JPH04333517A - Production of thick nonoriented silicon steel plate excellent in magnetic property - Google Patents

Production of thick nonoriented silicon steel plate excellent in magnetic property

Info

Publication number
JPH04333517A
JPH04333517A JP3104487A JP10448791A JPH04333517A JP H04333517 A JPH04333517 A JP H04333517A JP 3104487 A JP3104487 A JP 3104487A JP 10448791 A JP10448791 A JP 10448791A JP H04333517 A JPH04333517 A JP H04333517A
Authority
JP
Japan
Prior art keywords
rolling
slab
less
steel
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3104487A
Other languages
Japanese (ja)
Other versions
JP2503122B2 (en
Inventor
Yukio Tomita
冨田 幸男
Tatsuya Kumagai
達也 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3104487A priority Critical patent/JP2503122B2/en
Publication of JPH04333517A publication Critical patent/JPH04333517A/en
Application granted granted Critical
Publication of JP2503122B2 publication Critical patent/JP2503122B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the silicon steel plate having high strength by heating a slab or cast slab of a steel, having a composition in which respective upper limits of C, Si, Mn, S, Al, N, O, and H are limited, up to a specific temp. and subjecting the above-mentioned slab or cast slab to rollings, in succession, under respectively specified conditions at temps. not lower than and not higher than a specific temp., respectively. CONSTITUTION:A slab or cast slab of a steel having a composition consisting of, by weight, <=0.01% C, <=0.02% Si, <=0.20% Mn, <=0.010% S, <=0.040% Al, <=0.004% N, =0.005% O, <=0.0002% H, and the balance iron is prepared. This slab or cast slab is heated to 950-1150 deg.C and subjected to rolling where rolling pass of >=0.6 rolling shape ratio A represented by an equation is done at least once at >=800 deg.C, by which harmful vacancy defects are removed and deterioration in magnetic properties is prevented. Successively, rolling is done at <=800 deg.C at 35-70% reduction of area and the [100] crystal orientation is made random in a direction parallel to the rolling direction, by which magnetic properties in a medium magnetic field can be remarkably improved and high strength can be obtained. In the above equation, hi, ho, and R represent inlet plate thickness (mm), outlet plate thickness (mm), and rolling roll radius (mm), respectively.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は高強度で、低磁場での磁
気特性の優れた無方向性電磁厚板の製造方法を提供する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides a method for producing a non-oriented electromagnetic plate having high strength and excellent magnetic properties in a low magnetic field.

【0002】0002

【従来の技術】近年最先端科学技術である素粒子研究や
医療機器の進歩に伴って、大型構造物に磁気を用いる装
置が使われ、その性能向上が求められている。直流磁化
条件で使用される粒子加速器用磁極材、リターンヨーク
材では、高い飽和磁束密度の他に、高強度で10Oe(
800A/m)付近の中磁場での高い磁束密度が求めら
れている。
BACKGROUND OF THE INVENTION In recent years, with advances in elementary particle research and medical equipment, which are cutting-edge science and technology, devices that use magnetism are being used in large structures, and there is a demand for improved performance. The magnetic pole material and return yoke material for particle accelerators used under DC magnetization conditions have a high saturation magnetic flux density and a high strength of 10 Oe (
A high magnetic flux density in a medium magnetic field (around 800 A/m) is required.

【0003】磁束密度に優れた電磁鋼板としては、従来
から薄板分野で珪素鋼板、電磁軟鉄板をはじめとする数
多くの材料が提供されているのは公知である。しかし、
構造部材として使用するには組立加工及び強度上の問題
があり、厚鋼板を利用する必要が生じてくる。これまで
電磁厚板としては純鉄系成分で製造されている。たとえ
ば、特開昭60−96749号公報が公知である。
It is well known that many materials such as silicon steel sheets and electromagnetic soft iron sheets have been provided in the field of thin plates as electromagnetic steel sheets with excellent magnetic flux density. but,
When used as a structural member, there are problems with assembly and strength, and it becomes necessary to use thick steel plates. Until now, electromagnetic plates have been manufactured using pure iron-based components. For example, Japanese Patent Laid-Open No. 60-96749 is known.

