JPH04293722A - Production of grain nonoriented electrical steel plate having superior machinability - Google Patents

Production of grain nonoriented electrical steel plate having superior machinability

Info

Publication number
JPH04293722A
JPH04293722A JP3057044A JP5704491A JPH04293722A JP H04293722 A JPH04293722 A JP H04293722A JP 3057044 A JP3057044 A JP 3057044A JP 5704491 A JP5704491 A JP 5704491A JP H04293722 A JPH04293722 A JP H04293722A
Authority
JP
Japan
Prior art keywords
rolling
less
steel
plate
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3057044A
Other languages
Japanese (ja)
Inventor
Tatsuya Kumagai
達也 熊谷
Yukio Tomita
冨田 幸男
Hidetaka Chiba
千葉 秀隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3057044A priority Critical patent/JPH04293722A/en
Publication of JPH04293722A publication Critical patent/JPH04293722A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To produce a grain nonoriented electrical steel plate excellent in magnetic properties in a medium magnetic field and machinability and having high specific resistance value by working an Si-containing extremely low carbon steel into a plate at respectively specified temp. and rolling conditions and then performing dehydrogenation heat treatment, annealing, or normalizing according to plate thickness. CONSTITUTION:A slab of a steel for silicon steel having a composition containing, by weight, <0.008% C, 0.1-3.0% Si, <0.20% Mn, 0.02-0.2% P, <0.010% S, <0.040% Al, <0.004% N, <0.005% O, and <0.O002% H is subjected to heating up to 950-1150 deg.C before rolling. After high rolling shape ratio hot rolling including more than one rolling pass where rolling shape ratio A represented by an equation is regulated to >=0.6 is performed at >=800 deg.C, rolling of 35-70% cumulative reduction of area is successively exerted at <=800 deg.C to refine crystalline grains. A plate of >=50mm thickness is subjected to dehydrogenation heat treatment at 600-750 deg.C and, as necessary, to annealing at 750-1150 deg.C or normalizing at 910-1200 deg.C. A plate of <=50mm thickness is annealed at 750-1150 deg.C or normalized at 910-1200 deg.C.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は中磁場での磁気特性が高
く、高い固有抵抗値を有し、かつ優れた切削性を有する
無方向性電磁厚板の製造方法を提供するものである。
FIELD OF INDUSTRIAL APPLICATION The present invention provides a method for manufacturing a non-oriented electromagnetic thick plate which has high magnetic properties in a medium magnetic field, a high resistivity value, and excellent machinability.

【0002】0002

【従来の技術】近年最先端科学技術である素粒子研究や
医療機器の進歩に伴って、大型構造物に磁気を用いる装
置が使われ、その性能向上が求められている。直流磁化
条件で使用される粒子加速器用磁極材、リターンヨーク
材では、高い飽和磁束密度の他に5Oe(400A/m
)付近の中磁場での高い磁束密度が求められている。 磁束密度に優れた電磁鋼板としては、従来から薄板分野
で珪素鋼板、電磁軟鉄板をはじめとする数多くの材料が
提供されているのは公知である。しかし、構造部材とし
て使用するには組立加工及び強度上の問題があり、厚鋼
板を利用する必要が生じてくる。これまで電磁厚板とし
ては純鉄系成分で製造されている。たとえば、特開昭6
0−96749号公報が公知である。
BACKGROUND OF THE INVENTION In recent years, with advances in elementary particle research and medical equipment, which are cutting-edge science and technology, devices that use magnetism are being used in large structures, and there is a demand for improved performance. The magnetic pole material and return yoke material for particle accelerators used under DC magnetization conditions have a high saturation magnetic flux density of 5Oe (400A/m
) A high magnetic flux density in a medium magnetic field is required. It is well known that many materials such as silicon steel sheets and electromagnetic soft iron sheets have been provided in the field of thin plates as electromagnetic steel sheets with excellent magnetic flux density. However, when used as a structural member, there are problems with assembly and strength, and it becomes necessary to use thick steel plates. Until now, electromagnetic plates have been manufactured using pure iron-based components. For example, JP-A-6
0-96749 is publicly known.

