JPH07268567A - Grain oriented silicon steel sheet having extremely low iron loss - Google Patents

Grain oriented silicon steel sheet having extremely low iron loss

Info

Publication number
JPH07268567A
JPH07268567A JP6062780A JP6278094A JPH07268567A JP H07268567 A JPH07268567 A JP H07268567A JP 6062780 A JP6062780 A JP 6062780A JP 6278094 A JP6278094 A JP 6278094A JP H07268567 A JPH07268567 A JP H07268567A
Authority
JP
Japan
Prior art keywords
steel sheet
iron loss
orientation
extremely low
low iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6062780A
Other languages
Japanese (ja)
Inventor
Kenji Kosuge
健司 小菅
Kikuji Hirose
喜久司 広瀬
Kazutoshi Takeda
和年 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6062780A priority Critical patent/JPH07268567A/en
Publication of JPH07268567A publication Critical patent/JPH07268567A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To produce a grain oriented silicon steel sheet having extremely low iron loss characteristic. CONSTITUTION:This steel sheet has a composition containing, by weight, <=0.005% C and 2.5-7.0% Si and also has a structure in which average crystalline grain size is regulated to 1-10mm and crystal orientation has an orientational deviation averaging <=8 deg. in a rolling direction with respect to the ideal orientation of (110)[001]. By this method, the grain oriented silicon steel sheet having extremely low iron loss can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、2.5〜7.0%のS
iを含み、微細な結晶粒径を有する鋼板において、(1
10)〔001〕方位の集積度が高いことにより、極め
て低い鉄損をもつ一方向性電磁鋼板を提供するものであ
る。
BACKGROUND OF THE INVENTION The present invention has an S content of 2.5 to 7.0%.
In a steel sheet containing i and having a fine crystal grain size, (1
10) The high integration degree of the [001] orientation provides a unidirectional electrical steel sheet having an extremely low iron loss.

【0002】[0002]

【従来の技術】一般に、一方向性電磁鋼板の磁気特性は
鉄損特性と励磁特性の両方で評価される。励磁特性を高
めることは設計磁束密度を高める機器の小型化に有効で
ある。一方鉄損特性を少なくすることは、電気機器とし
て使用する際、熱エネルギーとして失われるものを少な
くし、消費電力を節約できる点で有効である。さらに、
製品の結晶粒の〈100〉軸を圧延方向に揃えること
は、磁化特性を高め、鉄損特性も低くすることができ、
近年特にこの面で多くの研究が重ねられ、様々な製造技
術による一方向性電磁鋼板が開発された。この結果、現
在、工業生産されている代表的な一方向性電磁鋼板は、
3つの代表的な技術により製造されている。
2. Description of the Related Art Generally, the magnetic properties of a grain-oriented electrical steel sheet are evaluated by both the iron loss property and the excitation property. Increasing the excitation characteristics is effective for downsizing equipment that increases the design magnetic flux density. On the other hand, reducing the iron loss characteristics is effective in reducing the loss of heat energy when used as an electric device and saving the power consumption. further,
Aligning the <100> axes of the crystal grains of the product in the rolling direction can improve the magnetization characteristics and lower the iron loss characteristics.
In recent years, much research has been conducted especially in this respect, and unidirectional electrical steel sheets have been developed by various manufacturing techniques. As a result, the typical industrially produced grain-oriented electrical steel sheets are
It is manufactured by three representative technologies.

