JPS6345443B2 - - Google Patents

Info

Publication number
JPS6345443B2
JPS6345443B2 JP59060960A JP6096084A JPS6345443B2 JP S6345443 B2 JPS6345443 B2 JP S6345443B2 JP 59060960 A JP59060960 A JP 59060960A JP 6096084 A JP6096084 A JP 6096084A JP S6345443 B2 JPS6345443 B2 JP S6345443B2
Authority
JP
Japan
Prior art keywords
less
rolling
magnetic permeability
magnetic
permeability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59060960A
Other languages
Japanese (ja)
Other versions
JPS60208417A (en
Inventor
Seiichi Watanabe
Mutsuo Nakanishi
Takashi Matsuoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP59060960A priority Critical patent/JPS60208417A/en
Publication of JPS60208417A publication Critical patent/JPS60208417A/en
Publication of JPS6345443B2 publication Critical patent/JPS6345443B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(本発明の分野) 本発明は、高透磁率熱間圧延鉄板、特に例えば
サイクロトロンの主要部材である電磁石鉄芯ある
いは磁場の影響を遮閉するのに必要な磁気シール
ド用極厚電磁軟質鉄板に関するものである。 (従来技術) 電磁軟質鉄板としては一般に変圧器に使用され
る薄板が良く知られている。薄板の場合は、交流
磁気回路を形成するときに必然的に発生する渦電
流によるエネルギーの損失を防止するために、よ
り薄肉化し、つまり積層化し、かつ表面酸化スケ
ールを発生させるなどして使用されている。しか
し、構造部材としても利用される厚板の場合は、
厚板としての強度をも利用するため、上述のよう
な薄肉化による積層化を図ることは不可能なの
で、電気抵抗を高めない限りその用途は静磁場の
発生状況下等にのみ限定される。しかしながら、
厚板としての用途としては、素粒子実験用大型サ
イクロトロンあるいは医療用小型サイクロトロン
の電磁石鉄芯とか大型科学測定装置の磁気シール
ド用が考えられており、かかる装置の開発・改善
が技術の進歩に多大の貢献をするものと考えら
れ、したがつてそのためのすぐれた材料開発には
多くの期待がかけられている。 (発明の目的) 前述の装置に使用される鉄板に要求される性能
は、高い透磁率を有することと、その使用量が多
いことから安価であることが重要であり、したが
つて、本発明の目的は高い透磁率を有しかつ安価
な熱間圧延鉄板の製造方法を提供することであ
る。 さらに、本発明の別の目的は、構造部材用とし
ての機械的特性を何らそこなわれずに、高い透磁
率を有しかつ安価な極厚軟質鉄板の製造方法を提
供することである。 (発明の要約) ここに、本発明者らは上述の目的を達成すべく
鋭意検討を重ねたところ、前述のような磁気シー
ルド用としては、透磁率と低磁場における磁束密
度を上げる必要があり、厚板で高い透磁率を得る
には、不純物元素、特に析出物を形成するC、
N、S、O量を極力低下させること;フエライ
ト粒径を粗大化させること;かつsol.Alを適切
に使用することが有効であることを知り、これら
に着目して、さらに研究を続けたところ、それら
3者の組合せによつて従来みられなかつた程高い
透磁率をもつた材料が安価に得られることを見い
出し、本発明を完成したのであつた。 すなわち、不純物元素のうちC含有量の影響は
第1図aおよび第1図bに示す通りである。な
お、第1図は、圧延仕上温度800℃、焼なまし850
℃×1時間の条件で得たものである。 第1図aに示す0.4Si−0.03Al鋼および第1図
bに示す0.4Si−0.65Al鋼のいずれにあつてもC
含有の増加につれ透磁率は低下し、一方保磁力
Hcは増加して好ましくない。他の元素N、S、
Oについても同様で極力低下させることによつて
透磁率を増大させ得る。Pについては通常含有さ
れる程度の量では折出はせず、Pによる悪影響は
認められない。 フエライト粒径を粗大化させるための条件とし
ての圧延条件は、圧延前加熱温度、圧下調整温
度、圧下率および仕上温度で構成される。まず圧
延条件としては、次工程の焼鈍時に十分粒成長が
生じる条件を作ることが重要である。そのため、
圧延加熱時には析出しているAlNを固溶させる
ことは極力避けて凝集粗大化させるために、1150
℃以下に加熱しなければならない。かつ圧延にあ
たつては、圧延ままの状態では細粒組織でなお圧
延加工歪が残存していることが望ましい。このた
めに低温圧延、つまり圧延仕上温度を800℃以下
として975℃〜仕上温度の累積圧下率を35%以上
として、次いで10℃/min以上で冷却し、特に板
厚が厚い場合水冷して圧延加工歪が次工程の焼鈍
まで持ちきたされるようにする。すなわち、
AlNを凝集粗化化させた状態で低温での高圧下
率熱間圧延を加え、得られた細粒組成の圧延歪を
急冷することにより残存させるのである。予め
910℃程度までもともとフエライト一相になるよ
うに組成的に調整されている鋼を使用すれば、上
述のようにして得た冷却材を800〜910℃のフエラ
イト一相域の高温側で焼なますと異常粒成長が生
じ、フエライト粒径は粗大に成長する。 またAlはNを固定し磁気特性に及ぼすNの悪
影響を無害化しかつ靭性を向上させる。また固溶
Alは磁気特性を向上させるので適当容量Alを使
用することが必須である。第2図は、0.01C−
0.4Si鋼について最大透磁率μmaxおよび保磁力
Hcに及ぼすsol.Al量の影響を示す(第1図と同
じく、圧延仕上温度800℃、焼なまし850℃×1時
間の実験条件を採用)が、やや多目のsol.Al添加
が高い透磁率を得るのに有効であることが分か
る。これはsol.Al量の増加につれ結晶粒細化作用
を有する微細AlNが減少し、微細化作用の小さ
い粗大AlNが増え、結局、フエライト粒径の粗
大化を促進する効果と固溶Alそれ自身の増加に
より磁気特性が向上する効果が重畳するためと考
えられる。 よつて、本発明は、重量%で、 C:0.02%以下、Si:0.50%以下、 Mn:0.50%以下、P:0.050%以下、 S:0.015%以下、sol.Al:0.010〜0.80%、 N:0.006%下、酸素:0.005%以下、 さらに必要に応じ、Nb:0.015〜0.250%、V:
0.015〜0.500%およびTi:0.015〜0.250%から成
