JPH01263218A - Production of high magnetic permeability alloy of ni-fe system - Google Patents

Production of high magnetic permeability alloy of ni-fe system

Info

Publication number
JPH01263218A
JPH01263218A JP9159988A JP9159988A JPH01263218A JP H01263218 A JPH01263218 A JP H01263218A JP 9159988 A JP9159988 A JP 9159988A JP 9159988 A JP9159988 A JP 9159988A JP H01263218 A JPH01263218 A JP H01263218A
Authority
JP
Japan
Prior art keywords
alloy
cold rolling
present
magnetic permeability
magnetic properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9159988A
Other languages
Japanese (ja)
Other versions
JPH0759741B2 (en
Inventor
Tadashi Inoue
正 井上
Tomoyoshi Okita
大北 智良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP63091599A priority Critical patent/JPH0759741B2/en
Publication of JPH01263218A publication Critical patent/JPH01263218A/en
Publication of JPH0759741B2 publication Critical patent/JPH0759741B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To produce the high magnetic permeability alloy of the Ni-Fe system having excellent DC magnetic characteristics at a low cost by subjecting an alloy made of a specific compsn. consisting of Ni, C, S, P, O, N, B, and Fe to hot working, then to specific cold rolling and intermediate annealing. CONSTITUTION:The cold rolling after hot working of the alloy is executed twice before and after the intermediate annealing at the time of producing a thin steel strip which is the Fe-Ni alloy contg. 43.0-48.9wt.% Ni, <=0.010% C, 0.0005-0.002% S, <=0.006% P, <=0.003% O, <=0.0015% N, and 0.0015-0.0050% B, and consisting of the balance basically Fe. The draft in a 1st cold rolling is specified to 50-98% and the draft in the 2nd cold rolling to 75-98%. The above-mentioned intermediate annealing is executed at 730-900 deg.C. The high magnetic permeability alloy of the Fe-Ni system having the excellent DC magnetic characteristics such as magnetic permeability, coercive force and saturation magnetic flux density is thereby obtd.

Description

【発明の詳細な説明】 「発明の目的」 本発明はNi −Fe系高透磁率合金の製造方法に係り
、直流磁気特性の優れたNi−Fe系超高透磁率合金を
適切に製造することのできる方法を提供しようとするも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] The present invention relates to a method for producing a Ni-Fe based high magnetic permeability alloy, and an object thereof is to appropriately produce a Ni-Fe based super high magnetic permeability alloy having excellent direct current magnetic properties. The aim is to provide a method that allows for

(産業上の利用分野) Ni−Fe系高透磁率合金の磁気特性を改善するための
製造方法。
(Industrial Application Field) A manufacturing method for improving the magnetic properties of a Ni-Fe based high magnetic permeability alloy.

(従来の技術) パーマロイは1量によって得られる磁気性質が変化する
。すなわち、JIS PC相当のパーマロイはNiを約
78%含み、透磁率が極めて高く、優れた材料であるが
、飽和磁束密度が低く、また高価であるという欠点を有
している。これに対してJISPB相当のパーマロイは
Niを約45%含み、上記のPCパーマロイに比べて飽
和磁束密度が2倍はど高く、かつ低価格であるが透磁率
は低い。このようにPCパーマロイとPBパーマロイで
はそれぞれ長所はあるが、短所も有していた。
(Prior Art) The magnetic properties of permalloy vary depending on the amount. That is, permalloy equivalent to JIS PC contains about 78% Ni and has extremely high magnetic permeability, making it an excellent material, but it has the drawbacks of low saturation magnetic flux density and being expensive. On the other hand, permalloy equivalent to JISPB contains about 45% Ni, has a saturation magnetic flux density twice as high as the above-mentioned PC permalloy, and is low in price, but has low magnetic permeability. As described above, PC permalloy and PB permalloy each have advantages, but they also have disadvantages.

しかるに、昨今のエレクトロニクスの発達から、各種機
器の小型高性能化が進行し、上記のPB、 PCパーマ
ロイの欠点を補い合うような、高透磁率、高飽和磁束密
度かつ低価格の材料が望まれている。
However, with the recent development of electronics, various devices have become smaller and more sophisticated, and there is a desire for materials with high magnetic permeability, high saturation magnetic flux density, and low cost that can compensate for the drawbacks of PB and PC permalloy. There is.

このような要求に対して、PSパーマロイでの透Iff
率の向上を意図した特開昭62−142749及び特開
昭62−227065の如き提案がなされている。即ち
、前者の特開昭61−142749ではO,Sの低減、
後者の特開昭62−227065では、P、Sの低減に
加え、Moの添加をそれぞれ行なうことにより磁気特性
の向上を図ろうとしている。
In response to such requests, transparent If in PS Permalloy
Proposals such as JP-A-62-142749 and JP-A-62-227065 have been made with the intention of improving the efficiency. That is, in the former Japanese Patent Application Laid-Open No. 61-142749, reduction of O, S,
The latter, JP-A No. 62-227065, attempts to improve magnetic properties by reducing P and S and adding Mo.

