JPH04268024A - Production of satisfactory electric steel plate - Google Patents
Production of satisfactory electric steel plateInfo
- Publication number
- JPH04268024A JPH04268024A JP3026498A JP2649891A JPH04268024A JP H04268024 A JPH04268024 A JP H04268024A JP 3026498 A JP3026498 A JP 3026498A JP 2649891 A JP2649891 A JP 2649891A JP H04268024 A JPH04268024 A JP H04268024A
- Authority
- JP
- Japan
- Prior art keywords
- less
- rolling
- flux density
- magnetic flux
- magnetic field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 23
- 239000010959 steel Substances 0.000 title claims abstract description 23
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 238000005096 rolling process Methods 0.000 claims abstract description 40
- 238000010438 heat treatment Methods 0.000 claims abstract description 23
- 238000006356 dehydrogenation reaction Methods 0.000 claims abstract description 15
- 238000000137 annealing Methods 0.000 claims abstract description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 8
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 4
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 4
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 4
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 4
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 3
- 230000009467 reduction Effects 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 238000010606 normalization Methods 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 abstract 1
- 230000004907 flux Effects 0.000 description 29
- 239000013078 crystal Substances 0.000 description 14
- 230000007547 defect Effects 0.000 description 10
- 239000011800 void material Substances 0.000 description 9
- 238000005098 hot rolling Methods 0.000 description 7
- 230000005415 magnetization Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000005381 magnetic domain Effects 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 229910000976 Electrical steel Inorganic materials 0.000 description 1
- 101000582320 Homo sapiens Neurogenic differentiation factor 6 Proteins 0.000 description 1
- 102100030589 Neurogenic differentiation factor 6 Human genes 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は切削性が良く、中磁場で
の磁気特性の優れた良電磁厚板の製造方法に関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thick electromagnetic plate that has good machinability and excellent magnetic properties in a medium magnetic field.
【0002】0002
【従来の技術】近年最先端科学技術である素粒子研究や
医療機器の進歩に伴って、大型構造物に磁気を用いる装
置が使われ、その性能向上が求められている。直流磁化
条件で使用される粒子加速器用磁極材、リターンヨーク
材では、高い飽和磁束密度の他に5Oe(400A/m
)付近の中磁場での高い磁束密度が求められているが、
さらに、加工時の良好な切削性も要求されている。
磁束密度に優れた電磁鋼板としては、従来から薄板分野
で珪素鋼板、電磁軟鉄板をはじめとする数多くの材料が
提供されているのは公知である。しかし、構造部材とし
て使用するには組立加工及び強度上の問題があり、厚鋼
板を利用する必要が生じてくる。これまで電磁厚板とし
ては純鉄系成分で製造されている。たとえば、特開昭6
0−96749号公報が公知である。しかしながら、近
年の装置の大型化、能力の向上等に伴いさらに磁気特性
の優れた、特に中磁場、たとえば5Oe(400A/m
)付近での磁束密度の高い鋼材開発の要望が強い。従来
5Oe付近での中磁場の高い磁束密度が安定して得られ
ていない。BACKGROUND OF THE INVENTION In recent years, with advances in elementary particle research and medical equipment, which are cutting-edge science and technology, devices that use magnetism are being used in large structures, and there is a demand for improved performance. The magnetic pole material and return yoke material for particle accelerators used under DC magnetization conditions have a high saturation magnetic flux density of 5Oe (400A/m
) is required in a medium magnetic field near
Furthermore, good machinability during processing is also required. It is well known that many materials such as silicon steel sheets and electromagnetic soft iron sheets have been provided in the field of thin plates as electromagnetic steel sheets with excellent magnetic flux density. However, when used as a structural member, there are problems with assembly and strength, and it becomes necessary to use thick steel plates. Until now, electromagnetic plates have been manufactured using pure iron-based components. For example, JP-A-6
0-96749 is publicly known. However, in recent years, as devices have become larger and their capabilities have improved, devices with even better magnetic properties, especially in medium magnetic fields, such as 5Oe (400A/m
) There is a strong demand for the development of steel materials with high magnetic flux density in the vicinity. Conventionally, it has not been possible to stably obtain a high magnetic flux density in a medium magnetic field around 5 Oe.
【0003】0003
【発明が解決しようとする課題】本発明の目的は以上の
点を鑑みなされたもので、切削性が良く、中磁場での磁
気特性の優れた良電磁厚板の製造法を提供するものであ
る。[Problems to be Solved by the Invention] The object of the present invention has been made in view of the above points, and is to provide a method for manufacturing a good electromagnetic thick plate that has good machinability and excellent magnetic properties in a medium magnetic field. be.