る群から選んだ少なくとも一種、 残部Feおよび不可避不純物 から成る鋼組成の鋼片または鋳片を1150℃以下に
加熱し、975℃〜仕上げ温度における累積圧下率
が35%以上、仕上げ温度が800℃以下の条件下で
熱間圧延を行い、次いで10℃/min以上の冷却速
度で冷却し、冷却後、800〜910℃で焼なますこと
を特徴とする、加工歪のない状態で最大透磁率
4000以上、磁場5Oeで磁束密度1.35T以上である、
高透磁率熱間圧延鉄板の製造方法である。 本発明により製造された鉄板、特に例えば、6
〜500mmの厚板は加工歪のない状態で最大透磁率
4000以上を得られるが、通常厚板は曲げ加工、機
械加工および溶接施工をして使用されるので歪が
皆無の状態で使用されることは殆どない。本発明
より製造される厚板の最大の特色は冷間加工後も
高い透磁率を有している点にあり、冷間加工歪3
%以内で最大透磁率2000以上を得ることができ
る。 なお、本発明はこのように熱間圧延材の製造方
法に関するものであるが、より正確には熱間圧延
ままではなく熱間圧延に続いて焼なまし工程をも
包含するのである。熱間圧延で導入された加工歪
を残留させたまま粗粒の状態から上記焼なましに
よりフエライトの粗成長を図るためである。 (発明の態様) 以下に本発明において特定する鋼組成および各
製造条件の限定理由を述べる。 Cは高い透磁率を得るためには低い方が望まし
く0.03%以下、好ましくは0.02%以下にしないと
冷間加工後に高い透磁率を得ることが難しい。 Siは0.50%を越えて添加すると靭性が劣化する
し、Si量増大により透磁率は向上するが、飽和磁
束密度が低下するのでSi量は0.50%以下とした。
本発明の対象とする用途にあつては、要求される
飽和磁束密度は2.1T(テスラ)程度で一定であつ
て、むしろ透磁率を高めることが重要である。 MnはSにより熱間脆性を防止するために必要
であるが、多量の添加は透磁率を低下させるので
0.50%以下とする。 Pは多くの添加は靭性を劣化したり、CCスラ
ブの中心偏析を形成し好ましくないが、Pの除去
には必ずコストアツプを伴うで、0.050%以下と
した。 SはMnSを生成し、透磁率を低下させるので、
0.020%以下、好ましくは0.015%下とした。 sol.Alは0.010%以上の添加により固溶Nを無害
化してなおかつ固溶Alの効果により透磁率を高
める作用を示すが、1.00%を越えて添加すると製
鋼時湯流れが悪く、耐火物の劣化が著しいので、
0.0150〜1.0%、好ましくは0.015〜0.80%とした。 Nは極力低い方が望ましく、0.006%を越えて
添加するとフエライト粒径が粗大化しにくくなる
ので本発明においてN含有量は0.006%以下とし
た。 酸素は非金属介在物を形成するので0.005%以
下としなければならない。またさらに固溶Cおよ
びNの悪影響を無害化して高い透磁率を得るため
には、上記の基本成分の他に、必要に応じ、
Nb:0.015〜0.250%、V:0.015〜0.500%および
Ti:0.015〜0.250%の一種または二種以上を含有
せしめるが、その理由は以下の通りである。 Nbは0.015%以上の添加により、CおよびNと
結合して上述の圧延加熱温度1150℃以下では粗大
Nb(C、N)を形成するので、不純物元素、特に
CおよびNの無害化に有効である。しかし、
0.250%を越えて添加するとコストが著しく高く
なるばかりでなく、磁気特性にも有害になるの
で、0.015〜0.20%とした。 Vは0.015%以上の添加でNbと同様にCおよび
Nの固定に有効であるが、0.50%を越えて添加す
るとコスト上昇を招来するので、0.015〜0.50%
とした。 Tiは0.015%以上の添加によりCおよびNを固
定し、CおよびNを無害化するが、0.250%を越
えて添加すると靭性を著しく劣化させるので、
0.015〜0.250%の範囲とする。 次に圧延条件についてであるが、まず、圧延前
加熱温度を1150℃以下にするのは、CおよびNの
析出物、えばAlNの固溶を防止し、それらを凝
集粗大化するためである。仕上温度を800℃以下、
975℃〜仕上温度の累積圧下率を35%以上とする
のは、圧延状態でできるだけ細粒化して、なおか
つ圧延加工歪を残存させて次工程の焼なまし時に
フエライトの異常粒成長を生じやすくするためで
ある。厚板の場合に圧延後水冷するのは圧延加工
歪を次工程まで残しStrain Annealingにより異
常粒成長を生じやすくするためである。 また、組成的には前述のように調整することに
よつて、本発明で利用する鋼は910℃までフエラ
イト一相なので、800〜910℃で焼鈍して上述の組
成および圧延条件下で十分粒成長を生じさせ得
る。800℃未満では粒成長が不十分である。 このように、本発明によれば、不純物の調整、
製造条件の組合せ、さらにはsol.Alの添加によつ
て、それらが相互に作用し合つて、厚板にもかか
わらずすぐれた磁気特性、特に透磁率の高い材料
を製造することができる。 実施例 下掲表に示す条件下で同じく表に示す鋼組成の
一連の鋼A〜Kについて製造条件を種々変えて熱
間圧延材を製造した。スラブは連続鋳造により製
造した鋳片スラブであつた。 結果を同じく表にまとめて示すが、これからも
分かるように、本発明の範囲内の上記の化学組
成、製造条件下で製造する限り、フエライト粒度
番号3番以下の粗粒として、加工歪のない状態で
最大透磁率4000以上を、また加工歪3%以内で最
大透磁率2000以上を得ることができる。また加工
歪0%の状態では磁場5Oeで磁束密度1.35T以上
を得ることができる。
(Field of the Invention) The present invention relates to a high magnetic permeability hot-rolled iron plate, particularly an electromagnetic iron core that is a main component of a cyclotron, or an extra-thick electromagnetic soft iron plate for magnetic shielding necessary to block the influence of a magnetic field. It is something. (Prior Art) Thin plates generally used in transformers are well known as electromagnetic soft iron plates. In the case of thin plates, in order to prevent energy loss due to eddy currents that inevitably occur when forming AC magnetic circuits, they are made thinner, that is, laminated, and are used by creating oxidized scale on the surface. ing. However, in the case of thick plates that are also used as structural members,