(発明が解決しようとする課題) 上記した特開昭62−227065の技術で特徴として
いる不純物元素の低減、Moの添加によっても最終の水
素雰囲気での熱処理(1100°C×3時間)後の初透
磁率は高々6,000である。−方、特開昭62−14
2749で特徴としている不純物元素の低減によっても
最終の水素雰囲気での熱処理(1100℃×1時間)後
の最大透磁率はせいぜい150,000である。即ちこ
のような透磁率を越えたレベルの磁気特性が要求された
場合においてはこれら2つの提案は不適とならざるを得
なかった。このようにPBSパーマロイ透磁率が不十分
な場合には、PCパーマロイの極めて高い透磁率は必要
ないにしても、やむを得ずPCパーマロイを使用するこ
とが必要で、コスト高になる。
(Problem to be solved by the invention) The reduction of impurity elements, which is featured in the technique of JP-A-62-227065 mentioned above, and the addition of Mo can also be applied after the final heat treatment in a hydrogen atmosphere (1100°C x 3 hours). The initial permeability is at most 6,000. -, JP-A-62-14
Even with the reduction of impurity elements, which is a feature of 2749, the maximum magnetic permeability after the final heat treatment in a hydrogen atmosphere (1100° C. x 1 hour) is at most 150,000. That is, in cases where magnetic properties at a level exceeding such magnetic permeability are required, these two proposals are unsuitable. If the magnetic permeability of PBS permalloy is insufficient as described above, even though the extremely high magnetic permeability of PC permalloy is not required, it is necessary to use PC permalloy, which increases the cost.

なお、上記した、前者のものでは、Bの添加が行なわれ
ているが、この場合のBの添加は熱間加工性及び打抜き
性を改善するために行なうものであり、この発明で意図
するBの添加だけでは磁気特性の明らかな向上はみられ
ず、逆に劣化する場合も見られる。
In addition, in the former case mentioned above, B is added, but in this case, B is added to improve hot workability and punching property, and B is not intended to be used in this invention. No obvious improvement in magnetic properties is observed with just the addition of , and on the contrary, some cases of deterioration are observed.

「発明の構成」 (課題を解決するための手段) 本発明は上記したような従来のものの問題点を解決する
ように検討して創案されたものであって、その要旨とす
るところは、 Ni:43.O〜48.0智L%、  C: 0.01
0 wt%以下、S : 0.0005〜0.002 
wt%、 P : 0.006 wt%以下、0 : 
0.003wt%以下、  N : 0.0015wt
%以下、であって、かつ、 B : 0.0015〜0.0050wt%を含有し、
残部は基本的にFeからなるFe−Ni合金である薄鋼
帯の製造に際して前記合金の熱間加工後の冷延を中間焼
鈍をはさみ2回行い、かつ1回目の冷延での圧下率を5
0〜98%、2回目の冷延での圧下率を75〜98%、
中間焼鈍を730〜900°Cでそれぞれ行うことを特
徴とるすNi −Fe系高透磁率合金の製造方法である
"Structure of the Invention" (Means for Solving the Problems) The present invention was developed after consideration to solve the problems of the conventional products as described above, and its gist is as follows: :43. O ~ 48.0 Wisdom L%, C: 0.01
0 wt% or less, S: 0.0005-0.002
wt%, P: 0.006 wt% or less, 0:
0.003wt% or less, N: 0.0015wt
% or less, and contains B: 0.0015 to 0.0050 wt%,
In producing a thin steel strip, which is an Fe-Ni alloy, the remainder of which is basically Fe, the alloy is cold-rolled twice with an intermediate annealing in between after hot working, and the reduction rate in the first cold-rolling is 5
0 to 98%, the rolling reduction in the second cold rolling to 75 to 98%,
This is a method for producing a Ni--Fe based high magnetic permeability alloy, characterized in that intermediate annealing is performed at 730 to 900°C.

(作用) 本発明で対象とするPB級パーマロイであって、4%(
以下単に%という)で、Niが43.0〜48.0%の
範囲ではPBSパーマロイ所要の透磁率、飽和磁束密度
を有している。Niが43.0%未満では透磁率が低く
なり、一方48.0%を越えると飽和磁束密度が低くな
るので43.0〜48.0%と定めた。
(Function) The PB class permalloy targeted by the present invention is 4% (
In the range of 43.0 to 48.0% Ni, PBS Permalloy has the required magnetic permeability and saturation magnetic flux density. If Ni is less than 43.0%, the magnetic permeability will be low, while if it exceeds 48.0%, the saturation magnetic flux density will be low, so it was set at 43.0 to 48.0%.

ところで本発明者等は、PBSパーマロイ磁気特性を向
上すべく数々の実験を重ねたところ、C2S、P、O,
Nの容量を制御し、かつBを微量添加した合金がある特
定の冷延、焼鈍条件を経たときに磁気特性が飛躍的に向
上することを見出した。
By the way, the present inventors conducted numerous experiments to improve the magnetic properties of PBS permalloy, and found that C2S, P, O,
It has been found that when an alloy in which the amount of N is controlled and a small amount of B is added is subjected to certain cold rolling and annealing conditions, the magnetic properties are dramatically improved.

即ちこれらの成分についての規定理由は以下の如くであ
る。
That is, the reasons for specifying these components are as follows.

Cは、0.01%を越えると、熱間加工性が劣化し、か
つ磁気特性も劣化するので0.010%を上限とした。
If C exceeds 0.01%, hot workability and magnetic properties will deteriorate, so the upper limit was set at 0.010%.

なお下限は特に定めないが溶製時の経済性から好ましく
は0.0010%である。
Although the lower limit is not particularly determined, it is preferably 0.0010% from the economical point of view of melting.

Pは、本発明で対象とするFe −Ni合金に有害であ
り、又最終の水素焼鈍時の立方体集合組織の形成傾向を
弱める元素である。このPが0.006%を越えると立
方体集合組織が弱まって高い透磁率が得られず、又熱間
加工性が悪くなるためその上限を0.006%とした。
P is an element that is harmful to the Fe--Ni alloy targeted by the present invention, and also weakens the tendency to form a cubic texture during the final hydrogen annealing. If the P content exceeds 0.006%, the cubic texture will be weakened, making it impossible to obtain high magnetic permeability and causing poor hot workability, so the upper limit was set at 0.006%.

なお下限については溶製時の経済性から0.001%と
した。
The lower limit was set at 0.001% from the economical point of view of melting.

Sは、熱間加工性に有害であり、かつ硫化物の形成を通
じて最終の水素焼鈍時における粒成長を阻害し、焼鈍後
の粒径が小さいため保磁力が大きくなったり、磁化物に
より磁区が移動しにくくなるため透磁率が低くなり、磁
気特性に対しても極めて有害な元素である。このS量が
0.0020%を越えると、以下に示すようなり添加お
よび特定の冷延、焼鈍条件採用によっても本発明で意図
する磁気特性の飛躍的改善を計ることができず、熱間加
工性も著しく悪くなるためO,OO20%を上限とした
。なお下限は溶製時の経済性から0.0005%とした
S is harmful to hot workability, inhibits grain growth during final hydrogen annealing through the formation of sulfides, and increases the coercive force due to the small grain size after annealing, and causes magnetic domains to form due to magnetization. Since it becomes difficult to move, magnetic permeability decreases, and it is an extremely harmful element to magnetic properties. If the amount of S exceeds 0.0020%, it will not be possible to dramatically improve the magnetic properties as intended by the present invention, even by addition and specific cold rolling and annealing conditions as shown below, and hot processing The upper limit was set at 20% of O and OO, since the properties were also significantly deteriorated. Note that the lower limit was set to 0.0005% from the economical point of view of melting.

Bは、その適量添加のもとて熱間加工性の改善効果があ
り、かつ、固溶状態で、本発明の対象とする合金の集合
組織を、磁気特性に有利な方向に変える働きがある。こ
のB量が0.0015%未満では本発明で意図する磁気
特性の向上が図れず、一方0.0050%を越えると、
Bの金属間加工物が形成され磁気特性が劣化するため、
0.0015%を下限、0.0050%を上限と定めた
When added in an appropriate amount, B has the effect of improving hot workability, and in a solid solution state, B has the effect of changing the texture of the alloy targeted by the present invention in a direction favorable to magnetic properties. . If the amount of B is less than 0.0015%, the magnetic properties intended in the present invention cannot be improved, while if it exceeds 0.0050%,
Since an intermetallic workpiece of B is formed and the magnetic properties deteriorate,
The lower limit was set at 0.0015%, and the upper limit was set at 0.0050%.

Nは、B添加を基本とした合金においては、Bと容易に
結合し、BNを形成するため、有効B量が低下する。ま
た形成されたBNにより磁気特性が著しく劣化するなど
の理由より、合金中に多く・含まれる時、著しい悪影響
を及ぼす。即ちこのNが0.0015%を越えると上記
の理由により、磁気特性の劣化が著しくなるので、Nの
上限は0.0015%と定めた。
In alloys based on B addition, N easily combines with B to form BN, resulting in a decrease in the effective amount of B. In addition, since the magnetic properties are significantly deteriorated due to the formed BN, when a large amount of BN is contained in the alloy, it has a significant adverse effect. That is, if this N exceeds 0.0015%, the magnetic properties will deteriorate significantly for the above-mentioned reasons, so the upper limit of N was set at 0.0015%.

さて、本発明で意図する高い磁気特性を有するFe−N
i合金はこれまで述べたC、S、P、0.Nといった不
純物元素の低減及び微量Bの添加といった成分的配慮の
みでは達成されず、熱間加工後の冷延、焼鈍条件の適正
化がなされた時はじめて製造し得る。
Now, Fe-N having high magnetic properties as intended in the present invention
The i alloys are C, S, P, 0. This cannot be achieved only by considering the components such as reducing impurity elements such as N and adding a small amount of B, but it can only be produced when cold rolling and annealing conditions after hot working are optimized.

第1図には、後述する第1表のN11l材(本発明合金
)の熱延板を用いて、数々の冷延条件にて作製した板厚
0.2 inの薄板サンプルより外径45龍。
Figure 1 shows an outer diameter of 45 mm from a thin plate sample with a thickness of 0.2 inches produced under various cold rolling conditions using a hot-rolled plate of N11l material (invention alloy) shown in Table 1 below. .

内径33龍のJIS リングに打抜いて、試料とし、そ
れらを水素雰囲気中で1100℃×1時間の熱処理を施
し、100℃/hrで冷却したサンプルのμi及びμm
を測定した結果を冷延条件で整理して示した。即ち、2
回冷延材の場合の中間焼鈍は730〜900℃の範囲内
で行なっている。2回冷延材のうち、1次冷延率が50
%以上、かつ2次冷延率が75%以上の時、μiは26
,000以上で、μmも170,000以上であり、優
れた直流特性が得られていることがわかる。なお、1回
冷延材で得られるμi及びμmはそれぞれ上記のレベル
に比較して明らかに低い。なお、1次冷延率及び2次冷
延率の上限は、冷延時のエッヂ割れや、ミル負荷の点か
らそれぞれ98%と定めた。
Samples were punched into JIS rings with an inner diameter of 33mm, heat treated at 1100°C for 1 hour in a hydrogen atmosphere, and cooled at 100°C/hr. μi and μm
The measurement results are summarized and shown according to cold rolling conditions. That is, 2
Intermediate annealing in the case of re-cold rolled material is carried out within the range of 730 to 900°C. Among the twice cold rolled materials, the first cold rolling rate is 50
% or more and when the secondary cold rolling rate is 75% or more, μi is 26
,000 or more, and the μm is also 170,000 or more, indicating that excellent DC characteristics are obtained. Note that μi and μm obtained from the once cold-rolled material are clearly lower than the above levels. The upper limits of the primary cold rolling rate and the secondary cold rolling rate were each set at 98% in view of edge cracking during cold rolling and mill load.

本発明で意図する高透磁率材料は上記のような冷延条件
に加えて、焼鈍条件を適正としなければ達成されない。
The high magnetic permeability material intended by the present invention cannot be achieved unless the annealing conditions are appropriate in addition to the cold rolling conditions described above.

第2図は、後述する第1表の阻1材(本発明合金)の熱
延板を65%の圧下率にて冷延し、引き続く中間焼鈍の
のちに80%の圧下率にて冷延した板厚0.2鶴の薄板
サンプルより外径451鳳、内径3311のJISリン
グに打抜いて試料とし、それらを水素雰囲気中で110
0°cx1時間の熱処理を施し、100℃/hrで冷却
したサンプルのμi及びμmを測定した結果を中間焼鈍
温度で整理したものである。中間焼鈍温度が730〜9
00℃の範囲であるとμiが26. OO0以上で、μ
mも約170,000を越えており、優れた磁気特性を
有している。中間焼鈍温度がこの範囲の時に最終の水素
焼鈍後で磁気特性が優れているのは、中間焼鈍後で10
0%再結晶していること、かつその再結晶オーステナイ
トが細粒であり、また再結晶後に磁気特性に有利な集合
!!J1mが強く形成されていることなどが、最終焼鈍
時に形成される磁気特性に有利な集合m織の集積を著し
く強める因子として働らいているためと考えられる。な
お、中間焼鈍温度が上記の範囲の場合でも、1次冷延率
及び2次冷延率が本発明規定範囲内でなければ、本発明
で意図する磁気特性の向上が図られないことは第1図に
関して述べた通りである。また、上記のように1次冷延
での圧下率、2次冷延での圧下率及び中間焼鈍温度が本
発明規定を満たした場合でも、成分が本発明範囲内でな
ければ、本発明で意図する磁気特性の向上が図られない
ことは、以下の実施例で示す通りである。以上が中間焼
鈍温度を本発明範囲に規定した理由である。
Figure 2 shows a hot-rolled sheet of material No. 1 (invention alloy) in Table 1, which will be described later, which is cold-rolled at a rolling reduction of 65%, followed by intermediate annealing, and then cold-rolled at a rolling reduction of 80%. A JIS ring with an outer diameter of 451mm and an inner diameter of 3311mm was punched out from a thin plate sample with a thickness of 0.2mm.
The results of measuring μi and μm of a sample heat-treated at 0°C x 1 hour and cooled at 100°C/hr are summarized by intermediate annealing temperature. Intermediate annealing temperature is 730~9
In the range of 00°C, μi is 26. OO0 or more, μ
m also exceeds about 170,000, and has excellent magnetic properties. When the intermediate annealing temperature is in this range, the magnetic properties are excellent after the final hydrogen annealing when the intermediate annealing temperature is 10
0% recrystallization, and the recrystallized austenite is fine-grained, and after recrystallization, it aggregates advantageously for magnetic properties! ! This is thought to be because the strong formation of J1m acts as a factor that significantly strengthens the accumulation of aggregated m-weave, which is advantageous for magnetic properties, and is formed during final annealing. Incidentally, even if the intermediate annealing temperature is within the above range, unless the primary cold rolling rate and the secondary cold rolling rate are within the range specified by the present invention, the magnetic properties intended by the present invention cannot be improved. This is as stated regarding Figure 1. Furthermore, even if the rolling reduction ratio in the first cold rolling, the rolling reduction ratio in the secondary cold rolling, and the intermediate annealing temperature satisfy the provisions of the present invention as described above, if the components are not within the range of the present invention, the present invention is not applicable. The fact that the intended magnetic properties were not improved is shown in the following examples. The above is the reason why the intermediate annealing temperature is defined within the range of the present invention.

なお、中間焼鈍温度が730℃未満の時に透磁率が低い
のは、この温度域では、焼鈍後に100%再結晶せず、
続く冷延及び最終焼鈍で磁気特性に好ましい集合組織が
十分発達しないためと思われる。
The reason why the magnetic permeability is low when the intermediate annealing temperature is less than 730°C is because in this temperature range, 100% recrystallization does not occur after annealing.
This seems to be because the texture favorable for magnetic properties is not sufficiently developed during the subsequent cold rolling and final annealing.

一方、中間焼鈍温度が900℃を越えて透磁率が低下す
るのは、中間焼鈍後のオーステナイト粒径が大きくなる
ため、引き続く冷延ののちに行なわれる水素焼鈍時に形
成される集合組織が全体的にランダム化するため、磁気
特性に有利な集合組織が十分に発達しないためと認めら
れる。
On the other hand, the reason why the magnetic permeability decreases when the intermediate annealing temperature exceeds 900°C is because the austenite grain size increases after the intermediate annealing, and the texture formed during the hydrogen annealing performed after the subsequent cold rolling is It is recognized that this is because the texture, which is advantageous for magnetic properties, is not sufficiently developed due to the randomization.

(実施例) 本発明によるものの具体的な実施例について説明すると
以下の如くである。
(Example) Specific examples of the present invention will be described below.

実施例1゜ 次の第1表に示すような化学成分を有するFe −Ni
合金である本発明合金および比較合金を真空溶解で溶製
し、熱間加工、脱スケールを施して冷延素材を準備した
。即ち魚1〜3は何れも本発明範囲を満足するのに対し
阻4はSが0.0035%、隘6はPが0.010%と
高く、又N0.6の比較合金は0が0.0060%と本
発明範囲より高<、11h7はNが0.0030%と高
<1tkt8はBを含有せず隘9はBを含有していると
しても0.0009%と本発明のB含有範囲の下限0.
0015%に達せず、阻10は反対にBが0.0065
%と高(、阻11はCが0.015%と本発明の上限範
囲より高いものである。
Example 1 Fe-Ni having chemical components as shown in Table 1 below
The alloys of the present invention and comparative alloys were melted by vacuum melting, hot worked, and descaled to prepare cold rolled materials. That is, while Fish 1 to 3 all satisfy the range of the present invention, the S content of Ni 4 is high at 0.0035%, the P content of Fish 6 is high at 0.010%, and the comparison alloy with N0.6 has a high content of 0. .0060% is higher than the present invention range, 11h7 has N of 0.0030% and is higher than 1tkt8 does not contain B, and even if 9 does contain B, it is 0.0009%, which is the B content of the present invention. Lower limit of range 0.
0015% is not reached, and B is 0.0065 on the contrary.
% and high (11 has a C content of 0.015%, which is higher than the upper limit range of the present invention.

これらの素材はまず65%の圧下率にて冷延し、次に8
00 ’Cにて焼鈍し、そののちに80%の圧下率で冷
延した板厚0.20の薄板サンプルより外径45mm、
内径33鶴のJIS リングに打抜き、試料とした。
These materials were first cold rolled at a reduction rate of 65% and then rolled at a rolling reduction of 8%.
An outer diameter of 45 mm was obtained from a thin plate sample with a thickness of 0.20 that was annealed at 00'C and then cold rolled at a rolling reduction of 80%.
A JIS ring with an inner diameter of 33 mm was punched out and used as a sample.

上記のようにして得られた各試料を、水素雰囲気中で1
100℃×1時間の熱処理を施し、100”C/hrで
冷却したものについての直流磁気特性を調べた。次の第
2表にNi、μm、 Hc及びBIGの各量の測定結果
を示すが、合金魚1.2の各村は、C,P、S、N、O
,Bの容量とも本発明成分範囲の合金であり、この実施
例の如く、冷延・焼鈍条件が本発明規定範囲内の場合は
初透磁率μiは26.000以上、最大i! 65i率
μmも170,000以上、保磁力Hcは、0.02(
Φe)より小さ(優れた直流磁気特性を示している。ま
た、合金N113材はC,P、S、N、O,Bの容量が
本発明成分範囲内にあり、かつ熱間加工性の向上を意図
して微量のCa添加を行った合金であるが、この場合も
μi2μm、 Hcは漱1.2の各村とほぼ同じレベル
ムこある。このようにitのCa添加が行われた合金に
おいても、本発明の効果は十分に発揮されることがわか
る。
Each sample obtained as above was heated for 1 hour in a hydrogen atmosphere.
The DC magnetic properties of the specimens were heat-treated at 100°C for 1 hour and cooled at 100"C/hr. Table 2 below shows the measurement results for the amounts of Ni, μm, Hc, and BIG. , each village of Alloy Fish 1.2 is C, P, S, N, O.
, B are both alloys within the composition range of the present invention, and when the cold rolling and annealing conditions are within the range specified by the present invention as in this example, the initial magnetic permeability μi is 26.000 or more, and the maximum i! The 65i ratio μm is also over 170,000, and the coercive force Hc is 0.02 (
Φe) (showing excellent DC magnetic properties.Also, the alloy N113 material has C, P, S, N, O, and B capacities within the composition range of the present invention, and has improved hot workability. In this alloy, a trace amount of Ca was added with the intention of It can be seen that the effects of the present invention are also fully exhibited.

第   2   表 一方、合金魚4〜7の各村はそれぞれ、s、  p。Table 2 On the other hand, each village of alloy fish 4 to 7 has s and p, respectively.

0、Nの容量が本発明成分範囲を超えることば前記の如
くで、階8及び患9はBffiが本発明規定の下限未満
であり、階10はBlが本発明規定の上限を越えるもの
であって隘11はCが高いことは上記の如くであり、か
つ各村ともその他の成分は本発明規定範囲内にある場合
であるが、いずれの場合でもNiはほぼ10,000以
下、μmは高々90.000であり、Hcは0.03 
(5e)より大きく、直流磁気特性は、本発明で得られ
たものより劣っている。なお、Nlll0材はNi、B
、S、Pの容量が特開昭62−227065の発明規定
範囲を満たすものであるが、この材料の磁気特性は、上
記の如く、本発明例に比べて明らかに劣り、本発明で目
的とする磁気特性の向上は、この特開昭62−2270
65の発明では達成されないことがわかる。
As mentioned above, the capacity of 0 and N exceeds the component range of the present invention, and the Bffi of floors 8 and 9 is less than the lower limit defined by the present invention, and the Bl of floor 10 exceeds the upper limit defined by the present invention. As mentioned above, in case 11, C is high, and other components in each village are within the range specified by the present invention, but in all cases, Ni is approximately 10,000 or less, and μm is at most 90.000 and Hc is 0.03
(5e), and the DC magnetic properties are inferior to those obtained in the present invention. Note that the Nlll0 material is Ni, B
, S, and P satisfy the range stipulated in the invention of JP-A No. 62-227065, but the magnetic properties of this material are clearly inferior to those of the examples of the present invention, as described above, and are not suitable for the purpose of the present invention. The improvement of the magnetic properties was achieved in this Japanese Patent Application Laid-open No.
It can be seen that this cannot be achieved with the invention of No. 65.

以上のように、本発明の目的とする磁気特性は、冷延・
焼鈍条件を本発明規定内しても、成分が本発明範囲でな
ければ達成されないことが理解される。
As described above, the magnetic properties that are the object of the present invention can be obtained by cold rolling.
It is understood that even if the annealing conditions are within the specifications of the present invention, the results will not be achieved unless the components are within the range of the present invention.

実施例2゜ 本発明規定内の成分を有する前記第1表の合金嵐1材に
ついての冷延素材を次の第3表に示すような冷延・焼鈍
条件により作製した板厚0.2 mmの薄板サンプルよ
り、外径45m、内径33mのJISリングを打ち抜き
、試料とした。
Example 2 A cold-rolled material of Alloy Arashi 1 material in Table 1 having components within the specifications of the present invention was prepared under the cold-rolling and annealing conditions shown in Table 3 below, with a thickness of 0.2 mm. A JIS ring with an outer diameter of 45 m and an inner diameter of 33 m was punched out from the thin plate sample and used as a sample.

試料を、水素雰囲気中で1100℃×1時間の熱処理を
施し、100°C/hrで冷却したサンプルの直流磁気
特性を調べた。即ち第3表の後段に示すようなμi1μ
m、 Hc及びB1゜の各量の測定結果が得られた。
The sample was heat-treated at 1100° C. for 1 hour in a hydrogen atmosphere and cooled at 100° C./hr. The DC magnetic properties of the sample were investigated. In other words, μi1μ as shown in the latter part of Table 3
Measurement results for each amount of m, Hc and B1° were obtained.

即ち供試材階1〜3の各供試材は、1次冷延での圧下率
、2次冷延での圧下率および中間焼鈍温度が何れも本発
明の規定範囲内のものであって、Niは26,000以
上でμmも170,000以上であり、一方Hcは0.
02(be)未満と優れた直流磁気特性を示している。
That is, each of the test materials of test material grades 1 to 3 has a rolling reduction ratio in the primary cold rolling, a rolling reduction ratio in the secondary cold rolling, and an intermediate annealing temperature that are all within the specified range of the present invention. , Ni is 26,000 or more and μm is 170,000 or more, while Hc is 0.
It shows excellent DC magnetic properties with less than 0.02 (be).

これに対し、1Vh4材は2冷延での圧下率が本発明規
定の下限未満のもの、NQ5材は中間焼鈍温度が本発明
規定の下限に達しないもの、寛6材は中間焼鈍温度の上
限を超えるもの、魚7材は1次冷延での圧下率が本発明
規定の下限未満のものであり、階8材は1次冷延のみの
ものであって、その他の条件はそれぞれ本発明の規定範
囲内のものであるが、Niは何れもせいぜい19,00
0、μmで高々150,000. Hcも0.025 
(be)より大きく、直流磁気特性は本発明例に見られ
るものに比較して劣っている。
On the other hand, the 1Vh4 material has a rolling reduction ratio in the second cold rolling that is less than the lower limit specified by the present invention, the NQ5 material has an intermediate annealing temperature that does not reach the lower limit specified by the present invention, and the Kan6 material has an upper limit of the intermediate annealing temperature. In the case of the fish material 7, the rolling reduction ratio in the first cold rolling is less than the lower limit defined by the present invention, and in the case of the material No. 8, the reduction ratio in the first cold rolling is less than the lower limit defined by the present invention, and the other conditions are as follows. However, Ni is within the specified range of 19,00 at most.
0, μm at most 150,000. Hc is also 0.025
(be), and the DC magnetic properties are inferior to those seen in the examples of the present invention.

即ち本発明の目的とする磁気特性は単に成分が本発明規
定内であっても、冷延・焼鈍条件が本発明条件を満さな
ければ達成されないことが理解される。
That is, it is understood that the magnetic properties aimed at by the present invention cannot be achieved unless the cold rolling and annealing conditions satisfy the conditions of the present invention, even if the components are within the specifications of the present invention.

「発明の効果」 以上説明したような本発明によるときは、Fe−Ni系
の高透磁率磁性合金における磁気特性の改良が図られ、
特に直流磁気特性が従来の同じ成分系であるJIS P
Bパーマロイよりも飛躍的に優れ、JISPCパーマロ
イに準じた直流磁気特性を有せしめ、その用途は高磁界
において従来より高いシールド特性が求められる各種磁
気シールド材をはじめ、継鉄や直流重畳の変成器用鉄心
材料など栂めて広い利用範囲に対しを利に提供し得るも
のであって、工業的にその効果の大きい発明である。
"Effects of the Invention" According to the present invention as explained above, the magnetic properties of a Fe-Ni-based high permeability magnetic alloy are improved,
In particular, JIS P whose direct current magnetic properties are the same component system as conventional
It is dramatically superior to B permalloy and has DC magnetic properties similar to JISPC permalloy, and its applications include various magnetic shielding materials that require higher shielding properties than conventional ones in high magnetic fields, as well as yoke and DC superposition transformers. This invention can be advantageously applied to a wide range of applications such as iron core materials, and has great industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の技術的内容を示すものであって、第1図
は冷延条件と初透磁率および最大透磁率の関係を示した
図表、第2図は最大透磁率および初透磁率の中間焼鈍温
度による変化状態を要約して示した図表である。 第  / 圓 (Q)4JJfkXkf71.、ml (1−)最欠$並率よ
The drawings show the technical content of the present invention. Figure 1 is a chart showing the relationship between cold rolling conditions, initial magnetic permeability and maximum magnetic permeability, and Figure 2 is a diagram showing the relationship between the maximum magnetic permeability and the initial magnetic permeability. It is a chart summarizing the state of change depending on the annealing temperature. No. / En (Q) 4JJfkXkf71. , ml (1-) Most deficit $ average rate

Claims (1)

【特許請求の範囲】 Ni:43.0〜48.0wt%、C:0.010wt
%以下、S:0.0005〜0.002wt%、P:0
.006wt%以下、O:0.003wt%以下、N:
0.0015wt%以下、であって、かつ、 B:0.0015〜0.0050wt% を含有し、残部は基本的にFeからなるFe−Ni合金
である薄鋼帯の製造に際して前記合金の熱間加工後の冷
延を中間焼鈍をはさみ2回行い、かつ1回目の冷延での
圧下率を50〜98%、2回目の冷延での圧下率を75
〜98%、中間焼鈍を730〜900℃でそれぞれ行う
ことを特徴とするNi−Fe系高透磁率合金の製造方法
[Claims] Ni: 43.0 to 48.0 wt%, C: 0.010 wt%
% or less, S: 0.0005-0.002wt%, P: 0
.. 006wt% or less, O: 0.003wt% or less, N:
0.0015 wt% or less, and contains B: 0.0015 to 0.0050 wt%, and the balance is basically Fe-Ni alloy. Cold rolling after rough working is performed twice with intermediate annealing in between, and the rolling reduction in the first cold rolling is 50 to 98%, and the rolling reduction in the second cold rolling is 75%.
98% and intermediate annealing at 730 to 900°C, respectively.
JP63091599A 1988-04-15 1988-04-15 Fe-Ni-based high permeability alloy and method for producing the same Expired - Lifetime JPH0759741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63091599A JPH0759741B2 (en) 1988-04-15 1988-04-15 Fe-Ni-based high permeability alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63091599A JPH0759741B2 (en) 1988-04-15 1988-04-15 Fe-Ni-based high permeability alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01263218A true JPH01263218A (en) 1989-10-19
JPH0759741B2 JPH0759741B2 (en) 1995-06-28

Family

ID=14031021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63091599A Expired - Lifetime JPH0759741B2 (en) 1988-04-15 1988-04-15 Fe-Ni-based high permeability alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0759741B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02225621A (en) * 1989-02-27 1990-09-07 Daido Steel Co Ltd Production of high permeability magnetic material
JP2015034329A (en) * 2013-08-09 2015-02-19 日本冶金工業株式会社 Fe-Ni-BASED PERMALLOY ALLOY AND PRODUCTION METHOD THEREOF
CN105929344A (en) * 2015-02-26 2016-09-07 精工半导体有限公司 Magnetic sensor and method of manufacturing the same
TWI675500B (en) * 2015-02-26 2019-10-21 日商艾普凌科有限公司 Magnetic sensor and method of manufacturing the same
CN116377284A (en) * 2023-03-08 2023-07-04 北京北冶功能材料有限公司 Iron-nickel-based soft magnetic alloy foil and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033337A (en) * 1983-08-05 1985-02-20 Nisshin Steel Co Ltd High ni-fe alloy for electronic parts
JPS60159157A (en) * 1984-01-30 1985-08-20 Nippon Yakin Kogyo Co Ltd Fe-ni alloy having excellent hot workability
JPS60248865A (en) * 1984-05-23 1985-12-09 Nippon Gakki Seizo Kk High magnetic permeability alloy
JPS62142749A (en) * 1985-12-18 1987-06-26 Nippon Mining Co Ltd High permeability pb permalloy having superior suitability to press blanking
JPS62227065A (en) * 1986-03-28 1987-10-06 Sumitomo Special Metals Co Ltd High permeability magnetic alloy excellent in workability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033337A (en) * 1983-08-05 1985-02-20 Nisshin Steel Co Ltd High ni-fe alloy for electronic parts
JPS60159157A (en) * 1984-01-30 1985-08-20 Nippon Yakin Kogyo Co Ltd Fe-ni alloy having excellent hot workability
JPS60248865A (en) * 1984-05-23 1985-12-09 Nippon Gakki Seizo Kk High magnetic permeability alloy
JPS62142749A (en) * 1985-12-18 1987-06-26 Nippon Mining Co Ltd High permeability pb permalloy having superior suitability to press blanking
JPS62227065A (en) * 1986-03-28 1987-10-06 Sumitomo Special Metals Co Ltd High permeability magnetic alloy excellent in workability

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02225621A (en) * 1989-02-27 1990-09-07 Daido Steel Co Ltd Production of high permeability magnetic material
JP2015034329A (en) * 2013-08-09 2015-02-19 日本冶金工業株式会社 Fe-Ni-BASED PERMALLOY ALLOY AND PRODUCTION METHOD THEREOF
CN105929344A (en) * 2015-02-26 2016-09-07 精工半导体有限公司 Magnetic sensor and method of manufacturing the same
US20170294577A1 (en) * 2015-02-26 2017-10-12 Sii Semiconductor Corporation Magnetic sensor and method of manufacturing the same
TWI675500B (en) * 2015-02-26 2019-10-21 日商艾普凌科有限公司 Magnetic sensor and method of manufacturing the same
CN116377284A (en) * 2023-03-08 2023-07-04 北京北冶功能材料有限公司 Iron-nickel-based soft magnetic alloy foil and preparation method and application thereof

Also Published As

Publication number Publication date
JPH0759741B2 (en) 1995-06-28

Similar Documents

Publication Publication Date Title
US5547520A (en) Wear-resistant high permeability magnetic alloy and method of manufacturing the same
US4948434A (en) Method for manufacturing Ni-Fe alloy sheet having excellent DC magnetic property and excellent AC magnetic property
JPH01263218A (en) Production of high magnetic permeability alloy of ni-fe system
JPH0888114A (en) Manufacture of nonoriented flat rolled magnetic steel sheet
JP4223701B2 (en) Soft magnetic low carbon steel material excellent in machinability and magnetic properties and method for producing the same, and method for producing soft magnetic low carbon steel parts using the steel material
JPH0753886B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent iron loss
JP2760013B2 (en) Method for producing high permeability magnetic material
JPH02213421A (en) Production of soft-magnetic steel stock
JPH08134604A (en) Soft-magnetic material, excellent in magnetic flux density, coercive force, and corrosion resistance and having high electric resistance, and its production
JPH0790505A (en) Soft magnetic steel material and its production
JPH01272716A (en) Production of high permeability magnetic fe-ni alloy
JPH03122236A (en) Ni-fe serite high permeability magnetic alloy
JP3352599B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density
JPH0230743A (en) Manufacture of ni-fe alloy plate having excellent magnetic characteristics
JP7475181B2 (en) Ferritic Stainless Steel
JP3561922B2 (en) Manufacturing method of soft magnetic stainless steel
JPH03122237A (en) Ni-fe serite high permeability magnetic alloy
JPH0770715A (en) Soft magnetic steel excellent in strain resistance and production thereof
JP2639290B2 (en) Manufacturing method of non-oriented electrical steel sheet for rotating machines
JP2001262289A (en) NONORIENTED SILICON STEEL SHEET EXCELLENT IN MAGNETIC PROPERTY IN &gt;=1 kHz FREQUENCY REGION
JPH0375327A (en) Ni-fe series high permeability magnetic alloy
JPH05255817A (en) Corrosion resistant soft magnetic material
JP4320794B2 (en) Method for producing electrical steel sheet with excellent magnetic properties in the rolling direction
JPH06172938A (en) Fe-ni high permeability magnetic alloy excellent in wear resistance and hot workability, and its production
JP3379760B2 (en) Manufacturing method of high strength and high permeability steel