【0003】第一の技術は、特公昭30−3651号公
報に開示された、MnSをインヒビターとして機能させ
る、2回冷延工程により製造する一方向性電磁鋼板があ
る。この一方向性電磁鋼板は、二次再結晶の粒径が小さ
いので、比較的鉄損は良好であるが、高い磁束密度が得
られないという問題があった。これに対して、高い磁束
密度を得るために、第二の技術として、特公昭40−1
5644号公報が開示された。これは、AlN+MnS
をインヒビターとして機能させ、最終冷延工程における
圧延率が80%を超える強圧下とする製造技術である。
この方法により二次再結晶粒の(110)〔001〕方
位の集積度が高く、B8 が1.870(T)以上の高磁
束密度を有する方向性電磁鋼板が得られる。さらに、第
三の技術として、特公昭51−13469号公報に開示
された、MnSまたはMnSe+Sbをインヒビターと
して機能させる、2回冷延工程による製造技術が開発さ
れた。
The first technique is a unidirectional electrical steel sheet which is disclosed in Japanese Patent Publication No. Sho 30-3651 and which has MnS functioning as an inhibitor and is produced by a double cold rolling process. Since this grain-oriented electrical steel sheet has a small secondary recrystallization grain size, the iron loss is relatively good, but there is a problem that a high magnetic flux density cannot be obtained. On the other hand, in order to obtain a high magnetic flux density, as a second technique, Japanese Patent Publication No. 40-1
Japanese Patent No. 5644 has been disclosed. This is AlN + MnS
Is used as an inhibitor, and the rolling rate in the final cold rolling step is a strong reduction that exceeds 80%.
By this method, a grain-oriented electrical steel sheet having a high degree of integration of the (110) [001] orientation of secondary recrystallized grains and a high magnetic flux density of B 8 of 1.870 (T) or more can be obtained. Further, as a third technique, a production technique by a two-time cold rolling process has been developed, which is disclosed in Japanese Patent Publication No. 51-13469, in which MnS or MnSe + Sb functions as an inhibitor.

【0004】さて、一般に鉄損は大きく分けて履歴損と
渦電流損の二つからなる。履歴損に影響を与える物理的
な要因として、上述の結晶方位の他に材料の純度や内部
歪みがある。また、渦電流損に影響を与える物理的な要
因として、鋼板の電気抵抗(Siなどの成分量)、板
厚、磁区の大きさ(結晶粒度)や鋼板に及ぼす張力など
がある。通常の方向性電磁鋼板では渦電流損が全鉄損の
3/4以上を占めるため、履歴損より渦電流損を下げる
方が全鉄損を下げる上で効果的である。
In general, iron loss is roughly classified into hysteresis loss and eddy current loss. Physical factors that influence the hysteresis loss include the purity of the material and internal strain in addition to the above-described crystal orientation. Further, physical factors that affect the eddy current loss include electric resistance (amount of components such as Si) of the steel sheet, sheet thickness, size of magnetic domain (grain size), and tension exerted on the steel sheet. Since eddy current loss accounts for 3/4 or more of total iron loss in ordinary grain-oriented electrical steel sheets, lowering eddy current loss than hysteresis loss is more effective in reducing total iron loss.

【0005】このため、上記第二の技術による製造方法
では、二次結晶粒の(110)〔001〕方位の集積度
が高く、B8 が1.870(T)以上の高磁束密度を有
する方向性電磁鋼板が得られたとしても、二次再結晶粒
径が10mmオーダと大きくなるため、渦電流損に影響す
る磁区幅が大きかった。これを改善するために、特公昭
57−2252号公報に開示されている鋼板にレーザー
処理を施す方法、さらに特公昭58−2569号公報に
開示されている鋼板に機械的な歪みを加える方法など、
磁区を細分化する様々な方法が開示されている。しか
し、これらの方法では工程を増やす必要がある。
Therefore, in the manufacturing method according to the second technique, the degree of integration of the (110) [001] orientation of the secondary crystal grains is high, and B 8 has a high magnetic flux density of 1.870 (T) or more. Even if the grain-oriented electrical steel sheet was obtained, the secondary recrystallized grain size was as large as 10 mm, so that the magnetic domain width that affected the eddy current loss was large. In order to improve this, a method of subjecting a steel sheet disclosed in JP-B-57-2252 to a laser treatment, a method of applying mechanical strain to a steel sheet disclosed in JP-B-58-2569, etc. ,
Various methods of subdividing magnetic domains have been disclosed. However, these methods require additional steps.