Since the strength of a thick plate is also utilized, it is impossible to achieve lamination by thinning the walls as described above, so unless the electrical resistance is increased, its use is limited to situations where a static magnetic field is generated. however,
Possible uses for the thick plate include electromagnetic iron cores for large cyclotrons for elementary particle experiments or small cyclotrons for medical use, and magnetic shields for large scientific measurement devices, and the development and improvement of such devices will contribute greatly to the advancement of technology. Therefore, there are high expectations for the development of excellent materials for this purpose. (Object of the Invention) The performance required of the iron plate used in the above-mentioned device is that it is important to have high magnetic permeability and to be inexpensive since it is used in large quantities. The purpose of the present invention is to provide a method for producing a hot rolled iron plate having high magnetic permeability and at low cost. Furthermore, another object of the present invention is to provide a method for manufacturing an extremely thick soft iron plate that has high magnetic permeability and is inexpensive, without any loss in mechanical properties for use as a structural member. (Summary of the Invention) The present inventors have made extensive studies to achieve the above-mentioned object, and have found that it is necessary to increase magnetic permeability and magnetic flux density in low magnetic fields for use in magnetic shielding as described above. , to obtain high magnetic permeability in thick plates, impurity elements, especially C, which forms precipitates,
We learned that it is effective to reduce the amount of N, S, and O as much as possible; to coarsen the ferrite particle size; and to appropriately use sol.Al. Focusing on these, we continued our research. However, they discovered that by combining these three materials, a material with a magnetic permeability that was unprecedentedly high could be obtained at a low cost, and the present invention was completed. That is, the influence of the C content among impurity elements is as shown in FIGS. 1a and 1b. In addition, Fig. 1 shows rolling finishing temperature of 800℃ and annealing of 850℃.
It was obtained under the conditions of 1 hour at ℃. C
As the content increases, the permeability decreases, while the coercive force
Hc increases, which is not desirable. Other elements N, S,
Similarly, magnetic permeability can be increased by reducing O as much as possible. P is not precipitated in the amount normally contained, and no adverse effects due to P are observed. The rolling conditions for coarsening the ferrite grain size include a pre-rolling heating temperature, a rolling reduction adjustment temperature, a rolling reduction rate, and a finishing temperature. First, as for rolling conditions, it is important to create conditions that allow sufficient grain growth during the next step of annealing. Therefore,
During rolling heating, 1150