【0004】0004
【課題を解決するための手段】本発明は重量%で、C:
0.01%以下、Si:0.02%以下、Mn:0.2
0%以下、P:0.02〜0.20%、S:0.010
%以下、Al:0.040%以下、N:0.004%以
下、O:0.005%以下、H:0.0002%以下、
残部実質的に鉄からなる鋼組成の鋼片または、鋳片を9
50〜1150℃に加熱し、800℃以上で圧延形状比
Aが0.6以上の圧延パスを1回以上はとる圧延を行な
い、引き続き800℃以下で圧下率を35%超70%以
下とする圧延を行ない、板厚50mm以上の厚板につい
ては600〜750℃の脱水素熱処理を行なった後、必
要に応じて750〜950℃で焼鈍するかあるいは91
0〜1000℃で焼準し、板厚50mm未満については
750〜950℃で焼鈍するかあるいは910〜100
0℃で焼準することを特徴とする切削性が良く、中磁場
での磁気特性の優れた良電磁厚板の製造方法。[Means for Solving the Problems] The present invention provides C:
0.01% or less, Si: 0.02% or less, Mn: 0.2
0% or less, P: 0.02-0.20%, S: 0.010
% or less, Al: 0.040% or less, N: 0.004% or less, O: 0.005% or less, H: 0.0002% or less,
9 steel slabs or cast slabs with a steel composition in which the remainder is essentially iron
Heating to 50 to 1150°C, rolling at 800°C or higher with rolling shape ratio A of 0.6 or more at least once, and then rolling at 800°C or lower with a rolling reduction of more than 35% but not more than 70%. After rolling and dehydrogenation heat treatment at 600 to 750°C for plates with a thickness of 50 mm or more, annealing at 750 to 950°C or 91°C as necessary.
Normalize at 0~1000℃, and annealing at 750~950℃ or 910~100℃ for plate thickness less than 50mm.
A method for manufacturing an electromagnetic thick plate that has good machinability and excellent magnetic properties in a medium magnetic field, which is characterized by normalization at 0°C.
【0005】[0005]
【数2】[Math 2]
【0006】[0006]
【作用】まず、磁化のプロセスについて述べる。消磁状
態の鋼を磁界の中に入れ、磁界を強めていくと次第に磁
区の向きに変化が生じ、磁界の方向に近い磁区が優勢に
なり他の磁区を蚕食併合していく。つまり、磁壁の移動
が起こる。さらに磁界が強くなり磁壁の移動が完了する
と、次に磁区全体が磁化方向に向きを変えていく。この
磁化プロセスの中で低磁場での磁束密度を決めているの
は、磁壁の移動しやすさである。つまり低磁場で高磁束
密度を得るためには、磁壁の移動を障害するものを極力
減らすことであると定性的に言うことができる。この観
点から従来磁壁の移動の障害となる結晶粒の粗大化が重
要な技術となっていた(特開昭60−96749号公報
)。これに対し、中磁場で高磁束密度を得るための方法
については知見がなかった。[Operation] First, the process of magnetization will be described. When demagnetized steel is placed in a magnetic field and the field is strengthened, the orientation of the magnetic domains gradually changes, and the magnetic domains that are close to the direction of the magnetic field become dominant and merge with other magnetic domains. In other words, movement of the domain wall occurs. When the magnetic field becomes stronger and the movement of the domain wall is completed, the entire magnetic domain changes direction in the direction of magnetization. In this magnetization process, the ease with which domain walls move determines the magnetic flux density in low magnetic fields. In other words, it can be said qualitatively that in order to obtain a high magnetic flux density in a low magnetic field, it is necessary to reduce as much as possible what impedes the movement of domain walls. From this point of view, coarsening of crystal grains that impede movement of domain walls has traditionally been an important technique (Japanese Patent Laid-Open No. 60-96749). On the other hand, there was no knowledge of a method for obtaining high magnetic flux density in a medium magnetic field.