【0006】そこで、これらの増工程を必要とする技術
に変わって、微細な二次再結晶粒径を持つことにより渦
電流損を低減し、従来よりも低い鉄損を有する一方向性
電磁鋼板を提供する製造方法が開示されている。たとえ
ば、特開平1−290716号公報では、常温圧延され
た鋼板に100℃/秒以上の加熱速度で675℃以上の
温度へ超急速焼きなまし処理を施し、該ストリップを脱
炭素処理し、最終高温焼きなまし処理を施して二次成長
を行い、それによって前記ストリップが低減した寸法の
二次粒子及び応力除去焼きなまし処理後も有意の変化な
しに持続する改善された鉄損をもつことを特徴とする方
法が開示されている。
Therefore, in place of the technique requiring these additional steps, a unidirectional electrical steel sheet having a fine secondary recrystallized grain size to reduce the eddy current loss and have a lower iron loss than the conventional one Is disclosed. For example, in Japanese Patent Application Laid-Open No. 1-290716, a cold rolled steel sheet is subjected to a super rapid annealing treatment at a heating rate of 100 ° C./sec or more to a temperature of 675 ° C. or more, the strip is decarbonized, and finally hot annealed. A method for producing secondary growth, whereby the strip has secondary particles of reduced size and improved iron loss that persists without significant change after stress relief annealing. It is disclosed.

【0007】しかし、確かにある程度小さな二次再結晶
粒は得られるのではあるが、この製造方法では、どうし
ても(110)〔001〕方位が圧延方向からずれた微
細な二次再結晶粒の比率が多くなり、履歴損が悪くなる
分、余り良好な鉄損値が得られないことが判明した。つ
まり、慣用焼きなましによる処理に対する超急速焼きな
ましによる処理の鉄損改善率が数%と低いという問題点
があった。また、後の鋼板表面にフォルステライトや絶
縁皮膜などの皮膜を付与した際の鉄損値の向上率が余り
大きくならないという問題点もあった。
However, although it is possible to obtain secondary recrystallized grains which are small to some extent, in this manufacturing method, the proportion of fine secondary recrystallized grains in which the (110) [001] orientation deviates from the rolling direction is inevitable. It was found that a very good iron loss value could not be obtained due to the increase in the amount and the deterioration of the history loss. That is, there was a problem that the iron loss improvement rate of the treatment by the ultra-rapid annealing was as low as a few% as compared with the treatment by the conventional annealing. In addition, there is also a problem that the improvement rate of the iron loss value when a film such as forsterite or an insulating film is applied to the surface of the steel sheet later does not become so large.

【0008】[0008]

【発明が解決しようとする課題】本発明は、微細な(1
10)〔001〕二次再結晶方位粒を有する一方向性電
磁鋼板において、(110)〔001〕方位の集積度が
高いことにより大きく鉄損改善率を向上させた一方向性
電磁鋼板を提供することにある。
DISCLOSURE OF THE INVENTION The present invention provides a fine (1
10) A unidirectional electrical steel sheet having [001] secondary recrystallized orientation grains, which has a high degree of integration of (110) [001] orientation, thereby greatly improving the iron loss improvement rate. To do.

【0009】[0009]

【課題を解決するための手段】本発明では、上記課題を
解決すべく検討を重ねた結果、重量でC:0.005%
以下、Si:2.5〜7.0%を含み、平均結晶粒径が
1〜10mmであり、結晶方位が(110)〔001〕の
理想方位に対して、平均値で圧延方向に8°以下の方位
のズレを有することにより、極めて低い鉄損を有する一
方向性電磁鋼板が得られることを見いだした。
In the present invention, as a result of repeated studies to solve the above problems, C: 0.005% by weight
Hereafter, Si: 2.5 to 7.0% is included, the average crystal grain size is 1 to 10 mm, and the crystal orientation is 8 ° in the rolling direction as an average value with respect to the ideal orientation of (110) [001]. It has been found that a grain-oriented electrical steel sheet having extremely low iron loss can be obtained by having the following misalignment.