Must be heated below ℃. When rolling, it is desirable that the as-rolled material has a fine-grained structure with residual rolling strain. For this purpose, low-temperature rolling is used, that is, the finishing temperature of rolling is 800℃ or less, the cumulative rolling reduction rate from 975℃ to finishing temperature is 35% or more, and then cooling is carried out at a rate of 10℃/min or more, and if the plate is particularly thick, it is water-cooled and rolled. Make sure that the processing strain is carried over to the next process of annealing. That is,
Hot rolling at a high reduction rate at low temperature is applied to the agglomerated and roughened AlN, and the rolling strain in the resulting fine grain composition is made to remain by rapid cooling. in advance
If you use steel whose composition is originally adjusted to be a single ferrite phase up to about 910°C, the coolant obtained as described above can be annealed at the high temperature side of the ferrite single phase range of 800 to 910°C. Abnormal grain growth occurs, and the ferrite grain size grows coarse. Furthermore, Al fixes N, neutralizes the negative effects of N on magnetic properties, and improves toughness. Also solid solution
Since Al improves magnetic properties, it is essential to use Al with an appropriate capacity. Figure 2 shows 0.01C−
Maximum permeability μmax and coercive force for 0.4Si steel
The effect of the amount of sol.Al on Hc is shown (as in Figure 1, the experimental conditions of finishing rolling temperature of 800℃ and annealing of 850℃ for 1 hour are adopted). It can be seen that this is effective in obtaining magnetic permeability. This is because as the amount of sol.Al increases, fine AlN, which has a crystal grain refining effect, decreases, and coarse AlN, which has a small grain refining effect, increases, resulting in an effect that promotes the coarsening of ferrite grain size and the solid solution Al itself. This is thought to be due to the superimposed effect of improving magnetic properties due to the increase in . Therefore, the present invention provides, in weight percent, C: 0.02% or less, Si: 0.50% or less, Mn: 0.50% or less, P: 0.050% or less, S: 0.015% or less, sol.Al: 0.010 to 0.80%, N: 0.006% or less, Oxygen: 0.005% or less, and if necessary, Nb: 0.015 to 0.250%, V:
A steel billet or slab with a steel composition consisting of at least one selected from the group consisting of 0.015 to 0.500% and Ti: 0.015 to 0.250%, the balance being Fe and unavoidable impurities is heated to 1150℃ or less, and the cumulative temperature at 975℃ to finishing temperature is heated to 1150℃ or less. It is characterized by hot rolling under the conditions of a rolling reduction of 35% or more and a finishing temperature of 800°C or less, then cooling at a cooling rate of 10°C/min or more, and after cooling, annealing at 800 to 910°C. Maximum magnetic permeability without processing distortion
4000 or more, magnetic flux density 1.35T or more in a magnetic field of 5Oe,
This is a method for manufacturing a hot-rolled iron plate with high magnetic permeability. Iron plates manufactured according to the invention, especially for example 6