【0007】発明者らは、ここにおいて中磁場で高磁束
密度を得るためには、単に結晶粒の粗大化だけでなく、
隣あった結晶粒間の磁化の方向が圧延方向に平行に揃っ
ていることが重要であることを見出した。超粗大粒でも
、細粒でもない比較的粗粒(フェライト粒度No.が0
〜4番程度)でかつ(100)方向が圧延方向に平行に
ランダムとなることで中磁場の磁気特性が大幅に向上す
ることを見出したのである。このための熱間圧延条件と
して、800℃以下において35%超70%以下の圧下
率をとることで、圧延後の熱処理前の結晶粒を微細化し
て再結晶させやすくするとともに、鋼中に歪みを導入し
て、この歪みを熱処理時の再結晶の駆動力とすることで
、比較的大きな結晶粒を板厚全体にわたって安定的に得
ると同時に、(100)の結晶方位を圧延方向に平行に
ランダムとなる。[0007] The inventors here discovered that in order to obtain a high magnetic flux density in a medium magnetic field, it is necessary to not only coarsen the crystal grains but also
It has been found that it is important that the directions of magnetization between adjacent crystal grains are aligned parallel to the rolling direction. Relatively coarse grains that are neither super coarse grains nor fine grains (ferrite grain size No. 0)
They found that the magnetic properties in a medium magnetic field were significantly improved by making the (100) direction random in parallel to the rolling direction. As a hot rolling condition for this purpose, by taking a rolling reduction of more than 35% and less than 70% at 800°C or less, the grains before heat treatment after rolling are made finer and easier to recrystallize, and the steel is strained. By introducing this strain and using this strain as a driving force for recrystallization during heat treatment, relatively large crystal grains can be stably obtained throughout the plate thickness, and at the same time, the (100) crystal orientation can be made parallel to the rolling direction. It will be random.
【0008】図1に0.005Si−0.06Mn−0
.015Al鋼での800℃以下の圧下率と5Oeでの
磁束密度を示す。35%超70%以下の圧下により、高
磁束密度が得られる。さらに中磁場での高磁束密度を得
るための手段として、内部応力の原因となる元素及び空
隙性欠陥の作用につき詳細な検討を行ない、所期の目的
を達成した。また、空隙性欠陥の影響についても種々検
討した結果、そのサイズが100μ以上のものが磁気特
性を大幅に低下することを知見したものである。そして
この100μ以上の有害な空隙性欠陥をなくすためには
圧延形状比Aが0.6以上必要であることを見出した。FIG. 1 shows 0.005Si-0.06Mn-0
.. It shows the rolling reduction of 015Al steel at 800°C or less and the magnetic flux density at 5Oe. A high magnetic flux density can be obtained by a reduction of more than 35% and less than 70%. Furthermore, as a means to obtain high magnetic flux density in medium magnetic fields, we conducted detailed studies on the effects of elements and void defects that cause internal stress, and achieved the desired objective. Furthermore, as a result of various studies on the influence of void defects, it was found that those with a size of 100 μm or more significantly deteriorate the magnetic properties. It has been found that in order to eliminate harmful void defects of 100 μm or more, the rolling shape ratio A must be 0.6 or more.
【0009】[0009]
【数3】[Math 3]
【0010】さらに、鋼中の水素の存在も有害で、脱水
素熱処理を行なうことによって磁気特性が大幅に向上す
ることを知見した。高形状比圧延により空隙性欠陥のサ
イズを100μ以下にし、かつ、脱水素熱処理により鋼
中水素を減少することで中磁場での磁束密度が大幅に上
昇する。次に、本高純鋼の切削性、特に、切削後の表面
粗度低減のためにはP添加が非常に有効であることを見
出した。図3は0.007C−0.10Mn−0.01
5Al鋼で切削長さ10mでの表面粗度が10μm程度
の普通(△で示す)、5μm程度を良い(○で示す)、
1μm程度を特に良い(◎で示す)切削性を示すと定義
している。同図のように、P添加量が0.02%以上の
範囲で表面粗度5μm以下の良好な切削性を示すことが
わかる。Furthermore, it has been found that the presence of hydrogen in steel is also harmful, and that magnetic properties can be significantly improved by dehydrogenation heat treatment. By reducing the size of void defects to 100 μm or less through high shape ratio rolling and reducing hydrogen in the steel through dehydrogenation heat treatment, the magnetic flux density in a medium magnetic field increases significantly. Next, we found that the addition of P is very effective for improving the machinability of this high-purity steel, especially for reducing the surface roughness after cutting. Figure 3 shows 0.007C-0.10Mn-0.01
5Al steel, the surface roughness at a cutting length of 10 m is normal (indicated by △) of about 10 μm, good (indicated by ○) of about 5 μm,
A thickness of approximately 1 μm is defined as exhibiting particularly good machinability (indicated by ◎). As shown in the figure, it can be seen that good machinability with a surface roughness of 5 μm or less is exhibited when the amount of P added is 0.02% or more.