【0010】以下に本発明を詳細に説明する。まず、本
発明者らは以下の二つの製造方法により一方向性電磁鋼
板を得た。C:0.080%、Si:3.14%、M
n:0.084%、P:0.010%、S:0.024
%、sol.Al:0.024%、N:0.009%の成分
組成を含む溶鋼を鋳造し、スラブ加熱後、熱間圧延を行
い、2.0mmの熱延鋼板を得た。次に1100℃で5分
間焼鈍を行い、さらに酸洗したのち、冷間圧延により
0.22mm厚にした。圧延された鋼板について、(a)
は昇温を20℃/sの加熱速度で850℃まで焼鈍し、
(b)は昇温を300℃/sの加熱速度で850℃まで
焼鈍し、(c)は昇温を300℃/sの加熱速度で85
0℃まで加熱し、0.1秒以内に750℃まで200℃
/sの冷却速度で冷却処理を施した。
The present invention will be described in detail below. First, the present inventors obtained the grain-oriented electrical steel sheet by the following two manufacturing methods. C: 0.080%, Si: 3.14%, M
n: 0.084%, P: 0.010%, S: 0.024
%, Sol.Al: 0.024%, N: 0.009%, a molten steel containing a component composition was cast, and after hot heating the slab, hot rolling was performed to obtain a hot rolled steel sheet of 2.0 mm. Next, it was annealed at 1100 ° C. for 5 minutes, further pickled, and then cold rolled to a thickness of 0.22 mm. About rolled steel plate, (a)
Is annealed at a heating rate of 20 ° C./s to 850 ° C.,
(B) is annealed at a heating rate of 300 ° C./s to 850 ° C., and (c) is heated at a heating rate of 300 ° C./s to 85 ° C.
Heat to 0 ° C, and within 0.1 seconds up to 750 ° C at 200 ° C
The cooling treatment was performed at a cooling rate of / s.

【0011】次に(a),(b),(c)のいずれも、
湿潤水素中で脱炭焼鈍し、MgO粉を塗布した後、12
00℃に10時間、水素ガス雰囲気中で高温焼鈍を行っ
た。得られた製品の平均結晶粒径は(a)15.1mm、
(b)2.3mm、(c)2.6mmであった。これによ
り、(b),(c)では微細な二次再結晶が得られる。
それぞれの製品について、微細な二次再結晶粒の結晶方
位を測定したところ、(a)では結晶方位が(110)
〔001〕の理想方位に対して、平均値で圧延方向に
6.4°、板面内方向に2.3°の方位のズレを有し、
(b)では結晶方位が(110)〔001〕の理想方位
に対して、平均値で圧延方向に9.5°、板面内方向に
2.7°の方位のズレを有し、(c)では結晶方位が
(110)〔001〕の理想方位に対して、平均値で圧
延方向に6.3°、板面内方向に1.7°の方位のズレ
を有していた。
Next, in each of (a), (b) and (c),
After decarburization annealing in wet hydrogen and applying MgO powder, 12
High temperature annealing was performed at 00 ° C. for 10 hours in a hydrogen gas atmosphere. The average crystal grain size of the obtained product is (a) 15.1 mm,
(B) 2.3 mm and (c) 2.6 mm. As a result, fine secondary recrystallization is obtained in (b) and (c).
The crystal orientation of fine secondary recrystallized grains of each product was measured, and the crystal orientation was (110) in (a).
With respect to the ideal azimuth of [001], there is an average deviation of 6.4 ° in the rolling direction and 2.3 ° in the in-plane direction,
In (b), the crystal orientation has a deviation of 9.5 ° in the rolling direction and 2.7 ° in the in-plane direction on average from the ideal orientation of (110) [001]. ), The crystal orientation was misaligned by 6.3 ° in the rolling direction and 1.7 ° in the in-plane direction with respect to the ideal orientation of (110) [001].

【0012】得られた製品の鉄損特性は(a)W17/50
0.95(W/kg)、(b)W17/500.88(W/kg)、
(c)W17/50 0.79(W/kg)であった。これらのこ
とから、(b)(c)とも十分に結晶粒径の小さな製品
が得られたとしても、(110)〔001〕方位が圧延
方向からずれることにより、比較材(a)に対する鉄損
改善率が(b)で7%、(c)で17%と、本発明材
(c)の方が改善率が大きい。
The iron loss characteristics of the obtained product are (a) W 17/50
0.95 (W / kg), (b) W 17/50 0.88 (W / kg),
(C) It was W17 / 50 0.79 (W / kg). From these facts, even if products with a sufficiently small crystal grain size were obtained in both (b) and (c), the (110) [001] orientation was deviated from the rolling direction, so that the iron loss of the comparative material (a) was reduced. The improvement rate is 7% for (b) and 17% for (c), indicating that the material of the present invention (c) has a higher improvement rate.