【0004】しかしながら、近年の装置の大型化、能力
の向上に伴い、強度の高い、さらに磁気特性の優れた、
特に低磁場、例えば10Oe(800A/m)付近での
磁束密度の高い鋼材開発の要望が強い。前掲の特許等で
開発された鋼材では、10Oe付近での中磁場の高い磁
束密度が安定して得られていない。
However, in recent years, as devices have become larger and their capabilities have improved, devices with high strength and excellent magnetic properties have been developed.
In particular, there is a strong demand for the development of steel materials with high magnetic flux density in low magnetic fields, for example around 10 Oe (800 A/m). With the steel materials developed in the above-mentioned patents, it is not possible to stably obtain a high magnetic flux density in the medium magnetic field near 10 Oe.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は以上の
点を鑑みなされたもので、高強度で、中磁場での磁気特
性の優れた無方向性電磁厚板の製造方法を提供するもの
である。
[Problems to be Solved by the Invention] The object of the present invention has been made in view of the above points, and is to provide a method for manufacturing a non-oriented electromagnetic thick plate having high strength and excellent magnetic properties in a medium magnetic field. It is.

【0006】[0006]

【課題を解決するための手段】本発明は重量%で、C:
0.01%以下、Si:0.02%以下、Mn:0.2
0%以下、S:0.010%以下、Al:0.040%
以下、N:0.004%以下、O:0.005%以下、
H:0.0002%以下、残部実質的に鉄からなる鋼組
成の鋼片または、鋳片を950〜1150℃に加熱し、
800℃以上で圧延形状比Aが0.6以上の圧延パスを
1回以上はとる圧延を行ない、引き続き800℃以下で
圧下率を35〜70%とする圧延を行なうことを特徴と
する高強度で、中磁場での磁気特性の優れた無方向性電
磁厚板の製造方法である。
[Means for Solving the Problems] The present invention provides C:
0.01% or less, Si: 0.02% or less, Mn: 0.2
0% or less, S: 0.010% or less, Al: 0.040%
Below, N: 0.004% or less, O: 0.005% or less,
H: 0.0002% or less, a steel slab or slab having a steel composition consisting essentially of iron, heated to 950 to 1150°C,
High strength characterized by performing rolling at least one rolling pass with a rolling shape ratio A of 0.6 or more at 800°C or higher, followed by rolling at 800°C or lower with a rolling reduction of 35 to 70%. This is a method for producing non-oriented electromagnetic thick plates with excellent magnetic properties in medium magnetic fields.

【0007】[0007]

【数2】[Math 2]

【0008】[0008]

【作用】従来は低磁場で高磁束密度を得るためには、磁
壁の移動の障害となる結晶粒の粗大化が重要な技術とな
っていた(特開昭60−96749号公報)。これに対
し、中磁場で高磁束密度を得るための方法については知
見がなかった。
[Operation] Conventionally, in order to obtain a high magnetic flux density in a low magnetic field, it has been an important technique to coarsen crystal grains that impede movement of domain walls (Japanese Patent Application Laid-Open No. 60-96749). On the other hand, there was no knowledge of a method for obtaining high magnetic flux density in a medium magnetic field.

【0009】発明者らは、ここにおいて中磁場で高磁束
密度を得るためには、従来言われていた磁壁を移動しや
すくするための結晶粒の粗大化よりも、磁化容易方向が
板面に平行な方向を向いていることが重要であることを
見出した。つまり、〔100〕方向が板面に平行な方向
にランダムとなることで、中磁場の磁気特性が大幅に向
上することを見出したのである。
In order to obtain a high magnetic flux density in a medium magnetic field, the inventors believe that the direction of easy magnetization should be aligned with the plate surface, rather than coarsening the crystal grains to make the domain walls easier to move, which was conventionally said. I found out that it is important that they are facing in parallel directions. In other words, they found that the magnetic properties in medium magnetic fields were significantly improved by making the [100] direction random in a direction parallel to the plate surface.