【0003】しかしながら、近年の装置の大型化、能力
の向上等に伴いさらに磁気特性の優れた、特に中磁場、
たとえば5Oe(400A/m)付近での磁束密度の高
い鋼材開発の要望が強い。前掲の特許等で開発された鋼
材では、5Oe付近での中磁場の高い磁束密度が安定し
て得られていない。また粒子加速器用磁極材やリターン
ヨーク材として用いられる鋼板には切削加工が施される
場合が多いが、純鉄系成分の電磁厚板では切削加工性が
悪いことが問題となっていた。
However, in recent years, as devices have become larger and their capabilities have improved, devices with even better magnetic properties, especially in medium magnetic fields, have been developed.
For example, there is a strong demand for the development of steel materials with high magnetic flux density around 5 Oe (400 A/m). With the steel materials developed in the above-mentioned patents, it is not possible to stably obtain a high magnetic flux density in the medium magnetic field near 5 Oe. Furthermore, steel plates used as magnetic pole materials and return yoke materials for particle accelerators are often subjected to cutting, but electromagnetic thick plates made of pure iron have a problem of poor machinability.

【0004】0004

【発明が解決しようとする課題】本発明の目的は以上の
点を鑑みなされたもので、中磁場での磁気特性が高く、
高い固有抵抗値を有し、かつ優れた切削性を有する無方
向性電磁厚板の製造方法を提供することである。
[Problems to be Solved by the Invention] The object of the present invention has been made in view of the above points, and has high magnetic properties in a medium magnetic field.
It is an object of the present invention to provide a method for manufacturing a non-oriented electromagnetic thick plate having a high resistivity value and excellent machinability.

【0005】[0005]

【課題を解決するための手段】本発明は重量%で、C:
0.008%以下、Si:0.1%以上、3.0%以下
、Mn:0.20%以下、P:0.02%以上、0.2
%以下、S:0.010%以下、Al:0.040%以
下、N:0.004%以下、O:0.005%以下、H
:0.0002%以下、残部実質的に鉄からなる鋼組成
の鋼片または、鋳片を950〜1150℃に加熱し、8
00℃以上で圧延形状比Aが0.6以上の圧延パスを1
回以上はとる圧延を行ない、引き続き800℃以下で圧
下率を35%超70%以下とする圧延を行ない、板厚5
0mm以上の厚板については600〜750℃の脱水素
熱処理を行なった後、必要に応じて750〜1150℃
で焼鈍するかあるいは910〜1200℃で焼準し、板
厚50mm未満については750〜1150℃で焼鈍す
るかあるいは910〜1200℃で焼準することを特徴
とする中磁場での磁気特性が高く、かつ、高い固有抵抗
値を有する無方向性電磁厚板の製造方法である。
[Means for Solving the Problems] The present invention provides C:
0.008% or less, Si: 0.1% or more, 3.0% or less, Mn: 0.20% or less, P: 0.02% or more, 0.2
% or less, S: 0.010% or less, Al: 0.040% or less, N: 0.004% or less, O: 0.005% or less, H
: 0.0002% or less, the remainder being substantially iron, a steel slab or cast slab is heated to 950 to 1150°C, and
Rolling pass with rolling shape ratio A of 0.6 or more at 00℃ or higher
Rolling is performed for at least 3 times, and then rolling is performed at 800°C or less with a rolling reduction of more than 35% and less than 70%, and the plate thickness is 5.
For thick plates of 0 mm or more, after dehydrogenation heat treatment at 600-750°C, heat treatment at 750-1150°C as necessary.
or normalized at 910-1200°C, and for plates less than 50mm thick, annealed at 750-1150°C or normalized at 910-1200°C, which has high magnetic properties in a medium magnetic field. , and a method for manufacturing a non-oriented electromagnetic thick plate having a high specific resistance value.

【0006】[0006]

【数2】[Math 2]

【0007】[0007]

【作用】まず、磁化のプロセスについて述べる。消磁状
態の鋼を磁界の中に入れ、磁界を強めていくと次第に磁
区の向きに変化が生じ、磁界の方向に近い磁区が優勢に
なり他の磁区を蚕食併合していく。つまり、磁壁の移動
が起こる。さらに磁界が強くなり磁壁の移動が完了する
と、次に磁区全体が磁化方向に向きを変えていく。この
磁化プロセスの中で低磁場での磁束密度を決めているの
は、磁壁の移動しやすさである。つまり低磁場で高磁束
密度を得るためには、磁壁の移動を障害するものを極力
減らすことであると定性的に言うことができる。この観
点から従来磁壁の移動の障害となる結晶粒の粗大化が重
要な技術となっていた(特開昭60−96749号公報
)。これに対し、中磁場で鋼磁束密度を得るための方法
については知見がなかった。
[Operation] First, the process of magnetization will be described. When demagnetized steel is placed in a magnetic field and the field is strengthened, the orientation of the magnetic domains gradually changes, and the magnetic domains that are close to the direction of the magnetic field become dominant and merge with other magnetic domains. In other words, movement of the domain wall occurs. When the magnetic field becomes stronger and the movement of the domain wall is completed, the entire magnetic domain changes direction in the direction of magnetization. In this magnetization process, the ease with which domain walls move determines the magnetic flux density in low magnetic fields. In other words, it can be said qualitatively that in order to obtain a high magnetic flux density in a low magnetic field, it is necessary to reduce as much as possible what impedes the movement of domain walls. From this point of view, coarsening of crystal grains that impede movement of domain walls has traditionally been an important technique (Japanese Patent Laid-Open No. 60-96749). On the other hand, there was no knowledge of a method for obtaining the steel magnetic flux density in a medium magnetic field.