【0011】次に成分限定理由を述べる。Cは鋼中の内
部応力を高め、磁気特性、特に低磁場での磁束密度を最
も下げる元素であり、極力下げることが中磁場での磁束
密度を低下させないことに寄与する。また、磁気時効の
点からも低いほど経時低下が少なく、磁気特性の良い状
態で恒久的に使用できるものであり、このようなことか
ら、0.01%以下に限定する。図2に示すようにさら
に、0.005%以下にすることにより一層高磁束密度
が得られる。Si,Mnは中磁場での磁束密度の点から
少ない方が好ましく、MnはMnS系介在物を生成する
点からも低い方がよい。この意味からSiは0.02%
以下、Mnは0.20%以下に限定する。Mnに関して
はMnS系介在物を生成する点よりさらに望ましくは0
.10%以下がよい。Pは工具摩耗量を低下させ、切削
性を上昇させる元素で、図3に示すように0.020%
以上添加する必要があるが、0.20%を超えて添加す
ると低磁場での磁気特性を低下させるため上限を0.2
0%とする。Next, the reason for limiting the ingredients will be described. C is an element that increases the internal stress in steel and lowers the magnetic properties, particularly the magnetic flux density in a low magnetic field, the most, and reducing it as much as possible contributes to not lowering the magnetic flux density in a medium magnetic field. In addition, from the viewpoint of magnetic aging, the lower the content, the less the deterioration over time, and it can be used permanently with good magnetic properties.For this reason, the content is limited to 0.01% or less. As shown in FIG. 2, an even higher magnetic flux density can be obtained by reducing the amount to 0.005% or less. It is preferable that Si and Mn be small in terms of magnetic flux density in a medium magnetic field, and that Mn should be small in terms of generating MnS-based inclusions. From this meaning, Si is 0.02%
Hereinafter, Mn is limited to 0.20% or less. Regarding Mn, it is more preferable to use 0 since MnS-based inclusions are generated.
.. It is preferably 10% or less. P is an element that reduces tool wear and increases machinability, and as shown in Figure 3, 0.020%
It is necessary to add more than 0.2%, but since adding more than 0.20% will reduce the magnetic properties in a low magnetic field, the upper limit should be set at 0.2%.
Set to 0%.
【0012】S,Oは鋼中において非金属介在物を形成
し、結晶粒の粗大化を妨げる害を及ぼし含有量が多くな
るに従って磁束密度の低下が見られ、磁気特性を低下さ
せるので少ない程よい。このため、Sは0.010%以
下、Oは0.005%以下とした。Alは脱酸剤として
用いるもので、多くなりすぎると介在物を生成し鋼の性
質を損なうので上限は0.040%とする。さらに結晶
粒粗大化を妨げる析出物であるAlNを減少させるため
には低いほどよく、望ましくは0.020%以下がよい
。Nは内部応力を高めかつAlNにより結晶粒微細化作
用により中磁場での磁束密度を低下させるので上限は0
.004%とする。Hは磁気特性を低下させ、かつ空隙
性欠陥の減少を妨げるので0.0002%以下とする。[0012] S and O form non-metallic inclusions in steel and have a detrimental effect on coarsening of crystal grains, and as their content increases, a decrease in magnetic flux density is observed, degrading magnetic properties, so the less the better. . Therefore, S was set to 0.010% or less, and O was set to 0.005% or less. Al is used as a deoxidizing agent, and if the amount is too large, it will generate inclusions and impair the properties of the steel, so the upper limit is set at 0.040%. Furthermore, in order to reduce AlN, which is a precipitate that prevents crystal grain coarsening, the lower the content, the better, and preferably 0.020% or less. The upper limit is 0 because N increases the internal stress and AlN reduces the magnetic flux density in a medium magnetic field due to its crystal grain refinement effect.
.. 004%. Since H deteriorates the magnetic properties and prevents the reduction of void defects, it is limited to 0.0002% or less.