【0010】さらに、高強度を得るためには、低温領域
である値以上の圧下率を施し、かつ、圧延ままで製品と
することが重要であることを見出した。これらのための
熱間圧延条件として、800℃以下において35%以上
70%以下の圧下率をとることで、〔100〕の結晶方
位を圧延方向に平行にランダムとなると同時に、高強度
が得られる。
Furthermore, it has been found that in order to obtain high strength, it is important to apply a reduction ratio of at least a certain value in a low temperature region and to produce a product as rolled. As the hot rolling conditions for these, by taking a rolling reduction of 35% to 70% at 800°C or lower, the [100] crystal orientation becomes random parallel to the rolling direction, and at the same time, high strength is obtained. .

【0011】図1に0.006Si−0.07Mn−0
.018Al鋼での800℃以下の圧下率と10Oeで
の磁束密度を示す。35〜70%の圧下により、高磁束
密度が得られる。さらに中磁場での高磁束密度を得るた
めの手段として、内部応力の原因となる元素及び空隙性
欠陥の作用につき詳細な検討を行ない、所期の目的を達
成した。また、空隙性欠陥の影響についても種々検討し
た結果、そのサイズが100μ以上のものが磁気特性を
大幅に低下することを知見したものである。そしてこの
100μ以上の有害な空隙性欠陥をなくすためには圧延
形状比Aが0.6以上必要であることを見出した。
FIG. 1 shows 0.006Si-0.07Mn-0
.. It shows the rolling reduction of 018Al steel at 800°C or less and the magnetic flux density at 10Oe. A reduction of 35-70% results in high magnetic flux density. Furthermore, as a means to obtain high magnetic flux density in medium magnetic fields, we conducted detailed studies on the effects of elements and void defects that cause internal stress, and achieved the desired objective. Furthermore, as a result of various studies on the influence of void defects, it was found that those with a size of 100 μm or more significantly deteriorate the magnetic properties. It has been found that in order to eliminate harmful void defects of 100 μm or more, the rolling shape ratio A must be 0.6 or more.

【0012】0012

【数3】[Math 3]

【0013】さらに、鋼中の水素の存在も有害で、脱水
素熱処理を行なうことによって磁気特性が大幅に向上す
ることを知見した。高形状比圧延により空隙性欠陥のサ
イズを100μ以下にし、かつ、脱水素熱処理により鋼
中水素を減少することで中磁場での磁束密度が大幅に上
昇する。
Furthermore, it has been found that the presence of hydrogen in steel is also harmful, and that magnetic properties can be significantly improved by dehydrogenation heat treatment. By reducing the size of void defects to 100 μm or less through high shape ratio rolling and reducing hydrogen in the steel through dehydrogenation heat treatment, the magnetic flux density in a medium magnetic field increases significantly.

【0014】次に成分限定理由を述べる。Cは鋼中の内
部応力を高め、磁気特性、特に低磁場での磁束密度を最
も下げる元素であり、極力下げることが中磁場での磁束
密度を低下させないことに寄与する。また、磁気時効の
点からも低いほど経時低下が少なく、磁気特性の良い状
態で恒久的に使用できるものであり、このようなことか
ら、0.01%以下に限定する。図2に示すようにさら
に、0.005%以下にすることにより一層高磁束密度
が得られる。
Next, the reason for limiting the ingredients will be described. C is an element that increases the internal stress in steel and lowers the magnetic properties, especially the magnetic flux density in a low magnetic field, the most, and reducing it as much as possible contributes to not lowering the magnetic flux density in a medium magnetic field. In addition, from the viewpoint of magnetic aging, the lower the content, the less the deterioration over time, and it can be used permanently with good magnetic properties.For this reason, it is limited to 0.01% or less. As shown in FIG. 2, an even higher magnetic flux density can be obtained by reducing the amount to 0.005% or less.

