JP2503112B2 - Manufacturing method of good electromagnetic plate - Google Patents
Manufacturing method of good electromagnetic plateInfo
- Publication number
- JP2503112B2 JP2503112B2 JP3026498A JP2649891A JP2503112B2 JP 2503112 B2 JP2503112 B2 JP 2503112B2 JP 3026498 A JP3026498 A JP 3026498A JP 2649891 A JP2649891 A JP 2649891A JP 2503112 B2 JP2503112 B2 JP 2503112B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- rolling
- magnetic field
- thick plate
- good
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は切削性が良く、中磁場で
の磁気特性の優れた良電磁厚板の製造方法に関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a good electromagnetic thick plate which has good machinability and excellent magnetic characteristics in a medium magnetic field.
【0002】[0002]
【従来の技術】近年最先端科学技術である素粒子研究や
医療機器の進歩に伴って、大型構造物に磁気を用いる装
置が使われ、その性能向上が求められている。直流磁化
条件で使用される粒子加速器用磁極材、リターンヨーク
材では、高い飽和磁束密度の他に5Oe(400A/
m)付近の中磁場での高い磁束密度が求められている
が、さらに、加工時の良好な切削性も要求されている。2. Description of the Related Art In recent years, along with the progress of elementary particle research and medical equipment, which are the most advanced science and technology, a device using magnetism for a large structure is used, and its performance is required to be improved. In addition to the high saturation magnetic flux density, the magnetic pole material for the particle accelerator and the return yoke material used under the DC magnetizing condition have 5 Oe (400 A /
Although a high magnetic flux density in a medium magnetic field near m) is required, good machinability during processing is also required.
【0003】磁束密度に優れた電磁鋼板としては、従来
から薄板分野で珪素鋼板、電磁軟鉄板をはじめとする数
多くの材料が提供されているのは公知である。しかし、
構造部材として使用するには組立加工及び強度上の問題
があり、厚鋼板を利用する必要が生じてくる。これまで
電磁厚板としては純鉄系成分で製造されている。たとえ
ば、特開昭60−96749号公報が公知である。しか
しながら、近年の装置の大型化、能力の向上等に伴いさ
らに磁気特性の優れた、特に中磁場、たとえば5Oe
(400A/m)付近での磁束密度の高い鋼材開発の要
望が強い。従来5Oe付近での中磁場の高い磁束密度が
安定して得られていない。As electromagnetic steel sheets having excellent magnetic flux density, it is well known that many materials such as silicon steel sheets and electromagnetic soft iron sheets have been provided in the field of thin sheets. But,
When used as a structural member, there are problems in assembly processing and strength, and it becomes necessary to use thick steel plates. Until now, electromagnetic plates have been manufactured with pure iron-based components. For example, JP-A-60-96749 is known. However, with the recent increase in the size of the device and the improvement in the capability thereof, the magnetic property is further excellent, especially in the medium magnetic field, for example, 5 Oe
There is a strong demand for the development of steel materials with high magnetic flux density near (400 A / m). Conventionally, a high magnetic flux density of a medium magnetic field near 5 Oe has not been stably obtained.
【0004】[0004]
【発明が解決しようとする課題】本発明の目的は以上の
点を鑑みなされたもので、切削性が良く、中磁場での磁
気特性の優れた良電磁厚板の製造法を提供するものであ
る。SUMMARY OF THE INVENTION The object of the present invention is to solve the above-mentioned problems, and to provide a method for manufacturing a good electromagnetic thick plate which has good machinability and excellent magnetic characteristics in a medium magnetic field. is there.
【0005】[0005]
【課題を解決するための手段】本発明の要旨は次の通り
である。 (1) 重量%で、C:0.01%以下、Si:0.0
2%以下、Mn:0.20%以下、P:0.02〜0.
20%、S:0.010%以下、Al:0.040%以
下、N:0.004%以下、O:0.005%以下、
H:0.0002%以下、残部実質的に鉄からなる鋼組
成の鋼片または、鋳片を950〜1150℃に加熱し、
800℃以上で圧延形状比Aが0.6以上の圧延パスを
1回以上はとる圧延を行ない、引き続き800℃以下で
圧下率を35%超70%以下とする圧延を行ない、板厚
50mm以上の厚板とし、該厚板を600〜750℃で脱
水素熱処理を行なうことを特徴とする切削性が良く、中
磁場での磁気特性の優れた良電磁厚板の製造方法。The gist of the present invention is as follows. (1) Weight%, C: 0.01% or less, Si: 0.0
2% or less, Mn: 0.20% or less, P: 0.02 to 0.