【0013】次に製造法について述べる。圧延条件につ
いては、まず圧延前加熱温度を1150℃以下にするの
は、1150℃を超える加熱温度では、加熱γ粒径の板
厚方向のバラツキは大きく、このバラツキが圧延後も残
り最終的な結晶粒が不均一となるため、上限を1150
℃とする。加熱温度が950℃未満となると圧延の変形
抵抗が大きくなり、以下に述べる空隙性欠陥をなくすた
めの形状比の高い圧延の圧延負荷が大きくなるため、9
50℃を下限とする。Next, the manufacturing method will be described. Regarding rolling conditions, first of all, the pre-rolling heating temperature should be set to 1150°C or less. At heating temperatures exceeding 1150°C, there will be large variations in the heated γ grain size in the thickness direction, and this variation will remain even after rolling and cause the final result. Since the crystal grains become non-uniform, the upper limit is set to 1150.
℃. If the heating temperature is less than 950°C, the deformation resistance during rolling will increase, and the rolling load for rolling with a high shape ratio to eliminate void defects described below will increase.
The lower limit is 50°C.
【0014】熱間圧延にあたり前述の空隙性欠陥は鋼の
凝固過程で大小はあるが、必ず発生するものでありこれ
をなくす手段は圧延によらなければならないので、熱間
圧延の役目は重要である。すなわち、熱間圧延1回当た
りの変形量を大きくし板厚中心部にまで変形が及ぶ熱間
圧延が有効である。具体的には800℃以上で圧延形状
比Aが0.6以上の圧延パスが1回以上を含む高形状比
圧延を行ない、空隙性欠陥のサイズを100μ以下にす
ることが磁気特性によい。圧延中にこの高形状比圧延に
より空隙性欠陥をなくすことで、後で行なう脱水素熱処
理における脱水素効率が飛躍的に上昇するのである。こ
こに800℃以上で高形状比圧延を行なう理由は、80
0℃未満の低温では変形抵抗が大きく通常の圧延機では
圧下が困難となるからである。[0014] Regarding hot rolling, the above-mentioned porous defects may vary in size during the solidification process of steel, but they always occur, and the means to eliminate them must be through rolling, so the role of hot rolling is important. be. That is, hot rolling in which the amount of deformation per hot rolling is increased and the deformation extends to the center of the plate thickness is effective. Specifically, it is good for magnetic properties to perform high shape ratio rolling including one or more rolling passes with a rolling shape ratio A of 0.6 or more at 800° C. or higher and to reduce the size of void defects to 100 μm or less. By eliminating void defects during rolling by this high shape ratio rolling, the dehydrogenation efficiency in the subsequent dehydrogenation heat treatment is dramatically increased. The reason for performing high shape ratio rolling at 800°C or higher is that 80°C
This is because at a low temperature of less than 0° C., the deformation resistance is large and rolling is difficult with a normal rolling mill.
【0015】次に800℃以下の温度において累積圧下
率35%超にすることにより結晶粒を微細化するととも
に歪みを導入し、これに続く熱処理時の再結晶を促進さ
せる。さらこの圧延により、(100)の結晶方位を圧
延方向に平行にランダムとする。ただし70%超の圧下
率になると、熱処理後結晶粒度が板厚方向に不均一にな
り、磁束密度のばらつきを大きくする。従って板厚方向
に均一な比較的粗大な粒を得るために、圧下率を35%
超70%以下とする。Next, by increasing the cumulative reduction rate to more than 35% at a temperature of 800° C. or lower, crystal grains are made finer and strain is introduced, thereby promoting recrystallization during the subsequent heat treatment. Further, by this rolling, the (100) crystal orientation is made random parallel to the rolling direction. However, if the rolling reduction exceeds 70%, the grain size after heat treatment becomes non-uniform in the thickness direction, increasing the variation in magnetic flux density. Therefore, in order to obtain relatively coarse grains that are uniform in the thickness direction, the rolling reduction rate is 35%.
Must be over 70% or less.
【0016】次に熱間圧延に引き続き結晶粒粗大化、内
部歪除去及び板厚50mm以上の厚手材については脱水
素熱処理を施す。板厚50mm以上では水素の拡散がし
にくく、これが空隙性欠陥の原因となり、かつ、水素自
身の作用と合わさって低磁場での磁束密度を低下させる
。このため、脱水素熱処理を行なうが、その際600℃
未満では脱水素効率が悪く750℃超では変態が一部開
始するので600〜750℃の温度範囲で行なう。脱水
素時間としては種々検討の結果〔0.6(t−50)+
6〕時間(t:板厚)が適当である。必要に応じて施す
焼鈍は結晶粒粗大化及び内部歪除去のために行なうが、
750℃未満では結晶粒粗大化が起こらず、また、95
0℃以上では結晶粒の板厚方向の均質性が保てないため
、焼鈍温度としては750〜950℃に限定する。Next, hot rolling is followed by grain coarsening, removal of internal strain, and dehydrogenation heat treatment for thick materials with a thickness of 50 mm or more. If the plate thickness is 50 mm or more, it is difficult for hydrogen to diffuse, which causes void defects, and combined with the action of hydrogen itself, reduces the magnetic flux density in a low magnetic field. For this reason, dehydrogenation heat treatment is performed at 600°C.