【0008】発明者らは、ここにおいて中磁場で高磁束
密度を得るためには、単に結晶粒の粗大化だけでなく、
結晶粒の磁化容易〔100〕方位が圧延面に平行に揃っ
ていることが重要であることを見出した。特に超粗大粒
にする必要はないが、比較的粗粒(フェライト粒度No
.が0〜4番程度)でかつ〔100〕方位が圧延面に平
行な集合組織を有することで中磁場の磁気特性が大幅に
向上することを見出したのである。このための熱間圧延
条件として、800℃以下において35%超70%以下
の圧下率をとることで、圧延後の熱処理前の結晶粒を微
細化して再結晶させやすくするとともに、鋼中に歪みを
導入して、この歪みを熱処理時の再結晶の駆動力とする
ことで、比較的大きな結晶粒を板厚全体にわたって安定
的に得ると同時に、〔100〕の結晶方位が圧延面に平
行な集合組織を得るとができる。図1に0.003%C
−1.3%Si−0.055%P鋼での800℃以下の
圧下率と5Oeでの磁束密度を示す。35%超70%以
下の圧下により、高磁束密度が得られる。
The inventors here discovered that in order to obtain a high magnetic flux density in a medium magnetic field, it is necessary not only to coarsen the crystal grains but also to
It has been found that it is important that the easy-to-magnetize [100] orientation of the crystal grains is aligned parallel to the rolling surface. It is not necessary to make ultra-coarse grains in particular, but relatively coarse grains (ferrite grain size No.
.. They found that the magnetic properties in a medium magnetic field can be significantly improved by having a texture in which the number is about 0 to 4) and the [100] orientation is parallel to the rolling surface. As a hot rolling condition for this purpose, by taking a rolling reduction of more than 35% and less than 70% at 800°C or less, the grains before heat treatment after rolling are made finer and easier to recrystallize, and the steel is strained. By introducing this strain and using this strain as a driving force for recrystallization during heat treatment, relatively large crystal grains can be stably obtained throughout the sheet thickness, and at the same time, the [100] crystal orientation is parallel to the rolling surface. It is possible to obtain a collective structure. Figure 1 shows 0.003%C
-1.3%Si-0.055%P steel showing the rolling reduction of 800°C or less and the magnetic flux density at 5Oe. A high magnetic flux density can be obtained by a reduction of more than 35% and less than 70%.

【0009】さらに中磁場での高磁束密度を得るための
手段として、空隙性欠陥の影響についても種々検討した
結果、そのサイズが100μ以上のものが磁気特性を大
幅に低下することを知見したものである。そしてこの1
00μ以上の有害な空隙性欠陥をなくすためには圧延形
状比Aが0.6以上必要であることを見出した。
Furthermore, as a means of obtaining a high magnetic flux density in a medium magnetic field, various studies were conducted on the influence of void defects, and it was found that defects with a size of 100 μm or more significantly deteriorate the magnetic properties. It is. And this one
It has been found that in order to eliminate harmful void defects of 0.00 μm or more, the rolled shape ratio A needs to be 0.6 or more.

【0010】0010

【数3】[Math 3]

【0011】さらに、鋼中の水素の存在も有害で、脱水
素熱処理を行なうことによって磁気特性が大幅に向上す
ることを知見した。高形状比圧延により空隙性欠陥のサ
イズを100μ以下にし、かつ、脱水素熱処理により鋼
中水素を減少することで中磁場での磁束密度が大幅に上
昇する。さらに、図2に示すように、鋼に高い固有抵抗
値を与え、かつAlの無添加の領域でAlに代わる脱酸
剤として使える元素としてSiが最適であることを知見
した。
Furthermore, it has been found that the presence of hydrogen in steel is also harmful, and that magnetic properties can be significantly improved by dehydrogenation heat treatment. By reducing the size of void defects to 100 μm or less through high shape ratio rolling and reducing hydrogen in the steel through dehydrogenation heat treatment, the magnetic flux density in a medium magnetic field increases significantly. Furthermore, as shown in FIG. 2, it has been found that Si is the most suitable element to give steel a high resistivity value and to be used as a deoxidizing agent in place of Al in a region where no Al is added.