20%, S: 0.010% or less, Al: 0.040% or less, N: 0.004% or less, O: 0.005% or less,
H: 0.0002% or less, with the balance being a steel slab having a steel composition substantially consisting of iron or a slab, heated to 950 to 1150 ° C.,
Rolling is performed at 800 ° C or higher with a rolling shape ratio A of 0.6 or more at least once, and then rolling is performed at 800 ° C or lower with a reduction rate of more than 35% and 70% or less, and a plate thickness of 50 mm or more. a thick plate, good machinability, characterized in that it row de <br/> hydrogen annealing to the thick plate at 600 to 750 ° C., producing excellent good electromagnetic planks magnetic properties at medium magnetic field Method.
【数3】 (Equation 3)
【0006】(2) 板厚50mm以上の厚板を脱水素処
理後、750〜950℃で焼鈍するかあるいは910〜
1000℃で焼準することを特徴とする(1)記載の切
削性が良く、中磁場での磁気特性の優れた良電磁厚板の
製造方法。(2) After dehydrogenating a thick plate having a thickness of 50 mm or more, it is annealed at 750 to 950 ° C. or 910.
A method for producing a good electromagnetic thick plate having good machinability and excellent magnetic characteristics in a medium magnetic field, which is characterized in that the normalization is performed at 1000 ° C.
【0007】(3) 重量%で、C:0.01%以下、
Si:0.02%以下、Mn:0.20%以下、P:
0.02〜0.20%、S:0.010%以下、Al:
0.040%以下、N:0.004%以下、O:0.0
05%以下、H:0.0002%以下、残部実質的に鉄
からなる鋼組成の鋼片または、鋳片を950〜1150
℃に加熱し、800℃以上で圧延形状比Aが0.6以上
の圧延パスを1回以上はとる圧延を行ない、引き続き8
00℃以下で圧下率を35%超70%以下とする圧延を
行ない、板厚50mm未満の厚板とし、該厚板を750〜
950℃で焼鈍するかあるいは910〜1000℃で焼
準することを特徴とする切削性が良く、中磁場での磁気
特性の優れた良電磁厚板の製造方法。(3) C: 0.01% or less by weight%
Si: 0.02% or less, Mn: 0.20% or less, P:
0.02 to 0.20%, S: 0.010% or less, Al:
0.040% or less, N: 0.004% or less, O: 0.0
95% or less, H: 0.0002% or less, balance 950 to 1150
Rolling is performed by heating to 800 ° C and taking at least one rolling pass with a rolling shape ratio A of 0.6 or more at 800 ° C or more, and then 8
Rolling is performed at a temperature of 00 ° C. or lower at a rolling reduction of more than 35% and 70% or less to form a thick plate having a thickness of less than 50 mm, and the thick plate is made of 750 to 750.
A method for producing a good electromagnetic thick plate having good machinability and excellent magnetic characteristics in a medium magnetic field, characterized by being annealed at 950 ° C. or normalized at 910 to 1000 ° C.
【数4】 [Equation 4]
【0008】[0008]
【作用】まず、磁化のプロセスについて述べる。消磁状
態の鋼を磁界の中に入れ、磁界を強めていくと次第に磁
区の向きに変化が生じ、磁界の方向に近い磁区が優勢に
なり他の磁区を蚕食併合していく。つまり、磁壁の移動
が起こる。さらに磁界が強くなり磁壁の移動が完了する
と、次に磁区全体が磁化方向に向きを変えていく。[Operation] First, the magnetization process will be described. When degaussed steel is put in a magnetic field and the magnetic field is strengthened, the direction of the magnetic domain gradually changes, and the magnetic domain close to the direction of the magnetic field becomes predominant and the other magnetic domains are annealed. That is, the domain wall moves. When the magnetic field is further strengthened and the movement of the domain wall is completed, the entire magnetic domain next turns to the magnetization direction.
【0009】この磁化プロセスの中で低磁場での磁束密
度を決めているのは、磁壁の移動しやすさである。つま
り低磁場で高磁束密度を得るためには、磁壁の移動を障
害するものを極力減らすことであると定性的に言うこと
ができる。この観点から従来磁壁の移動の障害となる結
晶粒の粗大化が重要な技術となっていた(特開昭60−
96749号公報)。これに対し、中磁場で高磁束密度
を得るための方法については知見がなかった。In this magnetization process, it is the ease of movement of the domain wall that determines the magnetic flux density in a low magnetic field. That is, it can be qualitatively said that in order to obtain a high magnetic flux density in a low magnetic field, it is necessary to reduce as much as possible the obstacles to the movement of the domain wall. From this point of view, coarsening of crystal grains, which hinders the movement of the domain wall, has been an important technique in the past (Japanese Patent Laid-Open No. 60-
96749). On the other hand, there was no knowledge about a method for obtaining a high magnetic flux density in a medium magnetic field.