If it is less than 750°C, the dehydrogenation efficiency will be poor, and if it exceeds 750°C, transformation will partially start, so it is carried out in the temperature range of 600 to 750°C. As a result of various studies, the dehydrogenation time was [0.6 (t-50) +
6] Time (t: plate thickness) is appropriate. Annealing is performed as necessary to coarsen grains and remove internal strain, but
At temperatures below 750°C, crystal grain coarsening does not occur;
If the temperature is 0°C or higher, the homogeneity of the crystal grains in the thickness direction cannot be maintained, so the annealing temperature is limited to 750 to 950°C.
【0017】焼準は板厚方向の結晶粒調整及び内部歪除
去のために焼鈍に代えて行なうが、下限はオーステナイ
ト域下限のAc3 点である910℃以上で、かつ、1
000℃超では結晶粒の板厚方向の均質性が保てないの
で、焼準温度は910〜1000℃に限定する。なお、
板厚50mm以上の厚手材で行なう脱水素熱処理でこの
焼鈍あるいは、焼準をかねることが可能である。一方、
板厚50mm未満のものは水素の拡散が容易なため、脱
水素熱処理は不要で前述の焼鈍または焼準するのみでよ
い。Normalizing is performed in place of annealing in order to adjust grains in the thickness direction and remove internal strain, but the lower limit is 910°C or higher, which is the Ac3 point of the lower limit of the austenite region, and
If it exceeds 000°C, the homogeneity of the crystal grains in the thickness direction cannot be maintained, so the normalization temperature is limited to 910 to 1000°C. In addition,
It is possible to perform this annealing or normalization by dehydrogenation heat treatment performed on a thick material with a thickness of 50 mm or more. on the other hand,
When the plate thickness is less than 50 mm, hydrogen can easily diffuse, so dehydrogenation heat treatment is not necessary and only the above-mentioned annealing or normalizing is sufficient.
【0018】[0018]
【実施例】次に本発明の実施例を比較例とともにあげる
。表1に電磁板厚の製造条件とフェライト粒径、中磁場
での磁束密度を示す。[Examples] Next, examples of the present invention will be given along with comparative examples. Table 1 shows the manufacturing conditions for electromagnetic plate thickness, ferrite grain size, and magnetic flux density in a medium magnetic field.
【0019】[0019]
【表1】[Table 1]
【0020】[0020]
【表2】[Table 2]
【0021】例1〜6は本発明の実施例を示し、例7〜
23は比較例を示す。例1〜3は板厚100mmに仕上
げたもので、中磁場で高磁束密度で、かつ、切削性も良
好である。例1に比べ、例2はさらに低C、例3は低M
nであり、より高い磁気特性を示す。例4は40mm、
例5は6mm、例6は10mmに仕上げたもので、高磁
束密度で切削性も良好である。例7〜8はPが低く切削
性が良好でない。例9はPが高すぎ、例10はCが高く
、例11はMnが高く、例12はSが高く、例13はA
lが高く、例14はNが高く、例15はOが高く、例1
6はHが高く、それぞれ上限を超えるため低磁気特性値
となっている。例17は加熱温度が上限を超え低磁束密
度となっている。例18は加熱温度が下限をはずれ最大
形状比が小さいため、低磁束密度となっている。例19
は800℃以下の圧下率が下限をはずれ低磁束密度とな
っている。例20は最大形状比が下限をはずれ、例21
は脱水素熱処理温度が下限をはずれ、例22は焼鈍温度
が下限をはずれ、例23は脱水素熱処理がないため低磁
束密度となっている。Examples 1 to 6 illustrate embodiments of the invention, and Examples 7 to
23 shows a comparative example. Examples 1 to 3 were finished to a plate thickness of 100 mm, had a high magnetic flux density in a medium magnetic field, and had good machinability. Compared to Example 1, Example 2 has lower C and Example 3 has lower M.