~500mm thick plate has maximum permeability without processing distortion
4000 or more, but thick plates are usually used after bending, machining, and welding, so they are rarely used without distortion. The greatest feature of the thick plate manufactured by the present invention is that it has high magnetic permeability even after cold working, and cold working strain 3
It is possible to obtain a maximum permeability of 2000 or more within %. Although the present invention relates to a method for producing a hot-rolled material as described above, more precisely, it also includes an annealing step subsequent to hot rolling, rather than as-is hot-rolling. This is to achieve coarse growth of ferrite by the above-mentioned annealing from a coarse grained state with the processing strain introduced by hot rolling remaining. (Aspects of the Invention) Below, the reason for limiting the steel composition and each manufacturing condition specified in the present invention will be described. In order to obtain high magnetic permeability, it is desirable that C be as low as 0.03% or less, preferably 0.02% or less, otherwise it will be difficult to obtain high magnetic permeability after cold working. Adding more than 0.50% of Si deteriorates the toughness, and although increasing the amount of Si improves the magnetic permeability, the saturation magnetic flux density decreases, so the amount of Si was set to 0.50% or less.
In the applications targeted by the present invention, the required saturation magnetic flux density is constant at about 2.1 T (Tesla), and it is rather important to increase the magnetic permeability. Mn is necessary to prevent hot embrittlement due to S, but adding a large amount reduces magnetic permeability.
0.50% or less. Adding a large amount of P is undesirable as it deteriorates the toughness and forms center segregation of the CC slab, but removal of P is always accompanied by an increase in cost, so it is set at 0.050% or less. S produces MnS and reduces magnetic permeability, so
It was set to 0.020% or less, preferably 0.015% or less. When sol.Al is added in an amount of 0.010% or more, it has the effect of making solute N harmless and increasing the magnetic permeability due to the effect of solid solute Al. However, if it is added in an amount exceeding 1.00%, the flow of the molten metal during steelmaking is poor, and the problem with refractories. Since the deterioration is significant,
The content was 0.0150 to 1.0%, preferably 0.015 to 0.80%. It is desirable that the N content be as low as possible, and if it is added in excess of 0.006%, the ferrite particle size becomes difficult to coarsen, so in the present invention, the N content is set to 0.006% or less. Since oxygen forms non-metallic inclusions, it must be kept at 0.005% or less. Furthermore, in order to neutralize the adverse effects of solid solution C and N and obtain high magnetic permeability, in addition to the above basic components, if necessary,
Nb: 0.015-0.250%, V: 0.015-0.500% and