【0010】発明者らは、ここにおいて中磁場で高磁束
密度を得るためには、単に結晶粒の粗大化だけでなく、
隣あった結晶粒間の磁化の方向が圧延方向に平行に揃っ
ていることが重要であることを見出した。超粗大粒で
も、細粒でもない比較的粗粒(フェライト粒度No.が0
〜4番程度)でかつ(100)方向が圧延方向に平行に
ランダムとなることで中磁場の磁気特性が大幅に向上す
ることを見出したのである。In order to obtain a high magnetic flux density in a medium magnetic field, the present inventors not only make the crystal grains coarse, but also
It has been found that it is important that the directions of magnetization between adjacent crystal grains are parallel to the rolling direction. Relatively coarse particles that are neither super-coarse particles nor fine particles (ferrite grain size No. 0
It was found that the magnetic properties of the medium magnetic field are significantly improved by making the (100) direction random in parallel with the rolling direction.
【0011】このための熱間圧延条件として、800℃
以下において35%超70%以下の圧下率をとること
で、圧延後の熱処理前の結晶粒を微細化して再結晶させ
やすくするとともに、鋼中に歪みを導入して、この歪み
を熱処理時の再結晶の駆動力とすることで、比較的大き
な結晶粒を板厚全体にわたって安定的に得ると同時に、
(100)の結晶方位を圧延方向に平行にランダムとな
る。The hot rolling conditions for this are 800 ° C.
By taking a rolling reduction of more than 35% and 70% or less, it is possible to refine the crystal grains before heat treatment after rolling to facilitate recrystallization and to introduce strain into the steel to reduce this strain during heat treatment. By using the driving force for recrystallization, relatively large crystal grains can be stably obtained over the entire plate thickness, and at the same time,
The crystal orientation of (100) becomes random parallel to the rolling direction.
【0012】図1に0.005Si−0.06Mn−
0.015Al鋼での800℃以下の圧下率と5Oeで
の磁束密度を示す。35%超70%以下の圧下により、
高磁束密度が得られる。さらに中磁場での高磁束密度を
得るための手段として、内部応力の原因となる元素及び
空隙性欠陥の作用につき詳細な検討を行ない、所期の目
的を達成した。In FIG. 1, 0.005Si-0.06Mn-
The rolling reduction of 800 ° C. or less and the magnetic flux density at 5 Oe in 0.015 Al steel are shown. By reducing more than 35% and 70% or less,
A high magnetic flux density can be obtained. Further, as a means for obtaining a high magnetic flux density in a medium magnetic field, the effects of elements causing internal stress and void defects were studied in detail, and the intended purpose was achieved.
【0013】また、空隙性欠陥の影響についても種々検
討した結果、そのサイズが100μ以上のものが磁気特
性を大幅に低下することを知見したものである。そして
この100μ以上の有害な空隙性欠陥をなくすためには
圧延形状比Aが0.6以上必要であることを見出した。Further, as a result of various studies on the influence of void defects, it was found that those having a size of 100 μ or more significantly deteriorate the magnetic characteristics. It was found that the rolled shape ratio A needs to be 0.6 or more in order to eliminate the harmful void defects of 100 μ or more.
【数5】 (Equation 5)
【0014】さらに、鋼中の水素の存在も有害で、特に
板厚50mm以上の厚板において、脱水素熱処理を行なう
ことによって磁気特性が大幅に向上することを知見し
た。高形状比圧延により空隙性欠陥のサイズを100μ
以下にし、かつ、脱水素熱処理により鋼中水素を減少す
ることで中磁場での磁束密度が大幅に上昇する。Furthermore, the presence of hydrogen in steel is also harmful, especially
It was found that the magnetic characteristics are significantly improved by performing dehydrogenation heat treatment on a thick plate having a thickness of 50 mm or more . High form ratio rolling reduces the size of void defects to 100μ
By reducing the hydrogen content in the steel by the following and by the dehydrogenation heat treatment, the magnetic flux density in a medium magnetic field is significantly increased.
【0015】次に、本高純鋼の切削性、特に、切削後の
表面粗度低減のためにはP添加が非常に有効であること
を見出した。図3は0.007C−0.10Mn−0.
015Al鋼で切削長さ10mでの表面粗度が10μm
程度の普通(△で示す)、5μm程度を良い(○で示
す)、1μm程度を特に良い(◎で示す)切削性を示す
と定義している。同図のように、P添加量が0.02%
以上の範囲で表面粗度5μm以下の良好な切削性を示す
ことがわかる。Next, it was found that the addition of P is very effective for the machinability of this high-purity steel, especially for reducing the surface roughness after cutting. FIG. 3 shows 0.007C-0.10Mn-0.
Surface roughness of 015 Al steel at a cutting length of 10 m is 10 μm
It is defined that normal (shown by Δ), about 5 μm is good (shown by ◯), and about 1 μm is particularly good (shown by ⊚). As shown in the figure, P addition amount is 0.02%
It can be seen that in the above range, a good machinability with a surface roughness of 5 μm or less is exhibited.