n and exhibits higher magnetic properties. Example 4 is 40mm,
Example 5 is finished to 6 mm, and Example 6 is finished to 10 mm, which has a high magnetic flux density and good machinability. Examples 7 and 8 have low P and poor machinability. Example 9 has too high P, Example 10 has too much C, Example 11 has too much Mn, Example 12 has too much S, and Example 13 has too much A.
l is high, Example 14 is high in N, Example 15 is high in O, Example 1
No. 6 has a high H value and exceeds the upper limit, resulting in a low magnetic property value. In Example 17, the heating temperature exceeded the upper limit and the magnetic flux density was low. In Example 18, the heating temperature was outside the lower limit and the maximum shape ratio was small, resulting in a low magnetic flux density. Example 19
The rolling reduction rate of 800°C or less is outside the lower limit, resulting in a low magnetic flux density. In Example 20, the maximum shape ratio is outside the lower limit, and in Example 21
In Example 22, the annealing temperature was outside the lower limit, and in Example 23, there was no dehydrogenation heat treatment, so the magnetic flux density was low.
【0022】[0022]
【発明の効果】本発明によれば適切な成分限定により板
厚の厚い厚鋼板に均質な高電磁特性を具備せしめること
に成功し、直流磁化による磁気特性を利用する構造物に
適用可能としたものであり、かつその製造法も前述の成
分限定と熱間圧延後結晶粒調整及び脱水素熱処理を同時
に行なう方式であり、極めて経済的に製造する方法を提
供するもので産業上多大な効果を奏するものである。[Effects of the Invention] According to the present invention, by appropriately limiting the ingredients, it has been possible to provide a thick steel plate with uniform high electromagnetic properties, making it applicable to structures that utilize magnetic properties due to direct current magnetization. Moreover, its manufacturing method is a method in which the above-mentioned ingredient restriction, grain adjustment after hot rolling, and dehydrogenation heat treatment are performed simultaneously, and it provides an extremely economical manufacturing method and has great industrial effects. It is something to play.
【図1】5Oeにおける磁束密度に及ぼす800℃以下
の圧下率の影響を示すグラフである。FIG. 1 is a graph showing the influence of a rolling reduction of 800° C. or less on magnetic flux density at 5 Oe.
【図2】5Oeにおける磁束密度に及ぼすC含有量の影
響を示すグラフである。FIG. 2 is a graph showing the influence of C content on magnetic flux density at 5 Oe.
【図3】切削性に及ぼすP含有量の影響を示すグラフで
ある。FIG. 3 is a graph showing the influence of P content on machinability.
Claims (1)
50〜1150℃に加熱し、800℃以上で圧延形状比
Aが0.6以上の圧延パスを1回以上はとる圧延を行な
い、引き続き800℃以下で圧下率を35%超70%以
下とする圧延を行ない、板厚50mm以上の厚板につい
ては600〜750℃の脱水素熱処理を行なった後、必
要に応じて750〜950℃で焼鈍するかあるいは91
0〜1000℃で焼準し、板厚50mm未満については
750〜950℃で焼鈍するかあるいは910〜100
0℃で焼準することを特徴とする切削性が良く、中磁場
での磁気特性の優れた良電磁厚板の製造方法。 【数1】Claim 1: In weight percent, C: 0.01% or less, Si: 0.02% or less, Mn: 0.20% or less, P: 0.02 to 0.20%, S: 0.010%. Hereinafter, a steel billet or slab having a steel composition consisting of Al: 0.040% or less, N: 0.004% or less, O: 0.005% or less, H: 0.0002% or less, and the remainder substantially iron. 9
Heating to 50 to 1150°C, rolling at 800°C or higher with rolling shape ratio A of 0.6 or more at least once, and then rolling at 800°C or lower with a rolling reduction of more than 35% but not more than 70%. After rolling and dehydrogenation heat treatment at 600 to 750°C for plates with a thickness of 50 mm or more, annealing at 750 to 950°C or 91°C as necessary.
Normalize at 0~1000℃, and annealing at 750~950℃ or 910~100℃ for plate thickness less than 50mm.
A method for manufacturing an electromagnetic thick plate that has good machinability and excellent magnetic properties in a medium magnetic field, which is characterized by normalization at 0°C. [Math 1]
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3026498A JP2503112B2 (en) | 1991-02-20 | 1991-02-20 | Manufacturing method of good electromagnetic plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3026498A JP2503112B2 (en) | 1991-02-20 | 1991-02-20 | Manufacturing method of good electromagnetic plate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04268024A true JPH04268024A (en) | 1992-09-24 |
JP2503112B2 JP2503112B2 (en) | 1996-06-05 |
Family
ID=12195155
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3026498A Expired - Lifetime JP2503112B2 (en) | 1991-02-20 | 1991-02-20 | Manufacturing method of good electromagnetic plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2503112B2 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5138380U (en) * | 1974-09-17 | 1976-03-22 | ||
JPS6096749A (en) * | 1983-11-01 | 1985-05-30 | Nippon Steel Corp | Thick plate for dc magnetization and preparation thereof |
JPH0266119A (en) * | 1988-08-31 | 1990-03-06 | Nkk Corp | Production of high permeability soft magnetic pure iron sheet having excellent magnetic shieldability |
JPH0284500A (en) * | 1988-08-26 | 1990-03-26 | Lion Haijiin Kk | Cartridge detergent for washer |
JPH02243719A (en) * | 1989-03-16 | 1990-09-27 | Nippon Steel Corp | Production of superior thick silicon steel plate having excellent machinability and uniform magnetic property in plate-thickness direction |
JPH034606A (en) * | 1989-05-31 | 1991-01-10 | Toshiba Corp | Amplifier circuit |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5138380B2 (en) * | 1972-07-05 | 1976-10-21 |
-
1991
- 1991-02-20 JP JP3026498A patent/JP2503112B2/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5138380U (en) * | 1974-09-17 | 1976-03-22 | ||
JPS6096749A (en) * | 1983-11-01 | 1985-05-30 | Nippon Steel Corp | Thick plate for dc magnetization and preparation thereof |
JPH0284500A (en) * | 1988-08-26 | 1990-03-26 | Lion Haijiin Kk | Cartridge detergent for washer |
JPH0266119A (en) * | 1988-08-31 | 1990-03-06 | Nkk Corp | Production of high permeability soft magnetic pure iron sheet having excellent magnetic shieldability |
JPH02243719A (en) * | 1989-03-16 | 1990-09-27 | Nippon Steel Corp | Production of superior thick silicon steel plate having excellent machinability and uniform magnetic property in plate-thickness direction |
JPH034606A (en) * | 1989-05-31 | 1991-01-10 | Toshiba Corp | Amplifier circuit |
Also Published As
Publication number | Publication date |
---|---|
JP2503112B2 (en) | 1996-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6345443B2 (en) | ||
JP3392664B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
JPH02243719A (en) | Production of superior thick silicon steel plate having excellent machinability and uniform magnetic property in plate-thickness direction | |
JPH04268020A (en) | Production of nonoriented electric steel plate having superior magnetic characteristic | |
JPH024920A (en) | Manufacture of thick electrical plate for d.c. magnetization | |
JPH04268021A (en) | Production of nonoriented electric steel plate having superior magnetic characteristic | |
JPH04268024A (en) | Production of satisfactory electric steel plate | |
JPH024918A (en) | Manufacture of non-oriented thick electrical plate having high magnetic flux density | |
JP3474741B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
JPH04268025A (en) | Production of nonoriented electric steel plate | |
JPH02145723A (en) | Manufacture of thick steel material having excellent direct current magnetization characteristics | |
JPH02243716A (en) | Production of thick nonoriented silicon steel plate having uniform magnetic property in plate-thickness direction | |
JPH04293722A (en) | Production of grain nonoriented electrical steel plate having superior machinability | |
JPH04268022A (en) | Production of satisfactory electric steel plate | |
JPH04268023A (en) | Production of nonoriented satisfactory electric steel | |
JPH0726326A (en) | Production of nonoriented silicon steel plate | |
JPH04293724A (en) | Production of easily machinable non-oriented electric steel sheet | |
JPH0726325A (en) | Production of superior silicon steel plate | |
JPH024919A (en) | Manufacture of thick electrical plate having high magnetic flux density | |
JPH0711328A (en) | Manufacture of good thick electrical steel plate | |
JPH0726327A (en) | Production of nonoriented silicon steel plate | |
JPH028325A (en) | Production of non-oriented good magnetic steel plate | |
JPH04333517A (en) | Production of thick nonoriented silicon steel plate excellent in magnetic property | |
JPH028324A (en) | Production of good magnetic steel plate | |
JPH028323A (en) | Production of good magnetic steel plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19960130 |