【0013】この(110)〔001〕結晶方位の圧延
方向からのズレが小さくなることにより、鉄損の改善率
が大きくなる理由として、微細な二次再結晶では鉄損に
占める履歴損の比率が大きくなる分、結晶方位の集積度
を高めることにより、鉄損の改善率を狙う必要があるも
のと考えられる。上記の実施例での履歴損の比率は、W
17/50 において(a)20%、(b)31%に対し、
(c)では25%であった。
The reason why the deviation of the (110) [001] crystal orientation from the rolling direction is small and the improvement rate of iron loss is large is that the ratio of hysteresis loss to iron loss in fine secondary recrystallization is large. It is thought that it is necessary to aim at an improvement rate of iron loss by increasing the degree of integration of crystal orientations by the increase of the. The history loss ratio in the above embodiment is W
17/50 (a) 20%, (b) 31%,
In (c), it was 25%.

【0014】[0014]

【作用】次に本発明において、鋼組成および鋼板条件を
前記のように限定した理由を詳細に説明する。この鋼成
分の限定理由は下記のとおりである。Cについての上限
0.005%は、これ以上多くなると製品での磁気特性
を劣化させるので限定した。Siは鉄損を良くするため
に下限を2.5%とするが、多すぎるとトランスを製作
する際に割れ易く加工が困難となるので上限を7.0%
とする。
In the present invention, the reason why the steel composition and steel plate conditions are limited as described above will be described in detail. The reasons for limiting the steel composition are as follows. The upper limit of 0.005% for C is limited because if it exceeds this value, the magnetic properties of the product deteriorate. Si has a lower limit of 2.5% in order to improve iron loss, but if it is too much, it easily cracks when manufacturing a transformer and processing becomes difficult, so the upper limit is 7.0%.
And

【0015】以上の一方向性電磁鋼板に加え、結晶方位
が(110)〔001〕の理想方位に対して、平均値で
圧延方向に8°以下の方位のズレを有し、結晶粒径は1
〜10mmが必要である。結晶粒径は鉄損の渦電流損を低
減させるため上限を10mm以下に限定した。下限1mmは
これ以下では二次再結晶が困難なので限定した。これら
結晶粒径が小さい鋼板では、皮膜張力付与により良好な
鉄損特性を得るため、圧延方向の方位のズレは平均値で
8°以下とする。上限8°はこれ以上では磁束密度の低
減があり、鉄損の履歴損の低減効果が得られないため限
定した。
In addition to the above unidirectional electrical steel sheet, there is an average deviation of 8 ° or less in the rolling direction from the ideal orientation of (110) [001], and the crystal grain size is 1
-10 mm is required. The upper limit of the crystal grain size is limited to 10 mm or less in order to reduce the eddy current loss of iron loss. The lower limit of 1 mm is limited because secondary recrystallization is difficult below this range. In these steel sheets having a small crystal grain size, the deviation of the orientation in the rolling direction is set to 8 ° or less in average in order to obtain good iron loss characteristics by imparting film tension. The upper limit of 8 ° is limited because the magnetic flux density is reduced beyond this and the effect of reducing the hysteresis loss of iron loss cannot be obtained.