【0016】次に成分限定理由を述べる。Cは鋼中の内
部応力を高め、磁気特性、特に低磁場での磁束密度を最
も下げる元素であり、極力下げることが中磁場での磁束
密度を低下させないことに寄与する。また、磁気時効の
点からも低いほど経時低下が少なく、磁気特性の良い状
態で恒久的に使用できるものであり、このようなことか
ら、0.01%以下に限定する。図2に示すようにさら
に、0.005%以下にすることにより一層高磁束密度
が得られる。Next, the reasons for limiting the components will be described. C is an element that increases the internal stress in steel and lowers the magnetic characteristics, especially the magnetic flux density in a low magnetic field, and reducing it as much as possible contributes not to decrease the magnetic flux density in a medium magnetic field. Also, from the viewpoint of magnetic aging, the lower it is, the less the deterioration with time is, and it can be used permanently with good magnetic characteristics. Therefore, the content is limited to 0.01% or less. As shown in FIG. 2, by further setting the content to 0.005% or less, a higher magnetic flux density can be obtained.
【0017】Si,Mnは中磁場での磁束密度の点から
少ない方が好ましく、MnはMnS系介在物を生成する
点からも低い方がよい。この意味からSiは0.02%
以下、Mnは0.20%以下に限定する。Mnに関して
はMnS系介在物を生成する点よりさらに望ましくは
0.10%以下がよい。Pは工具摩耗量を低下させ、切
削性を上昇させる元素で、図3に示すように0.020
%以上添加する必要があるが、0.20%を超えて添加
すると中磁場での磁気特性を低下させるため上限を0.
20%とする。Si and Mn are preferably low in terms of magnetic flux density in a medium magnetic field, and Mn is preferably low in terms of producing MnS inclusions. From this meaning, Si is 0.02%
Hereinafter, Mn is limited to 0.20% or less. The Mn content is more preferably 0.10% or less from the viewpoint of producing MnS-based inclusions. P is an element that reduces the amount of tool wear and increases machinability, and as shown in FIG.
%, It is necessary to add more than 0.20%, but if added over 0.20%, the magnetic properties in a medium magnetic field deteriorate, so the upper limit is set to 0.
20%.
【0018】S,Oは鋼中において非金属介在物を形成
し、結晶粒の粗大化を妨げる害を及ぼし含有量が多くな
るに従って磁束密度の低下が見られ、磁気特性を低下さ
せるので少ない程よい。このため、Sは0.010%以
下、Oは0.005%以下とした。S and O form non-metallic inclusions in the steel and have a harmful effect on the coarsening of crystal grains, and the magnetic flux density decreases as the content increases, and the magnetic properties decrease, so the smaller the better. . Therefore, S is 0.010% or less and O is 0.005% or less.
【0019】Alは脱酸剤として用いるもので、多くな
りすぎると介在物を生成し鋼の性質を損なうので上限は
0.040%とする。さらに結晶粒粗大化を妨げる析出
物であるAlNを減少させるためには低いほどよく、望
ましくは0.020%以下がよい。Nは内部応力を高め
かつAlNにより結晶粒微細化作用により中磁場での磁
束密度を低下させるので上限は0.004%とする。H
は磁気特性を低下させ、かつ空隙性欠陥の減少を妨げる
ので0.0002%以下とする。Al is used as a deoxidizing agent. If the amount of Al is too large, inclusions are formed and the properties of the steel are impaired, so the upper limit is made 0.040%. Furthermore, in order to reduce AlN, which is a precipitate that hinders the coarsening of crystal grains, the lower the better, the better is 0.020%. N increases the internal stress and reduces the magnetic flux density in a medium magnetic field due to the grain refining effect of AlN, so the upper limit is made 0.004%. H
Reduces the magnetic properties and prevents the reduction of void defects, so the content is made 0.0002% or less.
【0020】次に製造法について述べる。圧延条件につ
いては、まず圧延前加熱温度を1150℃以下にするの
は、1150℃を超える加熱温度では、加熱γ粒径の板
厚方向のバラツキは大きく、このバラツキが圧延後も残
り最終的な結晶粒が不均一となるため、上限を1150
℃とする。加熱温度が950℃未満となると圧延の変形
抵抗が大きくなり、以下に述べる空隙性欠陥をなくすた
めの形状比の高い圧延の圧延負荷が大きくなるため、9
50℃を下限とする。Next, the manufacturing method will be described. Regarding the rolling conditions, first, the heating temperature before rolling is set to 1150 ° C. or lower. At heating temperatures higher than 1150 ° C., the variation of the heating γ grain size in the plate thickness direction is large, and this variation remains after rolling and the final Since the crystal grains become non-uniform, the upper limit is 1150.
℃. If the heating temperature is lower than 950 ° C., the deformation resistance of rolling increases, and the rolling load of rolling having a high shape ratio to eliminate void defects described below increases.