Ti: 0.015 to 0.250% of one or more types is contained for the following reasons. When Nb is added in an amount of 0.015% or more, it combines with C and N and becomes coarse when the rolling heating temperature is below 1150℃.
Since it forms Nb (C, N), it is effective in making impurity elements, especially C and N, harmless. but,
Adding more than 0.250% not only significantly increases cost but also harms magnetic properties, so it was set at 0.015 to 0.20%. V is effective in fixing C and N like Nb when added in an amount of 0.015% or more, but adding more than 0.50% causes an increase in cost, so V is added in an amount of 0.015 to 0.50%.
And so. Addition of Ti in an amount of 0.015% or more fixes C and N and renders them harmless, but if added in an amount exceeding 0.250%, the toughness deteriorates significantly.
The range shall be 0.015% to 0.250%. Next, regarding the rolling conditions, first, the pre-rolling heating temperature is set to 1150° C. or less in order to prevent C and N precipitates, such as AlN, from forming a solid solution and cause them to aggregate and coarsen. Finishing temperature below 800℃
Setting the cumulative rolling reduction ratio of 975℃ to finishing temperature at 35% or more is necessary to make the grains as fine as possible in the rolled state, while also allowing the rolling strain to remain, which tends to cause abnormal grain growth of ferrite during the next annealing process. This is to do so. In the case of thick plates, the reason for water cooling after rolling is to leave the rolling strain until the next process and make it easier for abnormal grain growth to occur due to strain annealing. In addition, by adjusting the composition as described above, the steel used in the present invention has a single phase of ferrite up to 910°C, so it can be annealed at 800 to 910°C to obtain sufficient grains under the above composition and rolling conditions. can cause growth. Grain growth is insufficient below 800°C. Thus, according to the invention, the adjustment of impurities,
Through the combination of manufacturing conditions and the addition of sol.Al, they interact to produce a material with excellent magnetic properties, especially high magnetic permeability, despite the thickness of the plate. Examples Hot-rolled materials were manufactured under the conditions shown in the table below by varying the manufacturing conditions for a series of steels A to K having the steel compositions also shown in the table. The slab was a cast slab manufactured by continuous casting. The results are also summarized in the table, and as can be seen from this, as long as it is manufactured under the above chemical composition and manufacturing conditions within the scope of the present invention, ferrite can be produced as coarse particles with a particle size number of 3 or less without processing distortion. It is possible to obtain a maximum magnetic permeability of 4000 or more in a state of 4,000 or more, and a maximum magnetic permeability of 2000 or more with a processing strain of 3% or less. Furthermore, in a state of 0% processing strain, a magnetic flux density of 1.35 T or more can be obtained with a magnetic field of 5 Oe.

