JP3561922B2 - Manufacturing method of soft magnetic stainless steel - Google Patents

Manufacturing method of soft magnetic stainless steel Download PDF

Info

Publication number
JP3561922B2
JP3561922B2 JP24815592A JP24815592A JP3561922B2 JP 3561922 B2 JP3561922 B2 JP 3561922B2 JP 24815592 A JP24815592 A JP 24815592A JP 24815592 A JP24815592 A JP 24815592A JP 3561922 B2 JP3561922 B2 JP 3561922B2
Authority
JP
Japan
Prior art keywords
magnetic
rolling
stainless steel
annealing
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24815592A
Other languages
Japanese (ja)
Other versions
JPH06100940A (en
Inventor
博一 奥本
太 伯耆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP24815592A priority Critical patent/JP3561922B2/en
Publication of JPH06100940A publication Critical patent/JPH06100940A/en
Application granted granted Critical
Publication of JP3561922B2 publication Critical patent/JP3561922B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、耐食性と二次加工性に優れた軟磁性ステンレス鋼の製造方法に関するものである。特に、電磁バルブをはじめとする各種リレー機構の鉄芯部品として優れた性能をもつ軟磁性ステンレス鋼の製造方法である。
【0002】
【従来の技術】
一般に、軟磁性材料は高透磁率材料ともよばれ、その基本特性は、初透磁率が大きく保磁力が小さいということで、場合によっては飽和磁束密度が大きいことも要求される。これら軟磁性材料は、電磁コイルによって発生される磁気に反応し、その磁気によって駆動される金属部品として、磁気バルブ、各種モータおよび各種リレーなど多くの分野で使用されている。最も一般的な軟磁性材料としては、電磁軟鉄やケイ素鋼板が知られており、ケイ素鋼板には圧延方向にだけ優れた磁気特性を有する方向性ケイ素鋼板も知られている。
【0003】
しかし、これら鉄系材料は非常に錆を発生しやすく、そのままでは腐食環境下での使用は困難であった。そのため腐食環境下での使用の場合は、部品に加工後Niメッキを施すなど行っているが、Niメッキは非常に高価であり部品コストアップをもたらし、防錆の効果も今一歩であった。
【0004】
ところで、耐食性に優れ、安価な材料としてCr系ステンレス鋼が知られており、近年上記の鉄系材料の代替として研究もされている。しかし、これらCr系ステンレス鋼は上記鉄系材料と比較し磁気特性が劣るあるいはプレス成型等二次加工性が劣るという問題があり実用化の阻害要因になっている。
【0005】
従来にあってもかかるCr系ステンレス鋼の特性改善については種々提案されているが、まだ耐食性、二次加工性、そして磁気特性をいずれも満足する材料およびその製造方法は見いだされていないのが現状である。
【0006】
【発明が解決しようとする課題】
ここに、本発明の目的は、耐食性と二次加工性を兼ね備えたCr系ステンレス鋼の磁気特性を改善し、腐食環境下で使用する軟磁性材料として優れた軟磁性ステンレス鋼を製造する方法を提供することである。
なお、ここでいう磁気特性の改善とは初透磁率の向上、すなわち微弱磁場における磁束密度の向上を図ることにある。さらに具体的には、磁束密度B(磁化力2Oe における磁束密度) の高い軟磁性ステンレス鋼を得ることである。
【0007】
【課題を解決するための手段】
本発明者らは、耐食性と二次成型性を兼ね備えた材料を種々検討の結果、先に出願した特開昭61−296135号のCr系ステンレス鋼に着眼し、磁気焼鈍前の冷間圧延条件および磁気焼鈍条件を変えて種々検討を行ったところ、下記の特定条件で圧延ロール方向の磁束密度B、Bが顕著に増加するとともに方向性のある軟磁性ステンレス鋼が得られるということを見い出した。
本発明は、かかる知見に基づいてなされたものであって、その要旨は下記の通りである。
【0008】
すなわち、本発明は、重量%にて、
C: 0.12%以下、Si: 1.0 %超3.5 %以下、Mn: 0.10〜2.0 %、
Cr: 11〜23%、Ni: 0.20〜3.0 %、N: 0.12%以下、
かつ、A= (Ni+0.5 Mn+35C+40N) −0.31 (Cr+1.5 Si) なる関係式で定まるA値が−2.7 〜0の範囲にあり、
残部: Feおよび不純物
より成る鋼組成を有するCr系ステンレス冷延鋼板を仕上圧延し、次いで磁気焼鈍するに際し、仕上圧延率を8〜20%、磁気焼鈍温度を650 〜850 ℃とすることを特徴とする軟磁性ステンレス鋼の製造方法である。
【0009】
また、中間圧延、中間焼鈍後、引き続き上記の仕上圧延、磁気焼鈍するに際し中間圧延率を25〜55%とすることを特徴とする軟磁性ステンレス鋼の製造方法である。
なお、本発明において圧延率(%) は、板厚の圧下率(%) で表す。
【0010】
【作用】
本発明の方法において、鋼の組成割合、および製造条件を前記のように限定した理由を以下に説明する。本明細書において特にことわりがない限り、組成割合を示す「%」は重量%である。
【0011】
C、N:
C、Nはいずれも侵入型固溶元素として素地を強化し、耐摩耗性を向上させるため、(C+N)は少なくとも0.02%含有されるのが好ましい。しかし、(C+N)が多量になれば、それだけ2次加工性が劣化するため、CおよびNの上限をそれぞれ0.12%とした。好ましくは、(C+N)≦0.14%である。
【0012】
Si:
Siは本発明を構成する上で最も重要な元素であり、耐摩耗性ならびに2次加工性の改善さらには磁気性能の改善を計るには不可欠な元素であり、その量は1.0 %を超えて添加されて有効である。しかし、3.5 %を超えて添加しても、靭性が著しく劣化し、製造性を損なうので、本発明にあっては3.5 %以下に制限する。好ましくは2.0 〜2.5 %である。
【0013】
Mn:
Mnは通常の製鋼時の脱酸、脱硫剤として有効で、0.10%以上を必要とし、一方、本発明におけるように置換型固溶強化により耐摩耗性を向上させる場合、Siとの複合添加により2次加工性をも向上させることができる。しかし、多量に添加すると熱間加工性を阻害するので、2.0 %以下に制限する。
【0014】
Cr:
Crはステンレス鋼としての耐食性を確保する必要上11%以上添加する。好ましくは16%以上添加する。その添加量が多いほど耐食性は向上するが、しかし、余り多量に添加するとコスト上昇を招くほか、A値の限定を満足するフェライト系ステンレス鋼が得られず、したがって上限を23%とした。
【0015】
Ni:
NiはSi添加鋼の靭性改善に有効であり、またSiとの複合添加でハード圧延材の2次加工性を改善させるために必要である。
かかる効果は0.20%以上の添加で見られ、添加量が多くなるにしたがって改善の程度は増すが、しかし、3.0 %を超えて添加してもその効果は飽和状態となることから、また余り多量の添加はコスト高となることから、上限は3.0 %とする。好ましくは、0.6 %超、2.0 %以下である。
【0016】
さらに本発明の好適態様によれば、次の添加成分の少なくとも1種をさらに配合してもよい。
Cu:1.0%以下、Mo:3.0%以下、Nb:1.0%以下、Al:0.5%以下、およびZr:0.5%以下から成る群から選んだ少なくとも一種、B 、Ca、Mg、および希土類元素のうち少なくとも一種をぞれぞれ0.01%以下。
これらの追加的添加元素の作用について以下に述べる。
【0017】
Cu:
Cuは所望添加元素であり、NiおよびMnと同様にSiとの複合添加によりハード材の2次加工性を改善するのに有効である。しかし、1.0 %を超えて添加しても十分その効果を発揮できず、むしろ熱間加工性に悪影響を与えることから、必要に応じ1.0 %以下添加してもよい。
【0018】
Mo:
Moは所望添加元素であり、Crと同等にあるいはそれ以上に耐食性を改善する効果を有する元素である。またハード材の2次加工性、耐摩耗性を改善する効果を有する。しかし、Moの添加はコストを上昇させ、また多量添加は素地を脆化させるため、必要に応じ3.0 %以下添加してもよい。
【0019】
Nb、Al、Zr:
これらの元素は、フェライト系ステンレス鋼の2次加工性を改善する効果を有する。ただし、Nbは1.0 %を超えて、またAl、Zrはそれぞれ0.5 %を超えて添加してもその性能は飽和してしまい、かつ窒化物などの介在物が散在するようになってしまい、2次加工性はかえって劣化してくる。したがって、必要に応じこれらの元素は少なくとも1種、Nbは1.0 %以下、Al、Zrはそれぞれ0.5 %以下添加してもよい。
【0020】
B 、Ca、Mg、希土類元素:
B およびCaは微量添加によっても高温における強度と延性を増し、熱間加工性の改善に効果的である。また、耐摩耗性向上にも有効である。しかし、0.01%を超えるとかえって脆化を引き起こすため必要により添加する場合、B 、Caの添加量はいずれも0.01%以下に制限する。
同様な理由から、Mg、希土類元素についても0.04%以下に制限する。
【0021】
A値について:
A値が−2.7 より小さくなると、高温においてγ相の析出が少なくなり、スラブの冷塊割れを生じ、一方、A値がゼロ(0) より大きくなると、γ相が多くなり過ぎ、熱間圧延時の耳割れを生じ、生産性を著しく損なう。したがって、本発明にあっては高Si材であることから、このA値を−2.7 〜0 の適正範囲に制限する。
【0022】
かかる鋼組成を有するCr系ステンレス鋼は、溶製後、例えば造塊法によってインゴットを得てから、分塊圧延、粗熱間圧延、そして仕上げ熱間圧延を経て、次いで中間焼鈍を行いながら中間、仕上げの冷間圧延を行い、仕上焼鈍酸洗後軽い冷間圧延を施こしたNo.2B仕上げ材を用い、その後磁気特性を得るための冷間圧延および最終的に磁気焼鈍を行って軟磁性ステンレス鋼とする。本発明によれば、かかる製造段階において磁気特性を得るための冷間圧延における仕上圧延率を8〜20%に、磁気焼鈍温度を650 〜850 ℃に制限する。
【0023】
さらに本発明の好適態様によれば、上記冷間圧延に際しての中間圧延率を25〜55%とする。ここに、「中間圧延」とは仕上圧延に先立って行われる冷間圧延を言い、必要により間に中間焼鈍を行ってもよい。
【0024】
仕上圧延率:
磁気焼鈍条件により、好適な仕上圧延率の範囲は変わるが、仕上圧延率が8%未満になると磁束密度Bは低下し、20%超では磁束密度Bは低下する傾向にあり、作業性の面からも8〜20%とした。好適には、10〜17%である。
【0025】
磁気焼鈍条件:
850 ℃を越えると鋼中にマルテンサイトが析出し、いずれの仕上圧延率でも磁束密度Bは低い値を示す、650 ℃以下では結晶粒の成長が不十分で磁気特性が出ない。好適には700 〜800 ℃である。
磁気焼鈍雰囲気中で結晶粒成長をさせるため長時間加熱後徐冷する焼鈍処理である。
【0026】
中間圧延率:
中間圧延、中間焼鈍を行うことにより一層、磁気特性が良好となる。これは結晶の方向性が更に方向性をもつためと考えられるが、その中間圧延率は25%未満では効果なく、55%超では磁気特性が低下する。その場合、磁束密度Bの値および方向性も顕著であり好適には30〜40%である。
次に、本発明の作用効果を実施例に基づいてさらに具体的に説明する。
【0027】
【実施例】
表1に示される成分組成を有するステンレス鋼であって、板厚1mm、JIS G 4307で規定するNo.2B仕上げのステンレス鋼を素材として、まず、成分組成Aのものにつき仕上圧延の圧下率を0〜20%に変化させ、その後の磁気焼鈍温度を600 〜900 ℃間で変化させる3時間保持後徐冷したものを、ロール方向、幅方向および45°方向の3点につき、各々磁束密度を測定した。この場合の磁気測定は、JIS C2550 における直流磁化特性試験により行った。
【0028】
その結果をまとめたのが図1、図2である。
図1は仕上圧延率と磁気焼鈍温度の関係における磁束密度Bを表したグラフであるが、磁気焼鈍温度が高くなるに従って磁束密度Bのピークが低仕上圧延率側に移り反対に900 ℃近くなると高い磁束密度は得られないことが分かる。これより磁気焼鈍温度は800 ℃近くが良好であると分かる。
【0029】
図2は磁気焼鈍温度を800 ℃とした時の仕上圧延率に対するロール方向、幅方向、45°方向の磁束密度Bを表したグラフであるが、仕上圧延率が6%のところから急激に上昇し10〜15%のところでピークとなる、そして15%を越えると徐々に磁束密度Bは低下していくことが分かる。この場合ロール方向、幅方向、45°方向の差は大きく、磁気特性に方向性があることが分かる。
【0030】
次に、中間圧延、中間焼鈍の影響を調べるべく、まず、素材を中間圧延するにあたり圧延率を0〜60%変化させ、中間焼鈍をBA炉で800 ℃、2分、徐冷で行い、仕上圧延を圧下率10%、磁気焼鈍を800 ℃、3時間、徐冷で行い、それぞれ3方向の磁束密度を測定した。
【0031】
その結果をまとめたのが図3、図4である。図3は中間圧延率に対するロール方向、幅方向、45°方向の磁束密度Bをとったグラフであるが、仕上圧延、磁気焼鈍のみの磁束密度より高い値を示し、30〜55%の圧延率で中間圧延を行うことが望ましいとわかる。
【0032】
図4は同様に磁束密度Bをプロットしてグラフに表したものである。磁束密度Bは測定のばらつきが大きく磁束密度Bで代表しているが、このグラフの結果では、中間圧延率30〜35%でロール方向の磁束密度Bが顕著に高い値を示していることが分かった。
【0033】
次に、表1の成分組成のものについて圧延および焼鈍条件を変え、磁束密度Bを測定した結果を表2に示す。
また表2のA▲2▼、C▲2▼について、仕上圧延および磁気焼鈍後の機械的性質を測定した結果を表3に示している。電磁部品としては、プレス成型等二次加工を仕上圧延後に行い、その後、磁気焼鈍するが、表3より本発明材は良好なエリクセン値、伸びを示しており二次加工性に優れている。また磁気焼鈍後の硬さも良好な値を示している。
また、表2のA▲1▼〜A▲3▼について磁気特性を詳細に調べた結果を、表4に示す。
【0034】
【表1】

Figure 0003561922
【0035】
【表2】
Figure 0003561922
【0036】
【表3】
Figure 0003561922
【0037】
【表4】
Figure 0003561922
【0038】
【発明の効果】
以上の結果より、本発明によれば耐食性に優れた材料であるCr系ステンレス鋼に磁気特性を付与するとともに二次加工性をも確保することができ、その優れた特性から多くの用途が期待される。
【図面の簡単な説明】
【図1】本発明の実施例の結果をまとめて示すグラフである。
【図2】本発明の実施例の結果をまとめて示すグラフである。
【図3】本発明の実施例の結果をまとめて示すグラフである。
【図4】本発明の実施例の結果をまとめて示すグラフである。[0001]
[Industrial applications]
The present invention relates to a method for producing a soft magnetic stainless steel having excellent corrosion resistance and secondary workability. Particularly, the present invention relates to a method for producing a soft magnetic stainless steel having excellent performance as an iron core part of various relay mechanisms including an electromagnetic valve.
[0002]
[Prior art]
In general, a soft magnetic material is also called a high magnetic permeability material, and its basic characteristics are that the initial magnetic permeability is large and the coercive force is small, and in some cases, a high saturation magnetic flux density is also required. These soft magnetic materials are used in many fields, such as magnetic valves, various motors, and various relays, as metal parts which respond to the magnetism generated by an electromagnetic coil and are driven by the magnetism. As the most common soft magnetic materials, electromagnetic soft iron and silicon steel sheets are known, and among silicon steel sheets, directional silicon steel sheets having excellent magnetic properties only in the rolling direction are also known.
[0003]
However, these iron-based materials are very susceptible to rust, and it has been difficult to use them in a corrosive environment. For this reason, in the case of use in a corrosive environment, Ni plating is performed after processing the parts, but Ni plating is very expensive, resulting in an increase in the cost of the parts, and the effect of rust prevention is just one step away.
[0004]
By the way, Cr-based stainless steel is known as an inexpensive material having excellent corrosion resistance, and has been studied in recent years as a substitute for the above-mentioned iron-based material. However, these Cr-based stainless steels are inferior in magnetic properties or inferior in secondary workability such as press molding as compared with the above-mentioned iron-based materials, which is a hindrance factor to practical use.
[0005]
Although various proposals have been made to improve the properties of such Cr-based stainless steels, there has not been found any material that satisfies both corrosion resistance, secondary workability, and magnetic properties, and a method for producing the same. It is the current situation.
[0006]
[Problems to be solved by the invention]
Here, an object of the present invention is to improve the magnetic properties of a Cr-based stainless steel having both corrosion resistance and secondary workability, and to provide a method for producing a soft magnetic stainless steel excellent as a soft magnetic material used in a corrosive environment. To provide.
Here, the improvement of the magnetic properties is to improve the initial magnetic permeability, that is, to improve the magnetic flux density in a weak magnetic field. More specifically, it is to obtain a soft magnetic stainless steel having a high magnetic flux density B 2 (magnetic flux density at a magnetizing force of 2 Oe).
[0007]
[Means for Solving the Problems]
The present inventors have conducted various studies on a material having both corrosion resistance and secondary formability, and as a result, focused on the Cr-based stainless steel disclosed in Japanese Patent Application Laid-Open No. 61-296135, and examined the cold rolling conditions before magnetic annealing. Various investigations were conducted by changing the conditions of magnetic annealing and magnetic annealing. Under the following specific conditions, it was found that the magnetic flux densities B 1 and B 2 in the direction of the rolling roll were significantly increased, and that a directional soft magnetic stainless steel was obtained. I found it.
The present invention has been made based on such findings, and the gist is as follows.
[0008]
That is, the present invention provides
C: 0.12% or less, Si: more than 1.0% and 3.5% or less, Mn: 0.10 to 2.0%,
Cr: 11-23%, Ni: 0.20-3.0%, N: 0.12% or less,
And the A value determined by the relational expression A = (Ni + 0.5 Mn + 35C + 40N) -0.31 (Cr + 1.5Si) is in the range of -2.7 to 0;
Rest: Cr-based stainless steel cold-rolled steel sheet having a steel composition consisting of Fe and impurities is finish-rolled and then magnetically annealed, with a finish rolling ratio of 8 to 20% and a magnetic annealing temperature of 650 to 850 ° C. This is a method for producing a soft magnetic stainless steel.
[0009]
Further, between the middle rolling after intermediate annealing, subsequently the above finish rolling, a method for producing a soft magnetic stainless steel of the intermediate rolling reduction ratio, characterized in that a 25 to 55% upon magnetically annealed.
In the present invention, the rolling reduction (%) is represented by the reduction of the sheet thickness (%).
[0010]
[Action]
In the method of the present invention, the reasons for limiting the composition ratio of steel and the production conditions as described above will be described below. In the present specification, unless otherwise specified, "%" indicating the composition ratio is% by weight.
[0011]
C, N:
Both C and N are preferably contained as at least 0.02% of (C + N) in order to strengthen the base material as an interstitial solid solution element and to improve wear resistance. However, when (C + N) becomes large, the secondary workability deteriorates accordingly, so the upper limits of C and N are each set to 0.12%. Preferably, (C + N) ≦ 0.14%.
[0012]
Si:
Si is the most important element in constituting the present invention, and is an indispensable element for improving wear resistance, secondary workability, and magnetic performance, and its amount is 1.0%. It is effective when added in excess. However, if it is added in excess of 3.5%, the toughness will be significantly degraded and the manufacturability will be impaired. Preferably it is 2.0-2.5%.
[0013]
Mn:
Mn is effective as a deoxidizing and desulfurizing agent at the time of ordinary steel making, and requires 0.10% or more. On the other hand, when the wear resistance is improved by substitutional solid solution strengthening as in the present invention, a complex with Si is required. Addition can also improve secondary workability. However, if added in a large amount, hot workability is impaired, so the content is limited to 2.0% or less.
[0014]
Cr:
Cr is added in an amount of 11% or more because it is necessary to ensure the corrosion resistance of stainless steel. Preferably, 16% or more is added. Corrosion resistance improves as the amount of addition increases, however, if added in an excessively large amount, the cost increases, and a ferritic stainless steel satisfying the limitation of the A value cannot be obtained. Therefore, the upper limit is set to 23%.
[0015]
Ni:
Ni is effective for improving the toughness of the Si-added steel, and is necessary for improving the secondary workability of the hard rolled material by adding it in combination with Si.
Such an effect is observed at an addition of 0.20% or more, and the degree of improvement increases as the amount of addition increases, however, the effect becomes saturated even if added over 3.0%. The upper limit is set to 3.0% because addition of an excessively large amount increases the cost. Preferably, it is more than 0.6% and 2.0% or less.
[0016]
Further, according to a preferred embodiment of the present invention, at least one of the following additional components may be further added.
At least one selected from the group consisting of Cu: 1.0% or less, Mo: 3.0% or less, Nb: 1.0% or less, Al: 0.5% or less, and Zr: 0.5% or less; , Ca, Mg, and at least one of the rare earth elements are each 0.01% or less.
The effect of these additional elements is described below.
[0017]
Cu:
Cu is a desired additive element, and is effective in improving the secondary workability of the hard material by the complex addition with Si like Ni and Mn. However, even if it is added in excess of 1.0%, its effect cannot be sufficiently exerted, but rather adversely affects the hot workability. Therefore, it may be added in an amount of 1.0% or less as necessary.
[0018]
Mo:
Mo is a desired additive element, and is an element having an effect of improving the corrosion resistance equal to or more than that of Cr. It also has the effect of improving the secondary workability and wear resistance of the hard material. However, the addition of Mo increases the cost, and the addition of a large amount embrittles the substrate, so that it may be added in an amount of 3.0% or less as necessary.
[0019]
Nb, Al, Zr:
These elements have the effect of improving the secondary workability of ferritic stainless steel. However, even if Nb exceeds 1.0% and Al and Zr each add more than 0.5%, the performance is saturated and inclusions such as nitrides are scattered. The secondary workability is rather deteriorated. Therefore, if necessary, at least one of these elements, Nb may be added at 1.0% or less, and Al and Zr may be added at 0.5% or less, respectively.
[0020]
B, Ca, Mg, rare earth elements:
B and Ca increase the strength and ductility at high temperatures even when added in small amounts, and are effective in improving hot workability. It is also effective in improving wear resistance. However, if it exceeds 0.01%, it causes embrittlement instead. Therefore, when added as necessary, the addition amounts of B 2 and Ca are limited to 0.01% or less.
For the same reason, Mg and rare earth elements are also limited to 0.04% or less.
[0021]
About A value:
If the A value is smaller than -2.7, the precipitation of the γ phase is reduced at high temperatures, and the slab is subjected to cold cracking. On the other hand, if the A value is larger than zero (0), the γ phase becomes too large and the heat is increased. Ear cracks occur during cold rolling, which significantly impairs productivity. Therefore, in the present invention, since the material is a high Si material, the A value is limited to an appropriate range of -2.7 to 0.
[0022]
The Cr-based stainless steel having such a steel composition, after being smelted, is obtained, for example, by an ingot-forming method, then subjected to bulk rolling, rough hot rolling, and finish hot rolling, and then to intermediate annealing while performing intermediate annealing. No., which was subjected to cold rolling of finish, light annealing cold rolling after finish annealing pickling. A soft magnetic stainless steel is obtained by using a 2B finish material and then performing cold rolling for obtaining magnetic properties and finally magnetic annealing. According to the present invention, the finish rolling ratio in cold rolling for obtaining magnetic properties in such a manufacturing stage is limited to 8 to 20%, and the magnetic annealing temperature is limited to 650 to 850 ° C.
[0023]
Further, according to a preferred embodiment of the present invention, the intermediate rolling reduction in the cold rolling is set to 25 to 55%. Here, "intermediate rolling" refers to cold rolling performed prior to finish rolling, and intermediate annealing may be performed as needed.
[0024]
Finish rolling rate:
Magnetic annealing conditions, the range of suitable finish rolling rate will vary, but finish the rolling ratio is less than 8% flux density B 2 is reduced, there is a tendency that the magnetic flux density B 2 is 20 percent decreases workability 8-20% from the viewpoint of Preferably, it is 10 to 17%.
[0025]
Magnetic annealing conditions:
When the temperature exceeds 850 ° C., martensite precipitates in the steel, and the magnetic flux density B 2 shows a low value at any finish rolling reduction. At 650 ° C. or lower, the growth of crystal grains is insufficient and no magnetic properties are obtained. Preferably it is 700 to 800 ° C.
This is an annealing treatment in which heating is performed for a long time and then gradually cooled in order to grow crystal grains in a magnetic annealing atmosphere.
[0026]
Intermediate rolling rate:
By performing the intermediate rolling and the intermediate annealing, the magnetic properties are further improved. This is considered to be because the directionality of the crystal has a further directionality. However, if the intermediate rolling ratio is less than 25%, there is no effect, and if it exceeds 55%, the magnetic properties deteriorate. In that case, the value and direction of the magnetic flux density B 1 represents also pronounced preferably 30 to 40%.
Next, the operation and effect of the present invention will be described more specifically based on examples.
[0027]
【Example】
A stainless steel having a component composition shown in Table 1, having a sheet thickness of 1 mm and having a thickness of 1 mm specified by JIS G 4307. Using 2B-finished stainless steel as a material, first, the rolling reduction of finish rolling is changed to 0 to 20% for the component A, and then the magnetic annealing temperature is changed between 600 to 900 ° C., and then gradually held for 3 hours. The magnetic flux density of each of the cooled ones was measured at three points in the roll direction, the width direction, and the 45 ° direction. The magnetic measurement in this case was performed by a DC magnetization characteristic test according to JIS C2550.
[0028]
FIG. 1 and FIG. 2 summarize the results.
Figure 1 is a graph showing a magnetic flux density B 2 in relation to the finish rolling ratio and magnetic annealing temperature but, 900 ° C. peak of the magnetic flux density B 2 is in the opposite shift to a low finish rolling rate side as magnetic annealing temperature is higher It turns out that a high magnetic flux density cannot be obtained when it is close. From this, it can be seen that the magnetic annealing temperature is good near 800 ° C.
[0029]
Figure 2 is the roll direction, the width direction with respect to the finish rolling rate when the magnetic annealing temperature of 800 ° C., but is a graph showing the 45 ° direction of the magnetic flux density B 2, rapidly finish rolling ratio from where 6% elevated a peak at 10-15% and gradually the magnetic flux density B 2 exceeds 15%, it is seen that decreases. In this case, the difference between the roll direction, the width direction, and the 45 ° direction is large, and it can be seen that the magnetic characteristics have directionality.
[0030]
Next, in order to examine the effects of the intermediate rolling and the intermediate annealing, first, when the material is intermediately rolled, the rolling ratio is changed from 0 to 60%, and the intermediate annealing is performed in a BA furnace at 800 ° C. for 2 minutes with slow cooling. Rolling was performed at a rolling reduction of 10%, magnetic annealing was performed at 800 ° C. for 3 hours, and the magnetic flux density was measured in three directions.
[0031]
FIGS. 3 and 4 summarize the results. Figure 3 is a roll direction, a width direction with respect to the intermediate reduction ratio, is a graph plotting the 45 ° direction of the magnetic flux density B 2, finish rolling, it showed higher than the magnetic flux density of the magnetic annealing only the value, the rolling of from 30 to 55% It is understood that it is desirable to perform intermediate rolling at a rate.
[0032]
Figure 4 is a representation of a graph by plotting the magnetic flux density B 1 in the same manner. Although the magnetic flux density B 1 represents the variation of the measurement is represented by large magnetic flux density B 2, in the results of this graph, the magnetic flux density B 1 in the roll direction in the intermediate rolling ratio 30% to 35% is exhibited significantly higher values I knew it was there.
[0033]
Next, changing the rolling and annealing conditions for those component composition shown in Table 1, the results of measuring the magnetic flux density B 2 in Table 2.
Table 3 shows the results of measuring the mechanical properties of A-2 and C-2 in Table 2 after finish rolling and magnetic annealing. As for the electromagnetic component, secondary processing such as press molding is performed after finish rolling, and then magnetic annealing is performed. From Table 3, the material of the present invention shows good Erichsen value and elongation, and is excellent in secondary workability. The hardness after magnetic annealing also shows a good value.
Table 4 shows the results of detailed examination of the magnetic characteristics of A-1 to A-3 in Table 2.
[0034]
[Table 1]
Figure 0003561922
[0035]
[Table 2]
Figure 0003561922
[0036]
[Table 3]
Figure 0003561922
[0037]
[Table 4]
Figure 0003561922
[0038]
【The invention's effect】
From the above results, according to the present invention, it is possible to impart magnetic properties to Cr-based stainless steel, which is a material excellent in corrosion resistance, and also to secure secondary workability, and many applications are expected from the excellent properties. Is done.
[Brief description of the drawings]
FIG. 1 is a graph collectively showing the results of Examples of the present invention.
FIG. 2 is a graph collectively showing the results of the examples of the present invention.
FIG. 3 is a graph collectively showing the results of the examples of the present invention.
FIG. 4 is a graph collectively showing the results of the examples of the present invention.

Claims (2)

重量%にて、
C: 0.12%以下、Si: 1.0 %超3.5 %以下、Mn: 0.10〜2.0 %、
Cr: 11〜23%、Ni: 0.20〜3.0 %、N: 0.12%以下、
かつ、A= (Ni+0.5 Mn+35C+40N) −0.31 (Cr+1.5 Si) なる関係式で定まるA値が−2.7 〜0の範囲にあり、
残部: Feおよび不純物
より成る鋼組成を有するCr系ステンレス冷延鋼板を仕上圧延し磁気焼鈍するに際し、仕上圧延率を8〜20%、磁気焼鈍温度を650 〜850 ℃とすることを特徴とする軟磁性ステンレス鋼の製造方法。
In weight%,
C: 0.12% or less, Si: more than 1.0% and 3.5% or less, Mn: 0.10 to 2.0%,
Cr: 11-23%, Ni: 0.20-3.0%, N: 0.12% or less,
A value determined by the relational expression of A = (Ni + 0.5 Mn + 35C + 40N) −0.31 (Cr + 1.5Si) is in a range of −2.7 to 0,
Remaining part: When finish-rolling and magnetically annealing a Cr-based stainless steel cold-rolled steel sheet having a steel composition comprising Fe and impurities, the finish rolling ratio is 8 to 20%, and the magnetic annealing temperature is 650 to 850 ° C. Manufacturing method of soft magnetic stainless steel.
仕上圧延し磁気焼鈍する前に、中間圧延、中間焼鈍を施し、その際の中間圧延率を25〜55%とすることを特徴とする請求項1記載の軟磁性ステンレス鋼の製造方法。2. The method for producing a soft magnetic stainless steel according to claim 1, wherein intermediate rolling and intermediate annealing are performed before finish rolling and magnetic annealing, and an intermediate rolling rate at that time is 25 to 55%.
JP24815592A 1992-09-17 1992-09-17 Manufacturing method of soft magnetic stainless steel Expired - Lifetime JP3561922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24815592A JP3561922B2 (en) 1992-09-17 1992-09-17 Manufacturing method of soft magnetic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24815592A JP3561922B2 (en) 1992-09-17 1992-09-17 Manufacturing method of soft magnetic stainless steel

Publications (2)

Publication Number Publication Date
JPH06100940A JPH06100940A (en) 1994-04-12
JP3561922B2 true JP3561922B2 (en) 2004-09-08

Family

ID=17174043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24815592A Expired - Lifetime JP3561922B2 (en) 1992-09-17 1992-09-17 Manufacturing method of soft magnetic stainless steel

Country Status (1)

Country Link
JP (1) JP3561922B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114606440A (en) * 2022-02-28 2022-06-10 浙江青山钢铁有限公司 High-performance soft magnetic stainless steel and preparation method thereof

Also Published As

Publication number Publication date
JPH06100940A (en) 1994-04-12

Similar Documents

Publication Publication Date Title
US20220010392A1 (en) Nonmagnetic austenitic stainless steel and manufacturing method therefor
JP6112273B1 (en) Ferritic stainless hot-rolled steel sheet, hot-rolled annealed sheet, and methods for producing them
JP4589747B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties, its manufacturing method and strain relief annealing method
JP3550132B2 (en) Precipitation hardening type soft magnetic ferritic stainless steel
US4948434A (en) Method for manufacturing Ni-Fe alloy sheet having excellent DC magnetic property and excellent AC magnetic property
JP3932020B2 (en) Ferritic stainless steel with excellent deep drawability and small in-plane anisotropy and method for producing the same
JP3470660B2 (en) Chromium stainless steel material for spring and multi-layered structure for spring and method for producing the same
JP2010235976A (en) Soft-magnetic steel, soft magnetism steel component, and manufacturing method therefor
JP2583694B2 (en) Method for producing ferritic stainless steel for electrical materials with excellent ductility, wear resistance and rust resistance
JP3870616B2 (en) Fe-Cr-Si alloy and method for producing the same
JP3939568B2 (en) Nonmagnetic stainless steel with excellent workability
JP2002105601A (en) High strength dual phase stainless steel and its production method
JP3561922B2 (en) Manufacturing method of soft magnetic stainless steel
JPH09268350A (en) High strength and high ductility ferrite single phase chromium-containing steel sheet and its production
JP7475181B2 (en) Ferritic Stainless Steel
JP2004225082A (en) High strength low permeability austenitic stainless steel sheet, method of producing the same, and method of producing washer for bolt fastening
JP4841308B2 (en) High-strength nonmagnetic stainless steel sheet and method for producing the same
JPH07233452A (en) Ferritic stainless steel excellent in magnetic property
JP2004083972A (en) Ferritic stainless steel cold rolled, annealed material having excellent secondary workability, and production method therefor
JP2000129400A (en) Annealed martensitic stainless steel excellent in strength, toughness, and spring characteristic
JP3429023B2 (en) Electromagnetic stainless steel sheet with excellent soft magnetic properties and press formability
KR20210008732A (en) Non-magnetic austenitic stainless steel
JPH08134604A (en) Soft-magnetic material, excellent in magnetic flux density, coercive force, and corrosion resistance and having high electric resistance, and its production
WO2022124215A1 (en) Ferritic stainless steel sheet and production method
JPH07278747A (en) Spring steel reduced in decarburization characteristic

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9