【0015】Si,Mnは中磁場での磁束密度の点から
少ない方が好ましく、MnはMnS系介在物を生成する
点からも低い方がよい。この意味からSiは0.02%
以下、Mnは0.20%以下に限定する。Mnに関して
はMnS系介在物を生成する点よりさらに望ましくは0
.10%以下がよい。
[0015] It is preferable that Si and Mn be small in terms of magnetic flux density in a medium magnetic field, and that Mn should be small in terms of forming MnS-based inclusions. From this meaning, Si is 0.02%
Hereinafter, Mn is limited to 0.20% or less. Regarding Mn, it is more preferable to use 0 since MnS-based inclusions are generated.
.. It is preferably 10% or less.

【0016】S,Oは鋼中において非金属介在物を形成
し、結晶粒の粗大化を妨げる害を及ぼし含有量が多くな
るに従って磁束密度の低下が見られ、磁気特性を低下さ
せるので少ない程よい。このため、Sは0.010%以
下、Oは0.005%以下とした。
[0016] S and O form non-metallic inclusions in steel and have a detrimental effect on coarsening of crystal grains, and as their content increases, a decrease in magnetic flux density is observed, degrading magnetic properties, so the less the better. . Therefore, S was set to 0.010% or less, and O was set to 0.005% or less.

【0017】Alは脱酸剤として用いるもので、Alは
多くなりすぎると介在物を生成し鋼の性質を損なうので
上限は0.040%とする。さらに結晶粒粗大化を妨げ
る析出物であるAlNを減少させるためには低いほどよ
く、望ましくは0.020%以下がよい。
[0017] Al is used as a deoxidizing agent, and if it becomes too large, inclusions will form and the properties of the steel will be impaired, so the upper limit is set at 0.040%. Furthermore, in order to reduce AlN, which is a precipitate that prevents crystal grain coarsening, the lower the content, the better, and preferably 0.020% or less.

【0018】Nは内部応力を高めかつAlNにより結晶
粒微細化作用により中磁場での磁束密度を低下させるの
で上限は0.004%とする。Hは磁気特性を低下させ
、かつ、空隙性欠陥の減少を妨げるので0.0002%
以下とする。
The upper limit is set to 0.004% because N increases internal stress and AlN reduces the magnetic flux density in a medium magnetic field due to its crystal grain refining effect. H is 0.0002% because it lowers the magnetic properties and prevents the reduction of void defects.
The following shall apply.

【0019】次に製造法について述べる。圧延条件につ
いては、まず圧延前加熱温度を1150℃以下にするの
は、1150℃を超える加熱温度では、加熱γ粒径の板
厚方向のバラツキは大きく、このバラツキが圧延後も残
り最終的な結晶粒が不均一となるため、上限を1150
℃とする。加熱温度が950℃未満となると圧延の変形
抵抗が大きくなり、以下に述べる空隙性欠陥をなくすた
めの形状比の高い圧延負荷が大きくなるため、950℃
を下限とする。
Next, the manufacturing method will be described. Regarding the rolling conditions, first of all, the pre-rolling heating temperature should be set to 1150°C or less. At heating temperatures exceeding 1150°C, there will be large variations in the heated γ grain size in the thickness direction, and this variation will remain even after rolling and cause the final result. Since the crystal grains become non-uniform, the upper limit is set to 1150.
℃. If the heating temperature is less than 950°C, the deformation resistance during rolling will increase, and the rolling load with a high shape ratio to eliminate the void defects described below will increase.
is the lower limit.