【0012】磁気シールド用鋼板の切削性を向上させる
元素については従来Sなどが知られている(特開平1−
142028号公報)。しかしSはMnSを形成し、上
記方法による結晶粒粗大化を著しく妨げ、磁気特性を大
きく低下させる。ここにおいて発明者らは、鋼材の切削
性を向上させ、かつ上記方法による結晶粒粗大化を妨げ
ない元素としてPが有効であることを見出した。またS
i,Al,Pなどは靭性を低下させるが、これに対して
は極低CとしたうえにSも低減することで靭性が確保可
能であることを知見した。図3は0.004%C−1.
8%Si鋼にあって、切削性へのP量の影響を示したも
のである。すなわち、直径10.2mmのハイス鋼製ド
リルによって回転数700rpm 、送り速度140m
m/min の条件で深さ30mの穴を20個開けた場
合のドリル逃げ面の磨耗幅とP量の関係であり、磨耗幅
が0.2mm以下を切削性が特に良い(◎で示す)、0
.2mm〜0.3mmを切削性が良い(○で示す)、0
.3mm以上を切削性が普通である(△で示す)と定義
している。これをみるとPが0.02%以上で切削性が
良好であることがわかる。
[0012] As an element that improves the machinability of steel sheets for magnetic shielding, S etc.
142028). However, S forms MnS, which significantly impedes crystal grain coarsening by the above method and greatly reduces magnetic properties. Here, the inventors have discovered that P is effective as an element that improves the machinability of steel materials and does not hinder crystal grain coarsening by the above method. Also S
Although i, Al, P, etc. reduce toughness, it has been found that toughness can be ensured by setting extremely low C and also reducing S. Figure 3 shows 0.004% C-1.
This figure shows the influence of the amount of P on the machinability of 8% Si steel. In other words, a high-speed steel drill with a diameter of 10.2 mm was used at a rotation speed of 700 rpm and a feed rate of 140 m.
This is the relationship between the wear width of the drill flank and the amount of P when 20 holes with a depth of 30 m are drilled under the condition of m/min. The machinability is particularly good when the wear width is 0.2 mm or less (indicated by ◎). ,0
.. Good machinability from 2mm to 0.3mm (indicated by ○), 0
.. 3 mm or more is defined as having normal machinability (indicated by △). It can be seen that the machinability is good when P is 0.02% or more.

【0013】次に成分限定理由を述べる。Cは鋼中の内
部応力を高め、磁気特性、特に低磁場での磁束密度を最
も下げる元素であり、極力下げることが中磁場での磁束
密度を低下させないことに寄与する。また、靭性確保の
点からも低いほど良い。このようなことから、0.00
8%以下に限定する。Siは図2に示すように固有抵抗
値を高めるには不可欠な元素で、0.1%以上添加する
必要がある。しかし、過剰に添加すると中磁場での磁束
密度が低下し、また靭性も低下させるため上限を3.0
%とする。
Next, the reason for limiting the ingredients will be described. C is an element that increases the internal stress in steel and lowers the magnetic properties, especially the magnetic flux density in a low magnetic field, the most, and reducing it as much as possible contributes to not lowering the magnetic flux density in a medium magnetic field. In addition, from the viewpoint of ensuring toughness, the lower the content, the better. Because of this, 0.00
Limited to 8% or less. As shown in FIG. 2, Si is an essential element for increasing the specific resistance value, and needs to be added in an amount of 0.1% or more. However, if added excessively, the magnetic flux density in a medium magnetic field will decrease and the toughness will also decrease, so the upper limit has been set to 3.0.
%.