The lower limit is 50 ° C.
【0021】熱間圧延にあたり前述の空隙性欠陥は鋼の
凝固過程で大小はあるが、必ず発生するものでありこれ
をなくす手段は圧延によらなければならないので、熱間
圧延の役目は重要である。すなわち、熱間圧延1回当た
りの変形量を大きくし板厚中心部にまで変形が及ぶ熱間
圧延が有効である。In hot rolling, the above-mentioned void defects are large and small in the solidification process of steel, but they always occur and means for eliminating them must be done by rolling. Therefore, the role of hot rolling is important. is there. That is, it is effective to increase the amount of deformation per hot rolling so that the deformation reaches the center of the plate thickness.
【0022】具体的には800℃以上で圧延形状比Aが
0.6以上の圧延パスが1回以上を含む高形状比圧延を
行ない、空隙性欠陥のサイズを100μ以下にすること
が磁気特性によい。圧延中にこの高形状比圧延により空
隙性欠陥をなくすことで、後で行なう脱水素熱処理にお
ける脱水素効率が飛躍的に上昇するのである。ここに8
00℃以上で高形状比圧延を行なう理由は、800℃未
満の低温では変形抵抗が大きく通常の圧延機では圧下が
困難となるからである。Specifically, it is necessary to carry out high shape ratio rolling including a rolling pass having a rolling shape ratio A of 0.6 or more at one temperature of 800 times or more at 800 ° C. or more to reduce the size of void defects to 100 μ or less. Good for By eliminating the void defects by the high shape ratio rolling during rolling, the dehydrogenation efficiency in the dehydrogenation heat treatment to be performed later is dramatically increased. 8 here
The reason why high shape ratio rolling is performed at a temperature of 00 ° C. or higher is that the deformation resistance is large at a low temperature of less than 800 ° C. and rolling is difficult with a normal rolling mill.
【0023】次に800℃以下の温度において累積圧下
率35%超にすることにより結晶粒を微細化するととも
に歪みを導入し、これに続く熱処理時の再結晶を促進さ
せる。さらこの圧延により、(100)の結晶方位を圧
延方向に平行にランダムとする。ただし70%超の圧下
率になると、熱処理後結晶粒度が板厚方向に不均一にな
り、磁束密度のばらつきを大きくする。従って板厚方向
に均一な比較的粗大な粒を得るために、圧下率を35%
超70%以下とする。Next, at a temperature of 800 ° C. or less, the cumulative rolling reduction is made to exceed 35% to make the crystal grains finer and to introduce strain, thereby promoting recrystallization during the subsequent heat treatment. Furthermore, by this rolling, the crystal orientation of (100) is made random parallel to the rolling direction. However, if the rolling reduction exceeds 70%, the crystal grain size after heat treatment becomes non-uniform in the plate thickness direction, increasing the variation in magnetic flux density. Therefore, in order to obtain relatively coarse grains that are uniform in the plate thickness direction, the reduction rate is 35%.
More than 70%.
【0024】次に熱間圧延に引き続き結晶粒粗大化、内
部歪除去及び板厚50mm以上の厚手材については脱水素
熱処理を施す。板厚50mm以上では水素の拡散がしにく
く、これが空隙性欠陥の原因となり、かつ、水素自身の
作用と合わさって中磁場での磁束密度を低下させる。こ
のため、脱水素熱処理を行なうが、その際600℃未満
では脱水素効率が悪く750℃超では変態が一部開始す
るので600〜750℃の温度範囲で行なう。脱水素時
間としては種々検討の結果〔0.6(t−50)+6〕
時間(t:板厚)が適当である。Next, following hot rolling, grain coarsening, removal of internal strain, and dehydrogenation heat treatment are applied to thick materials having a plate thickness of 50 mm or more. When the plate thickness is 50 mm or more, the diffusion of hydrogen is difficult, which causes void defects and, together with the action of hydrogen itself, reduces the magnetic flux density in a medium magnetic field. For this reason, dehydrogenation heat treatment is performed, but at that time, if the temperature is lower than 600 ° C., the dehydrogenation efficiency is poor, and if it exceeds 750 ° C., a part of the transformation starts, so that it is performed in the temperature range of 600 to 750 ° C. As the dehydrogenation time, various examination results [0.6 (t-50) +6]
The time (t: plate thickness) is appropriate.
【0025】焼鈍は結晶粒粗大化及び内部歪除去のため
に行なうが、750℃未満では結晶粒粗大化が起こら
ず、また、950℃超では結晶粒の板厚方向の均質性が
保てないため、焼鈍温度としては750〜950℃に限
定する。 Annealing is for grain coarsening and internal strain removal.
However, if the temperature is less than 750 ° C, coarsening of crystal grains occurs.
In addition, the homogeneity of the crystal grains in the plate thickness direction is higher than 950 ° C.