【0020】熱間圧延にあたり前述の空隙性欠陥は鋼の
凝固過程で大小はあるが、必ず発生するものでありこれ
をなくす手段は圧延によらなければならないので、熱間
圧延の役目は重要である。すなわち、熱間圧延1回当た
りの変形量を大きくし板厚中心部にまで変形が及ぶ熱間
圧延が有効である。具体的には圧延形状比Aが0.6以
上の圧延パスが1回以上を含む高形状比圧延を行ない、
空隙性欠陥のサイズを100μ以下にすることが磁気特
性によい。圧延中にこの高形状比圧延により空隙性欠陥
をなくすことで、後で行なう脱水素熱処理における脱水
素効率が飛躍的に上昇するのである。
[0020] Regarding hot rolling, the above-mentioned porous defects may vary in size during the solidification process of steel, but they always occur, and the means to eliminate them must be through rolling, so the role of hot rolling is important. be. That is, hot rolling in which the amount of deformation per hot rolling is increased and the deformation extends to the center of the plate thickness is effective. Specifically, performing high shape ratio rolling including one or more rolling passes with a rolling shape ratio A of 0.6 or more,
Setting the size of the void defects to 100 μm or less is good for magnetic properties. By eliminating void defects during rolling by this high shape ratio rolling, the dehydrogenation efficiency in the subsequent dehydrogenation heat treatment is dramatically increased.

【0021】次に800℃以下の温度において累積圧下
率35%以上にすることにより、〔100〕の結晶方位
を圧延方向に平行にランダムとする。ただし70%超の
圧下率になると、熱処理後結晶粒度が板厚方向に不均一
になり、磁束密度のばらつきを大きくする。さらに、図
3に示すように、800℃以下の温度において累積圧下
率を35%以上にすることにより高強度が得られる。従
って、高強度で、低磁場で高い磁気特性を得るために、
圧下率を35〜70%とする。
[0021] Next, by setting the cumulative reduction rate to 35% or more at a temperature of 800°C or less, the [100] crystal orientation is made random parallel to the rolling direction. However, if the rolling reduction exceeds 70%, the grain size after heat treatment becomes non-uniform in the thickness direction, increasing the variation in magnetic flux density. Furthermore, as shown in FIG. 3, high strength can be obtained by setting the cumulative reduction rate to 35% or more at a temperature of 800° C. or less. Therefore, in order to obtain high magnetic properties with high strength and low magnetic field,
The reduction rate is set to 35 to 70%.

【0022】[0022]

【実施例】表1に電磁厚板の製造条件とフェライト粒径
、中磁場での磁束密度を示す。
[Example] Table 1 shows the manufacturing conditions of the electromagnetic plate, the ferrite grain size, and the magnetic flux density in a medium magnetic field.

【0023】[0023]

【表1】[Table 1]

【0024】[0024]

【表2】[Table 2]

【0025】例1〜8は本発明の実施例を示し、例9〜
20は比較例を示す。例1〜5は板厚75mmに仕上げ
たもので、高強度で、中磁場で高磁束密度を示す。例1
に比べ、例2はさらに低C、例3,4は低Mn、例5は
低Alであり、より高い磁気特性を示す。
Examples 1 to 8 illustrate embodiments of the invention; Examples 9 to 8 illustrate examples of the invention;
20 shows a comparative example. Examples 1 to 5 were finished to a plate thickness of 75 mm, had high strength, and exhibited high magnetic flux density in a medium magnetic field. Example 1
Compared to the above, Example 2 has lower C, Examples 3 and 4 have lower Mn, and Example 5 has lower Al, showing higher magnetic properties.

【0026】例6は350mm、例7は40mm、例8
は6mmに仕上げたもので、高磁束密度である。例9は
Cが高く、例10はSiが高く、例11はMnが高く、
例12はSが高く、例13はAlが高く、例14はNが
高く、例15はOが高く、例16はHが高く、それぞれ
上限を超えるため低磁気特性値となっている。例17は
加熱温度が上限を超え低磁束密度となっている。例18
は加熱温度が下限をはずれ最大形状比が小さいため、低
磁束密度となっている。例19は800℃以下の圧下率
が下限をはずれ、強度が低く、低磁束密度となっている
。例20は最大形状比が下限をはずれ低磁束密度となっ
ている。
Example 6 is 350mm, Example 7 is 40mm, Example 8
is finished to 6mm and has a high magnetic flux density. Example 9 has high C, Example 10 has high Si, Example 11 has high Mn,
Example 12 has high S, Example 13 has high Al, Example 14 has high N, Example 15 has high O, and Example 16 has high H, each of which exceeds the upper limit, resulting in a low magnetic property value. In Example 17, the heating temperature exceeded the upper limit and the magnetic flux density was low. Example 18
Since the heating temperature is outside the lower limit and the maximum shape ratio is small, the magnetic flux density is low. In Example 19, the rolling reduction of 800° C. or less is outside the lower limit, the strength is low, and the magnetic flux density is low. In Example 20, the maximum shape ratio is outside the lower limit and the magnetic flux density is low.

【0027】[0027]

【発明の効果】本発明によれば適切な成分限定により板
厚の厚い厚鋼板に均質な高電磁特性を具備せしめること
に成功し、直流磁化による磁気特性を利用する構造物に
適用可能としたものであり、かつその製造方法も前述の
成分限定と熱間圧延を行なう方式であり、極めて経済的
に製造する方法を提供するもので、産業上多大な効果を
奏するものである。
[Effects of the Invention] According to the present invention, by appropriately limiting the ingredients, it has been possible to provide a thick steel plate with uniform high electromagnetic properties, making it applicable to structures that utilize magnetic properties due to direct current magnetization. Moreover, the manufacturing method thereof is the above-mentioned limiting of ingredients and hot rolling, which provides an extremely economical manufacturing method and has great industrial effects.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】10Oeにおける磁束密度に及ぼす800℃以
下の圧下率の影響を示すグラフである。
FIG. 1 is a graph showing the influence of a rolling reduction of 800° C. or less on magnetic flux density at 10 Oe.

【図2】10Oeにおける磁束密度に及ぼすC含有量の
影響を示すグラフである。
FIG. 2 is a graph showing the influence of C content on magnetic flux density at 10 Oe.

【図3】引張強さに及ぼす800℃以下の圧下率の影響
を示すグラフである。
FIG. 3 is a graph showing the influence of a rolling reduction of 800° C. or less on tensile strength.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  重量%で、 C  :0.01%以下、 Si:0.02%以下、 Mn:0.20%以下、 S  :0.010%以下、 Al:0.040%以下、 N  :0.004%以下、 O  :0.005%以下、 H  :0.0002%以下、 残部実質的に鉄からなる鋼組成の鋼片または、鋳片を9
50〜1150℃に加熱し、800℃以上で圧延形状比
Aが0.6以上の圧延パスを1回以上はとる圧延を行な
い、引き続き800℃以下で圧下率を35〜70%とす
る圧延を行なうことを特徴とする高強度で中磁場での磁
気特性の優れた無方向性電磁厚板の製造方法。 【数1】
[Claim 1] In weight %, C: 0.01% or less, Si: 0.02% or less, Mn: 0.20% or less, S: 0.010% or less, Al: 0.040% or less, N : 0.004% or less, O: 0.005% or less, H: 0.0002% or less, and the remainder is substantially iron.
Heating to 50 to 1150°C, rolling at least once at 800°C or higher with rolling shape ratio A of 0.6 or more, followed by rolling at 800°C or lower with a rolling reduction of 35 to 70%. A method for manufacturing a non-oriented electromagnetic thick plate with high strength and excellent magnetic properties in a medium magnetic field. [Math 1]
JP3104487A 1991-05-09 1991-05-09 Method for manufacturing non-oriented electromagnetic thick plate with excellent magnetic properties Expired - Lifetime JP2503122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3104487A JP2503122B2 (en) 1991-05-09 1991-05-09 Method for manufacturing non-oriented electromagnetic thick plate with excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3104487A JP2503122B2 (en) 1991-05-09 1991-05-09 Method for manufacturing non-oriented electromagnetic thick plate with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JPH04333517A true JPH04333517A (en) 1992-11-20
JP2503122B2 JP2503122B2 (en) 1996-06-05

Family

ID=14381911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3104487A Expired - Lifetime JP2503122B2 (en) 1991-05-09 1991-05-09 Method for manufacturing non-oriented electromagnetic thick plate with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JP2503122B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171825A (en) * 1987-01-12 1988-07-15 Sumitomo Metal Ind Ltd Strain imposed ferromagnetic steel plate
JPH02243719A (en) * 1989-03-16 1990-09-27 Nippon Steel Corp Production of superior thick silicon steel plate having excellent machinability and uniform magnetic property in plate-thickness direction
JPH034606A (en) * 1989-05-31 1991-01-10 Toshiba Corp Amplifier circuit
JPH04268020A (en) * 1991-02-20 1992-09-24 Nippon Steel Corp Production of nonoriented electric steel plate having superior magnetic characteristic

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171825A (en) * 1987-01-12 1988-07-15 Sumitomo Metal Ind Ltd Strain imposed ferromagnetic steel plate
JPH02243719A (en) * 1989-03-16 1990-09-27 Nippon Steel Corp Production of superior thick silicon steel plate having excellent machinability and uniform magnetic property in plate-thickness direction
JPH034606A (en) * 1989-05-31 1991-01-10 Toshiba Corp Amplifier circuit
JPH04268020A (en) * 1991-02-20 1992-09-24 Nippon Steel Corp Production of nonoriented electric steel plate having superior magnetic characteristic

Also Published As

Publication number Publication date
JP2503122B2 (en) 1996-06-05

Similar Documents

Publication Publication Date Title
JPS6345443B2 (en)
JPH04333518A (en) Production of thick nonoriented silicon steel plate excellent in magnetic property
JPH04333517A (en) Production of thick nonoriented silicon steel plate excellent in magnetic property
JPH04333520A (en) Production of superior thick silicon steel plate
JPH0713264B2 (en) Manufacturing method of non-oriented electromagnetic thick plate with uniform magnetic properties in the thickness direction
JPH04333519A (en) Production of superior thick silicon steel plate
JP2503110B2 (en) Method for manufacturing non-oriented electromagnetic thick plate with excellent magnetic properties
JPH0711026B2 (en) Manufacturing method of non-directional electromagnetic thick plate with high magnetic flux density
JPH024920A (en) Manufacture of thick electrical plate for d.c. magnetization
JPH079040B2 (en) Manufacturing method of good electromagnetic thick plate with good machinability and uniform magnetic properties in the plate thickness direction
JP2503111B2 (en) Manufacturing method of non-oriented electromagnetic thick plate with excellent magnetic properties
JPH03271325A (en) Manufacture of high strength silicon steel plate excellent in magnetic property
JP2503113B2 (en) Manufacturing method of non-oriented electromagnetic thick plate
JPH0726326A (en) Production of nonoriented silicon steel plate
JPH024919A (en) Manufacture of thick electrical plate having high magnetic flux density
JP2503112B2 (en) Manufacturing method of good electromagnetic plate
JPH04268022A (en) Production of satisfactory electric steel plate
JPH0726327A (en) Production of nonoriented silicon steel plate
JPH04293722A (en) Production of grain nonoriented electrical steel plate having superior machinability
JPH0375315A (en) Production of thick nonoriented silicon steel plate having uniform magnetic property in plate-thickness direction
JPH04268023A (en) Production of nonoriented satisfactory electric steel
JPH0375314A (en) Production of thick nonoriented silicon steel plate having high magnetic flux density
JPH028325A (en) Production of non-oriented good magnetic steel plate
JPH0726325A (en) Production of superior silicon steel plate
JPH02243715A (en) Production of thick nonoriented silicon steel plate having uniform magnetic property in plate-thickness direction

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080313

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090313

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090313

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100313

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110313

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 16