二方向性珪素鋼板では鋼板製造時にフォルステライト皮膜の形成が容易でないため、張力コーティングでは磁歪抑制に必要とされる大きさの張力を付与することができないという問題があった。
【0019】
また、圧延方向と幅方向の二方向に磁気特性の良い二方向性珪素鋼板では、張力コーティングによって特定方向に張力を作用させると、張力を付加した方向の特性は改善されるが、それと直角な方向の特性が劣化するという問題があった。鋼板面内に等方的な張力を付加すると、どちらの方向の特性とも不十分な改善しか示さないという問題もあった。
【0020】
さらに、従来の二方向性珪素鋼板では付加される張力レベルにより磁歪が大きく変化する性質があるため、鉄心作製時等に加えられる応力や歪みによる鉄心の磁歪や鉄損の劣化が著しく、安定して良好な低磁歪の鉄心を得るには、鋼板に作用させる張力レベルを、素材段階だけでなく組み立て時においても、厳密に管理する必要があることが予測された。これらの問題があるために現在まで二方向性珪素鋼板を用いた変圧器は実用化されていない。
【0021】
以上述べたように、大型変圧器などの鉄心の低損失化と低騒音化に対して、従来の一方向性珪素鋼板ではその改善効果が十分ではなく、二方向性珪素鋼板においても、効果的な張力コーティング方法や磁歪減少技術は未だ開示されていない。
【0022】
本発明は、上記の課題を解決し、従来の一方向性珪素鋼板を用いた鉄心に比較して大幅に騒音と損失特性を向上させた変圧器用積み鉄心およびその製造方法を提供することにある。
【0023】
【課題を解決するための手段】
圧延方向とそれに直角な方向との磁化特性が優れているという二方向性珪素鋼板が有する特性は、鉄心の低鉄損化を推進する材料として好適な特性である。従って、上述の磁歪に起因する問題点を解決するのが変圧器の鉄心の性能改善には最も望ましい方法であると判断された。
【0024】
本発明者らは上記の技術思想を基にして、積み鉄心の磁化特性と磁歪に対して張力が及ぼす効果、および磁束の方向に沿って、正確かつ簡便な張力付加方法に関して種々研究を進めた結果、以下に記すような新たな知見を得た。
【0025】
(a)従来の二方向性珪素鋼板の結晶粒径は平均で20〜30mm前後のものである。これに対して、本発明者らが開示した平均結晶粒径を3mm以下に小さくして磁化特性を向上させた二方向性珪素鋼板の磁歪は著しく小さい。また、結晶粒を小径化することにより、従来の二方向性珪素鋼板で認められていた磁歪の応力依存性が大幅に緩和され、応力変動があってもそれによる磁歪の悪化が小さくなる。
【0026】
従来の一方向性珪素鋼板および二方向性珪素鋼板を交流で磁化した際に生じる磁歪は、ある磁束密度を境にして正磁歪(伸び歪み)から負磁歪(圧縮歪み)、または、負磁歪から正磁歪へと、磁歪が急激に変化するものであった。しかしながら、上述の小径の結晶粒の二方向性珪素鋼板に適度の張力を作用させると負磁歪を示さなくなり、小さな正磁歪のみとすることができる。
【0027】
このことは、交流で磁化した時の磁歪の高周波成分が減少することを意味し、騒音領域の内の聴覚上重要な周波数帯である数百〜数千Hzの領域での騒音が発生しなくなることを意味している。このように、結晶粒を微細化した二方向性珪素鋼板は、従来の一方向性珪素鋼板に比べても高周波成分の磁歪が少なくなり、変圧器の騒音対策が簡略化できる。
【0028】
(b)二方向性珪素鋼板の張力コーティングは、前述したように極めて限定された効果しか得られず、これによる磁歪防止効果は満足なものではない。
【0029】
磁歪防止のための応力は、珪素鋼板を鉄心形状に積層した後、鉄心の磁路方向に平行な方向の張力を鉄心外部から付加する方法が好適である。磁歪抑制に必要な張力は0.1〜2kg/m2 程度の極めて低い張力でよいことから、弾性範囲内で圧縮変形させた部材を鉄心の直辺部に平行に配設し、その弾性回復力を利用して鉄心の磁路方向に張力を作用させる方法が良い。
【0030】
上記の方法は、それぞれの直辺部の寸法形状に応じた最良の大きさの張力を作用させることができるので、鉄心の形状や寸法に応じた最適の磁歪レベルの鉄心を得ることができる。また張力は機械的に作用させるので鉄心や変圧器の組み立て工程や輸送工程での外乱に影響されることが無くなり、変圧器の設計製作組み付け作業が容易になるという利点も有する。この方法は、付加張力が精度良く管理できるうえ、メカニズムが単純で信頼性に富み永続して効果が発揮できるうえ施工が容易で経済的に施すことができる。
【0031】
本発明は上記のような新たに得られた知見を基にして完成されたものであり、その要旨は下記(1)または(2)に記載の低損失低騒音積み鉄心および(3)に記載のその製造方法にある。
【0032】
(1)平均結晶粒径が3mm以下の二方向性珪素鋼板を積層して形成される積み鉄心であって、弾性限界内で圧縮変形された応力部材が、鉄心に設けられた支持部間に、その直辺部に平行に挟持されていることを特徴とする低損失低騒音積み鉄心。
【0033】
(2)該応力部材の弾性回復力により、0.1〜2.0Kgf/mm2 の張力が鉄心の直辺部に付加されていることを特徴とする上記(1) に記載の低損失低騒音積み鉄心。
【0035】
(3)支持部間の距離よりも所定の量だけ長い寸法を有する応力部材を、収縮または弾性限界内で曲げ変形させて支持部間に挿嵌し、直辺部に平行に挟持させることを特徴とする上記(1)または(2)に記載の低損失低騒音積み鉄心の製造方法。
【0036】
【発明の実施の形態】
以下に本発明の実施の形態を詳細に説明する。
図2は、本発明の実施例に関わる、変圧器のモデルとした3相3脚のラップジョイント方式の積み鉄心での応力部材の配設場所を概念的に示した模式図である。
【0037】
本発明の低損失低騒音積み鉄心は、図2に例示されているように、弾性限界内で圧縮変形された応力部材9が、脚部2および/またはヨーク部3の直辺部5に平行に、鉄心に設けられた支持部Aでその両端を挟持されている。
【0038】
応力部材9の弾性回復力がその両端の支持部A間を押し広げるように作用することにより、鉄心の脚部2および/またはヨーク部3の直辺部5に張力が発生する。このようにして鉄心の磁化方向に張力を作用させることにより、交流磁化特性が改善できる。
【0039】
応力部材は、脚部および/またはヨーク部の少なくとも1個所以上の直辺部に設けられる。応力部材は、脚部やヨーク部の外周部および/または窓部10の鉄心片の切断面に平行に配設するのがよい。切断面に隣接して配設すればさらによい。しかしながら、応力部材の配設様式はこれに限定する必要はなく、鉄心素材鋼板面に平行に配設してもよい。その場合には、また、脚部やヨーク部の鉄心内部にスリット状の空間を設け(例えば図2に記載のスリット11など)、その空間部分に応力部材を挿入してもよい。
【0040】
支持部A間に挟持される応力部材9の圧縮変形される前の長さは、支持部間の距離よりも所定の値だけ長くなっている(以下、この所定の値を「圧縮代」と記す)。
【0041】
圧縮代は、応力部材が上記支持部間に挟持された際に生じる弾性回復力の大きさが、脚部2またはヨーク部3の直辺部の断面積あたりで、0.1〜2.0Kgf/mm2 の張力を作用させることができる範囲とするのがよい。圧縮代は、応力部材の弾性限界、寸法、鉄心に作用させる張力の大きさ、鉄心素材と応力部材の熱膨張率差等から決定すればよい。圧縮代は、鉄心使用時の温度で所望の張力を作用させられる値にしておけばよい。
【0042】
前記の鉄心に作用させる張力は、磁歪の減少効果を得るために、0.1Kgf/mm2 以上とするのがよい。好ましくは0.3Kgf/mm2 以上、さらに好ましくは0.5Kgf/mm2 以上とするのがよい。鉄心に作用させる張力が2.0Kgf/mm2 を超えると、応力の不均一性から弾性変形を超えて変形される部分が生じ鉄損が低下するため、その張力は2.0Kgf/mm2 以下とするのがよい。
【0043】
応力部材の断面積が大きくなると変圧器の寸法が過大になるため、直辺部に作用する張力は、好ましくは1.5Kgf/mm2 以下、さらに好ましくは1.2Kgf/mm2 以下とするのがよい。
【0044】
応力部材の弾性限界が高く、圧縮代が大きいほど、応力部材に必要とされる断面積が小さくできる。従って応力部材としては、その弾性限界が20Kgf/mm2 以上のものであるのが好ましい。
【0045】
応力部材は、磁性を備えた材料でも構わないが、非磁性の材料を用いるのがよい。応力部材が非磁性であると鉄心の磁化に影響せず鉄損や磁歪を損なうことがないので好ましい。これらの性能を満たす好適な材質としては、例えば、オーステナイト系ステンレス鋼、アルミニウム合金、銅合金等があげられる。
【0046】
応力部材の断面積が大きくなると、鉄心と巻線との間の空間が大きくなり、巻線が大型化し、変圧器使用時の銅損が増すうえ変圧器も大きくなるので好ましくない。これを避けるために、応力部材の断面積は、該応力部材が張力を作用させる鉄心直辺部の断面積の5%以下とするのがよい。
【0047】
応力部材の断面形状は任意である。鉄心の断面形状が矩形である場合には、その平面に沿って鋼板形状の応力部材を挟持させると、鉄心と巻き線間の空隙を小さくできるので好ましい。鉄心の断面形状が円弧状のものである場合には、応力部材は、断面が矩形や円形の棒鋼や形鋼などを用いても構わない。
【0048】
鉄心の脚部2に応力部材を配する場合には、応力部材は変圧器の巻線の内径側に配設するのがよい。鉄心と巻き線間の空隙が小さいほど変圧器の効率が優れるため、応力部材と鉄心直辺部との間隔は小さいほど好ましく、両者が直接接触しているのが好ましい。
【0049】
支持部Aは、応力部材からの力を受けてこれを鉄心に伝達するために設けるものである。支持部の構成方法は任意であるが、図2に例示したように、鉄心を鋼板から打ち抜く際に直辺部の端部や中間部などに突起を設けるのがよい。
【0050】
応力部材9を鉄心の窓部10側に配設する場合には、相対する脚部またはヨーク部の間で応力部材を直接挟持させてもよい。このような場合の本発明の支持部とは、応力部材の両端が鉄心に接する部分を意味する。あるいは、鉄心とは別の支持物を鉄心の側面部に固着して支持部としてもよい。
【0051】
さらに、支持部としては上記の形状や状態に限定される必要はなく、応力部材に相対する位置に突起物を配設し、その間に応力部材を挟持させてもよい。例えば、応力部材を鉄心素材鋼板面に平行に配設する場合には、鉄心に貫通孔12を設け、この部分に鉄心の厚さよりも長いボルトなどの支持部材を厚さ方向に貫通させ、その両端部を支持部としてもよい。
【0052】
本発明の応力部材は、従来の一方向性珪素鋼板を素材とした鉄心に使用しても効果が発揮されるが、二方向性珪素鋼板を素材とする鉄心に適用すれば特に効果的である。その理由は、脚部の直辺部を圧延方向に平行に、ヨーク部を幅方向にして板取りすることにより、一方向性珪素鋼板で生じることがあるコーナー部での効率低下が抑制されてエネルギー変換効率が向上する。さらに、上述したように鉄心の支持部の加工が容易であるからである。
【0053】
さらに、二方向性珪素鋼板の中でも、結晶粒径が3mm以下の、無張力下での磁歪が飛躍的に小さい二方向性珪素鋼板を素材とした鉄心に本発明の応力部材を備えさせると、これまでにない低騒音、かつ、低損失の鉄心が得られる。
【0054】
応力部材9を支持部A間に挟持させる方法は任意であるが、例えば、所定の圧縮代が得られるように支持部間の距離よりも長くした応力部材を用意し、これを冷却して収縮させたり、弾性限界内での曲げ変形または長さ方向の圧縮変形を加えるなどの方法で、その長さを支持部間の距離よりも短くし、これを支持部間に挿入し、次いで真直にして、直辺部に平行に挟持させるなどの方法が好適である。
【0055】
本発明の応力部材を備える鉄心の形態は任意であり、公知のU字型鉄心やEI型鉄心に用いることができるが、特に、電力用の三相三脚型積み鉄心のように比較的大型の鉄心に適用するのが効果が大きく好適である。
【0056】
【実施例】
(実施例1)
厚さが0.3mmである一方向性珪素鋼板および二方向性珪素鋼板を素材として使用した。いずれの素材とも、張力コーティングは施していない。これらの素材の鉄損と磁束密度を単板磁化測定装置を用いて測定した。また、圧延方向(0°方向)または幅方向(90°方向)に1.0kgf/mm2 の張力を作用させた場合のそれぞれの方向での鉄損も測定した。さらに、1.7Tまで磁化した際の磁歪(λp-p )を、張力がない素材および1.0kgf/mm2 の張力を作用させた素材について測定した。
【0057】
表1に、これらの素材の特性を示した。二方向性珪素鋼板の内、鋼板記号B1は平均結晶粒径が大きく、B2は平均結晶粒径が3mm以下のものである。
【0058】
【表1】

Figure 0004092791
【0059】
図3は、上述の方法で測定した鋼板記号Aの一方向性珪素鋼板の磁化の強さと磁歪の関係を示すグラフである。曲線aは張力を作用させなかった場合、曲線bは上記張力を作用させた場合である。
【0060】
図4は、同様の方法で測定した鋼板記号B2の二方向性珪素鋼板の磁化の強さと磁歪の関係を示すグラフである。曲線aは張力を作用させなかった場合、曲線bは上記張力を作用させた場合である。
【0061】
表1および図3からわかるように、素材とした一方向性珪素鋼板の磁歪は、無張力下では磁化の強さによらず正の磁歪を示したが、張力を付加すると、磁化過程で磁歪は一旦負の値を示した後、磁化が1.5Tを超えると増加し始め、1.7Tを超えた磁化領域で正の磁歪となった。
【0062】
他方、図4に示されているように、鋼板記号B2の二方向性珪素鋼板では、張力有無に関わらず磁歪は常に正であり、磁化の増大と共に単調に増加した。また、張力付加時の磁歪は常に10-6以下の小さな値であった。
【0063】
これらの素材から、鉄心片を打ち抜いて2種類のモデル積み鉄心を作製し、応力部材による張力付加をおこなった場合と、応力部材を備えず、張力を付加しなかった場合の鉄心としての諸特性を調査した。
【0064】
図2は、変圧器のモデルとした3相3脚のラップジョイント方式の積み鉄心の形状を概念的に示した模式図である。これをモデルIII と記す。鉄心片の積み枚数は75枚とした。鉄心の寸法は、脚部の幅L1:150mm、ヨーク部の幅L2:150mm、全体の高さH:750mm、幅W:750mmとした。モデル鉄心の脚部およびヨーク部の外周および窓側の直辺部合計14個所に、短冊状のオーステナイト系ステンレス鋼板を応力部材として挟持させた。応力部材9の寸法は、厚さ:1.5mm、幅:22.5mm(積み厚と同一寸法)であり、長さはいずれも支持部A間の距離よりも0.2%長いものを用いた。
【0065】
図5は、他のモデルとした鉄心片を一体にして打ち抜いた単相の積み鉄心の形状を概念的に示した模式図である。これをモデルIIと記す。鉄心片の積み枚数は50枚とした。鉄心の寸法は、脚部の幅L3:100mm、ヨーク部の幅L4:100mm、全体の高さH:500mm、幅W:350mmとした。応力部材には、厚さ:0.8mm、幅:15mm(積み厚と同一寸法)で、長さがいずれも支持部間の距離よりも0.2%長い短冊状のオーステナイト系ステンレス鋼板(圧縮代:0.2%)を用いた。応力部材の設置個所は合計8個所である。
【0066】
応力部材はいずれも−100℃まで冷却し、熱収縮させた後支持部間に挿入して挟持した。なお、ここで用いたオーステナイト系ステンレス鋼板の線膨張係数は17×10-6であり、温度差120℃で0.2%伸縮するものである。
【0067】
鉄心の直辺部に作用している張力は、応力部材の収縮率からその弾性回復力を計算し、鉄心の断面積で除して求めた。
【0068】
上記のような構成のモデル鉄心の脚部に1次、2次コイルをそれぞれ60ターン巻きつけ、1次コイルに周波数50Hzの交流を通じて励磁した。鉄心の磁束密度は1.7Tとした。ヨーク部の直上300mmの位置にマイクロフォンを設け(図示せず)、JIS−C1505(1988)に規定されるAスケール補正回路を用いて騒音を測定した。また、上述の条件で励磁した場合の鉄損を公知の方法により測定し、鉄心素材の鉄損に対する鉄心の鉄損の比率(ビルディングファクター、以下「BF」とも記す)を測定した。なお、いずれのモデル共、比較例として、応力部材を備えない場合についても同様に評価した。
表2に、上記の測定の結果得られた特性値を示す。
【0069】
【表2】
Figure 0004092791
【0070】
表2の試験番号1および3の結果に示されているように、本発明の応力部材を備えた三相三脚鉄心(モデルIII)の騒音は、一方向性珪素鋼板を素材とした場合に6dB低下し、平均結晶粒径が3mm以下の二方向性珪素鋼板B2を素材として用いた場合(試験番号3)に15dB低下した。騒音の絶対値レベルは、いずれも低くて良好であるが、特に、鋼板記号B2を素材とした試験番号3では良好であり、試験番号1に比較すると7dB低かった。これは、素材の磁歪が小さいことに加えて磁歪曲線が、磁化の増加に伴って単調に増加する形であるために磁歪振動の高調波成分が少ないためである。
【0071】
本発明の応力付加により、3相3脚鉄心の鉄損も改善されたが、その改善状況は鋼板記号B2の二方向性珪素鋼板を用いた場合に特に良好であった。これは、素材の鉄損が小さいことに加えて、鉄心に組み上げた際の鉄損の増加率(ビルディングファクター:BF)が小さいことによる。BFは一方向性珪素鋼板で1.18、二方向性珪素鋼板で1.01であった。また、二方向性珪素鋼板では、張力付与により、BFも低下した。平均結晶粒径が大きい二方向性珪素鋼板B1を素材とした場合にも、本発明の張力付加により騒音と鉄損が改善されるが、その程度は僅かである。
【0072】
(実施例2)
表1に記載の鋼板記号B2の二方向性珪素鋼板を素材とし、実施例1で用いたモデルIII と同一寸法の3相3脚のラップジョイント方式の積み鉄心に、実施例1で使用したのと同様の熱膨張特性を有するオーステナイト系ステンレス鋼板の厚さを種々変更した応力部材を、実施例1と同様の位置に配設し、直辺部に作用する張力を種々変更したモデル変圧器を作製した。長さを、圧縮代が実施例1と同様に0.2%になるように調整した応力部材を、実施例1と同様に冷却し、熱収縮させた後支持部間に挿入して挟持した。鉄心の直辺部に作用している張力は、実施例1と同様の方法で計算した。
【0073】
上記のような構成のモデル鉄心の脚部に実施例1と同様に1次、2次コイルを巻きつけ、励磁し、同様の方法で騒音と鉄損を測定した。
表3に、上記の測定の結果得られた特性値を示す。
【0074】
【表3】
Figure 0004092791
【0075】
表3の結果からわかるように、鉄心に作用する張力が0.3kgf/mm2 および1.2kgf/mm2 の場合に特に騒音が低く、その場合には鉄損も低くて特に良好であった。
【0076】
【発明の効果】
本発明の低損失低騒音積み鉄心は、従来の一方向性珪素鋼板を用いた鉄心に比較して大幅に騒音と損失特性が向上している。このため、騒音対策が容易であるうえ長期使用時のエネルギー効率が優れるので、特に大型の変圧器用鉄心として経済性にすぐれ、好適である。本発明の低損失低騒音積み鉄心は構造が簡単であり、容易かつ経済的に製造することができる。
【図面の簡単な説明】
【図1】三相三脚型変圧器の鉄心片の積層状況の例を示す斜視図である。
【図2】本発明の実施例に関わる、変圧器のモデルとした3相3脚のラップジョイント方式の積み鉄心での応力部材の配設場所を概念的に示した模式図である。
【図3】一方向性珪素鋼板の磁化の強さと磁歪の関係を示すグラフである。
【図4】二方向性珪素鋼板の磁化の強さと磁歪の関係を示すグラフである。
【図5】変圧器のモデルとした鉄心片を一体にして打ち抜いた単相の積み鉄心の形状を概念的に示した模式図である。
【符号の説明】
1:鉄心、2:脚部、3:ヨーク部、4:脚部とヨーク部がL字型に交わるコーナー部、4T :脚部とヨーク部がT字型に交わるコーナー部、
5:直辺部、8:磁束、9:応力部材、10:窓部、11:スリット部、12:貫通孔、A:支持部、RD:圧延方向。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a stacked iron core formed by laminating steel plates used for transformers and the like. More specifically, the present invention relates to an iron core having features of low loss and low noise and a method for manufacturing the same.
[0002]
[Prior art]
A transformer has an iron core and two or more windings linked to it, receives AC power from one or more circuits, transforms voltage and current by electromagnetic induction, and supplies AC power to other circuits To do. In order to improve the energy conversion efficiency, an iron core with low iron loss is required.
[0003]
Transformers are required to have low noise characteristics in addition to low loss characteristics. Noise due to the transformer is vibration sound based on a magnetostriction phenomenon that occurs when the iron core material is AC magnetized. This noise is always generated during the operation of the transformer, and it is a factor that impairs a quiet living environment. The most desirable way to prevent noise associated with magnetostriction is to reduce the magnetostriction of the iron core material, but it is difficult to eliminate the magnetostriction completely. It is the present situation that noise measures that require are taken.
[0004]
In order to improve energy conversion efficiency, unidirectional silicon steel sheets are widely used as iron core materials for transformers. Unidirectional silicon steel sheets have excellent magnetization characteristics in the rolling direction, and have characteristics of low loss and low magnetostriction when magnetized in the rolling direction. However, these properties are undesirable when magnetized in directions other than the rolling direction.
[0005]
In a relatively small iron core, a wound iron core may be used in which a steel sheet is rolled up so that the magnetization direction is only the rolling direction. In addition to the simple manufacturing process, the wound core has the effect that the best magnetization characteristics can be obtained by making the magnetization direction only the rolling direction.
[0006]
FIG. 1 is a perspective view showing an example of the state of lamination of core pieces of a three-phase tripod transformer. The iron core 1 is composed of a plurality of leg portions 2 and upper and lower yoke portions 3 that connect the leg portions, and the magnetic flux 8 is shown by a broken line in the legs 2, corner portions 4, yoke portions 3, and corner portions 4 as shown by broken lines. T To form a closed circuit.
[0007]
The leg part 2 and the yoke part 3 are laminated with a core part for a leg part and a core part for a yoke part taken from a unidirectional silicon steel plate. In a transformer not having a wound iron core structure as shown in FIG. 1, in order to obtain the best magnetization characteristics, the iron core pieces of the leg part and the yoke part have their respective straight sides 5 parallel to the rolling direction (RD). The board is made to become. In order to improve the characteristics, the unidirectional silicon steel sheet is usually coated with an inorganic tension coating, and tension (tensile stress) is applied to the steel sheet. Tensile coating uses a forsterite film formed in close contact with the steel sheet surface during high temperature annealing during the production of unidirectional silicon steel sheet and an inorganic film formed on it. Isotropic tension is applied within the steel sheet surface using the difference in thermal expansion between the coating and the coating film.
[0008]
This tension in the steel sheet has the effect of reducing iron loss and magnetostriction in the rolling direction of the core material. However, when the unidirectional silicon steel plate is used as the material, there is a problem that the magnetic properties are disturbed at this portion because there is a portion where the magnetic flux direction deviates from the rolling direction at the corner portion 4.
[0009]
In general, it is known that the loss of a three-phase tripod iron core is 15 to 20% worse than the iron loss in the rolling direction of a unidirectional silicon steel sheet of iron core material. The ratio of the iron loss of the transformer core to the iron loss of the iron core material is called the building factor (hereinafter also referred to as “BF”). The smaller this value, the lower the iron loss when the iron core material is processed into the transformer core. The degree of degradation is small and preferred. It is known that the BF when a unidirectional silicon steel plate is used for a three-phase tripod-type iron core is 1.15 to 1.2.
[0010]
The reason why BF exceeds 1 is considered to be caused by the deviation of the direction of magnetic flux from the rolling direction at the iron core corner portion 4 as shown in FIG. In particular, the corner part 4 in which the yoke part and the leg part are joined in a T-shape. T The effect of deviation is large.
[0011]
Moreover, in the conventional unidirectional silicon steel sheet, the magnetostriction of the material is suppressed by providing a tension coating film on the surface thereof, but in this method, the magnetostriction phenomenon at the iron core corner portion where the magnetic flux deviates from the rolling direction. Can not be suppressed. For this reason, in a three-phase tripod type iron core using a unidirectional silicon steel plate, magnetostriction noise is said to be larger than that of a wound iron core.
[0012]
Furthermore, in the tension coating method, an internal oxide layer (forsterite layer) having a thickness of several μm is formed directly under the steel plate surface in order to ensure adhesion between the coating film and the steel plate. There is also a problem that the iron loss becomes worse when the internal oxide layer exists.
[0013]
As described above, the iron loss and magnetostriction level of the iron core assembled using the conventional unidirectional electrical steel sheet are not always sufficient.
[0014]
[Problems to be solved by the invention]
Bidirectional silicon steel sheets are known as electromagnetic steel sheets having excellent magnetic properties in both the rolling direction and the direction perpendicular to the rolling direction (hereinafter simply referred to as “width direction”). The bi-directional silicon steel sheet has a texture in which the (001) plane of the crystal structure is parallel to the rolling surface and the <100> direction, which is the easy axis of magnetization, is highly integrated in the rolling direction and the width direction.
[0015]
If a bi-directional silicon steel plate is used as the stacked core material, the leg portions and the right side portions of the yoke portion are both in the easy magnetization direction. Therefore, an iron core having excellent magnetization characteristics can be obtained without using a split structure. Or even if it is a case where the divided | segmented iron core piece is combined, the division | segmentation number can be reduced significantly.
[0016]
The bi-directional silicon steel sheet has an advantage that the deterioration of the core performance due to the magnetic flux deviating from the rolling direction at the corner of the core can be reduced. In silicon steel, the [100] direction is the easy magnetization direction, the [111] direction indicates the direction in which magnetization is difficult, and the [110] direction indicates intermediate magnetization characteristics between the two directions. Core corner 4 or 4 T The direction change of the magnetic flux in the case of the bi-directional silicon steel plate is the rotation from the [100] direction to the [110] direction, whereas the unidirectional silicon steel plate is changed from the [100] direction to the [111] direction. Rotate. For this reason, the deterioration of the magnetic characteristics when the magnetic flux rotates from the rolling direction is less in the bidirectional silicon steel plate than in the unidirectional silicon steel plate. Accordingly, the BF of the above-described three-phase tripod type iron core can be lowered by using a bidirectional silicon steel plate instead of the unidirectional silicon steel plate.
[0017]
However, the saturation value of magnetostriction (elongation strain per unit length appearing in the magnetization direction from the demagnetized state to magnetic saturation) generated when a conventional bi-directional silicon steel plate is magnetized with alternating current is 10 -Five The magnetostriction in the rolling direction of a good unidirectional silicon steel sheet is 10 -6 As can be seen from the above, there is a problem that it is larger than the unidirectional silicon steel sheet.
[0018]
In order to improve this problem, a method of applying a tension coating in the same manner as a unidirectional silicon steel sheet is disclosed. However, since it is not easy to form a forsterite film at the time of manufacturing a steel sheet with a bi-directional silicon steel sheet, there is a problem that tension coating cannot provide a tension required for suppressing magnetostriction.
[0019]
In addition, in a bi-directional silicon steel sheet with good magnetic properties in two directions, the rolling direction and the width direction, when tension is applied in a specific direction by tension coating, the characteristics in the direction in which the tension is applied are improved, but perpendicular to it. There was a problem that the characteristics of the direction deteriorated. When isotropic tension is applied to the surface of the steel sheet, there is also a problem that the characteristics in either direction show only insufficient improvement.
[0020]
Furthermore, since the conventional bi-directional silicon steel sheet has a property that the magnetostriction changes greatly depending on the applied tension level, the deterioration of the magnetostriction and iron loss of the iron core due to the stress and strain applied during the preparation of the iron core is remarkably stable. In order to obtain a good and low magnetostrictive iron core, it was predicted that the tension level applied to the steel sheet must be strictly controlled not only at the material stage but also during assembly. Due to these problems, a transformer using a bi-directional silicon steel sheet has not been put into practical use until now.
[0021]
As described above, the conventional unidirectional silicon steel sheet is not sufficient to reduce the loss and noise of iron cores such as large transformers. Neither tension coating methods nor magnetostriction reduction techniques have been disclosed yet.
[0022]
An object of the present invention is to solve the above-described problems and provide a stacked iron core for a transformer and a method for manufacturing the same, in which noise and loss characteristics are greatly improved as compared with a conventional iron core using a unidirectional silicon steel plate. .
[0023]
[Means for Solving the Problems]
The characteristic that the bi-directional silicon steel sheet has excellent magnetization characteristics in the rolling direction and the direction perpendicular to the rolling direction is a suitable characteristic as a material that promotes the reduction in iron loss of the iron core. Therefore, it has been determined that solving the problems caused by the magnetostriction described above is the most desirable method for improving the performance of the iron core of the transformer.
[0024]
Based on the above technical idea, the present inventors have advanced various researches on the effect of tension on the magnetization characteristics and magnetostriction of the stacked iron core, and on the accurate and simple method of applying tension along the direction of magnetic flux. As a result, the following new knowledge was obtained.
[0025]
(A) The crystal grain size of the conventional bi-directional silicon steel sheet is about 20 to 30 mm on average. On the other hand, the magnetostriction of the bidirectional silicon steel sheet in which the average crystal grain size disclosed by the present inventors is reduced to 3 mm or less to improve the magnetization characteristics is remarkably small. Further, by reducing the diameter of the crystal grains, the stress dependence of magnetostriction recognized in the conventional bi-directional silicon steel sheet is greatly relaxed, and the deterioration of magnetostriction due to the stress fluctuation is reduced.
[0026]
Magnetostriction that occurs when conventional unidirectional silicon steel plates and bi-directional silicon steel plates are magnetized with alternating current is from positive magnetostriction (elongation strain) to negative magnetostriction (compression strain) or negative magnetostriction with a certain magnetic flux density as a boundary. The magnetostriction suddenly changed to positive magnetostriction. However, when an appropriate tension is applied to the above-mentioned small-diameter grain-oriented bi-directional silicon steel sheet, negative magnetostriction is not exhibited, and only a small positive magnetostriction can be obtained.
[0027]
This means that the high-frequency component of magnetostriction when magnetized by alternating current is reduced, and noise is not generated in the region of several hundred to several thousand Hz, which is an important auditory frequency band in the noise region. It means that. Thus, the bi-directional silicon steel plate with refined crystal grains has less magnetostriction of the high frequency component than the conventional unidirectional silicon steel plate, and can simplify the noise countermeasure of the transformer.
[0028]
(B) As described above, the tension coating of the bi-directional silicon steel sheet can provide only an extremely limited effect, and the magnetostriction preventing effect due to this is not satisfactory.
[0029]
The stress for preventing magnetostriction is preferably a method in which a silicon steel plate is laminated in an iron core shape, and then a tension in a direction parallel to the magnetic path direction of the iron core is applied from the outside of the iron core. The tension required to suppress magnetostriction is 0.1 to 2 kg / m 2 Since the tension can be extremely low, a member that is compressed and deformed within the elastic range is arranged in parallel with the straight side of the iron core, and its tension is applied in the magnetic path direction of the iron core using its elastic recovery force. The method is good.
[0030]
Since the above method can apply the tension of the best magnitude according to the dimension and shape of each straight side portion, an iron core having an optimum magnetostriction level according to the shape and dimension of the iron core can be obtained. Further, since the tension is applied mechanically, it is not affected by disturbances in the assembly process and the transport process of the iron core and the transformer, and there is an advantage that the transformer can be easily designed, manufactured and assembled. In this method, the applied tension can be managed with high accuracy, the mechanism is simple, reliable and permanent, and the effects can be exerted, and the construction is easy and economical.
[0031]
The present invention has been completed based on the newly obtained knowledge as described above. (1) or (2) Low loss low noise stacking iron core and (3) In its production method.
[0032]
(1) Bidirectional silicon steel sheet with an average grain size of 3 mm or less A stacking iron core formed by laminating layers, wherein a stress member compressed and deformed within an elastic limit is sandwiched between support portions provided on the iron core in parallel with its right side. Low loss and low noise loading iron core.
[0033]
(2) Depending on the elastic recovery force of the stress member, 0.1 to 2.0 kgf / mm 2 The low-loss and low-noise stacking core according to (1) above, wherein a tension of 1 is applied to the immediate side of the core.
[0035]
(3) A stress member having a dimension longer than a distance between the support portions is bent or deformed within a contraction or elastic limit, is inserted between the support portions, and is held in parallel with the right side portion. In (1) or (2) above The manufacturing method of the low-loss and low noise loading iron core of description.
[0036]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 2 is a schematic diagram conceptually showing the location of the stress member in the three-phase three-leg lap joint type stacked iron core as a transformer model according to the embodiment of the present invention.
[0037]
As illustrated in FIG. 2, in the low loss and low noise stacking iron core of the present invention, the stress member 9 compressed and deformed within the elastic limit is parallel to the leg portion 2 and / or the right side portion 5 of the yoke portion 3. Further, both ends thereof are sandwiched between support portions A provided on the iron core.
[0038]
When the elastic recovery force of the stress member 9 acts so as to push the space between the support portions A at both ends, tension is generated in the leg portion 2 of the iron core and / or the straight side portion 5 of the yoke portion 3. By applying tension in the magnetization direction of the iron core in this way, the AC magnetization characteristics can be improved.
[0039]
The stress member is provided on at least one straight side portion of the leg portion and / or the yoke portion. The stress member is preferably arranged in parallel to the outer peripheral portion of the leg portion and the yoke portion and / or the cut surface of the iron core piece of the window portion 10. It is even better if it is arranged adjacent to the cut surface. However, the arrangement of the stress members need not be limited to this, and may be arranged parallel to the iron core material steel plate surface. In that case, a slit-shaped space (for example, the slit 11 shown in FIG. 2) may be provided inside the iron core of the leg portion or the yoke portion, and a stress member may be inserted into the space portion.
[0040]
The length of the stress member 9 sandwiched between the support portions A before being compressed and deformed is longer than the distance between the support portions by a predetermined value (hereinafter, this predetermined value is referred to as “compression allowance”). Write down).
[0041]
The compression allowance is such that the magnitude of the elastic recovery force generated when the stress member is sandwiched between the support parts is 0.1 to 2.0 Kgf per cross-sectional area of the leg part 2 or the right side part of the yoke part 3. / Mm 2 It is preferable that the tension is within a range where the tension can be applied. The compression allowance may be determined from the elastic limit of the stress member, the dimensions, the magnitude of the tension acting on the iron core, the difference in thermal expansion coefficient between the iron core material and the stress member, and the like. The compression allowance may be set to a value at which a desired tension can be applied at the temperature when the iron core is used.
[0042]
The tension applied to the iron core is 0.1 kgf / mm to obtain a magnetostriction reducing effect. 2 It is good to be the above. Preferably 0.3 kgf / mm 2 Or more, more preferably 0.5 kgf / mm 2 It is good to be the above. Tension acting on the iron core is 2.0 kgf / mm 2 Exceeding the elastic deformation, the iron loss is reduced due to the non-uniform stress, and the tension is 2.0 kgf / mm. 2 The following is recommended.
[0043]
When the cross-sectional area of the stress member increases, the size of the transformer becomes excessive. Therefore, the tension acting on the right side is preferably 1.5 kgf / mm. 2 Or less, more preferably 1.2 kgf / mm 2 The following is recommended.
[0044]
The higher the elastic limit of the stress member and the greater the compression allowance, the smaller the cross-sectional area required for the stress member. Therefore, as a stress member, its elastic limit is 20 kgf / mm. 2 The above is preferable.
[0045]
The stress member may be a magnetic material, but a non-magnetic material is preferably used. It is preferable that the stress member is non-magnetic because it does not affect the magnetization of the iron core and does not impair iron loss or magnetostriction. Suitable materials satisfying these performances include, for example, austenitic stainless steel, aluminum alloy, copper alloy and the like.
[0046]
If the cross-sectional area of the stress member is increased, the space between the iron core and the windings is increased, the windings are increased in size, the copper loss during use of the transformer is increased, and the transformer is also increased. In order to avoid this, it is preferable that the cross-sectional area of the stress member is 5% or less of the cross-sectional area of the iron core right side portion on which the stress member acts.
[0047]
The cross-sectional shape of the stress member is arbitrary. When the cross-sectional shape of the iron core is rectangular, it is preferable to sandwich a steel plate-shaped stress member along the plane because the gap between the iron core and the winding can be reduced. In the case where the cross-sectional shape of the iron core is an arc, the stress member may be a bar or a steel bar having a rectangular or circular cross section.
[0048]
When a stress member is disposed on the leg 2 of the iron core, the stress member is preferably disposed on the inner diameter side of the transformer winding. The smaller the gap between the iron core and the winding, the better the efficiency of the transformer. Therefore, the smaller the gap between the stress member and the iron core right side portion, the better, and the two are preferably in direct contact with each other.
[0049]
The support part A is provided to receive a force from the stress member and transmit the force to the iron core. The configuration method of the support portion is arbitrary, but as illustrated in FIG. 2, when the iron core is punched out from the steel plate, it is preferable to provide a protrusion at the end portion or the intermediate portion of the straight side portion.
[0050]
When the stress member 9 is disposed on the iron core window 10 side, the stress member may be directly sandwiched between the opposing leg portions or yoke portions. The support portion of the present invention in such a case means a portion where both ends of the stress member are in contact with the iron core. Alternatively, a support different from the iron core may be fixed to the side surface of the iron core to form the support portion.
[0051]
Further, the supporting portion is not limited to the shape and state described above, and a protrusion may be disposed at a position facing the stress member, and the stress member may be sandwiched therebetween. For example, when the stress member is disposed parallel to the iron core material steel plate surface, a through hole 12 is provided in the iron core, and a support member such as a bolt longer than the thickness of the iron core is penetrated in this portion in the thickness direction. It is good also considering a both-ends part as a support part.
[0052]
The stress member of the present invention is effective even when used for an iron core made of a conventional unidirectional silicon steel sheet, but is particularly effective when applied to an iron core made of a bi-directional silicon steel sheet. . The reason for this is that by taking the straight part of the leg part parallel to the rolling direction and the yoke part in the width direction, the efficiency drop at the corner part that may occur in the unidirectional silicon steel sheet is suppressed. Energy conversion efficiency is improved. Furthermore, as described above, it is easy to process the support portion of the iron core.
[0053]
Furthermore, among the two-way silicon steel plate, when the stress member of the present invention is provided on an iron core made of a bi-directional silicon steel plate having a crystal grain size of 3 mm or less and magnetostriction under no tension is remarkably small, An unprecedented low noise and low loss iron core can be obtained.
[0054]
The stress member 9 can be clamped between the support portions A by any method. For example, a stress member longer than the distance between the support portions is prepared so as to obtain a predetermined compression allowance, and this is cooled and contracted. The length is made shorter than the distance between the support parts, and is inserted between the support parts, and then straightened. Thus, a method such as clamping in parallel with the right side portion is suitable.
[0055]
The form of the iron core provided with the stress member of the present invention is arbitrary, and can be used for a well-known U-shaped iron core or EI type iron core. In particular, it is relatively large like a three-phase tripod type iron core for electric power. Applying to an iron core is preferable because of its great effect.
[0056]
【Example】
Example 1
Unidirectional silicon steel plates and bidirectional silicon steel plates having a thickness of 0.3 mm were used as materials. Neither material is tension coated. The iron loss and magnetic flux density of these materials were measured using a single plate magnetization measuring device. Also, 1.0 kgf / mm in the rolling direction (0 ° direction) or the width direction (90 ° direction) 2 The iron loss was also measured in each direction when the tension was applied. Furthermore, the magnetostriction (λ pp ), A material without tension and 1.0 kgf / mm 2 It measured about the raw material which applied the tension | tensile_strength.
[0057]
Table 1 shows the characteristics of these materials. Among the bidirectional silicon steel plates, the steel plate symbol B1 has a large average crystal grain size, and B2 has an average crystal grain size of 3 mm or less.
[0058]
[Table 1]
Figure 0004092791
[0059]
FIG. 3 is a graph showing the relationship between the magnetization strength and magnetostriction of the unidirectional silicon steel sheet A measured by the above method. Curve a is when no tension is applied, and curve b is when the tension is applied.
[0060]
FIG. 4 is a graph showing the relationship between the magnetization strength and magnetostriction of the bidirectional silicon steel plate of steel plate symbol B2 measured by the same method. Curve a is when no tension is applied, and curve b is when the tension is applied.
[0061]
As can be seen from Table 1 and FIG. 3, the magnetostriction of the unidirectional silicon steel plate used as a material showed a positive magnetostriction under no tension, regardless of the strength of magnetization. Once showed a negative value, it started to increase when the magnetization exceeded 1.5T, and became a positive magnetostriction in a magnetization region exceeding 1.7T.
[0062]
On the other hand, as shown in FIG. 4, in the bi-directional silicon steel plate with the steel plate symbol B2, the magnetostriction was always positive regardless of the presence or absence of tension, and increased monotonously with increasing magnetization. The magnetostriction when tension is applied is always 10 -6 The following values were small.
[0063]
From these materials, iron core pieces are punched out to create two types of model cores, and when the tension is applied by a stress member, the characteristics of the iron core when there is no stress member and no tension is applied investigated.
[0064]
FIG. 2 is a schematic view conceptually showing the shape of a three-phase three-leg lap joint type stacked iron core as a transformer model. This is referred to as Model III. The number of iron core pieces stacked was 75. The dimensions of the iron core were a leg width L1: 150 mm, a yoke width L2: 150 mm, an overall height H: 750 mm, and a width W: 750 mm. A strip-shaped austenitic stainless steel plate was sandwiched as a stress member at a total of 14 locations on the outer periphery of the leg portion and the yoke portion of the model core and on the window side. The stress member 9 has a thickness of 1.5 mm and a width of 22.5 mm (same dimensions as the stacking thickness), and the length is 0.2% longer than the distance between the support portions A. It was.
[0065]
FIG. 5 is a schematic diagram conceptually showing the shape of a single-phase stacked core obtained by punching together core pieces as another model. This is referred to as Model II. The number of iron core pieces stacked was 50. The dimensions of the iron core were the leg width L3: 100 mm, the yoke width L4: 100 mm, the overall height H: 500 mm, and the width W: 350 mm. The stress member has a strip-shaped austenitic stainless steel plate (compressed) with a thickness of 0.8 mm, a width of 15 mm (same dimensions as the stacking thickness), and a length that is 0.2% longer than the distance between the support portions. Cost: 0.2%). There are a total of eight stress member installation locations.
[0066]
All the stress members were cooled to −100 ° C. and thermally contracted, and then inserted between the support portions and sandwiched. In addition, the linear expansion coefficient of the austenitic stainless steel plate used here is 17 × 10. -6 It expands and contracts by 0.2% at a temperature difference of 120 ° C.
[0067]
The tension acting on the immediate side of the iron core was obtained by calculating the elastic recovery force from the shrinkage rate of the stress member and dividing by the cross-sectional area of the iron core.
[0068]
The primary and secondary coils were wound around the leg of the model core having the above-described configuration for 60 turns, respectively, and the primary coil was excited through an alternating current with a frequency of 50 Hz. The magnetic flux density of the iron core was 1.7T. A microphone was provided at a position 300 mm directly above the yoke part (not shown), and noise was measured using an A scale correction circuit defined in JIS-C1505 (1988). Moreover, the iron loss when excited under the above-mentioned conditions was measured by a known method, and the ratio of the iron loss of the iron core to the iron loss of the iron core material (building factor, hereinafter also referred to as “BF”) was measured. In any model, as a comparative example, the case where no stress member was provided was evaluated in the same manner.
Table 2 shows characteristic values obtained as a result of the above measurement.
[0069]
[Table 2]
Figure 0004092791
[0070]
As shown in the results of test numbers 1 and 3 in Table 2, the noise of the three-phase tripod iron core (model III) provided with the stress member of the present invention is 6 dB when a unidirectional silicon steel plate is used as a material. When the bi-directional silicon steel plate B2 having an average crystal grain size of 3 mm or less was used as a material (test number 3), it was reduced by 15 dB. The absolute level of noise was low and good, but it was particularly good in Test No. 3 using the steel plate symbol B2 as a material, and was 7 dB lower than Test No. 1. This is because the magnetostriction curve is monotonously increased as the magnetization increases in addition to the small magnetostriction of the material, so that the harmonic component of the magnetostriction vibration is small.
[0071]
Although the iron loss of the three-phase, three-legged iron core was improved by applying the stress of the present invention, the improvement was particularly good when the bi-directional silicon steel plate with the steel plate symbol B2 was used. This is because, in addition to the small iron loss of the material, the rate of increase (building factor: BF) of the iron loss when assembled on the iron core is small. BF was 1.18 for the unidirectional silicon steel plate and 1.01 for the bi-directional silicon steel plate. Further, in the bi-directional silicon steel sheet, BF also decreased due to the application of tension. Even when the bi-directional silicon steel plate B1 having a large average crystal grain size is used as a raw material, noise and iron loss are improved by the application of tension according to the present invention, but the degree is small.
[0072]
(Example 2)
The bi-directional silicon steel plate of steel plate symbol B2 shown in Table 1 was used as the material, and the three-phase three-leg lap joint type stacked iron core having the same dimensions as the model III used in Example 1 was used in Example 1. A model transformer in which stress members having variously changed thicknesses of austenitic stainless steel plates having the same thermal expansion characteristics as those in Example 1 are arranged at the same positions as in Example 1 and various tensions acting on the straight side portions are changed. Produced. A stress member whose length was adjusted so that the compression allowance was 0.2% as in Example 1 was cooled and thermally contracted in the same manner as in Example 1, and then inserted and supported between support parts. . The tension acting on the immediate side of the iron core was calculated by the same method as in Example 1.
[0073]
The primary and secondary coils were wound around the legs of the model iron core having the above-described configuration and excited in the same manner as in Example 1, and noise and iron loss were measured in the same manner.
Table 3 shows characteristic values obtained as a result of the above measurement.
[0074]
[Table 3]
Figure 0004092791
[0075]
As can be seen from the results in Table 3, the tension acting on the iron core is 0.3 kgf / mm. 2 And 1.2 kgf / mm 2 In this case, the noise was particularly low, and in that case, the iron loss was low and particularly good.
[0076]
【The invention's effect】
The low-loss, low-noise iron core of the present invention has greatly improved noise and loss characteristics compared to a conventional iron core using a unidirectional silicon steel sheet. For this reason, noise countermeasures are easy and energy efficiency during long-term use is excellent, so that it is excellent in economic efficiency and particularly suitable as a large transformer core. The low-loss, low-noise core of the present invention has a simple structure and can be manufactured easily and economically.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example of a state of lamination of iron core pieces of a three-phase tripod transformer.