【表】【table】

【表】【table】

【表】 (注) *:本発明の範囲外
[Table] (Note) *: Outside the scope of the present invention

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aおよび第1図bは、最大透磁率
(μmax)および保磁力(Hc)に及ぼすC含有量
の影響をそれぞれ示すグラフ;および第2図は、
最大透磁率(μmax)および保磁力(Hc)に及ぼ
すsol.Al含有量の影響を示すグラフである。
Figures 1a and 1b are graphs showing the influence of C content on maximum permeability (μmax) and coercive force (Hc), respectively; and Figure 2 is
It is a graph showing the influence of sol.Al content on maximum magnetic permeability (μmax) and coercive force (Hc).

Claims (1)

【特許請求の範囲】 1 重量%で、 C:0.02%以下、Si:0.50%以下、 Mn:0.50%以下、P:0.050%以下、 S:0.015%以下、sol.Al:0.010〜0.80%、 N:0.006%以下、酸素:0.005%以下、 さらに必要に応じ、Nb:0.015〜0.250%、V:
0.015〜0.500%およびTi:0.015〜0.250%から成
る群から選んだ少なくとも一種、 残部Feおよび不可避不純物 から成る鋼組成の鋼片または鋳片を1150℃以下に
加熱し、975℃〜仕上げ温度における累積圧下率
が35%以上、仕上げ温度が800℃以下の条件下で
熱間圧延を行い、次いで10℃/min以上の冷却速
度で冷却し、冷却後、800〜910℃で焼なますこと
を特徴とする、加工歪のない状態で最大透磁率
4000以上、磁場5Oeで磁束密度1.35T以上である、
高透磁率熱間圧延鉄板の製造方法。
[Claims] 1% by weight: C: 0.02% or less, Si: 0.50% or less, Mn: 0.50% or less, P: 0.050% or less, S: 0.015% or less, sol.Al: 0.010 to 0.80%, N: 0.006% or less, Oxygen: 0.005% or less, and if necessary, Nb: 0.015 to 0.250%, V:
A steel billet or slab with a steel composition consisting of at least one selected from the group consisting of 0.015 to 0.500% and Ti: 0.015 to 0.250%, the balance being Fe and unavoidable impurities is heated to 1150℃ or less, and the cumulative temperature at 975℃ to finishing temperature is heated to 1150℃ or less. It is characterized by hot rolling under the conditions of a rolling reduction of 35% or more and a finishing temperature of 800°C or less, then cooling at a cooling rate of 10°C/min or more, and after cooling, annealing at 800 to 910°C. Maximum magnetic permeability without processing distortion
4000 or more, magnetic flux density 1.35T or more in a magnetic field of 5Oe,
A method for manufacturing a high permeability hot rolled iron plate.
JP59060960A 1984-03-30 1984-03-30 Production of hot-rolled high magnetic permeability iron sheet Granted JPS60208417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59060960A JPS60208417A (en) 1984-03-30 1984-03-30 Production of hot-rolled high magnetic permeability iron sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59060960A JPS60208417A (en) 1984-03-30 1984-03-30 Production of hot-rolled high magnetic permeability iron sheet

Publications (2)

Publication Number Publication Date
JPS60208417A JPS60208417A (en) 1985-10-21
JPS6345443B2 true JPS6345443B2 (en) 1988-09-09

Family

ID=13157478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59060960A Granted JPS60208417A (en) 1984-03-30 1984-03-30 Production of hot-rolled high magnetic permeability iron sheet

Country Status (1)