【0014】Mnは中磁場での磁束密度の点から少ない
方が好ましく、MnS系介在物を生成する点からも低い
方がよい。この意味からMnは0.20%以下に限定す
る。Mnに関してはMnS系介在物を生成する点よりさ
らに望ましくは0.10%以下が良い。S、Oは鋼中に
おいて非金属介在物を形成し、結晶粒の粗大化を妨げる
害を及ぼし含有量が多くなるに従って磁束密度の低下が
見られ、磁気特性を低下させるので少ない程よい。この
ため、Sは0.010%以下、Oは0.005%以下と
する。Alは脱酸剤として用いるもので、Alは多くな
りすぎると介在物を生成し鋼の性質を損なうので上限は
0.040%とする。さらに結晶粒粗大化を妨げる析出
物であるAlNを減少させるためには低いほどよく、望
ましくは0.020%以下がよい。Nは内部応力を高め
かつAlNにより結晶粒微細化作用により中磁場での磁
束密度を低下させるので上限は0.004%とする。H
は磁気特性を低下させ、かつ、空隙性欠陥の減少を妨げ
るので0.0002%以下とする。
[0014] The lower the Mn content, the better from the viewpoint of magnetic flux density in a medium magnetic field, and the lower the Mn content from the viewpoint of generating MnS-based inclusions. From this point of view, Mn is limited to 0.20% or less. Regarding Mn, it is more desirable to keep it at 0.10% or less from the point of view of forming MnS-based inclusions. S and O form non-metallic inclusions in steel, hinder the coarsening of crystal grains, and as their content increases, the magnetic flux density decreases and the magnetic properties deteriorate, so the smaller the content, the better. Therefore, S should be 0.010% or less, and O should be 0.005% or less. Al is used as a deoxidizing agent, and if the amount of Al is too large, inclusions will be formed and the properties of the steel will be impaired, so the upper limit is set to 0.040%. Furthermore, in order to reduce AlN, which is a precipitate that prevents crystal grain coarsening, the lower the content, the better, and preferably 0.020% or less. Since N increases internal stress and AlN reduces the magnetic flux density in a medium magnetic field due to its crystal grain refining effect, the upper limit is set to 0.004%. H
Since it lowers the magnetic properties and prevents the reduction of void defects, it is set to 0.0002% or less.

【0015】次に製造法について述べる。圧延条件につ
いては、まず圧延前加熱温度を1150℃以下にするの
は、1150℃を超える加熱温度では、加熱γ粒径の板
厚方向のバラツキは大きく、このバラツキが圧延後も残
り最終的な結晶粒が不均一となるため、上限を1150
℃とする。加熱温度が950℃未満となると圧延の変形
抵抗が大きくなり、以下に述べる空隙性欠陥をなくすた
めの形状比の高い圧延の圧延負荷が大きくなるため、9
50℃を下限とする。熱間圧延にあたり前述の空隙性欠
陥は鋼の凝固過程で大小はあるが、必ず発生するもので
ありこれをなくす手段は圧延によらなければならないの
で、熱間圧延の役目は重要である。すなわち、熱間圧延
1回当たりの変形量を大きくし板厚中心部にまで変形が
及ぶ熱間圧延が有効である。具体的には800℃以上で
圧延形状比Aが0.6以上の圧延パスが1回以上を含む
高形状比圧延を行ない、空隙性欠陥のサイズを100μ
以下にすることが磁気特性によい。圧延中にこの高形状
比圧延により空隙性欠陥をなくすことで、後で行なう脱
水素熱処理における脱水素効率が飛躍的に上昇するので
ある。ここに800℃以上で高形状比圧延を行なう理由
は、800℃未満の低温では変形抵抗が大きく通常の圧
延機では悪化が困難となるからである。
Next, the manufacturing method will be described. Regarding the rolling conditions, first of all, the pre-rolling heating temperature should be set to 1150°C or less. At heating temperatures exceeding 1150°C, there will be large variations in the heated γ grain size in the thickness direction, and this variation will remain even after rolling and cause the final result. Since the crystal grains become non-uniform, the upper limit is set to 1150.
℃. If the heating temperature is less than 950°C, the deformation resistance during rolling will increase, and the rolling load for rolling with a high shape ratio to eliminate void defects described below will increase.
The lower limit is 50°C. The role of hot rolling is important because the above-mentioned porosity defects, which vary in size during the solidification process of steel, always occur during hot rolling, and rolling is the only way to eliminate them. That is, hot rolling in which the amount of deformation per hot rolling is increased and the deformation extends to the center of the sheet thickness is effective. Specifically, high shape ratio rolling including one or more rolling passes with rolling shape ratio A of 0.6 or more is performed at 800°C or higher to reduce the size of void defects to 100μ.
The following is good for magnetic properties. By eliminating void defects during rolling by this high shape ratio rolling, the dehydrogenation efficiency in the subsequent dehydrogenation heat treatment is dramatically increased. The reason why high shape ratio rolling is carried out at 800° C. or higher is that deformation resistance is large at low temperatures below 800° C., and deterioration is difficult to achieve with a normal rolling mill.

【0016】次に800℃以下の温度において累積圧下
率35%以上にすることにより結晶粒を微細化するとと
もに歪みを導入し、これに続く熱処理時の再結晶を促進
させる。さらにこの圧延により、〔100〕の結晶方位
が圧延面に平行に揃った集合組織を得る。ただし70%
超の圧下率になると、熱処理後結晶粒度が板厚方向に不
均一になり、磁束密度のばらつきを大きくする。従って
板厚方向に均一な比較的粗大な粒を得るために、圧下率
を35%超70%以下とする。
Next, by increasing the cumulative reduction rate to 35% or more at a temperature of 800° C. or lower, crystal grains are made finer and strain is introduced, thereby promoting recrystallization during the subsequent heat treatment. Further, by this rolling, a texture in which the [100] crystal orientation is aligned parallel to the rolling surface is obtained. However, 70%
If the rolling reduction ratio is too high, the grain size after heat treatment becomes non-uniform in the thickness direction of the plate, increasing the variation in magnetic flux density. Therefore, in order to obtain relatively coarse grains that are uniform in the thickness direction, the reduction ratio is set to more than 35% and less than 70%.

【0017】次に熱間圧延に引き続き結晶粒粗大化、内
部歪除去及び板厚50mm以上の厚手材については必要
に応じて脱水素熱処理を施す。板厚50mm以上では水
素の拡散がしにくく、これが空隙性欠陥の原因となり、
かつ、水素自身の作用と合わさって低磁場での磁束密度
を低下させる。このため、脱水素熱処理を行なうが、そ
の際600℃未満では脱水素効率が悪く750℃超では
変態が一部開始するので600〜750℃の温度範囲で
行なう。脱水素時間としては種々検討の結果〔0.6(
t−50)+6〕時間(t:板厚)が適当である。必要
に応じて施す焼鈍は結晶粒粗大化及び内部歪除去のため
に行なうが、750℃未満では結晶粒粗大化が起こらず
、また1150℃以上では結晶粒の板厚方向での均質性
が保てないため、焼鈍温度としては750〜1150℃
に限定する。
Next, following hot rolling, grain coarsening, internal strain removal, and dehydrogenation heat treatment is performed as necessary for thick materials with a plate thickness of 50 mm or more. If the plate thickness is 50 mm or more, it is difficult for hydrogen to diffuse, which causes void defects.
In addition, combined with the action of hydrogen itself, it lowers the magnetic flux density in a low magnetic field. For this reason, a dehydrogenation heat treatment is performed, but at a temperature lower than 600°C, the dehydrogenation efficiency is poor and a part of transformation starts at a temperature higher than 750°C, so the dehydrogenation heat treatment is carried out in a temperature range of 600 to 750°C. As a result of various studies, the dehydrogenation time was [0.6 (
t-50)+6] time (t: plate thickness) is appropriate. Annealing is performed as necessary to coarsen the crystal grains and remove internal strain, but at temperatures below 750°C, no coarsening of the grains occurs, and at temperatures above 1150°C, the homogeneity of the grains in the thickness direction is maintained. Therefore, the annealing temperature is 750 to 1150℃.
limited to.

【0018】焼準は板厚方向の結晶粒調整及び内部歪除
去のために焼鈍に代えて行うが、下限はオーステナイト
域下限のAc3 点である910℃で、かつ1200℃
以上では結晶粒の板厚方向の均質性が保てないので、焼
準温度は910℃〜1200℃に限定する。なお、板厚
50mm以上の厚手材で行なう脱水素熱処理でこの焼鈍
あるいは焼準をかねることが可能である。一方、板厚5
0mm未満のものは水素のの拡散が容易なため、脱水素
熱処理は不要で前述の焼鈍または焼準するのみでよい。
Normalizing is performed in place of annealing to adjust grains in the thickness direction and remove internal strain, but the lower limit is 910°C, which is the Ac3 point at the lower limit of the austenite region, and 1200°C.
Since the homogeneity of the crystal grains in the thickness direction cannot be maintained above, the normalization temperature is limited to 910°C to 1200°C. Note that this annealing or normalizing can be performed by dehydrogenation heat treatment performed on a thick material having a thickness of 50 mm or more. On the other hand, plate thickness 5
If the diameter is less than 0 mm, hydrogen can easily diffuse, so dehydrogenation heat treatment is not necessary and only the above-mentioned annealing or normalizing is sufficient.

【0019】[0019]

【実施例】表1に電磁厚板の製造条件とフェライト粒径
、中磁場での磁束密度、固有抵抗値、靭性および切削性
の評価を示す。
[Example] Table 1 shows the manufacturing conditions of the electromagnetic thick plate and the evaluation of the ferrite grain size, magnetic flux density in a medium magnetic field, specific resistance value, toughness and machinability.

【0020】[0020]

【表1】[Table 1]

【0021】[0021]

【表2】[Table 2]

【0022】例1〜8は本発明の実施例を示し、例9〜
26は比較例を示す。例1〜3は板厚100mm、例4
〜6は500mm、例7は40mm、例8は6mmに仕
上げたもので、いずれも中磁場で高磁束密度であり、固
有抵抗値も高く、かつ切削性も良い。例9はCが高く、
例10はSiが低いため磁束密度が低くなっている。例
11はSiが上限を超えているため靭性が低く、磁束密
度も低い。例12はMnが高いため、磁束密度が低い。 例13はPが低いので切削性が悪い。例14はPが上限
を超えているため靭性が低い。例15はSが高いため磁
束密度が低い。例16はAlが高いため靭性が低い。例
17はNが高く、例18はOが高く、例19はHが高い
ため磁束密度が低い。例20は加熱温度が上限を超え磁
束密度が低い。例21は加熱温度が下限をはずれている
ため、磁束密度が低い。例22は800℃以下の圧下率
が下限をはずれ磁束密度が低い。例23は最大形状比が
下限をはずれ、例24は脱水素熱処理温度が下限をはず
れ、例25は焼鈍温度が下限をはずれ、例26は脱水素
熱処理がないため磁束密度が低い。
Examples 1 to 8 illustrate embodiments of the invention; Examples 9 to 8 illustrate examples of the invention;
26 shows a comparative example. Examples 1 to 3 have a plate thickness of 100 mm, Example 4
- 6 were finished to 500 mm, Example 7 to 40 mm, and Example 8 to 6 mm, all of which had high magnetic flux density in a medium magnetic field, high specific resistance, and good machinability. Example 9 has high C,
In Example 10, the magnetic flux density is low because the Si content is low. In Example 11, since Si exceeds the upper limit, the toughness is low and the magnetic flux density is also low. Example 12 has a high Mn content, so the magnetic flux density is low. Example 13 has poor machinability because P is low. Example 14 has low toughness because P exceeds the upper limit. In Example 15, the magnetic flux density is low because S is high. Example 16 has low toughness due to high Al content. Example 17 has a high N content, Example 18 has a high O content, and Example 19 has a high H content, so the magnetic flux density is low. In Example 20, the heating temperature exceeded the upper limit and the magnetic flux density was low. In Example 21, the heating temperature was outside the lower limit, so the magnetic flux density was low. In Example 22, the rolling reduction of 800° C. or less is outside the lower limit and the magnetic flux density is low. In Example 23, the maximum shape ratio is outside the lower limit, in Example 24, the dehydrogenation heat treatment temperature is outside the lower limit, in Example 25, the annealing temperature is outside the lower limit, and in Example 26, the magnetic flux density is low because there is no dehydrogenation heat treatment.

【0023】[0023]

【発明の効果】本発明によれば適切な成分限定により板
厚の厚い厚鋼板に均質な高電磁特性を具備せしめ、高い
固有抵抗値を有し、かつ良好な切削性も合わせ持たせる
ことに成功し、直流磁化による磁気特性を利用した切削
加工の施される構造物に適用可能としたものである。か
つその製造法も前述の成分限定と熱間圧延後結晶粒調整
及び脱水素熱処理を同時に行なう方式であり極めて経済
的に製造する方法を提供するもので産業上多大な効果を
奏するものである。
[Effects of the Invention] According to the present invention, by appropriately limiting the ingredients, a thick steel plate can be provided with uniform high electromagnetic properties, a high resistivity value, and good machinability. This method was successful and can be applied to structures that undergo cutting using the magnetic properties of direct current magnetization. Moreover, the manufacturing method thereof is a method in which the above-mentioned ingredient limitation, grain adjustment after hot rolling, and dehydrogenation heat treatment are performed simultaneously, and it provides an extremely economical manufacturing method and has great industrial effects.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】5Oeにおける磁束密度におよぼす800℃以
下の圧下率の影響を示すグラフである。
FIG. 1 is a graph showing the influence of a reduction rate of 800° C. or less on magnetic flux density at 5 Oe.

【図2】固有抵抗値に及ぼすSi含有量の影響を示すグ
ラフである。
FIG. 2 is a graph showing the influence of Si content on specific resistance.

【図3】切削性に及ぼすP量の影響を示すグラフである
FIG. 3 is a graph showing the influence of the amount of P on machinability.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  重量%で、 C:0.008%以下、 Si:0.1%以上、3.0%以下、 Mn:0.20%以下、 P:0.02%以上、0.2%以下、 S:0.010%以下、 Al:0.040%以下、 N:0.004%以下、 O:0.005%以下、 H:0.0002%以下、 残部実質的に鉄からなる鋼組成の鋼片または、鋳片を9
50〜1150℃に加熱し、800℃以上で圧延形状比
Aが0.6以上の圧延パスを1回以上はとる圧延を行な
い、引き続き800℃以下で圧下率を35%超70%以
上とする圧延を行ない、板厚50mm以上の厚板につい
ては600〜750℃の脱水素熱処理を行なった後、必
要に応じて750〜1150℃で焼鈍するかあるいは9
10〜1200℃で焼準し、板厚50mm未満について
は750〜1150℃で焼鈍するかあるいは910〜1
200℃で焼準することを特徴とする中磁場での磁気特
性が高く、かつ、高い固有抵抗値を有する良切削性無方
向性電磁厚板の製造方法。 【数1】
Claim 1: In weight%, C: 0.008% or less, Si: 0.1% or more and 3.0% or less, Mn: 0.20% or less, P: 0.02% or more, 0.2 % or less, S: 0.010% or less, Al: 0.040% or less, N: 0.004% or less, O: 0.005% or less, H: 0.0002% or less, the remainder substantially consisting of iron. 9 steel slabs or cast slabs of steel composition
Heating to 50 to 1150°C, rolling at least once at 800°C or higher with a rolling shape ratio A of 0.6 or more, and then rolling at 800°C or lower with a rolling reduction of more than 35% to 70% or more. After rolling and dehydrogenation heat treatment at 600 to 750°C for plates with a thickness of 50 mm or more, annealing at 750 to 1150°C or 9
Normalize at 10-1200℃, and annealing at 750-1150℃ for plate thickness less than 50mm or 910-1200℃.
A method for producing a non-oriented electromagnetic thick plate with good machinability, which has high magnetic properties in a medium magnetic field and has a high specific resistance value, which is characterized by normalizing at 200°C. [Math 1]
JP3057044A 1991-03-20 1991-03-20 Production of grain nonoriented electrical steel plate having superior machinability Withdrawn JPH04293722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3057044A JPH04293722A (en) 1991-03-20 1991-03-20 Production of grain nonoriented electrical steel plate having superior machinability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3057044A JPH04293722A (en) 1991-03-20 1991-03-20 Production of grain nonoriented electrical steel plate having superior machinability

Publications (1)

Publication Number Publication Date
JPH04293722A true JPH04293722A (en) 1992-10-19

Family

ID=13044451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3057044A Withdrawn JPH04293722A (en) 1991-03-20 1991-03-20 Production of grain nonoriented electrical steel plate having superior machinability

Country Status (1)

Country Link
JP (1) JPH04293722A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248559A (en) * 2009-04-14 2010-11-04 Nippon Steel Corp Nonoriented electrical steel sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248559A (en) * 2009-04-14 2010-11-04 Nippon Steel Corp Nonoriented electrical steel sheet

Similar Documents

Publication Publication Date Title
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH04293722A (en) Production of grain nonoriented electrical steel plate having superior machinability
JP2503110B2 (en) Method for manufacturing non-oriented electromagnetic thick plate with excellent magnetic properties
JPH0711026B2 (en) Manufacturing method of non-directional electromagnetic thick plate with high magnetic flux density
JPH024920A (en) Manufacture of thick electrical plate for d.c. magnetization
JPH079040B2 (en) Manufacturing method of good electromagnetic thick plate with good machinability and uniform magnetic properties in the plate thickness direction
JP2503111B2 (en) Manufacturing method of non-oriented electromagnetic thick plate with excellent magnetic properties
JPH0713264B2 (en) Manufacturing method of non-oriented electromagnetic thick plate with uniform magnetic properties in the thickness direction
JPH04293724A (en) Production of easily machinable non-oriented electric steel sheet
JP2503113B2 (en) Manufacturing method of non-oriented electromagnetic thick plate
JPH0726326A (en) Production of nonoriented silicon steel plate
JP2503112B2 (en) Manufacturing method of good electromagnetic plate
JPH04268022A (en) Production of satisfactory electric steel plate
JPH0726325A (en) Production of superior silicon steel plate
JPH0726327A (en) Production of nonoriented silicon steel plate
JPH0745688B2 (en) Method for manufacturing high magnetic flux density electromagnetic thick plate
JPH04268023A (en) Production of nonoriented satisfactory electric steel
JPS61149432A (en) Manufacture of grain oriented silicon steel sheet having high magnetic flux density and low iron loss
JPH0711328A (en) Manufacture of good thick electrical steel plate
JPH11124627A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPH028323A (en) Production of good magnetic steel plate
JPH024922A (en) Manufacture of electrical thick sheet for nonoriented direct current magnetization
JPH028325A (en) Production of non-oriented good magnetic steel plate
JPH0689401B2 (en) Manufacturing method of electromagnetic thick plate for non-directional DC magnetization
JPH04333518A (en) Production of thick nonoriented silicon steel plate excellent in magnetic property

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514