Since it cannot be maintained, the annealing temperature is limited to 750 to 950 ° C.
Set.
【0026】焼準は板厚方向の結晶粒調整及び内部歪除
去のために行なうが、焼準温度は910〜1000℃に
限定する。910℃未満ではオーステナイト域とフェラ
イト域の混在により結晶粒が混粒となり、1000℃超
では結晶粒の板厚方向の均一性が保てない。 Normalization is performed by adjusting crystal grains in the plate thickness direction and removing internal strain.
The normalizing temperature is 910-1000 ° C.
limit. Below 910 ° C, austenite and fellatio
Crystal grains become mixed due to the inclusion of the iron zone, and the temperature exceeds 1000 ° C.
However, the uniformity of the crystal grains in the plate thickness direction cannot be maintained.
【0027】なお、磁気特性向上のためには、結晶粒粗
大化と内部歪除去とが考えられるが、特に内部歪除去は
必須条件である。内部歪除去は、板厚50mm以上の厚手
材では脱水素熱処理で行うことができるので、本発明の
厚手材では脱水素熱処理で、上記焼鈍あるいは焼準を兼
ねることができる。 In order to improve the magnetic properties, the crystal grain roughness
Larger and internal distortion removal can be considered, but especially internal distortion removal
This is a mandatory condition. Internal strain removal is thicker than 50 mm
Since dehydrogenation heat treatment can be performed on the material,
For thick materials, dehydrogenation heat treatment also serves as the above-mentioned annealing or normalization.
I can sleep.
【0028】[0028]
【実施例】次に本発明の実施例を比較例とともにあげ
る。表1に電磁板厚の製造条件とフェライト粒径、中磁
場での磁束密度を示す。EXAMPLES Next, examples of the present invention will be given together with comparative examples. Table 1 shows the manufacturing conditions of the electromagnetic plate thickness, the ferrite grain size, and the magnetic flux density in a medium magnetic field.
【0029】[0029]
【表1】 [Table 1]
【0030】[0030]
【表2】 [Table 2]
【0031】例1〜6は本発明の実施例を示し、例7〜
23は比較例を示す。例1〜3は板厚100mmに仕上げ
たもので、中磁場で高磁束密度で、かつ、切削性も良好
である。例1に比べ、例2はさらに低C、例3は低Mn
であり、より高い磁気特性を示す。例4は40mm、例5
は6mm、例6は10mmに仕上げたもので、高磁束密度で
切削性も良好である。Examples 1 to 6 show examples of the present invention, and Examples 7 to
Reference numeral 23 shows a comparative example. Examples 1 to 3 are finished to a plate thickness of 100 mm, have a high magnetic flux density in a medium magnetic field, and have good machinability. Compared to Example 1, Example 2 has lower C, and Example 3 has lower Mn.
And shows higher magnetic properties. Example 4 is 40 mm, Example 5
Is 6 mm and Example 6 is 10 mm, and has a high magnetic flux density and good machinability.
【0032】例7〜8はPが低く切削性が良好でない。
例9はPが高すぎ、例10はCが高く、例11はMnが
高く、例12はSが高く、例13はAlが高く、例14
はNが高く、例15はOが高く、例16はHが高く、そ
れぞれ上限を超えるため低磁気特性値となっている。例
17は加熱温度が上限を超え低磁束密度となっている。
例18は加熱温度が下限をはずれ最大形状比が小さいた
め、低磁束密度となっている。例19は800℃以下の
圧下率が下限をはずれ低磁束密度となっている。例20
は最大形状比が下限をはずれ、例21は脱水素熱処理温
度が下限をはずれ、例22は焼鈍温度が下限をはずれ、
例23は脱水素熱処理がないため低磁束密度となってい
る。In Examples 7 to 8, P is low and the machinability is not good.
Example 9 has too high P, Example 10 has high C, Example 11 has high Mn, Example 12 has high S, Example 13 has high Al, Example 14
Has a high N value, Example 15 has a high O value, and Example 16 has a high H value. In Example 17, the heating temperature exceeds the upper limit and the magnetic flux density is low.
Example 18 has a low magnetic flux density because the heating temperature deviates from the lower limit and the maximum shape ratio is small. In Example 19, the rolling reduction below 800 ° C falls below the lower limit and the magnetic flux density is low. Example 20
The maximum shape ratio is below the lower limit, Example 21 is below the dehydrogenation heat treatment temperature, and Example 22 is below the annealing temperature.
Example 23 has a low magnetic flux density because there is no dehydrogenation heat treatment.
【0033】[0033]
【発明の効果】本発明は、適切な成分限定により板厚の
厚い厚鋼板に均質な高電磁特性を具備せしめることに成
功し、直流磁化による磁気特性を利用する構造物に適用
可能としたものであり、かつその製造法も前述の成分限
定と熱間圧延後結晶粒調整及び脱水素熱処理を同時に行
なう方式であり、極めて経済的に製造する方法を提供す
るもので産業上多大な効果を奏するものである。INDUSTRIAL APPLICABILITY The present invention has succeeded in providing a thick steel plate having a large thickness with a uniform high electromagnetic characteristic by appropriately limiting the components, and has been made applicable to a structure utilizing the magnetic characteristic of direct current magnetization. In addition, the manufacturing method thereof is a method of simultaneously performing the above-described component limitation, grain adjustment and hot dehydrogenation heat treatment after hot rolling, and provides a very economical manufacturing method, which has a great industrial effect. It is a thing.
【図1】5Oeにおける磁束密度に及ぼす800℃以下
の圧下率の影響を示すグラフである。FIG. 1 is a graph showing the effect of a rolling reduction of 800 ° C. or less on the magnetic flux density at 5 Oe.
【図2】5Oeにおける磁束密度に及ぼすC含有量の影
響を示すグラフである。FIG. 2 is a graph showing the influence of C content on the magnetic flux density at 5 Oe.
【図3】切削性に及ぼすP含有量の影響を示すグラフで
ある。FIG. 3 is a graph showing the effect of P content on machinability.
Claims (3)
50〜1150℃に加熱し、800℃以上で圧延形状比
Aが0.6以上の圧延パスを1回以上はとる圧延を行な
い、引き続き800℃以下で圧下率を35%超70%以
下とする圧延を行ない、板厚50mm以上の厚板とし、該
厚板を600〜750℃で脱水素熱処理を行なうことを
特徴とする切削性が良く、中磁場での磁気特性の優れた
良電磁厚板の製造方法。 【数1】 1. By weight%, C: 0.01% or less, Si: 0.02% or less, Mn: 0.20% or less, P: 0.02 to 0.20%, S: 0.010% Below, Al: 0.040% or less, N: 0.004% or less, O: 0.005% or less, H: 0.0002% or less, and the balance is a steel slab or a slab with a steel composition substantially consisting of iron. 9
Rolling is performed by heating to 50 to 1150 ° C. and taking at least one rolling pass with a rolling shape ratio A of 0.6 or more at 800 ° C. or more, and subsequently, at 800 ° C. or less, a reduction ratio of more than 35% and 70% or less. Rolled into a thick plate with a thickness of 50 mm or more ,
Plank to 600-750 by dehydrogenation heat treatment line that will better machinability characterized by ° C., excellent good method for manufacturing the electromagnetic planks magnetic properties at medium magnetic field. [Equation 1]
750〜950℃で焼鈍するかあるいは910〜100
0℃で焼準することを特徴とする請求項1記載の切削性
が良く、中磁場での磁気特性の優れた良電磁厚板の製造
方法。2. After dehydrogenating a thick plate having a thickness of 50 mm or more,
Anneal at 750-950 ° C or 910-100
The method for producing a good electromagnetic thick plate having good machinability and excellent magnetic characteristics in a medium magnetic field according to claim 1, wherein normalizing is performed at 0 ° C.
50〜1150℃に加熱し、800℃以上で圧延形状比
Aが0.6以上の圧延パスを1回以上はとる圧延を行な
い、引き続き800℃以下で圧下率を35%超70%以
下とする圧延を行ない、板厚50mm未満の厚板とし、該
厚板を750〜950℃で焼鈍するかあるいは910〜
1000℃で焼準することを特徴とする切削性が良く、
中磁場での磁気特性の優れた良電磁厚板の製造方法。 【数2】 3. By weight%, C: 0.01% or less, Si: 0.02% or less, Mn: 0.20% or less, P: 0.02 to 0.20%, S: 0.010% Below, Al: 0.040% or less, N: 0.004% or less, O: 0.005% or less, H: 0.0002% or less, and the balance is a steel slab or a slab with a steel composition substantially consisting of iron. 9
Rolling is performed by heating to 50 to 1150 ° C. and taking at least one rolling pass with a rolling shape ratio A of 0.6 or more at 800 ° C. or more, and subsequently, at 800 ° C. or less, a reduction ratio of more than 35% and 70% or less. Rolling is performed to form a thick plate having a thickness of less than 50 mm, and the thick plate is annealed at 750 to 950 ° C. or 910.
Good machinability characterized by normalizing at 1000 ° C,
A method for manufacturing a good electromagnetic thick plate having excellent magnetic characteristics in a medium magnetic field. [Equation 2]
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3026498A JP2503112B2 (en) | 1991-02-20 | 1991-02-20 | Manufacturing method of good electromagnetic plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3026498A JP2503112B2 (en) | 1991-02-20 | 1991-02-20 | Manufacturing method of good electromagnetic plate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04268024A JPH04268024A (en) | 1992-09-24 |
JP2503112B2 true JP2503112B2 (en) | 1996-06-05 |
Family
ID=12195155
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3026498A Expired - Lifetime JP2503112B2 (en) | 1991-02-20 | 1991-02-20 | Manufacturing method of good electromagnetic plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2503112B2 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5138380B2 (en) * | 1972-07-05 | 1976-10-21 | ||
JPS6096749A (en) * | 1983-11-01 | 1985-05-30 | Nippon Steel Corp | Thick plate for dc magnetization and preparation thereof |
JPH0266119A (en) * | 1988-08-31 | 1990-03-06 | Nkk Corp | Production of high permeability soft magnetic pure iron sheet having excellent magnetic shieldability |
JPH0284500A (en) * | 1988-08-26 | 1990-03-26 | Lion Haijiin Kk | Cartridge detergent for washer |
JPH02243719A (en) * | 1989-03-16 | 1990-09-27 | Nippon Steel Corp | Production of superior thick silicon steel plate having excellent machinability and uniform magnetic property in plate-thickness direction |
JPH034606A (en) * | 1989-05-31 | 1991-01-10 | Toshiba Corp | Amplifier circuit |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5243899Y2 (en) * | 1974-09-17 | 1977-10-05 |
-
1991
- 1991-02-20 JP JP3026498A patent/JP2503112B2/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5138380B2 (en) * | 1972-07-05 | 1976-10-21 | ||
JPS6096749A (en) * | 1983-11-01 | 1985-05-30 | Nippon Steel Corp | Thick plate for dc magnetization and preparation thereof |
JPH0284500A (en) * | 1988-08-26 | 1990-03-26 | Lion Haijiin Kk | Cartridge detergent for washer |
JPH0266119A (en) * | 1988-08-31 | 1990-03-06 | Nkk Corp | Production of high permeability soft magnetic pure iron sheet having excellent magnetic shieldability |
JPH02243719A (en) * | 1989-03-16 | 1990-09-27 | Nippon Steel Corp | Production of superior thick silicon steel plate having excellent machinability and uniform magnetic property in plate-thickness direction |
JPH034606A (en) * | 1989-05-31 | 1991-01-10 | Toshiba Corp | Amplifier circuit |
Also Published As
Publication number | Publication date |
---|---|
JPH04268024A (en) | 1992-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2503110B2 (en) | Method for manufacturing non-oriented electromagnetic thick plate with excellent magnetic properties | |
JPH079040B2 (en) | Manufacturing method of good electromagnetic thick plate with good machinability and uniform magnetic properties in the plate thickness direction | |
JP2503111B2 (en) | Manufacturing method of non-oriented electromagnetic thick plate with excellent magnetic properties | |
JP2503112B2 (en) | Manufacturing method of good electromagnetic plate | |
JP2503113B2 (en) | Manufacturing method of non-oriented electromagnetic thick plate | |
JP3369443B2 (en) | Manufacturing method of high magnetic flux density unidirectional electrical steel sheet | |
JPH0711026B2 (en) | Manufacturing method of non-directional electromagnetic thick plate with high magnetic flux density | |
JPH0713264B2 (en) | Manufacturing method of non-oriented electromagnetic thick plate with uniform magnetic properties in the thickness direction | |
JPH06104866B2 (en) | Method for manufacturing electromagnetic thick plate for direct current magnetization | |
JP2898793B2 (en) | Method for producing non-oriented electrical steel sheet having high magnetic flux density and low iron loss | |
JP2503122B2 (en) | Method for manufacturing non-oriented electromagnetic thick plate with excellent magnetic properties | |
JPH0726326A (en) | Production of nonoriented silicon steel plate | |
JPH0745688B2 (en) | Method for manufacturing high magnetic flux density electromagnetic thick plate | |
JP2503125B2 (en) | Manufacturing method of good electromagnetic plate | |
JP2503123B2 (en) | Manufacturing method of non-oriented electromagnetic thick plate with excellent magnetic properties | |
JPH0726327A (en) | Production of nonoriented silicon steel plate | |
JPH0726325A (en) | Production of superior silicon steel plate | |
JP3311021B2 (en) | Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with low iron loss | |
JP2634801B2 (en) | High magnetic flux density directional silicon iron plate with excellent iron loss characteristics | |
JP2503124B2 (en) | Manufacturing method of good electromagnetic thick plate | |
JPH0711328A (en) | Manufacture of good thick electrical steel plate | |
JPH0699751B2 (en) | Method for producing grain-oriented silicon steel sheet having good electromagnetic characteristics | |
KR970007162B1 (en) | Making method of oriented electrical steel sheet having excellent from loss properties | |
JPH0745689B2 (en) | Manufacturing method of good electromagnetic thick plate | |
JPH0762174B2 (en) | Method for manufacturing non-oriented electromagnetic thick plate with high magnetic flux density |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19960130 |