【0016】また、板面内方向の方位のズレは平均値で
1〜5°が望ましい。上限5°はこれ以上では磁束密度
の低減があり、鉄損の履歴損の低減効果が得られないた
め、下限1°はこれ以下では鉄損の張力付与による鉄損
低減の効果が得られないためである。なお、板面と垂直
方向の方位のズレは平均値で5°以下が望ましい。な
お、板厚は0.15〜0.55mmが望ましい。なお得ら
れた製品に、さらに鉄損を良好にするため、上記一方向
性電磁鋼板に、フォルステライトなどの皮膜、絶縁皮膜
などによる皮膜張力付与、磁区を細分化するための処理
を施すことも可能である。
Further, it is desirable that the deviation of the orientation in the in-plane direction is 1 to 5 ° on average. If the upper limit of 5 ° is more than this, the magnetic flux density is reduced and the effect of reducing the hysteresis loss of iron loss cannot be obtained. If the lower limit of 1 ° is less than this, the effect of iron loss reduction by imparting iron loss tension cannot be obtained. This is because. The average deviation of the direction perpendicular to the plate surface is preferably 5 ° or less. The plate thickness is preferably 0.15 to 0.55 mm. In addition, in order to further improve the iron loss of the obtained product, the unidirectional electrical steel sheet may be subjected to a coating such as forsterite, a coating tension imparted by an insulating coating, or a treatment for subdividing a magnetic domain. It is possible.

【0017】[0017]

【実施例】表1に示す成分組成を含む溶鋼を鋳造し、ス
ラブ加熱後、熱間圧延を行い、2.3mmの熱延鋼板を得
た。次に1100℃で5分間焼鈍を行い、さらに酸洗し
たのち、冷間圧延により0.27mm,0.22mm厚にし
た。圧延された鋼板を1組の加熱電極を有する直接通電
加熱装置により種々の条件で無酸化中で850℃まで加
熱した。850℃における均熱時間は0.1sである。
(a)は加熱速度450℃/s、冷却速度20℃/s、
(b)は加熱速度450℃/s、冷却速度300℃/s
である。(c)は比較材として無処理材を用いた。
EXAMPLE A molten steel containing the chemical composition shown in Table 1 was cast, and after heating the slab, hot rolling was performed to obtain a hot rolled steel sheet of 2.3 mm. Next, it was annealed at 1100 ° C. for 5 minutes, further pickled, and then cold rolled to a thickness of 0.27 mm and 0.22 mm. The rolled steel sheet was heated to 850 ° C. under various conditions by a direct current heating device having a set of heating electrodes in the absence of oxidation. The soaking time at 850 ° C. is 0.1 s.
(A) is a heating rate of 450 ° C./s, a cooling rate of 20 ° C./s,
(B) is a heating rate of 450 ° C / s and a cooling rate of 300 ° C / s
Is. In (c), an untreated material was used as a comparative material.

【0018】次に、湿潤水素中で脱炭焼鈍し、MgO粉
を塗布した後、1200℃に10時間、水素ガス雰囲気
中で高温焼鈍を行った。表2に上記の方法において得ら
れた製品の板厚、磁気特性の平均値、平均二次再結晶粒
径、二次再結晶方位の(110)〔001〕の理想方位
に対して圧延方向からのズレの平均値を示す。また、比
較材(c)に対する鉄損向上率も示す。本発明の一方向
性電磁鋼板は、板厚0.15〜0.35mm、結晶方位が
(110)〔001〕の理想方位に対して、平均値で圧
延方向に8°以下の方位のズレを有し、結晶粒径が1〜
10mmであることにより、(c)に対して高い鉄損向上
率が得られている。
Next, decarburization annealing was performed in wet hydrogen, MgO powder was applied, and then high temperature annealing was performed at 1200 ° C. for 10 hours in a hydrogen gas atmosphere. Table 2 shows the plate thickness of the product obtained by the above method, the average value of the magnetic properties, the average secondary recrystallized grain size, and the ideal orientation of (110) [001] of the secondary recrystallization orientation from the rolling direction. The average value of the deviation is shown. Moreover, the iron loss improvement rate with respect to the comparative material (c) is also shown. INDUSTRIAL APPLICABILITY The unidirectional electrical steel sheet of the present invention has an average deviation of 8 ° or less in the rolling direction with respect to an ideal azimuth having a plate thickness of 0.15 to 0.35 mm and a crystal orientation of (110) [001]. Having a crystal grain size of 1 to
When it is 10 mm, a high iron loss improvement rate is obtained as compared with (c).

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【発明の効果】本発明によれば、微細な結晶粒径を有す
る鋼板において従来よりも(110)〔001〕方位の
集積度が高いことにより、極めて低い鉄損をもつ一方向
性電磁鋼板を提供することができるので、産業上の貢献
するところ極めて大である。
According to the present invention, a unidirectional electrical steel sheet having an extremely low iron loss can be obtained because the degree of integration of the (110) [001] orientation is higher in a steel sheet having a fine grain size than before. Since it can be provided, the industrial contribution is extremely large.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量で C :0.005%以下、 Si:2.5〜7.0%を含み、 平均結晶粒径が1〜10mmであり、結晶方位が(11
0)〔001〕の理想方位に対して、平均値で圧延方向
に8°以下の方位のズレを有していることを特徴とする
極めて低い鉄損を有する一方向性電磁鋼板。
1. C: 0.005% or less by weight, Si: 2.5 to 7.0% are included, the average crystal grain size is 1 to 10 mm, and the crystal orientation is (11
0) A unidirectional electrical steel sheet having an extremely low iron loss, which has an average deviation of 8 ° or less in the rolling direction with respect to the ideal orientation of [001].
JP6062780A 1994-03-31 1994-03-31 Grain oriented silicon steel sheet having extremely low iron loss Pending JPH07268567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6062780A JPH07268567A (en) 1994-03-31 1994-03-31 Grain oriented silicon steel sheet having extremely low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6062780A JPH07268567A (en) 1994-03-31 1994-03-31 Grain oriented silicon steel sheet having extremely low iron loss

Publications (1)

Publication Number Publication Date
JPH07268567A true JPH07268567A (en) 1995-10-17

Family

ID=13210226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6062780A Pending JPH07268567A (en) 1994-03-31 1994-03-31 Grain oriented silicon steel sheet having extremely low iron loss

Country Status (1)

Country Link
JP (1) JPH07268567A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007217758A (en) * 2006-02-17 2007-08-30 Nippon Steel Corp Grain oriented magnetic steel sheet and insulating film treatment method therefor
WO2007136115A1 (en) 2006-05-19 2007-11-29 Nippon Steel Corporation Directional electromagnetic steel sheet having high tension insulating coating film and method for processing the insulating coating film
JP2009155731A (en) * 2009-03-30 2009-07-16 Nippon Steel Corp Unidirectional electromagnetic steel sheet which has high magnetic flux density and is excellent in high magnetic field iron loss
WO2018056379A1 (en) 2016-09-21 2018-03-29 Jfeスチール株式会社 Grain-oriented electrical steel sheet and method for manufacturing same
WO2018079845A1 (en) 2016-10-31 2018-05-03 新日鐵住金株式会社 Grain-oriented electromagnetic steel sheet
WO2019181952A1 (en) 2018-03-20 2019-09-26 日本製鉄株式会社 Production method for grain-oriented electrical steel sheet, and grain-oriented electrical steel sheet
WO2019182004A1 (en) 2018-03-20 2019-09-26 日本製鉄株式会社 Production method for grain-oriented electrical steel sheet, and grain-oriented electrical steel sheet
WO2020145319A1 (en) 2019-01-08 2020-07-16 日本製鉄株式会社 Method for manufacturing oriented electromagnetic steel sheet, and oriented electromagnetic steel sheet
WO2021261517A1 (en) 2020-06-24 2021-12-30 日本製鉄株式会社 Production method for grain-oriented electrical steel sheet
WO2021261518A1 (en) 2020-06-24 2021-12-30 日本製鉄株式会社 Production method for grain-oriented electrical steel sheet
EP3919636A4 (en) * 2019-01-31 2022-03-23 JFE Steel Corporation Grain-oriented electrical steel sheet and iron core using same

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007217758A (en) * 2006-02-17 2007-08-30 Nippon Steel Corp Grain oriented magnetic steel sheet and insulating film treatment method therefor
WO2007136115A1 (en) 2006-05-19 2007-11-29 Nippon Steel Corporation Directional electromagnetic steel sheet having high tension insulating coating film and method for processing the insulating coating film
US7998284B2 (en) 2006-05-19 2011-08-16 Nippon Steel Corporation Grain-oriented electrical steel sheet having high tensile strength insulating film and method of treatment of such insulating film
JP5026414B2 (en) * 2006-05-19 2012-09-12 新日本製鐵株式会社 Grain-oriented electrical steel sheet having high-tensile insulation coating and method for treating the insulation coating
JP2009155731A (en) * 2009-03-30 2009-07-16 Nippon Steel Corp Unidirectional electromagnetic steel sheet which has high magnetic flux density and is excellent in high magnetic field iron loss
WO2018056379A1 (en) 2016-09-21 2018-03-29 Jfeスチール株式会社 Grain-oriented electrical steel sheet and method for manufacturing same
KR20190058542A (en) 2016-09-21 2019-05-29 제이에프이 스틸 가부시키가이샤 Directional electric steel sheet and manufacturing method thereof
US11560603B2 (en) 2016-09-21 2023-01-24 Jfe Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing same
WO2018079845A1 (en) 2016-10-31 2018-05-03 新日鐵住金株式会社 Grain-oriented electromagnetic steel sheet
US11535943B2 (en) 2016-10-31 2022-12-27 Nippon Steel Corporation Grain-oriented electrical steel sheet
WO2019181952A1 (en) 2018-03-20 2019-09-26 日本製鉄株式会社 Production method for grain-oriented electrical steel sheet, and grain-oriented electrical steel sheet
KR20200123471A (en) 2018-03-20 2020-10-29 닛폰세이테츠 가부시키가이샤 Method of manufacturing grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
KR20200124295A (en) 2018-03-20 2020-11-02 닛폰세이테츠 가부시키가이샤 Method of manufacturing grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
US11661636B2 (en) 2018-03-20 2023-05-30 Nippon Steel Corporation Method for manufacturing grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
WO2019182004A1 (en) 2018-03-20 2019-09-26 日本製鉄株式会社 Production method for grain-oriented electrical steel sheet, and grain-oriented electrical steel sheet
US11408042B2 (en) 2018-03-20 2022-08-09 Nippon Steel Corporation Method for manufacturing grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
WO2020145319A1 (en) 2019-01-08 2020-07-16 日本製鉄株式会社 Method for manufacturing oriented electromagnetic steel sheet, and oriented electromagnetic steel sheet
KR20210096236A (en) 2019-01-08 2021-08-04 닛폰세이테츠 가부시키가이샤 Method for manufacturing grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
EP3919636A4 (en) * 2019-01-31 2022-03-23 JFE Steel Corporation Grain-oriented electrical steel sheet and iron core using same
KR20220128653A (en) 2020-06-24 2022-09-21 닛폰세이테츠 가부시키가이샤 Method for manufacturing grain-oriented electrical steel sheet
KR20220134013A (en) 2020-06-24 2022-10-05 닛폰세이테츠 가부시키가이샤 Method for manufacturing grain-oriented electrical steel sheet
WO2021261518A1 (en) 2020-06-24 2021-12-30 日本製鉄株式会社 Production method for grain-oriented electrical steel sheet
WO2021261517A1 (en) 2020-06-24 2021-12-30 日本製鉄株式会社 Production method for grain-oriented electrical steel sheet

Similar Documents

Publication Publication Date Title
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3456862B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3392669B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
KR0182802B1 (en) Grain-oriented electrical steel sheet with very low core loss and method of producing the same
JPH07268567A (en) Grain oriented silicon steel sheet having extremely low iron loss
JP4653266B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
KR100779579B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic flux density
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3392579B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
JP3743707B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP2679928B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP4873770B2 (en) Unidirectional electrical steel sheet
JPH08134660A (en) Grain oriented silicon steel sheet with extremely low iron loss
KR100530069B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction after stress relief annealing
JP2983129B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2679927B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2680532B2 (en) Method for producing grain-oriented electrical steel sheet with low iron loss
JPH11323438A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3456860B2 (en) Manufacturing method of unidirectional electrical steel sheet with extremely excellent iron loss characteristics
JP3392699B2 (en) Method for manufacturing grain-oriented electrical steel sheet having extremely low iron loss characteristics
JP3061515B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
KR970007162B1 (en) Making method of oriented electrical steel sheet having excellent from loss properties

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010918