Country Link
JP (1) JPS60208417A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2682144B2 (en) * 1988-10-24 1997-11-26 日本鋼管株式会社 Method for manufacturing soft magnetic steel
JPS6383226A (en) * 1986-09-29 1988-04-13 Nkk Corp Grain oriented electrical steel sheet having extremely uniform sheet thickness accuracy and magnetic characteristic nd its production
JPH01108315A (en) * 1987-10-22 1989-04-25 Kawasaki Steel Corp Manufacture of hot rolled steel plate for magnetic shielding having superior machinability
JPH0266118A (en) * 1988-08-31 1990-03-06 Nkk Corp Production of high permeability soft magnetic pure iron sheet having excellent magnetic shieldability
JPH0266119A (en) * 1988-08-31 1990-03-06 Nkk Corp Production of high permeability soft magnetic pure iron sheet having excellent magnetic shieldability
JPH0713264B2 (en) * 1989-03-16 1995-02-15 新日本製鐵株式会社 Manufacturing method of non-oriented electromagnetic thick plate with uniform magnetic properties in the thickness direction
JPH0713263B2 (en) * 1989-03-16 1995-02-15 新日本製鐵株式会社 Method for manufacturing non-oriented electromagnetic thick plate having uniform magnetic properties in the thickness direction
JPH0713265B2 (en) * 1989-03-16 1995-02-15 新日本製鐵株式会社 Manufacturing method of good electromagnetic thick plate with uniform magnetic properties in the thickness direction
JPH066778B2 (en) * 1989-06-15 1994-01-26 住友金属工業株式会社 Electromagnetic soft iron for thick plates
JP2679258B2 (en) * 1989-06-17 1997-11-19 日本鋼管株式会社 Iron-based soft magnetic steel
JPH0762175B2 (en) * 1989-08-18 1995-07-05 新日本製鐵株式会社 Method for manufacturing non-oriented electromagnetic thick plate having uniform magnetic properties in the thickness direction
KR100584739B1 (en) * 2001-12-13 2006-05-30 주식회사 포스코 Method for Manufacturing Cold-Rolled Steel Sheet for Shrinkage Band of Braun Tube with Superior Magnetic Shielding Property and Tensile Strength

Also Published As

Publication number Publication date
JPS60208417A (en) 1985-10-21

Similar Documents

Publication Publication Date Title
JPS6345443B2 (en)
JP2639227B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP3162782B2 (en) Soft magnetic iron plate with excellent magnetic properties and method for producing the same
JP3386742B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
KR950002895B1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof
JP3458682B2 (en) Non-oriented electrical steel sheet excellent in magnetic properties after strain relief annealing and method for producing the same
JPH06104866B2 (en) Method for manufacturing electromagnetic thick plate for direct current magnetization
JPH0711026B2 (en) Manufacturing method of non-directional electromagnetic thick plate with high magnetic flux density
JP2503110B2 (en) Method for manufacturing non-oriented electromagnetic thick plate with excellent magnetic properties
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JPH079040B2 (en) Manufacturing method of good electromagnetic thick plate with good machinability and uniform magnetic properties in the plate thickness direction
JP3424178B2 (en) Non-oriented electrical steel sheet with low iron loss
JP2503111B2 (en) Manufacturing method of non-oriented electromagnetic thick plate with excellent magnetic properties
JP3474741B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP3311021B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with low iron loss
KR970007162B1 (en) Making method of oriented electrical steel sheet having excellent from loss properties
JP3766745B2 (en) Non-oriented electrical steel sheet with low iron loss after magnetic annealing
JP2503123B2 (en) Manufacturing method of non-oriented electromagnetic thick plate with excellent magnetic properties
JP2503113B2 (en) Manufacturing method of non-oriented electromagnetic thick plate
JP2503122B2 (en) Method for manufacturing non-oriented electromagnetic thick plate with excellent magnetic properties
JP2503112B2 (en) Manufacturing method of good electromagnetic plate
JP2619571B2 (en) Unidirectional electrical steel sheet excellent in both magnetic permeability and coercive force and method of manufacturing the same
JPH0613747B2 (en) Magnetic steel sheet for magnetic shield and manufacturing method thereof
JP3479984B2 (en) Unidirectional silicon steel sheet having stable magnetic properties and method of manufacturing the same
JP3084571B2 (en) High Si content steel plate with good workability