FIG. 2 is a schematic diagram conceptually showing the location of stress members in a three-phase three-leg lap joint type stacked iron core as a transformer model according to an embodiment of the present invention.
FIG. 3 is a graph showing the relationship between the strength of magnetization and magnetostriction of a unidirectional silicon steel sheet.
FIG. 4 is a graph showing the relationship between magnetization strength and magnetostriction of a bi-directional silicon steel sheet.
FIG. 5 is a schematic diagram conceptually showing the shape of a single-phase stacked core obtained by integrally punching core pieces as a transformer model.
[Explanation of symbols]
1: Iron core, 2: Leg part, 3: Yoke part, 4: Corner part where leg part and yoke part intersect in L shape, 4 T : Corner part where leg part and yoke part intersect in T shape,
5: Straight side part, 8: Magnetic flux, 9: Stress member, 10: Window part, 11: Slit part, 12: Through hole, A: Support part, RD: Rolling direction.

Claims (3)

平均結晶粒径が3mm以下の二方向性珪素鋼板を積層して形成される積み鉄心であって、弾性限界内で圧縮変形された応力部材が、鉄心に設けられた支持部間に、その直辺部に平行に挟持されていることを特徴とする低損失低騒音積み鉄心。 A laminated iron core formed by laminating bi-directional silicon steel sheets having an average crystal grain size of 3 mm or less, and a stress member that is compressed and deformed within the elastic limit is directly placed between support portions provided on the iron core. A low-loss, low-noise core that is sandwiched parallel to the sides. 該応力部材の弾性回復力により、0.1〜2.0Kgf/mm2の張力が鉄心の直辺部に付加されていることを特徴とする請求項1に記載の低損失低騒音積み鉄心。The low-loss and low-noise stacking iron core according to claim 1, wherein a tension of 0.1 to 2.0 Kgf / mm 2 is applied to a straight side portion of the iron core by an elastic recovery force of the stress member. 支持部間の距離よりも所定の量だけ長い寸法を有する応力部材を、収縮または弾性限界内で曲げ変形させて支持部間に挿嵌し、直辺部に平行に挟持させることを特徴とする請求項1または2に記載の低損失低騒音積み鉄心の製造方法。A stress member having a length longer than a distance between the support portions by a predetermined amount is bent or deformed within a contraction or elastic limit, is inserted between the support portions, and is held in parallel with the right side portion. A method for manufacturing a low-loss, low-noise iron core according to claim 1 or 2 .
JP28402898A 1998-10-06 1998-10-06 Low loss and low noise iron core and manufacturing method thereof Expired - Fee Related JP4092791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28402898A JP4092791B2 (en) 1998-10-06 1998-10-06 Low loss and low noise iron core and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28402898A JP4092791B2 (en) 1998-10-06 1998-10-06 Low loss and low noise iron core and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000114064A JP2000114064A (en) 2000-04-21
JP4092791B2 true JP4092791B2 (en) 2008-05-28

Family

ID=17673378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28402898A Expired - Fee Related JP4092791B2 (en) 1998-10-06 1998-10-06 Low loss and low noise iron core and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4092791B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210027939A1 (en) * 2018-03-30 2021-01-28 Jfe Steel Corporation Iron core for transformer
US11961647B2 (en) 2018-03-30 2024-04-16 Jfe Steel Corporation Iron core for transformer

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4023088B2 (en) * 2000-12-25 2007-12-19 住友金属工業株式会社 Soft magnetic steel sheet for electromagnet actuator parts and manufacturing method thereof
JP3776748B2 (en) * 2001-05-30 2006-05-17 株式会社東芝 Laminated iron core, method for manufacturing the same, and transformer
JP3869768B2 (en) * 2002-07-19 2007-01-17 新日本製鐵株式会社 Transformer
CN102648505B (en) * 2009-11-20 2015-07-29 三菱电机株式会社 Transformer
KR101197234B1 (en) * 2011-04-08 2012-11-02 주식회사 아모그린텍 Amorphous Metal Core, Inductive Device Using the Same, and Manufacturing Method thereof
JP6296916B2 (en) * 2014-06-20 2018-03-20 株式会社日立製作所 Static induction machine
KR101941068B1 (en) 2014-09-26 2019-01-22 제이에프이 스틸 가부시키가이샤 Grain oriented electrical steel sheet, method for manufacturing grain oriented electrical steel sheets, method for evaluating grain oriented electrical steel sheets, and iron core
JP6819136B2 (en) * 2016-08-24 2021-01-27 日本製鉄株式会社 Trance
JP7003466B2 (en) * 2017-07-14 2022-01-20 日本製鉄株式会社 Stacked iron core for three-phase transformer
KR20220058932A (en) * 2019-09-10 2022-05-10 닛폰세이테츠 가부시키가이샤 Kwon Cheol-shim
EP4234731A4 (en) * 2020-10-26 2024-04-03 Nippon Steel Corp Wound core

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210027939A1 (en) * 2018-03-30 2021-01-28 Jfe Steel Corporation Iron core for transformer
US11961659B2 (en) * 2018-03-30 2024-04-16 Jfe Steel Corporation Iron core for transformer
US11961647B2 (en) 2018-03-30 2024-04-16 Jfe Steel Corporation Iron core for transformer

Also Published As

Publication number Publication date
JP2000114064A (en) 2000-04-21

Similar Documents

Publication Publication Date Title
US9601256B2 (en) Wound iron core for static apparatus, amorphous transformer and coil winding frame for transformer
JP4092791B2 (en) Low loss and low noise iron core and manufacturing method thereof
US6737951B1 (en) Bulk amorphous metal inductive device
US6070317A (en) Quiet magnetic structures
JP7047931B2 (en) Winding core and transformer
US5371486A (en) Transformer core
JPS62222614A (en) Composite core of silicon steel-amorphous steel for transformer
JPH07201551A (en) Laminated electromagnetic steel plate
JP6531613B2 (en) Low noise winding transformer and method of manufacturing the same
JP2008235525A (en) Reactor core and reactor
JPH0785457B2 (en) Low noise laminated iron core and wound iron core using ultra high silicon electromagnetic steel sheet
JP3574955B2 (en) Transformer winding core
JP6809299B2 (en) Transformer with steel core
JP2019125750A (en) Amorphous core and transformer
JP2023146181A (en) Three-phase tripod wound iron core and three-phase tripod wound iron core transformer using the same
JP2776337B2 (en) Amorphous core
JPH05101943A (en) Three-phase wound core
KR950015006B1 (en) Transformer core
EP4354474A1 (en) Iron core of transformer, and manufacturing method therefor
JP2013229529A (en) Transformer iron core
JP6890210B2 (en) Static device
JP4437939B2 (en) Low iron loss unidirectional electrical steel sheet
WO2021049419A1 (en) Wound core
JP2023176086A (en) Iron core for stationary electromagnetic equipment
JPH0562839A (en) Transformer laminated iron core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees