JPH02213421A - Production of soft-magnetic steel stock - Google Patents

Production of soft-magnetic steel stock

Info

Publication number
JPH02213421A
JPH02213421A JP1155025A JP15502589A JPH02213421A JP H02213421 A JPH02213421 A JP H02213421A JP 1155025 A JP1155025 A JP 1155025A JP 15502589 A JP15502589 A JP 15502589A JP H02213421 A JPH02213421 A JP H02213421A
Authority
JP
Japan
Prior art keywords
less
magnetic steel
magnetic
soft magnetic
soft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1155025A
Other languages
Japanese (ja)
Other versions
JP2682144B2 (en
Inventor
Toshimichi Omori
大森 俊道
Haruo Suzuki
治雄 鈴木
Tetsuya Sanpei
哲也 三瓶
Yasunobu Kunisada
国定 泰信
Toshio Takano
俊夫 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP1155025A priority Critical patent/JP2682144B2/en
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to DE68927174T priority patent/DE68927174T2/en
Priority to PCT/JP1989/001231 priority patent/WO1990015886A1/en
Priority to CN89109230A priority patent/CN1048236A/en
Priority to EP90900339A priority patent/EP0431167B1/en
Priority to KR1019910700177A priority patent/KR960014944B1/en
Priority to CA002019187A priority patent/CA2019187A1/en
Publication of JPH02213421A publication Critical patent/JPH02213421A/en
Application granted granted Critical
Publication of JP2682144B2 publication Critical patent/JP2682144B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To inexpensively produce a soft-magnetic steel stock having high saturation magnetization and high magnetic permeability by subjecting a billet or cast billet having a specific composition consisting of C, Si, Mn, P, S, Al, N, O, and Fe to specific hot working and annealing. CONSTITUTION:A billet or cast billet having a composition which consists of, by weight, <=0.004% C, <=0.5%, preferably <=0.1%, Si, <=0.5%, preferably <=0.15%, Mn, <=0.015% P, <=0.01% S, 0.5-2.0% solAl, <=0.005% N so that C+N is regulated, preferably, to <=0.007%, where <=0.012% N so that C+N is regulated, preferably, to <=0.015% when 0.005-1.0% Ti is added, <=0.005% O, and the balance Fe with inevitable impurities is heated up to 700-1300 deg.C. Then, the hot working of the above billet or cast billet is completed at >=700 deg.C. The resulting worked stock is annealed finally at 900-1300 deg.C. By this method, the soft-magnetic steel stock having <=0.4Oe coercive force and >=10000G magnetic flux density at 0.5Oe can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は軟磁性材料に関し、特に電磁石磁芯材料或いは
磁気遮蔽材料など高い直流磁化特性を要求される軟磁性
材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to soft magnetic materials, and particularly to soft magnetic materials that require high direct current magnetization characteristics, such as electromagnetic core materials or magnetic shielding materials.

〔従来の技術および解決すべき課題〕[Conventional technology and issues to be solved]

直流電磁石鉄芯材料、或いは近年特に進歩・普及のめざ
ましい医療機器や各種物理機器、電子部品および機器等
の磁気遮蔽材料として、比較的安価に得られる軟鉄や純
鉄および非常に高価なパーマロイ或いはスーパーマロイ
が使用されている。ところで、軟鉄や純鉄の10eにお
ける磁束密度(以下8□値)は概ね3000〜1100
0 G程度であり、これらはMHI(核磁気共鳴による
断層像撮影診断装置)の磁気遮蔽等。
Soft iron and pure iron, which can be obtained relatively cheaply, and permalloy or super, which are very expensive, are used as DC electromagnet iron core materials, or as magnetic shielding materials for medical equipment, various physical equipment, electronic parts and equipment, etc., which have made remarkable progress and spread in recent years. Malloy is used. By the way, the magnetic flux density (hereinafter referred to as 8□ value) of soft iron and pure iron at 10e is approximately 3000 to 1100.
It is about 0 G, and these are magnetic shielding of MHI (tomographic imaging diagnostic equipment using nuclear magnetic resonance).

数ガウス程度までの磁気遮蔽材料として、或いは電磁石
鉄芯用材料として使用されている。
It is used as a magnetic shielding material up to several Gauss or as a material for the iron core of an electromagnet.

直流磁化特性が重要となる用途のうち、磁気遮蔽を例と
して従来技術の問題点を示す、すなわち、現在、MHI
の磁気遮蔽には専ら比較的安価で且つ飽和磁化の高い純
鉄が使用されているが、軟鉄、純鉄を対象とする電磁軟
鉄を規定するJIS規格のうち最も厳しい0種(例えば
JIS C25045UYPO)ですらB1値の下限値
を8000 Gと規定しており、この特性では地磁気程
度の磁気遮蔽は困難であり、しかも数ガウス程度以下の
磁気遮蔽を行うための遮蔽システムの重厚化をもたらし
ている。より良い遮蔽を行うための遮蔽材料として、パ
ーマロイ或いはスーパーマロイ等のFe −Ni合金を
使用する場合もあるが、これらの材料は地磁気程度以下
の遮蔽が可能である反面、非常に高価であり、また、飽
和磁化が純鉄と比べて1/3〜2/3と低く、したがっ
て高磁界の遮蔽にあたっては肉厚を極端に増やさなけれ
ばならない等の欠点もあり、いずれにしても大量に使用
することは経済的に困難である2゜ これらの点を踏まえて、純鉄系材料の持つ高飽和磁化を
損なうことなく、透磁率を高める検討が既にいくつかな
されている0例えば、特公昭63−45443号、特開
昭62−77420号、或いは日本金属学会第23巻第
5号(1984年発行)「極厚電磁鋼板の開発」に示さ
れている方法はいずれもフェライト結晶粒の粗大化に伴
う透磁率向上を狙ったものであるが、これらの技術は、
対象が比較的板厚の薄い熱延板に限定される技術であっ
たり、或いは本発明のようにさらに厳しい直流磁化特性
を評価する0、50eにおける磁束密度(以下8゜1.
値)で10000 G以上を達成できない技術であり、
いずれにせよ優れた直流磁化特性を得るための技術とし
て十分なものではない。
Among applications where DC magnetization characteristics are important, we will use magnetic shielding as an example to illustrate the problems of the conventional technology.
Pure iron, which is relatively inexpensive and has high saturation magnetization, is exclusively used for magnetic shielding, but it does not meet the strictest type 0 of the JIS standards that specify electromagnetic soft iron (e.g. JIS C25045UYPO), which covers soft iron and pure iron. Even so, the lower limit of the B1 value is specified as 8000 G, and with this characteristic it is difficult to shield magnetic fields as strong as the geomagnetic field, and moreover, the shielding system has to become heavier in order to shield magnetic fields as strong as a few Gauss or less. . Fe-Ni alloys such as permalloy or supermalloy are sometimes used as shielding materials to achieve better shielding, but while these materials are capable of shielding less than the geomagnetic field, they are very expensive. In addition, the saturation magnetization is 1/3 to 2/3 lower than that of pure iron, so it has drawbacks such as the need to increase the wall thickness extremely when shielding from high magnetic fields, so in any case, it is used in large quantities. It is economically difficult to do so.2゜Based on these points, some studies have already been made to increase the magnetic permeability without impairing the high saturation magnetization of pure iron-based materials.For example, No. 45443, JP-A-62-77420, or the Japan Institute of Metals Vol. 23, No. 5 (published in 1984) "Development of extra-thick electrical steel sheets", all of the methods are effective at coarsening ferrite grains. These technologies aim to improve the magnetic permeability associated with
The target may be a technique that is limited to hot-rolled sheets with a relatively thin plate thickness, or a magnetic flux density at 0.50e (hereinafter referred to as 8°1.
It is a technology that cannot achieve a value of 10,000 G or more,
In any case, this is not a sufficient technique for obtaining excellent DC magnetization characteristics.

このように現状では、飽和磁化が高く、且つ地磁気程度
に相当する低い磁場で高い磁束密度を示す、つまり透磁
率が高い材料は提供されていない0本発明の目的は、こ
のような材料を安価に製造できる方法を提供することに
ある。
As described above, at present, there is no material that has high saturation magnetization and exhibits high magnetic flux density in a low magnetic field equivalent to the earth's magnetic field, that is, has high magnetic permeability. The objective is to provide a method that can be used to manufacture

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、上述した問題点を解決するため、まず、
直流磁場用軟磁性材料の基本である工業用純鉄の検討を
行ってその欠点を明らかにし、さらに特性改善を図るべ
く検討を行い、次のような知見を得た。
In order to solve the above-mentioned problems, the present inventors first
We investigated industrial pure iron, which is the basis of soft magnetic materials for direct current magnetic fields, and clarified its shortcomings.We also investigated ways to improve its characteristics, and obtained the following knowledge.

すなわち、高透磁率を得るという観点から、A1を添加
することにより、■効果的な脱酸が可能となり酸素量お
よび酸化物系介在物の低減に伴う透磁率向上につながる
ばかりでなく、透磁率に悪影響を及ぼす固溶NをAII
N粒子の形成により低減できること、■また、ある必要
量添加することにより、微細分散しているAΩN粒子の
凝集化を図ることが可能となり、 A+IN粒子そのも
のの悪影響を極力低く抑え得ると同時に、フェライト結
晶粒の粗粒化を促進する効果も得られ、いずれも透磁率
向上に有効であること、■特に、0.5%を超えて添加
することにより、変態温度を著しく高め若しくはフェラ
イト単相とすることが可能となり、したがって変態によ
る歪が導入されることなく900℃を超える温度で焼鈍
を行うことが可能となること、そして、この高温焼鈍は
、効果的な格子歪の除去とフェライト結晶粒の粗大化を
もたらし、固溶Al!そのものの透磁率向上効果も考え
られるが、これらの相乗効果により極めて優れた透磁率
の獲得を可能とすること、■また、必要に応じてTiを
適宜添加することにより、これらが固溶Nを優先的に固
定して特性向上に寄与し、特に敢えてN含有量を減する
努力を要しないこと、また、材料の飽和磁化を高く保つ
という観点から、02%を超えるAffiの添加は避け
るべきであり、また、■C,N含有量が多いと変態温度
の低下もしくは必要な口添態量の増大に加えて、固溶C
,Nの増加による格子歪の増大または炭化物、窒化物の
生成等により特性を劣化させることがあるので、これら
を避けるための。
In other words, from the viewpoint of obtaining high magnetic permeability, adding A1 not only enables effective deoxidation and improves magnetic permeability by reducing the amount of oxygen and oxide inclusions, but also increases magnetic permeability. Solute N has a negative impact on AII.
■Additionally, by adding a certain required amount, it is possible to agglomerate the finely dispersed AΩN particles, suppressing the negative effects of the A+IN particles themselves as much as possible, and at the same time reducing the amount of ferrite. It also has the effect of promoting the coarsening of crystal grains, both of which are effective in improving magnetic permeability. In particular, by adding more than 0.5%, the transformation temperature can be significantly raised or the ferrite single phase can be increased. Therefore, it is possible to perform annealing at a temperature exceeding 900°C without introducing strain due to transformation, and this high temperature annealing effectively removes lattice strain and improves ferrite crystal grains. This results in coarsening of the solid solution Al! Although the effect of improving the magnetic permeability of itself is considered, the synergistic effect of these makes it possible to obtain extremely excellent magnetic permeability. Addition of Affi exceeding 0.02% should be avoided from the viewpoint of preferentially fixing and contributing to property improvement, not requiring special effort to reduce the N content, and maintaining high saturation magnetization of the material. Also, if the C and N contents are high, in addition to lowering the transformation temperature or increasing the necessary amount of additive, solid solution C
, N may cause property deterioration due to an increase in lattice strain or the formation of carbides and nitrides, so this is to avoid these.

C,N量の上限が存在すこと、を見い出し、本発明を完
成させたものである。
The present invention was completed by discovering that there is an upper limit for the amounts of C and N.

すなわち本発明の特徴は以下の通りである。That is, the features of the present invention are as follows.

(1)重量%で、C: 0.004%以下、Si : 
0.5%以下、Mn : 0.50%以下、P : 0
.015%以下、S:0.01%以下、5offi、口
: 0.5〜2.0%、N : 0.005%以下、酸
素: 0.005%以下、残部Feおよび不可避不純物
からなる組成の鋼片または鋳片を700℃以上1300
℃以下に加熱し、700℃以上の温度で熱間加工を終了
し、最終的に900〜1300℃で焼鈍を行うことによ
り、保磁力0.4Oe以下、 0,5Oeにおける磁束
密度10000 G以上を有する軟磁性鋼材を得ること
を特徴とする軟磁性鋼材の製造方法。
(1) In weight%, C: 0.004% or less, Si:
0.5% or less, Mn: 0.50% or less, P: 0
.. 015% or less, S: 0.01% or less, 5offi, mouth: 0.5-2.0%, N: 0.005% or less, oxygen: 0.005% or less, the balance consisting of Fe and inevitable impurities. Steel slabs or cast slabs at temperatures above 700°C and 1300°C
℃ or less, hot working is completed at a temperature of 700℃ or higher, and finally annealing is performed at 900 to 1300℃. A method for producing a soft magnetic steel material, the method comprising obtaining a soft magnetic steel material having the following properties.

(2)重量%で、C: 0.004%以下、Si : 
0.1%以下、Mn : O,t5%以下、P : 0
.015%以下、S:0.01%以下、5ofi、Al
l : 0.5〜2.0%、N : 0,005%以下
、酸素: 0.005%以下、残部Feおよび不可避不
純物からなる組成の鋼片または鋳片を700℃以上13
00℃以下に加熱し、700℃以上の温度で熱間加工を
終了し、最終的に1000〜1300℃で焼鈍を行うこ
とにより、保磁力0.4Oe以下、0.50eにおける
磁束密度10000 G以上を有する軟磁性鋼材を得る
ことを特徴とする軟磁性鋼材の製造方法。
(2) In weight%, C: 0.004% or less, Si:
0.1% or less, Mn: O, t5% or less, P: 0
.. 015% or less, S: 0.01% or less, 5ofi, Al
A steel slab or cast slab with a composition consisting of l: 0.5 to 2.0%, N: 0,005% or less, oxygen: 0.005% or less, and the balance Fe and unavoidable impurities is heated to 700°C or higher13
By heating to 00℃ or lower, finishing hot working at a temperature of 700℃ or higher, and finally annealing at 1000 to 1300℃, the coercive force is 0.4Oe or lower and the magnetic flux density at 0.50e is 10,000G or higher. A method for producing a soft magnetic steel material, the method comprising obtaining a soft magnetic steel material having the following properties.

(3)重量%で、C: 0.004%以下、Si : 
0.5%以下、Mn : 0.50%以下、P : 0
.015%以下、S:0.01%以下、5oj1.口:
 0.5〜2.0%、N : 0.012%以下、酸素
: 0.005%以下、Ti : 0.005〜1.0
%、残部Feおよび不可避不純物からなる組成の鋼片ま
たは鋳片を700℃以上1300℃以下に加熱し、70
0℃以上の温度で熱間加工を終了し、最終的に900〜
1300℃で焼鈍を行うことにより、保磁力0.4Oe
以下、0.5Oeにおける磁束密度10000 G以上
を有する軟磁性鋼材を得ることを特徴とする軟磁性鋼材
の製造方法。
(3) In weight%, C: 0.004% or less, Si:
0.5% or less, Mn: 0.50% or less, P: 0
.. 015% or less, S: 0.01% or less, 5oj1. mouth:
0.5-2.0%, N: 0.012% or less, Oxygen: 0.005% or less, Ti: 0.005-1.0
%, the balance Fe and unavoidable impurities are heated to 700°C or higher and 1300°C or lower, and
Hot processing is completed at a temperature of 0℃ or higher, and the final temperature is 900℃ or higher.
By annealing at 1300℃, the coercive force is 0.4Oe.
Hereinafter, a method for manufacturing a soft magnetic steel material, which is characterized in that a soft magnetic steel material having a magnetic flux density of 10000 G or more at 0.5 Oe is obtained.

以下1本発明における組成および製造条件の限定理由に
ついて説明する。
The reasons for limiting the composition and manufacturing conditions in the present invention will be explained below.

CはNと同様に優れた透磁率を確保するためにも可能な
限り低減すことが望ましいが、工業的に製造するうえで
極限的な低減は困難であり、また極端なコスト高を招く
。また、A遣添加により変態温度を高めるためにも、C
添加量を低く抑えないと口の必要添加量が多くなってし
まい、これは結果的に飽和磁化を低下することにつなが
り、本発明の意図に反することになる。このためCは0
.004 vt%をその上限とする。
Like N, it is desirable to reduce carbon as much as possible in order to ensure excellent magnetic permeability, but it is difficult to reduce carbon to an extreme degree in industrial production, and it also causes an extremely high cost. In addition, in order to increase the transformation temperature by adding A,
If the addition amount is not kept low, the required addition amount will increase, which will result in a decrease in saturation magnetization, which is contrary to the intent of the present invention. Therefore, C is 0
.. The upper limit is 004 vt%.

SLは透磁率向上に寄与するが、本発明では透磁率向上
は口添加により満足させることを目的とし、むしろSL
を多量に添加することによる飽和磁化の低下を懸念し0
.5 wt%、好ましくは0.1 wt%をその上限と
する。
SL contributes to improving magnetic permeability, but in the present invention, the purpose of improving magnetic permeability is to satisfy the problem by addition of SL.
There is a concern that the saturation magnetization will decrease due to the addition of a large amount of
.. The upper limit is 5 wt%, preferably 0.1 wt%.

Mnは直流磁化特性を劣化させる元素であり、低減すこ
とが望ましいが、極端な低減はコスト高およびN含有量
の増加を招き、また、Sを固定することにより熱間脆性
を防止する効果もあることから、Mn/Sが10を下回
らない範囲で、0.50 vt%、好ましくは0.15
 wt%を上限に添加しても良い。
Mn is an element that deteriorates DC magnetization characteristics, and it is desirable to reduce it, but extreme reduction will lead to higher costs and an increase in N content, and fixing S will not have the effect of preventing hot embrittlement. Therefore, as long as Mn/S is not less than 10, 0.50 vt%, preferably 0.15
It may be added up to wt%.

P、Sは不純物元素であってコスト高につながらない範
、囲で低減することが望ましく、それぞれ0.015 
vt%、0.01 wt%をその上限とする。
P and S are impurity elements, and it is desirable to reduce them within a range that does not lead to increased costs, and each is 0.015
vt%, with an upper limit of 0.01 wt%.

口は上述したように本発明において要となる添加元素で
ある。すなわち、AIは固溶Nの固定およびIN粒子の
凝集化、変態温度の上昇をもたらし、フェライト域を拡
大させることによって高温焼鈍を実現し、これによって
フェライト結晶粒の粗大化および内部歪の低減を達成し
、透磁率を向上させるものであり、さらには固溶Afi
自身の透磁率向上効果も考えられ、本発明においては優
れた直流磁化特性を得るために添加しなくてはならない
元素である。このAnの効果は5offi、AQの状態
で0.5 wt%以上添加すことにより得られるが、一
方、2.Owt%を超えて添加すると飽和磁化の低下を
招き好ましくないので、A】の添加量範囲はSoA、A
l2の状態で0.5〜2.Owt%とした。
As mentioned above, the element is an essential additive element in the present invention. In other words, AI causes fixation of solid solution N, agglomeration of IN particles, and an increase in transformation temperature, thereby realizing high-temperature annealing by expanding the ferrite region, thereby coarsening ferrite grains and reducing internal strain. It achieves this and improves magnetic permeability, and further improves solid solution Afi
It is also considered to have an effect of improving its own magnetic permeability, and in the present invention, it is an element that must be added in order to obtain excellent DC magnetization characteristics. This effect of An can be obtained by adding 0.5 wt% or more in the state of 5offi and AQ, but on the other hand, 2. If added in excess of Owt%, the saturation magnetization will decrease, which is undesirable, so the addition amount range for A] is SoA, A
0.5-2. It was set as Owt%.

NはCと同様にFe格子内に侵入し、格子歪を多く生じ
直流磁化特性を劣化させる。また、NはAl1粒子を多
く生成させないためにも極力低いほうが望ましい。また
この考えは添加したAQを少しでも有効な固溶Anとし
て存在せしめることにもつながり、このためN量は0.
005 wt%以下とする0本発明では、後述するよう
に強力な窒化物生成元素であるTiを必要に応じて添加
する。Tiは歌えてコスト高につながるN量の厳しい上
限規定を行うことなく、上述したNの弊害を減すること
を目的として添加するものであり、したがってこの場合
にはNの上限値を0.012 wt%とする。
Like C, N penetrates into the Fe lattice, causing a lot of lattice distortion and deteriorating the DC magnetization characteristics. Further, it is desirable that N be as low as possible in order to prevent the generation of too many Al1 particles. This idea also leads to making the added AQ exist as an effective solid solution An, so that the amount of N is 0.
In the present invention, Ti, which is a strong nitride-forming element, is added as necessary, as will be described later. Ti is added for the purpose of reducing the above-mentioned adverse effects of N without imposing a strict upper limit on the amount of N, which would lead to high costs. Therefore, in this case, the upper limit of N is set to 0.012. Let it be wt%.

また、上述した知見からも明らかなように、直流磁化特
性をより確実に確保するためには、NおよびCの総量を
規制することが望ましい。
Furthermore, as is clear from the above findings, in order to more reliably ensure DC magnetization characteristics, it is desirable to regulate the total amount of N and C.

すなわちTi無添加の場合にはC+Nを0.007wt
%以下、 Ti添加の場合にはC+Nを0.014wt
%以下とすることが好ましい。
In other words, in the case of no Ti addition, C+N is 0.007wt.
% or less, in case of Ti addition, C+N is 0.014wt
% or less.

酸素もMnと同様に直流磁化特性を劣化させる元素であ
り、特に非金属介在物を生成することによる透磁率への
劣化影響は大きく1本発明を溶製す際には十分低減して
おかなければならず、上限値として、0.005 wt
%を規定した。
Like Mn, oxygen is also an element that deteriorates DC magnetization characteristics, and in particular, the deterioration effect on magnetic permeability due to the formation of nonmetallic inclusions is large and must be sufficiently reduced when producing the present invention. However, the upper limit is 0.005 wt.
% was specified.

Tiは上述したように強力な窒化物生成元素であり、0
.005〜1.Owt%の範囲で添加することにより、
N含有量が十分に低減されていないつまり安価な素材に
おいても、固溶Nの固定効果により直流磁化特性を著し
く損なうことを回避することができる。また、N含有量
が比較的低い場合は、窒化物粒子の生成量も少なく直流
磁化特性の若干の向上をも期待することができる。一方
、上記上限値を超えて添加すると直流磁化特性の劣化を
もたらす。
As mentioned above, Ti is a strong nitride-forming element, and 0
.. 005-1. By adding within the range of Owt%,
Even in materials whose N content is not sufficiently reduced, that is, which are inexpensive, it is possible to avoid significant impairment of DC magnetization characteristics due to the fixation effect of solid solution N. Further, when the N content is relatively low, the amount of nitride particles produced is small, and a slight improvement in DC magnetization characteristics can be expected. On the other hand, adding more than the above upper limit results in deterioration of DC magnetization characteristics.

次に本発明鋼の製造条件について説明する。Next, the manufacturing conditions for the steel of the present invention will be explained.

本発明では、加熱圧延条件については、極く通常の熱間
加工条件を採用し、上記組成の鋼片または鋳片を700
℃以上、 1300℃以下に加熱し熱間加工を行う、但
し、低温域圧延に伴う熱間加工時の変形抵抗の増加およ
び熱間加工に費やす時間の増加は常にコスト高につなが
り、また極度な低温圧延は焼鈍時に再結晶による細粒化
を招く可能性もあり、本発明では加工終了温度について
は700℃の下限温度を設けた。
In the present invention, very normal hot working conditions are adopted as the hot rolling conditions, and the steel slab or cast slab with the above composition is rolled at 700%
Hot working is performed by heating the product to a temperature above 1300°C and below 1300°C. However, the increase in deformation resistance during hot working and the increase in the time spent on hot working due to low-temperature rolling always lead to higher costs and extreme Low-temperature rolling may lead to grain refinement due to recrystallization during annealing, so in the present invention, a lower limit temperature of 700° C. is set for the finishing temperature.

最終的に施さねばならない焼鈍については、主に口の添
加量により決定される変態温度に触れない範囲で実施す
る必要があるが、少なくとも900℃以上、好ましくは
1000℃以上の温度で実施しないと本発明鋼の意図す
極めて優れた直流磁化特性を達成できない、また、具体
的に、0.001 vt%C10,0020wt%Nで
1 wt%程度のAnを添加することにより本発明鋼は
フェライト単相となり、 1100℃以上の非常に高温
での焼鈍が可能になるが、1300℃を超えた温度域で
の焼鈍は困難でもあり、且つコスト高を招くので、焼鈍
温度は900〜1300℃、好ましくは1000〜13
00℃とした。なお、加熱保持時間については、素材の
熱容量によって変化するが30分以上保持することが望
ましく、また、加熱保持後の冷却に関しては、できるだ
け熱歪を導入しないという観点から徐冷することが望ま
しい。
The final annealing must be carried out within a range that does not touch the transformation temperature, which is determined mainly by the amount of additive, but it must be carried out at a temperature of at least 900°C or higher, preferably 1000°C or higher. The extremely excellent DC magnetization characteristics intended by the steel of the present invention cannot be achieved, and specifically, by adding approximately 1 wt% of An to 0.001 vt%C, 10,0020 wt%N, the steel of the present invention The annealing temperature becomes 900 to 1300°C, preferably 900 to 1300°C. is 1000-13
The temperature was 00°C. Note that the heating holding time varies depending on the heat capacity of the material, but it is desirable to hold it for 30 minutes or more, and regarding cooling after heating holding, it is desirable to perform slow cooling from the viewpoint of not introducing thermal strain as much as possible.

むろん、均一に冷却されるよう配慮がなされている場合
は熱歪が導入され難く、この場合は必ずしも徐、冷す必
要はない。
Of course, if care is taken to ensure uniform cooling, thermal strain is less likely to be introduced, and in this case it is not necessarily necessary to cool slowly.

以上のように本発明による化学成分および製造条件で、
特に焼鈍温度を限定することにより、Bo、s値および
飽和磁化の高い、すなわち直流磁界での軟磁気特性に優
れた鋼材を得ることができる。
As described above, with the chemical components and manufacturing conditions according to the present invention,
In particular, by limiting the annealing temperature, it is possible to obtain a steel material with high Bo, s value, and saturation magnetization, that is, excellent soft magnetic properties in a DC magnetic field.

なお、本発明は、熱延を直圧熱延で行う場合も含むもの
である。また、本発明が製造の対象とする鋼材は熱間加
工材、冷間(温間を含む。
Note that the present invention also includes cases where hot rolling is performed by direct pressure hot rolling. Further, the steel materials to be manufactured by the present invention include hot-worked materials and cold-worked materials (including warm-worked materials).

以下同様)加工材の両方を含むものであり、したがって
本発明が規定する最終焼鈍は熱間加工後に行われる場合
、熱間油ニー冷間加工後に行われる場合の別を問わない
。また言うまでもなく、熱間加工や冷間加工の途中で中
間焼鈍を行ったり、上記各加工を数段階で行う場合も含
むものである。
The same applies hereafter). Therefore, it does not matter whether the final annealing specified by the present invention is performed after hot working or after hot oil knee cold working. Needless to say, this also includes cases where intermediate annealing is performed during hot working or cold working, or where each of the above-mentioned workings is performed in several stages.

また、本発明が対象とする鋼材は、厚板、薄板1条材(
形鋼等)、鍛造材等を含むものである。
In addition, the steel materials targeted by the present invention include thick plates and thin single strip materials (
(shaped steel, etc.), forged materials, etc.

〔実施例〕〔Example〕

実施例1゜ 第1表は、実施例および比較例に用いた鋼の化学成分を
示したものである。mA−Eは、溶製後、厚さ110m
の鋼塊となし、1200℃加熱による熱間圧延により板
厚15mに成形されたものである。鋼A−Cが本発明の
化学成分に適合するものであり、IID、E、Fおよび
Gは比較鋼種である。第1表に0.5℃/Sの加熱速度
で1300℃まで昇温した場合の変態点を調べた結果に
ついて併せて示した。なお、この変態点測定結果は実施
例に挙げた本発明鋼がフェライト単相であることを示し
ている。
Example 1 Table 1 shows the chemical composition of the steel used in Examples and Comparative Examples. mA-E has a thickness of 110m after melting.
The steel ingot was formed into a 15 m thick plate by hot rolling at 1200°C. Steels A-C are compatible with the chemical composition of the present invention, and IID, E, F, and G are comparative steel types. Table 1 also shows the results of examining the transformation point when the temperature was raised to 1300°C at a heating rate of 0.5°C/S. In addition, this transformation point measurement result shows that the present invention steel mentioned in the example has a ferrite single phase.

第2表は、本発明鋼および比較鋼について直流磁化特性
を測定した結果を示したもので、熱間圧延後板厚中心部
より外径45ma+、内径33国、厚さ6+mの試験片
を採取し、これに対して焼鈍を行い直流磁化特性を測定
した結果であり、この焼鈍が1本発明の規定するところ
の最終的な焼鈍に相当する。なお、焼鈍は加熱保持時間
は1〜3時間であり、冷却速度は約ioo℃/hrの徐
冷とした。
Table 2 shows the results of measuring the DC magnetization characteristics of the invention steel and comparative steel. Test specimens with an outer diameter of 45 ma+, an inner diameter of 33 mm, and a thickness of 6+ m were taken from the center of the plate thickness after hot rolling. However, this is the result of annealing it and measuring the DC magnetization characteristics, and this annealing corresponds to the final annealing defined in the present invention. In addition, the annealing was carried out for a heating holding time of 1 to 3 hours, and a cooling rate of about 100° C./hr.

第2表において、Nα1は鋼Aに1100℃の焼鈍を行
った本発明に基づ〈実施例である。この実施例では、低
C化と口添加によりフェライト単相となっているため、
変態歪の導入および変態による細粒化をもたらすことな
く高温焼鈍が可能であり、むしろ1100℃という高温
で焼鈍することによりフェライト粒径2m以上の著しい
粗粒化が達成され、併せて格子歪の除去も達成されてお
り、Bo、、値で13000 G程度、最大透磁率で6
0000を超える極めて優れた特性が得られている。
In Table 2, Nα1 is an example based on the present invention in which steel A was annealed at 1100°C. In this example, the ferrite single phase is achieved due to the low carbon content and addition of carbon.
High-temperature annealing is possible without introducing transformation strain or grain refinement due to transformation.In fact, by annealing at a high temperature of 1100°C, significant coarsening of ferrite grains with a diameter of 2 m or more is achieved, and at the same time, lattice strain is reduced. Removal has also been achieved, with a Bo value of approximately 13,000 G and a maximum permeability of 6.
Extremely excellent characteristics exceeding 0,000 were obtained.

Nα2は!llAに1000℃の焼鈍を行った実施例で
ある。この実施例では焼鈍温度が&1より低く、フェラ
イト粒径は0.5〜1.0m程度であり、Nα1の実施
例と比べて小さいものの最大透磁率は23900と良好
な特性が得られている。
Nα2 is! This is an example in which 11A was annealed at 1000°C. In this example, the annealing temperature is lower than &1, the ferrite grain size is about 0.5 to 1.0 m, and although it is smaller than the Nα1 example, the maximum magnetic permeability is 23,900, and good characteristics are obtained.

Nα3.4は、いずれも@B、Cによる実施例である。Nα3.4 are both examples by @B and C.

ここでもA1添加によるフェライト単相化がなされてお
り、いずれも1000℃を超える高温焼鈍を行うことが
でき、フェライト結晶粒の粗大化と内部歪の除去による
相乗効果により、&3では最大透磁率56000、魔4
では最大透磁率37200の優れた特性が得られている
Here too, the ferrite is made into a single phase by adding A1, and both can be annealed at a high temperature exceeding 1000℃, and due to the synergistic effect of coarsening the ferrite crystal grains and removing internal strain, &3 has a maximum magnetic permeability of 56000. , Demon 4
Excellent characteristics with a maximum magnetic permeability of 37,200 were obtained.

以上Nα1〜4の実施例は、いずれも最大透磁率で20
000以上、保磁力で0.4Oe以下の優れた直流磁化
特性が達成され、JIS  C2504SUYPOに定
められている特性を十分に満足しているだけでなく、1
3a、s値ですら11000 Gを超えていることから
、地磁気程度の磁゛気遮蔽をも可能とするものである。
The above examples with Nα1 to 4 all have a maximum permeability of 20
000 or more and a coercive force of less than 0.4 Oe, which not only fully satisfies the characteristics specified in JIS C2504 SUYPO, but also has a
Since even the 3a and s values exceed 11,000 G, it is possible to achieve magnetic shielding comparable to that of the earth's magnetism.

&5.6.7はtaD、E、Fによる比較鋼である。m
D、E、Fとも工業用純鉄に相当し、本発明の規定する
化学成分を逸脱している。したがって、&5.6に示す
ように、1000℃以上で焼鈍を行っても顕著なフェラ
イト結晶粒の粗大化を期待できず、さらにオーステナイ
トからフェライトへの変態時に歪が導入され良好な特性
を具備できない、Nα7は焼鈍温度を変態点以下とした
場合の結果であるが、いずれも良好な特性が具備されて
いない。
&5.6.7 is comparative steel by taD, E, F. m
D, E, and F all correspond to industrial pure iron and deviate from the chemical composition specified by the present invention. Therefore, as shown in &5.6, even if annealing is performed at 1000°C or higher, no significant coarsening of ferrite crystal grains can be expected, and furthermore, strain is introduced during the transformation from austenite to ferrite, making it impossible to provide good properties. , Nα7 are the results when the annealing temperature is lower than the transformation point, but neither of them has good characteristics.

実施例2゜ 第3表は、実施例および比較例に用いた鋼の化学成分を
示したものである。@I〜Uは、溶製後、厚さ110a
mの鋼塊となし、1200”C加熱による熱間圧延によ
り板厚15III11に成形した後焼鈍を行った。11
1〜S、W−Y、Z、b−dが本発明の化学成分に適合
するものであり、また鋼T、U、V、aが比較鋼種であ
る。第4表は、本発明鋼および比較鋼について直流磁化
特性を測定した結果をまとめたものである。なお1本実
施例では焼鈍の加熱保持時間は1〜3時間であり、冷却
速度は約100℃/hr〜500℃/hrとした。
Example 2 Table 3 shows the chemical composition of the steel used in the example and comparative example. @I~U has a thickness of 110a after melting
The steel ingot was made into a steel ingot of 1200"C, hot rolled at 1200"C to a plate thickness of 15III11, and then annealed.11
Steels 1 to S, WY, Z, and bd are compatible with the chemical composition of the present invention, and steels T, U, V, and a are comparative steel types. Table 4 summarizes the results of measuring the DC magnetization characteristics of the invention steel and comparative steel. In this example, the heating holding time for annealing was 1 to 3 hours, and the cooling rate was about 100° C./hr to 500° C./hr.

第4表において、Na1.O〜13は本発明の規定範囲
内でMn添加量を変化させた実施例である。
In Table 4, Na1. Examples 0 to 13 are examples in which the amount of Mn added was varied within the specified range of the present invention.

Na 23〜26は5oJ1.AQ量の影響を、&28
はC量の影響を、&29〜31はSi量の影響をそれぞ
れ調べたものである。
Na 23-26 is 5oJ1. The influence of AQ amount, &28
1 and 29 to 31 respectively investigated the influence of the amount of C and the influence of the amount of Si.

黙14〜16はTiを添加した場合の実施例である。こ
こでもAjl添加によるフェライト単相化がなされてお
り、さらにTi添加により、Nの固定が図られ、Nα1
4.16では良好な特性が認められている。特に&15
は魔22に相当する鋼にTiを添加した本発明に基づ〈
実施例であり、Ti添加により十分なNの固定がなされ
、Na22の比較例と比べて大幅な改善が認められてい
る。
Examples 14 to 16 are examples in which Ti is added. Here too, the addition of Ajl has made ferrite into a single phase, and the addition of Ti has also fixed N, resulting in Nα1
4.16 has been found to have good characteristics. Especially &15
Based on the present invention, in which Ti is added to steel equivalent to HAMA 22.
This is an example, and sufficient N fixation is achieved by the addition of Ti, and a significant improvement is recognized compared to the comparative example of Na22.

Nci21は本発明の規定範囲を超えてTiを添加した
比較例であり、著しい直流磁化特性の劣化が認められる
Nci21 is a comparative example in which Ti was added in an amount exceeding the specified range of the present invention, and significant deterioration of the DC magnetization characteristics was observed.

Nα22はN添加量が高く、且っTi添加を行わなかっ
た比較例であり、AIINの析出状態が安定なため、焼
鈍を行っても十分なフェライト結晶粒の粗大化を図るこ
とができず、且っ固溶N量も高いため、良好な特性が得
られていない。
Nα22 is a comparative example in which the amount of N added is high and Ti is not added, and the precipitation state of AIIN is stable, so even if annealing is performed, it is not possible to achieve sufficient coarsening of ferrite crystal grains. Moreover, since the amount of solid solute N is also high, good characteristics are not obtained.

Na17,18は鋼P、Qにライて1000℃の焼鈍を
施した実施例である。
Na17 and Na18 are examples in which steels P and Q were annealed at 1000°C.

以上のNα10〜18、Ha 24〜26、Nα27、
Ha 29〜31の実施例は、いずれも保磁力で0.4
Oe以下、tlo、s値で10000 G以上の優れた
直流磁化特性が達成されており、JIS  C2504
SUYPOに定められている特性を優に満足しているば
かりか、地磁気程度以下のレベルに至る磁場環境を作る
ための磁気遮蔽材料として適用することができる。
The above Nα10-18, Ha 24-26, Nα27,
Examples of Ha 29 to 31 all have a coercive force of 0.4
Excellent DC magnetization characteristics of Oe or less, tlo, and s values of 10,000 G or more have been achieved, and JIS C2504
Not only does it meet the characteristics specified by SUYPO, it can also be used as a magnetic shielding material to create a magnetic field environment that is at a level below that of earth's magnetism.

またNα19.20はN量、C+N量との関係でのTi
添加の影響を調べたもので、いずれもN)0.005%
、C+N>0.007%であるが、Nα20はTi添加
材であるため良好な特性が得られている。
Also, Nα19.20 is Ti in relation to the amount of N and the amount of C+N.
The effect of addition was investigated, both of which were N) 0.005%.
, C+N>0.007%, but since Nα20 is a Ti-added material, good characteristics are obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明により得られた軟磁性鋼材は、優れ
た直流磁化特性を有しており、このため弱磁界でも容易
に磁化させることができ、高機能鉄芯材料あるいは高機
能磁気遮蔽材料として有用なものである。
As described above, the soft magnetic steel material obtained by the present invention has excellent DC magnetization characteristics, and therefore can be easily magnetized even in a weak magnetic field, and can be used as a high-performance iron core material or a high-performance magnetic shielding material. It is useful as a.

Claims (5)

【特許請求の範囲】[Claims] (1)重量%で、C:0.004%以下、Si:0.5
%以下、Mn:0.50%以下、P:0.015%以下
、S:0.01%以下、sol.Al:0.5〜2.0
%、N:0.005%以下、酸素:0.005%以下、
残部Feおよび不可避不純物からなる組成の鋼片または
鋳片を700℃以上1300℃以下に加熱し、700℃
以上の温度で熱間加工を終了し、最終的に 900〜1300℃で焼鈍を行うことにより、保磁力0
.4Oe以下、0.5Oeにおける磁束密度10000
G以上を有する軟磁性鋼材を得ることを特徴とする軟磁
性鋼材の製造方法。
(1) In weight%, C: 0.004% or less, Si: 0.5
% or less, Mn: 0.50% or less, P: 0.015% or less, S: 0.01% or less, sol. Al: 0.5-2.0
%, N: 0.005% or less, Oxygen: 0.005% or less,
A steel slab or cast slab with a composition consisting of the balance Fe and unavoidable impurities is heated to 700°C or more and 1300°C or less, and then heated to 700°C.
By completing hot working at a temperature above and finally annealing at 900 to 1300°C, the coercive force is 0.
.. 4Oe or less, magnetic flux density 10000 at 0.5Oe
A method for producing a soft magnetic steel material, the method comprising obtaining a soft magnetic steel material having a magnetic flux of G or more.
(2)重量%で、C:0.004%以下、Si:0.1
%以下、Mn:0.15%以下、P:0.015%以下
、S:0.01%以下、sol.Al:0.5〜2.0
%、N:0.005%以下、酸素:0.005%以下、
残部Feおよび不可避不純物からなる組成の鋼片または
鋳片を700℃以上1300℃以下に加熱し、700℃
以上の温度で熱間加工を終了し、最終的に 1000〜1300℃で焼鈍を行うことにより、保磁力
0.4Oe以下、0.5Oeにおける磁束密度1000
0G以上を有する軟磁性鋼材を得ることを特徴とする軟
磁性鋼材の製造方法。
(2) In weight%, C: 0.004% or less, Si: 0.1
% or less, Mn: 0.15% or less, P: 0.015% or less, S: 0.01% or less, sol. Al: 0.5-2.0
%, N: 0.005% or less, Oxygen: 0.005% or less,
A steel slab or cast slab with a composition consisting of the balance Fe and unavoidable impurities is heated to 700°C or more and 1300°C or less, and then heated to 700°C.
By completing hot working at a temperature above and finally annealing at 1000 to 1300°C, the coercive force is 0.4 Oe or less and the magnetic flux density is 1000 at 0.5 Oe.
A method for producing a soft magnetic steel material, the method comprising obtaining a soft magnetic steel material having 0G or more.
(3)重量%で、C+N:0.007%以下とすること
を特徴とする特許請求の範囲(1)または(2)記載の
軟磁性鋼材の製造方法。
(3) A method for manufacturing a soft magnetic steel material according to claim (1) or (2), characterized in that C+N is 0.007% or less in weight%.
(4)重量%で、C:0.004%以下、Si:0.5
%以下、Mn:0.50%以下、P:0.015%以下
、S:0.01%以下、sol.Al:0.5〜2.0
%、N:0.012%以下、酸素:0.005%以下、
Ti:0.005〜1.0%、残部Feおよび不可避不
純物からなる組成の鋼片または鋳片を700℃以上13
00℃以下に加熱し、700℃以上の温度で熱間加工を
終了し、最終的に900〜1300℃で焼鈍を行うこと
により、保磁力0.4Oe以下、0.5Oeにおける磁
束密度10000G以上を有する軟磁性鋼材を得ること
を特徴とする軟磁性鋼材の製造方法。
(4) In weight%, C: 0.004% or less, Si: 0.5
% or less, Mn: 0.50% or less, P: 0.015% or less, S: 0.01% or less, sol. Al: 0.5-2.0
%, N: 0.012% or less, Oxygen: 0.005% or less,
A steel slab or cast slab with a composition consisting of Ti: 0.005 to 1.0%, the balance Fe and unavoidable impurities is heated at 700°C or higher13
By heating to 00℃ or less, finishing hot working at a temperature of 700℃ or higher, and finally annealing at 900 to 1300℃, a coercive force of 0.4Oe or less and a magnetic flux density of 10,000G or more at 0.5Oe can be achieved. A method for producing a soft magnetic steel material, the method comprising obtaining a soft magnetic steel material having the following properties.
(5)重量%で、C+N:0.014%以下とすること
を特徴とする特許請求の範囲(4)記載の軟磁性鋼材の
製造方法。
(5) A method for manufacturing a soft magnetic steel material according to claim (4), characterized in that C+N is 0.014% or less in weight%.
JP1155025A 1986-06-17 1989-06-17 Method for manufacturing soft magnetic steel Expired - Fee Related JP2682144B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP1155025A JP2682144B2 (en) 1988-10-24 1989-06-17 Method for manufacturing soft magnetic steel
PCT/JP1989/001231 WO1990015886A1 (en) 1989-06-17 1989-12-08 Production method of soft magnetic steel material
CN89109230A CN1048236A (en) 1989-06-17 1989-12-08 The manufacture method of soft magnetic material
EP90900339A EP0431167B1 (en) 1989-06-17 1989-12-08 Production method of soft magnetic steel material
DE68927174T DE68927174T2 (en) 1989-06-17 1989-12-08 METHOD FOR PRODUCING SOFT STEEL MATERIAL
KR1019910700177A KR960014944B1 (en) 1986-06-17 1989-12-08 Producing method of soft magnetic steel material
CA002019187A CA2019187A1 (en) 1989-06-17 1990-06-18 Method of producing soft magnetic steel materials

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP26610388 1988-10-24
JP63-266103 1988-10-24
JP1155025A JP2682144B2 (en) 1988-10-24 1989-06-17 Method for manufacturing soft magnetic steel

Publications (2)

Publication Number Publication Date
JPH02213421A true JPH02213421A (en) 1990-08-24
JP2682144B2 JP2682144B2 (en) 1997-11-26

Family

ID=15597026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1155025A Expired - Fee Related JP2682144B2 (en) 1986-06-17 1989-06-17 Method for manufacturing soft magnetic steel

Country Status (7)

Country Link
EP (1) EP0431167B1 (en)
JP (1) JP2682144B2 (en)
KR (1) KR960014944B1 (en)
CN (1) CN1048236A (en)
CA (1) CA2019187A1 (en)
DE (1) DE68927174T2 (en)
WO (1) WO1990015886A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0499819A (en) * 1990-08-15 1992-03-31 Nkk Corp Production of mild magnetic steel products
US5411605A (en) * 1991-10-14 1995-05-02 Nkk Corporation Soft magnetic steel material having excellent DC magnetization properties and corrosion resistance and a method of manufacturing the same
JP2021507988A (en) * 2017-12-22 2021-02-25 ポスコPosco Magnetic field shielding steel sheet and its manufacturing method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100915199B1 (en) * 2007-09-07 2009-09-02 하미란 Manufacturing method for steel articles having soft magnetic property by hot forging and housing and core manufactured by the method
CN102796948B (en) * 2011-05-27 2014-03-19 宝山钢铁股份有限公司 Non-oriented electrical steel plate with extremely low content of Ti and smelting method for non-oriented electrical steel plate
WO2013072124A1 (en) * 2011-11-14 2013-05-23 Nv Bekaert Sa Steel wire for magnetic field absorption
CN104139167A (en) * 2014-07-31 2014-11-12 攀钢集团工程技术有限公司 Iron core, electromagnetic inductor with same and electromagnetic stirring device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345443A (en) * 1986-08-11 1988-02-26 Toyota Motor Corp Abnormality deciding method for air-fuel ratio controller

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971678A (en) * 1972-05-31 1976-07-27 Stahlwerke Peine-Salzgitter Aktiengesellschaft Method of making cold-rolled sheet for electrical purposes
JPS60208417A (en) * 1984-03-30 1985-10-21 Sumitomo Metal Ind Ltd Production of hot-rolled high magnetic permeability iron sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345443A (en) * 1986-08-11 1988-02-26 Toyota Motor Corp Abnormality deciding method for air-fuel ratio controller

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0499819A (en) * 1990-08-15 1992-03-31 Nkk Corp Production of mild magnetic steel products
US5411605A (en) * 1991-10-14 1995-05-02 Nkk Corporation Soft magnetic steel material having excellent DC magnetization properties and corrosion resistance and a method of manufacturing the same
JP2021507988A (en) * 2017-12-22 2021-02-25 ポスコPosco Magnetic field shielding steel sheet and its manufacturing method

Also Published As

Publication number Publication date
KR960014944B1 (en) 1996-10-21
JP2682144B2 (en) 1997-11-26
EP0431167A4 (en) 1993-02-24
CN1048236A (en) 1991-01-02
CA2019187A1 (en) 1990-12-17
WO1990015886A1 (en) 1990-12-27
DE68927174D1 (en) 1996-10-17
DE68927174T2 (en) 1997-03-06
EP0431167A1 (en) 1991-06-12
KR920700301A (en) 1992-02-19
EP0431167B1 (en) 1996-09-11

Similar Documents

Publication Publication Date Title
JPH11264058A (en) Iron-cobalt alloy
EP0049141B1 (en) Iron-chromium-base spinodal decomposition-type magnetic (hard or semi-hard) alloy
JP2679258B2 (en) Iron-based soft magnetic steel
JPH02213421A (en) Production of soft-magnetic steel stock
JPH0499819A (en) Production of mild magnetic steel products
JP3551849B2 (en) Primary recrystallization annealed sheet for unidirectional electrical steel sheet
JPH07166281A (en) Wear resistant magnetic alloy
JPH0230743A (en) Manufacture of ni-fe alloy plate having excellent magnetic characteristics
JP3176385B2 (en) Method for producing Ni-Fe-Cr soft magnetic alloy sheet
JPH0699767B2 (en) Ni-Fe system high permeability magnetic alloy
JP2503113B2 (en) Manufacturing method of non-oriented electromagnetic thick plate
JPH0699766B2 (en) Ni-Fe system high permeability magnetic alloy
JPH0653903B2 (en) Ni-Fe system high permeability magnetic alloy
JPH0517823A (en) Production of electromagnetic soft iron for thick plate excellent in magnetic shielding property
JP2650506B2 (en) Electromagnetic thick steel plate for DC magnetic shield and its manufacturing method
JP3561922B2 (en) Manufacturing method of soft magnetic stainless steel
JPH06264195A (en) Fe-co series magnetic alloy
JP3379760B2 (en) Manufacturing method of high strength and high permeability steel
JP2503112B2 (en) Manufacturing method of good electromagnetic plate
JPH0734127A (en) Ultrahigh silicon electrical steel sheet excellent in magnetic property and heat treating method therefor
JPH04268020A (en) Production of nonoriented electric steel plate having superior magnetic characteristic
JPH03199311A (en) Production of thin fe-ni magnetic alloy sheet
JPH01272716A (en) Production of high permeability magnetic fe-ni alloy
JPH01290715A (en) Production of fe-ni alloy sheet excellent in magnetic property
JPH01119620A (en) Manufacture of sheet metal of fe-ni magnetic alloy

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees