JP3458682B2 - Non-oriented electrical steel sheet excellent in magnetic properties after strain relief annealing and method for producing the same - Google Patents
Non-oriented electrical steel sheet excellent in magnetic properties after strain relief annealing and method for producing the sameInfo
- Publication number
- JP3458682B2 JP3458682B2 JP32763797A JP32763797A JP3458682B2 JP 3458682 B2 JP3458682 B2 JP 3458682B2 JP 32763797 A JP32763797 A JP 32763797A JP 32763797 A JP32763797 A JP 32763797A JP 3458682 B2 JP3458682 B2 JP 3458682B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- annealing
- relief annealing
- ppm
- strain relief
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/14766—Fe-Si based alloys
- H01F1/14775—Fe-Si based alloys in the form of sheets
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Description
【0001】[0001]
【発明の属する技術分野】この発明は、歪取り焼鈍後の
磁気特性に優れる無方向性電磁鋼板およびその製造方法
に関し、特に製造過程において有害元素であるTiが鋼中
に混入してきた場合であっても、歪取り焼鈍後に特性の
ばらつきが生じることのない優れた磁気特性を安定して
得ようとするものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-oriented electrical steel sheet having excellent magnetic properties after strain relief annealing and a method for producing the same, particularly when Ti, which is a harmful element, is mixed in the steel during the production process. Even so, it is intended to stably obtain excellent magnetic characteristics without variations in characteristics after the strain relief annealing.
【0002】[0002]
【従来の技術】無方向性電磁鋼板は、主に回転機器や変
圧器等の鉄心として使用され、これら装置のエネルギー
効率を高めるためには、鉄心素材である無方向性電磁鋼
板の鉄損を低下させることが重要である。近年、回転機
器等に対する高効率化の要求が高まってきたことに伴っ
て、無方向性電磁鋼板においても、磁気特性の向上、特
に高磁束密度・低鉄損化への要求が高まり、特に鉄損特
性についてはW15/50 で 3.5 W/kg 以下の素材が求めら
れている。2. Description of the Related Art Non-oriented electrical steel sheets are mainly used as iron cores for rotating equipment, transformers, etc. In order to improve the energy efficiency of these devices, the iron loss of the non-oriented electrical steel sheet which is the iron core material is taken into consideration. It is important to lower it. In recent years, along with the increasing demand for higher efficiency in rotating equipment, the demand for improved magnetic properties, especially high magnetic flux density and low iron loss, has also increased in non-oriented electrical steel sheets. Regarding loss characteristics, materials with W 15/50 and 3.5 W / kg or less are required.
【0003】従来、上記のような低鉄損の材料は、歪取
り焼鈍工程をさほど考慮せず、鋼板メーカーにおいて 9
00℃を超えるような高温域で焼鈍し、所定の粒径すなわ
ち鉄損を得るように制御して、モーターメーカーに供給
していた。Conventionally, the above-mentioned materials having a low iron loss have not been considered so much in the strain relief annealing process, and have been used by steel sheet manufacturers.
It was annealed in a high temperature range exceeding 00 ° C, controlled to obtain a predetermined grain size, that is, iron loss, and supplied to the motor manufacturer.
【0004】これに対し、最近では、高特性の電磁鋼板
の利用形態として、製品鋼板をモーターメーカー等で所
定の形状に打ち抜いたのち、 750℃, 2hの歪取り焼鈍
を施してモーター部品として使用する方法が一般的とな
りつつある。歪取り焼鈍を施す本来の目的は、剪断時の
歪みに起因した磁性の劣化( 0.1〜2.0 W/kg程度)を回
復させるためであった。しかしながら、現在では、剪断
時の打ち抜き精度を確保するために製品段階では粒径を
20〜30μm 程度とする一方、その後の歪取り焼鈍で結晶
粒を成長させることによって特性の向上を図ろうという
考え方が一般化しつつある。On the other hand, recently, as a utilization form of a high-performance electromagnetic steel sheet, a product steel sheet is punched into a predetermined shape by a motor maker or the like and then subjected to strain relief annealing at 750 ° C. for 2 hours to be used as a motor component. The method of doing so is becoming more common. The original purpose of applying strain relief annealing was to recover the deterioration of magnetism (about 0.1 to 2.0 W / kg) caused by strain during shearing. However, at present, in order to ensure the punching precision during shearing, the particle size is
On the other hand, the idea of improving the characteristics by growing the crystal grains by subsequent strain relief annealing is becoming generalized while the thickness is set to about 20 to 30 μm.
【0005】上記の考えに立脚した磁気特性改善技術と
して、発明者らは先に、特開平8−3699号公報や特開平
8−325678号公報等において、不純物元素であるTi, Zr
の低減と REM添加による介在物制御を骨子とした製造技
術を提案し、歪取り焼鈍後に優れた磁気特性を有する無
方向性電磁鋼板の製造が可能であることを示した。As a magnetic characteristic improving technique based on the above-mentioned idea, the present inventors have previously described in JP-A-8-3699 and JP-A-8-325678 that the impurity elements Ti and Zr are used.
We have proposed a manufacturing technique that is mainly based on the reduction of the amount and inclusion control by adding REM, and showed that it is possible to manufacture a non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、上記の
製造技術に従って無方向性電磁鋼板を製造する際、時と
して、鋼中Ti量が大きく変動し、それに伴って目標特性
を達成できない場合が散見された。このような特性の変
動は、製品歩留りの低下を招くだけでなく、製品の安定
供給を脅かすものとして問題となる。However, when manufacturing a non-oriented electrical steel sheet according to the above-mentioned manufacturing technique, there are occasional cases where the Ti content in the steel fluctuates greatly and the target characteristics cannot be achieved accordingly. It was Such a change in characteristics not only causes a reduction in product yield, but also poses a problem because it threatens a stable supply of products.
【0007】そこで、発明者らは、上記の問題を解決す
べく、特にTiの挙動に注目して解析を進めた結果、Alを
比較的多量に含有する鋼では、溶鋼精錬時にスラグ中の
TiがAlにより還元されて鋼中に復Tiし、Ti濃度が上昇す
ること、このようにしてTi濃度が上昇した場合には 750
℃, 2hの歪取り焼鈍後に磁性劣化を生じるため、製品
の磁気特性がばらつき易くなることの知見を得た。この
ようなTiの復Tiは、Al含有量が多い場合、現在の精錬冶
金では避け難い現象であるので、Tiのばらつきに起因し
た特性劣化を極力抑制するためには、副原料やフラック
スおよびスラグ中に含まれるTiの厳密な精錬管理が必要
となり、それによるコストアップ、さらには歩留りの低
下による生産性の劣化が避けられない。[0007] Therefore, as a result of proceeding with the analysis, paying attention to the behavior of Ti in particular, in order to solve the above problems, the inventors have found that steel containing a relatively large amount of Al has a slag content in the slag during molten steel refining.
When Ti is reduced by Al and returned to the steel, the Ti concentration increases, and when the Ti concentration increases in this way, 750
It was found that the magnetic characteristics of the product are likely to vary because the magnetic deterioration occurs after the strain relief annealing at ℃ for 2 hours. Such Ti recovery Ti is an unavoidable phenomenon in the current refining metallurgy when the Al content is large, so in order to suppress the characteristic deterioration due to the variation of Ti as much as possible, auxiliary raw materials, flux and slag are used. Strict refining management of the Ti contained in it is necessary, which inevitably leads to cost increase and productivity deterioration due to yield reduction.
【0008】この発明は、上記の問題を有利に解決する
もので、Tiをある程度含有する場合においても、歪取り
焼鈍後に磁性劣化を生じることなく、優れた磁気特性を
安定して得ることができる無方向性電磁鋼板を、その有
利な製造方法と共に提案することを目的とする。The present invention advantageously solves the above-mentioned problems. Even when Ti is contained to some extent, excellent magnetic characteristics can be stably obtained without causing magnetic deterioration after strain relief annealing. The aim is to propose a non-oriented electrical steel sheet together with its advantageous manufacturing method.
【0009】[0009]
【課題を解決するための手段】以下、この発明の解明経
緯について説明する。表1に、鋼中のAl量と磁性劣化コ
イルの割合(歪取り焼鈍後の鉄損が目標鉄損より 0.5 W
/kg 以上劣化したもの)との関係を、鋼中Ti量の増加
(Ti≧15 ppm)との関連で調査した結果を示す。なお、
Al以外の成分は一定とした。Means for Solving the Problems The clarification process of the present invention will be described below. Table 1 shows the amount of Al in the steel and the ratio of the magnetic deterioration coil (the iron loss after strain relief annealing is 0.5 W from the target iron loss.
The result of investigation on the relationship with the increase of Ti content in steel (Ti ≧ 15 ppm) is shown below. In addition,
Components other than Al were constant.
【0010】[0010]
【表1】 [Table 1]
【0011】表1に示したとおり、Alの増加に伴って、
磁性劣化コイルの割合が増加した。特に、Alが 0.6wt%
を超える材料ではTiの増加に起因して焼鈍後の磁性改善
効果が低下した。高Al成分系において、Tiが増加するの
は、副原料やスラグ中のTi酸化物がAlで還元されて鋼中
に復Tiすることによるものと考えられ、高Al材ではTiの
増加が本質的な問題であることが判明した。As shown in Table 1, with the increase of Al,
The ratio of magnetic deterioration coils increased. Especially, Al is 0.6wt%
In the materials exceeding 1.0, the effect of improving magnetism after annealing decreased due to the increase of Ti. It is considered that the increase of Ti in the high Al component system is due to the reduction of Ti oxide in the auxiliary raw material and slag with Al and returning to Ti in the steel. It turned out to be a problem.
【0012】このような現象は、前述したとおり、現在
の精錬冶金工程では避け難く、Tiのばらつきによる特性
劣化を極力抑制するためには、副原料やフラックスおよ
びスラグ中を含まれるTiの厳密な精錬管理が必要となる
が、それとても現在の技術では限界があり、従ってTiの
ばらつきによる歩留りの低下および特性の不安定化とい
う問題は避けられない。従って、製品の安定製造を実現
するためには、Tiをある程度含有する鋼においても、歪
取り焼鈍後に優れた磁気特性を安定して得ることが不可
欠なわけである。As described above, such a phenomenon is unavoidable in the current refining and metallurgy process, and in order to suppress the characteristic deterioration due to the variation of Ti as much as possible, the strict content of Ti contained in the auxiliary raw material, the flux and the slag should be suppressed. Refining management is required, but it is very limited by the current technology, so the problems of yield reduction and instability of characteristics due to variations in Ti are unavoidable. Therefore, in order to realize stable production of products, it is essential to obtain stable magnetic properties excellent after strain relief annealing even in steel containing Ti to some extent.
【0013】発明者らは、上記のような背景の下で、Ti
量と低温粒成長性との関係について鋭意研究を重ねた結
果、従来は粒成長性に極めて有害とされたTiについても
その含有量が0.0050wt%までの範囲であれば、O,S,
Nを極力低減させた上で、熱間圧延以降の工程を最適化
すれば、750 ℃,2時間の歪取り焼鈍において粒成長性
を確保することができ、ひいては特性の安定化が実現さ
れることの知見を得た。この発明は、上記の知見に立脚
するものである。Under the background as described above, the inventors have found that Ti
As a result of intensive studies on the relationship between the amount and the low temperature grain growth property, even if Ti is conventionally considered to be extremely harmful to the grain growth property as long as the content is 0.0050 wt% or less, O, S,
If N is reduced as much as possible and the processes after hot rolling are optimized, grain growth can be secured in strain relief annealing at 750 ° C. for 2 hours, and eventually the characteristics are stabilized. I got the knowledge. The present invention is based on the above findings.
【0014】すなわち、この発明は、C:0.005 wt%以
下、Si:0.1 〜3.5 wt%、Mn:0.1 〜1.5 wt%、Al:0.
6 〜2.0 wt%を含み、かつ不純物としてTi:0.0015〜0.
0050wt%(但し、0.0015wt%を除く)の混入を許容する
と共に、S, OおよびNについてはそれらの混入をそれ
ぞれS:40 ppm以下、O:30 ppm以下、N:50 ppm以下
に抑制し、残部はFeおよび不可避的不純物の組成にな
り、歪取り焼鈍前の結晶粒径が35μm 以下で、かつ 750
℃, 2hの歪取り焼鈍後の結晶粒径が65μm 以上となる
ことを特徴とする歪取り焼鈍後の磁気特性に優れる無方
向性電磁鋼板である。That is, according to the present invention, C: 0.005 wt% or less, Si: 0.1-3.5 wt%, Mn: 0.1-1.5 wt%, Al: 0.
6-2.0 wt% and Ti: 0.0015-0.
0050 wt% (excluding 0.0015 wt%) is allowed, and S, O and N are suppressed to S: 40 ppm or less, O: 30 ppm or less, N: 50 ppm or less, respectively. , The balance is composed of Fe and unavoidable impurities , the grain size before strain relief annealing is 35 μm or less, and 750
A non-oriented electrical steel sheet having excellent magnetic properties after stress relief annealing, characterized by having a grain size of 65 μm or more after stress relief annealing at 2 ° C. for 2 hours.
【0015】また、この発明は、C:0.005 wt%以下、
Si:0.1 〜3.5 wt%、Mn:0.1 〜1.5 wt%、Al:0.6 〜
2.0 wt%を含み、かつ不純物としてTi:0.0015〜0.0050
wt%(但し、0.0015wt%を除く)の混入を許容すると共
に、S, OおよびNについてはそれらの混入をそれぞれ
S:40 ppm以下、O:30 ppm以下、N:50 ppm以下に抑
制し、残部はFeおよび不可避的不純物の組成になる鋼ス
ラブを、熱間圧延し、ついで冷間圧延したのち、仕上げ
焼鈍を施して無方向性電磁鋼板を製造するに当たり、仕
上げ熱間圧延後、最終冷間圧延前までの間に少なくとも
1回、 700〜900 ℃の温度範囲において30分〜10時間加
熱した後、少なくとも 500℃までを50℃/min以下の冷却
速度で冷却する焼鈍処理を施すことにより、歪取り焼鈍
前の結晶粒径が35μm 以下で、かつ 750℃, 2hの歪取
り焼鈍後の結晶粒径が65μm 以上となる鋼組織とするこ
とを特徴とする歪取り焼鈍後の磁気特性に優れる無方向
性電磁鋼板の製造方法である。The present invention is also characterized in that C: 0.005 wt% or less,
Si: 0.1-3.5 wt%, Mn: 0.1-1.5 wt%, Al: 0.6-
Contains 2.0 wt% and Ti: 0.0015 to 0.0050 as impurities
wt% (excluding 0.0015 wt% ) is allowed, and S, O and N are suppressed to S: 40 ppm or less, O: 30 ppm or less, N: 50 ppm or less, respectively. , The balance is a steel slab having a composition of Fe and unavoidable impurities , hot-rolled, then cold-rolled, and then subjected to finish annealing to produce a non-oriented electrical steel sheet. Before cold rolling, heat at least once in the temperature range of 700 to 900 ℃ for 30 minutes to 10 hours, and then anneal at least 500 ℃ at a cooling rate of 50 ℃ / min or less. The magnetic properties after stress relief annealing are characterized by a steel structure in which the grain size before strain relief annealing is 35 μm or less and the grain size after strain relief annealing at 750 ° C. for 2 hours is 65 μm or more. It is a method for producing a non-oriented electrical steel sheet having excellent heat resistance.
【0016】[0016]
【発明の実施の形態】以下、この発明の基礎となった実
験結果について説明する。Si:0.6 wt%、Al:1.5 wt
%、Mn:0.6 wt%、P:0.02wt%、C:15〜20 ppm、
S:20〜26 ppm、O:12〜15 ppm、N:30〜35 ppmを含
有し、Tiを5ppm から90 ppmまで変化させた鋼塊を作製
し、熱間圧延後、
A:810 ℃で 2.5h加熱後、500 ℃まで 20 ℃/minで冷
却
B:810 ℃で 2.5h加熱後、500 ℃まで100 ℃/minで冷
却
C:950 ℃で 30 s加熱後、500 ℃まで100 ℃/minで冷
却
する焼鈍処理を行ったのち、 0.5mm厚に冷延し、ついで
850℃, 10sの焼鈍を施して製品とした。この時、得ら
れた製品板の粒径は24〜29μm であった。その後、 750
℃, 2hの歪取り焼鈍を行ったのち、磁気測定を行い、
Ti量が粒成長性に及ぼす影響について調査した。BEST MODE FOR CARRYING OUT THE INVENTION Below, the experimental results which are the basis of the present invention will be explained. Si: 0.6 wt%, Al: 1.5 wt
%, Mn: 0.6 wt%, P: 0.02 wt%, C: 15-20 ppm,
A steel ingot containing S: 20 to 26 ppm, O: 12 to 15 ppm, N: 30 to 35 ppm and having Ti changed from 5 ppm to 90 ppm was prepared, and after hot rolling, A: at 810 ° C. After heating for 2.5 h, cooling to 500 ° C at 20 ° C / min B: After heating at 810 ° C for 2.5 h, cooling to 500 ° C at 100 ° C / min C: After heating at 950 ° C for 30 s, 100 ° C / min to 500 ° C After annealing treatment to cool with 0.5mm, cold rolling to 0.5mm thickness, then
The product was annealed at 850 ° C for 10 seconds to obtain a product. At this time, the particle size of the obtained product plate was 24-29 μm. Then 750
After performing stress relief annealing for 2 hours at ℃, measure the magnetic field,
The effect of Ti content on grain growth was investigated.
【0017】図1に、Ti量と歪取り焼鈍後の鉄損との関
係を示す。BやCの条件では、焼鈍後の磁性は改善され
ず、Aの条件の場合にのみ焼鈍後の磁性が改善されるこ
とが判る。このことから、Al添加鋼において、Tiによる
粒成長性阻害を安定して改善するためには、冷延前の熱
処理の温度と冷却速度が重要であることが判明した。こ
の現象は、冷延前に適切な焼鈍を施すことによって、Ti
系の析出物が粗大化し、無害化される結果、750 ℃での
粒成長性が改善されたものと考えられる。FIG. 1 shows the relationship between the Ti amount and the iron loss after strain relief annealing. It is understood that under the conditions of B and C, the magnetism after annealing is not improved, and only under the condition of A, the magnetism after annealing is improved. From this, it was found that in the Al-added steel, the temperature and cooling rate of the heat treatment before cold rolling are important in order to stably improve the inhibition of grain growth by Ti. This phenomenon is caused by the appropriate annealing before cold rolling.
It is considered that the grain growth at 750 ° C was improved as a result of coarsening and detoxifying the system precipitates.
【0018】熱延板焼鈍を実施すると、低温短時間での
焼鈍以上に鉄損が低減することは、従来から低Ti材につ
いては良く知られた現象であったが、ある範囲のTi含有
鋼について、冷却速度を規制した熱延板焼鈍によってTi
の悪影響を払拭できることはこの発明で初めて知見され
た事実であり、これによって高Al材について従来のよう
なTiの低減努力が必要でなくなり、多少の工程追加はあ
るものの、操業のばらつきなしに安定して低鉄損の無方
向性電磁鋼板が得られるようになったのである。It has been a well-known phenomenon for low-Ti materials to reduce iron loss more than annealing at low temperature for a short time when hot-rolled sheet annealing is carried out. About Ti by hot-rolled sheet annealing with controlled cooling rate
It is a fact that was discovered for the first time in the present invention that the adverse effects of the above can be eliminated, and this eliminates the need for the conventional Ti reduction efforts for high Al materials, and although there are some additional steps, stable operation is possible without variations in operation. As a result, a low iron loss non-oriented electrical steel sheet was obtained.
【0019】さらに、発明者らの研究によれば、上記の
熱延板焼鈍効果を確実なものにするためには、S,O,
Nの低減が重要であることも究明された。表2に、Si:
1.1 wt%、Al:1.5 wt%、Mn:0.6 wt%、P:0.02wt
%、Ti:25〜30 ppmを含有し、S, O,N量を種々に変
化させた鋼塊を、前記Aの条件で歪取り焼鈍まで実施
し、得られた焼鈍板について磁気測定を行った結果を示
す。Further, according to the research conducted by the inventors, in order to secure the above-mentioned hot rolled sheet annealing effect, S, O,
It was also determined that the reduction of N is important. In Table 2, Si:
1.1 wt%, Al: 1.5 wt%, Mn: 0.6 wt%, P: 0.02 wt%
%, Ti: 25 to 30 ppm, and various ingots of S, O, and N were subjected to strain relief annealing under the condition A, and magnetic measurements were performed on the obtained annealed sheet. The results are shown below.
【0020】[0020]
【表2】 [Table 2]
【0021】同表から明らかなように、S,O,Nを全
て低減しないと、この効果が得られないことが判る。従
って、歪取り焼鈍の磁性劣化現象を効果的に改善するた
めには、S,O,Nの低減も重要な要素である。As is apparent from the table, this effect cannot be obtained unless S, O and N are all reduced. Therefore, in order to effectively improve the magnetic deterioration phenomenon of strain relief annealing, the reduction of S, O and N is also an important factor.
【0022】次に、この発明において、鋼板の成分組成
を前記の範囲に限定した理由について説明する。
C:0.005 wt%以下
Cは、炭化物の析出により磁気特性を劣化させるので、
0.0050wt%以下に制限した。
Si:0.1 〜3.5 wt%
Siは、電磁鋼板の主要元素であり、固有抵抗を高めるこ
とによって鉄損を効果的に低減させるが、含有量が 0.1
wt%に満たないとその効果が十分でなく、一方3.5 wt%
を超えると冷間加工性が劣化するので、Siは 0.1〜3.5
wt%の範囲に限定した。
Mn:0.1 〜1.5 wt%
Mnは、Sを粗大MnSとして固定する働きがあり、そのた
めには0.1 wt%以上含有させる必要がある。一方、Mn添
加量の増加は磁束密度を劣化させるので、その上限は1.
5 wt%とした。
Al:0.6 〜2.0 wt%
Alは、Siと同様、固有抵抗を高めることによって鉄損の
低減に有効に寄与し、しかもSiほど高さの上昇を招くこ
とのない有用元素である。このAl量が 0.6wt%未満で
は、前述したようなTiの増加は生ぜず、従って特にこの
発明のような熱延板焼鈍処理は必要としないので、Al量
の下限は 0.6wt%に定めた。しかしながら、 2.0wt%を
超えると磁束密度の低下が大きくなるので、上限は 2.0
wt%とした。Next, the reason why the composition of the steel sheet is limited to the above range in the present invention will be explained. C: 0.005 wt% or less C deteriorates the magnetic properties due to the precipitation of carbides.
It was limited to 0.0050wt% or less. Si: 0.1-3.5 wt% Si is a main element of electrical steel sheets and effectively reduces iron loss by increasing the specific resistance, but the content is 0.1
If less than wt%, the effect is not sufficient, while 3.5 wt%
, The cold workability deteriorates, so Si is 0.1 to 3.5.
It was limited to the wt% range. Mn: 0.1 to 1.5 wt% Mn has a function of fixing S as coarse MnS, and for this purpose, 0.1 wt% or more must be contained. On the other hand, the increase in the amount of Mn added deteriorates the magnetic flux density, so its upper limit is 1.
It was set to 5 wt%. Al: 0.6 to 2.0 wt% Al, like Si, is a useful element that effectively contributes to the reduction of iron loss by increasing the specific resistance and does not increase the height as much as Si. If the amount of Al is less than 0.6 wt%, the increase in Ti as described above does not occur, and therefore the hot-rolled sheet annealing treatment of the present invention is not particularly required. Therefore, the lower limit of the amount of Al is set to 0.6 wt%. . However, if it exceeds 2.0 wt%, the decrease in magnetic flux density will increase, so the upper limit is 2.0
It was set to wt%.
【0023】S:40 ppm以下、O:30 ppm以下、N:50
ppm以下
S, OおよびNはいずれも、不純物元素として鋼中に混
入するもので、極力低減することが望ましい。特に、S
>40 ppm, O>30 ppm, N>50 ppmになると、硫化物や
酸化物、窒化物によって磁壁移動や粒成長が阻害され、
磁性特性を改善が望み難くなるので、それぞれ上記の範
囲に制限した。S: 40 ppm or less, O: 30 ppm or less, N: 50
ppm or less S, O, and N are all mixed in steel as impurity elements, and it is desirable to reduce them as much as possible. In particular, S
At> 40 ppm, O> 30 ppm, N> 50 ppm, sulfides, oxides, and nitrides hinder domain wall migration and grain growth,
Since it is difficult to improve the magnetic properties, it was limited to the above range.
【0024】Ti:0.0015〜0.0050wt%(但し、0.0015wt
%を除く)
Tiは、炭化物、窒化物、硫化物を形成し、歪取り焼鈍時
における粒成長性を大きく左右する成分である。従来
は、極力低減する必要があったが、前述したとおり、高
Al含有鋼においては、安定して低減することは難しい。
ここに、Ti量が、0.0015wt%未満では、製品歩留りの低
下やコスト高は伴うとはいえ、この発明のような熱延板
焼鈍を施さなくても、特にTiによる弊害は生じず、一
方、Ti量が0.0050wt%を超えるとTi析出物によって磁壁
移動や粒成長が阻害され、磁気特性の劣化を招くので、
Ti量は0.0015〜0.0050wt%(但し、0.0015wt%を除く)
の範囲に限定した。Ti: 0.0015 to 0.0050 wt% (however, 0.0015 wt
Except) Ti is%, carbides, nitrides, to form a sulfide, a great influence component grain growth during strain relieving annealing. In the past, it was necessary to reduce it as much as possible.
In Al-containing steel, it is difficult to reduce it stably.
Here, if the amount of Ti is less than 0.0015 wt%, the product yield is reduced and the cost is high, but even if the hot-rolled sheet annealing as in the present invention is not performed, the harmful effect due to Ti does not particularly occur . , If the Ti content exceeds 0.0050 wt%, the Ti precipitates impede domain wall movement and grain growth, leading to deterioration of magnetic properties.
Ti amount is 0.0015 to 0.0050wt% (excluding 0.0015wt%)
Limited to the range .
【0025】その他の成分については、特に限定される
ことはないが、硫化物や酸化物、窒化物等を形成する元
素であるZr, Mo, V,Cu, NbおよびB等は極力低減する
ことが望ましい。また、従来知られているSbやSn, Caを
添加した場合においても、得られる効果に影響はない。
特にSbは、焼鈍時における窒化抑制効果が良く知られて
おり、この材料にも有利に適用することができる。Other components are not particularly limited, but Zr, Mo, V, Cu, Nb and B, which are elements forming sulfides, oxides, nitrides, etc., should be reduced as much as possible. Is desirable. In addition, even when the conventionally known Sb, Sn, or Ca is added, the effect obtained is not affected.
In particular, Sb is well known for its effect of suppressing nitriding during annealing, and can be advantageously applied to this material.
【0026】次に、製造工程について説明する。転炉−
脱ガス法など、常法に従う製鋼法により溶製し、連続鋳
造あるいは造塊−分塊法にてスラブとする。ついで、ス
ラブを熱間圧延するが、スラブを再加熱した後熱間圧延
する方法、スラブ加熱を行わずに連続鋳造後、直接熱間
圧延する方法いずれもが適合する。Next, the manufacturing process will be described. Converter-
It is melted by a steelmaking method according to a conventional method such as a degassing method, and is made into a slab by continuous casting or the ingot-casting method. Then, the slab is hot-rolled, and any of a method of reheating the slab and then hot-rolling, and a method of continuously casting without heating the slab and directly hot-rolling are suitable.
【0027】さて、熱間圧延後の熱延板の熱処理がこの
発明のポイントであり、熱間圧延終了後、冷延圧延開始
までの間に少なくとも1回、以下に述べるような焼鈍処
理を施す。加熱条件については、 700℃から 900℃まで
の温度で、30分以上、10h以下の時間とする。というの
は、加熱温度が 700℃に満たないと粒成長性の改善効果
が見られず、一方 900℃を超えるとスケール等の発達に
より後工程での処理が増大し、生産性に問題が生じるか
らである。また、処理時間が30分未満では磁性改善効果
が得られず、一方10hを超えるとやはり生産性の劣化を
招く。The point of the present invention is the heat treatment of the hot rolled sheet after the hot rolling, and the annealing treatment as described below is performed at least once after the hot rolling is completed and before the cold rolling is started. . Regarding the heating conditions, the temperature shall be from 700 to 900 ° C and the time shall be 30 minutes or longer and 10 hours or shorter. If the heating temperature is less than 700 ° C, the grain growth improving effect is not observed, while if it exceeds 900 ° C, the processing in the post-process increases due to the development of scale and the like, which causes a problem in productivity. Because. If the treatment time is less than 30 minutes, the effect of improving the magnetism cannot be obtained, while if it exceeds 10 hours, the productivity is deteriorated.
【0028】ついで、冷却するわけであるが、この発明
では、この冷却処理が特に重要であり、少なくとも 500
℃まで冷却速度:50℃/min 以下でゆっくりと冷却する
必要がある。かかる冷却処理において、冷却速度を50℃
/min以下に制限したのは、Tiに起因した粒成長阻害を改
善するためで,50℃/minを超える冷却速度では粒成長性
の改善効果が見られないからであるこれらの焼鈍条件の
範囲は、Ti析出物の成長に関係しているものと考えら
れ、比較的多量のTiが含有されていても、上記した適切
な条件で焼鈍することにより、Tiの悪影響を解消するこ
とができるのである。Next, cooling is performed. In the present invention, this cooling treatment is particularly important, and at least 500
Cooling rate up to ℃: It is necessary to cool slowly at 50 ℃ / min or less. In such cooling treatment, the cooling rate is 50 ° C.
The reason for limiting the growth rate to less than / min is to improve the grain growth inhibition caused by Ti, and the effect of improving grain growth is not seen at cooling rates over 50 ° C / min. Is considered to be related to the growth of Ti precipitates, and even if a relatively large amount of Ti is contained, it is possible to eliminate the adverse effect of Ti by annealing under the appropriate conditions described above. is there.
【0029】上記したような熱延板焼鈍は、熱延巻取り
直後に保熱処理として行っても良いし、まだ熱延板を10
00℃程度の高温で短時間(10s)焼鈍を実施して冷延前
の結晶粒径を制御した後に実施しても良く、さらには通
常の箱焼鈍炉を利用して行っても良い。このような熱延
板焼鈍は、工程増による多少のコストアップを招くけれ
ども、製鋼のTiはずれによる歩留り低下や生産性の劣化
に比較すると低コストであるので、トータルコストとし
て多大のメリットがある。The hot-rolled sheet annealing as described above may be carried out as a heat treatment immediately after the hot-rolling, or the hot-rolled sheet may still be annealed.
It may be annealed at a high temperature of about 00 ° C. for a short time (10 s) to control the grain size before cold rolling, or may be an ordinary box annealing furnace. Although such hot-rolled sheet annealing causes a slight increase in cost due to an increase in the number of steps, it is low in cost as compared with the reduction in yield due to the deviation of Ti in steelmaking and the deterioration in productivity, and thus has a great total merit.
【0030】その後、冷間圧延ついで仕上げ焼鈍を施
す。これらの処理は、1回の冷間圧延により製品厚みと
したのち仕上げ焼鈍する方法、また中間焼鈍を含む2回
以上の冷間圧延を施して製品厚みとしたのち仕上げ焼鈍
する方法いづれであっても良い。なお、仕上げ焼鈍の際
には、粒径を35μm 以下にすることが必要である。これ
は、製品の打ち抜き精度を得るために不可欠で、これ以
上の粒径となると打ち抜き精度が劣化する。かかる粒径
を得るためには、仕上げ焼鈍温度を適切に選択すること
が重要で、700〜900 ℃範囲での焼鈍が適当である。と
いうのは、仕上げ焼鈍温度が 900℃を超えると粒成長が
著しくなって、打ち抜き精度に問題が生じるだけでな
く、仕上げ焼鈍時に粒が成長しすぎ、その後の 750℃の
低温歪取り焼鈍で粒成長が全く生じない製品となり、従
来から知られた低鉄損のフルプロセス材となんら変わら
なくなるからである。なお、その後に公知の方法にて鋼
板表面に絶縁皮膜を形成しても良いのはいうまでもな
い。After that, cold rolling and finish annealing are performed. These treatments include a method in which the product thickness is obtained by cold rolling once and then finish annealing, and a method in which cold rolling including intermediate annealing is performed twice or more to obtain product thickness and then finish annealing is performed. Is also good. It should be noted that the grain size must be 35 μm or less at the time of finish annealing. This is indispensable for obtaining the punching accuracy of the product, and the punching accuracy is deteriorated when the particle diameter is larger than this. In order to obtain such a grain size, it is important to properly select the finish annealing temperature, and annealing in the range of 700 to 900 ° C is appropriate. This is because when the finish annealing temperature exceeds 900 ° C, grain growth becomes noticeable, causing problems with punching accuracy, and the grains grow too much during finish annealing, and the subsequent low temperature strain relief annealing at 750 ° C causes grain growth. This is a product that does not grow at all, and is no different from the conventionally known full-process material with low iron loss. Needless to say, an insulating film may be formed on the surface of the steel sheet by a known method thereafter.
【0031】さらに、この発明では、750 ℃,2hの歪
取り焼鈍後に、結晶粒径が65μm 以上となる必要があ
る。これは、所定の鉄損を得るための最低限必要な粒径
で、65μm 以上でなければW15/50 =3.5 W/kg以下の鉄
損を安定して得ることはできない。かような粒成長を生
じる鋼組織は、上記したような冷却速度を加味した焼鈍
処理によって形成することができる。従来、高Ti含有鋼
では、仕上げ焼鈍後の粒径を35μm 以下とし、750 ℃の
歪取り焼鈍で粒径を65μm 以上とすることは極めて難し
かったが、この発明法に従えば、Ti量が多い場合であっ
ても所定の粒径が得られるのである。Further, according to the present invention, it is necessary that the crystal grain size becomes 65 μm or more after the strain relief annealing at 750 ° C. for 2 hours. This is the minimum required grain size for obtaining a predetermined iron loss, and iron loss of W 15/50 = 3.5 W / kg or less cannot be stably obtained unless it is 65 μm or more. The steel structure that causes such grain growth can be formed by the annealing treatment in consideration of the cooling rate as described above. Conventionally, in high-Ti steels, it was extremely difficult to set the grain size after finish annealing to 35 μm or less, and to set the grain size to 65 μm or more by strain relief annealing at 750 ° C. Even if the amount is large, a predetermined particle size can be obtained.
【0032】[0032]
【実施例】実施例1
転炉精錬−脱ガス処理により、表3に示す成分組成にな
った溶鋼を、連続鋳造し、得られた連鋳スラブを、再加
熱後、熱延圧延したのち、表4に示す条件で熱延板焼鈍
を施した。ついで、1回の冷間圧延で 0.5mm厚の冷延板
としたのち、800 ℃で12sの仕上げ焼鈍を施し、さらに
絶縁皮膜を被成して、製品とした。なお、得られた製品
の粒径はいずれも35μm 以下であった。その後、所定の
大きさに剪断後、窒素雰囲気中で 750℃、2hの歪取り
焼鈍を施したのち、結晶粒径を測定すると共に、25cmエ
プスタイン法による磁気測定を実施した。得られた結果
を、表4に併記する。Example 1 Molten steel having the composition shown in Table 3 was continuously cast by converter refining and degassing, and the obtained continuous cast slab was reheated and hot rolled, The hot rolled sheet was annealed under the conditions shown in Table 4. Then, it was cold-rolled once to form a cold-rolled sheet having a thickness of 0.5 mm, then subjected to finish annealing at 800 ° C. for 12 s, and then an insulating film was formed to obtain a product. The particle diameters of the obtained products were all 35 μm or less. Then, after shearing to a predetermined size, strain relief annealing was performed at 750 ° C. for 2 hours in a nitrogen atmosphere, and then the crystal grain size was measured and magnetic measurement by the 25 cm Epstein method was performed. The obtained results are also shown in Table 4.
【0033】[0033]
【表3】 [Table 3]
【0034】[0034]
【表4】 [Table 4]
【0035】No.1は、低Al材において、Ti量を低減した
ものであるが、かようなTiを低減するには、前述したと
おりTiの厳密な精錬管理が必要であるため、操業が極め
て困難であった。しかも、Ti量を低減したとはいえ、許
容上限である15 ppmを超えて含有されているため、歪取
り焼鈍によっても十分な磁性改善効果は得られなかっ
た。No.3は、熱延板焼鈍温度が低すぎたため、またNo.6
は 500℃までの冷却速度が速すぎたため、やはり歪取り
焼鈍によって十分な磁性改善効果を得ることはできなか
った。No.10は、熱延板焼鈍時間が長すぎた例、また N
o.12は熱延板焼鈍温度が高すぎた例であるが、これらは
鉄損特性は良好であったものの、スケールの発達が著し
かったことから、酸洗が極めて困難であった。No.13は
高温・短時間の熱延板焼鈍処理を施した例、また No.14
はさらに高速で冷却した例であるが、いずれも良好な鉄
損特性を得ることはできなかった。No. 1 is a low Al material in which the amount of Ti is reduced. However, in order to reduce such Ti, as described above, strict refining management of Ti is required, so the operation is It was extremely difficult. Moreover, even though the Ti content was reduced, the content was more than the upper limit of 15 ppm, which was the upper limit, so that sufficient magnetic improvement effect could not be obtained even by strain relief annealing. No.3 is No.6 because the annealing temperature of hot-rolled sheet was too low.
Since the cooling rate up to 500 ° C was too fast, it was still impossible to obtain a sufficient magnetic improvement effect by strain relief annealing. No. 10 is an example where the hot-rolled sheet annealing time was too long, and N
o.12 is an example in which the annealing temperature of the hot-rolled sheet was too high. However, although the iron loss characteristics were good, the pickling was extremely difficult because the scale development was remarkable. No. 13 is an example of hot-rolled sheet annealing at high temperature for a short time, and No. 14
Is an example of cooling at a higher speed, but none of them could obtain good iron loss characteristics.
【0036】これに対し、この発明に従い得られたもの
(No.2, 4〜5,7〜9,11, 15〜17)はいずれも、Ti
が20〜30 ppmと比較的多量に含有されていたにも拘ら
ず、良好な粒成長の下で、優れた鉄損特性を得ることが
できた。このことからも、Alを比較的多量に含有し、そ
れ故Tiの増加が避けられない鋼材において、歪取り焼鈍
によって磁気特性を改善するには、この発明に従い、焼
鈍温度:700 〜900 ℃、焼鈍時間:0.5 〜10hで加熱し
たのち、50℃/min 以下の冷却速度で徐冷する焼鈍処理
が極めて有効であることが判る。On the other hand, the products obtained according to the present invention (No. 2, 4-5, 7-9, 11, 15-17) are all Ti
Although it was contained in a relatively large amount of 20 to 30 ppm, excellent iron loss characteristics could be obtained under good grain growth. From this also, in order to improve the magnetic properties by strain relief annealing in a steel material containing a relatively large amount of Al and therefore an increase in Ti is unavoidable, according to the present invention, annealing temperature: 700-900 ℃, Annealing time: It can be seen that an annealing treatment of heating for 0.5 to 10 hours and then gradually cooling at a cooling rate of 50 ° C./min or less is extremely effective.
【0037】実施例2
実施例1と同様にして製造した、表5に示す成分組成に
なる連鋳スラブを、熱間圧延したのち、表6に示す条件
で熱延板焼鈍を施し、ついで、1回の冷間圧延で 0.5mm
厚の冷延板としたのち、800 ℃, 12sの仕上げ焼鈍を施
し、さらに絶縁皮膜を被成して、製品とした。なお、得
られた製品の粒径はいずれも35μm 以下であった。その
後、所定の大きさに剪断後、窒素雰囲気中で 750℃、2
hの歪取り焼鈍を施したのち、結晶粒径を測定すると共
に、25cmエプスタイン法による磁気測定を実施した。得
られた結果を、表6に併記する。Example 2 A continuous casting slab having the composition shown in Table 5 and manufactured in the same manner as in Example 1 was hot-rolled, and then hot-rolled sheet was annealed under the conditions shown in Table 6, and then, 0.5mm after one cold rolling
After making a thick cold-rolled sheet, finish annealing was performed at 800 ° C for 12 s, and an insulating film was formed to obtain a product. The particle diameters of the obtained products were all 35 μm or less. Then, after shearing to a specified size, in a nitrogen atmosphere at 750 ℃, 2
After performing the strain relief annealing of h, the crystal grain size was measured and the magnetic measurement was performed by the 25 cm Epstein method. The obtained results are also shown in Table 6.
【0038】[0038]
【表5】 [Table 5]
【0039】[0039]
【表6】 [Table 6]
【0040】表6に示したとおり、鋼中のTi量および
S,O,N量がそれぞれ、許容上限を超えたもの(No.
3, 4, 6, 8 )はいずれも、良好な鉄損特性は得られな
かったが、Ti, S,O,N量をそれぞれ所定のレベルに
抑制したものはいずれも、良好な鉄損特性を得ることが
できた。As shown in Table 6, the amount of Ti and the amount of S, O and N in the steel each exceeded the allowable upper limit (No.
3), 4), 6), 8) did not have good iron loss characteristics, but those of which Ti, S, O, and N contents were suppressed to predetermined levels, respectively, had good iron loss characteristics. I was able to get
【0041】[0041]
【発明の効果】かくして、この発明によれば、Alを多量
添加に伴う、Ti混入量の増大に起因した、歪取り焼鈍時
における粒成長性の劣化を効果的に解消して、特性のば
らつきなしに、優れた磁気特性の無方向性電磁鋼板を安
定して得ることができる。As described above, according to the present invention, it is possible to effectively eliminate the deterioration of grain growth during strain relief annealing due to the increase in the amount of Ti mixed with the addition of a large amount of Al, and to improve the dispersion of characteristics. It is possible to stably obtain a non-oriented electrical steel sheet having excellent magnetic properties.
【図1】鋼中Ti量が歪取り焼鈍後の鉄損特性に及ぼす影
響を、熱延板焼鈍条件をパラメータとして示したグラフ
である。FIG. 1 is a graph showing the influence of the amount of Ti in steel on iron loss characteristics after strain relief annealing, using the conditions of hot-rolled sheet annealing as a parameter.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−3699(JP,A) 特開 平5−5126(JP,A) 特開 昭59−100217(JP,A) 特開 平11−158550(JP,A) 特表 平6−503609(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 303 C21D 8/12 H01F 1/16 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-8-3699 (JP, A) JP-A-5-5126 (JP, A) JP-A-59-100217 (JP, A) JP-A-11- 158550 (JP, A) Tokuyo Hyo 6-503609 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) C22C 38/00 303 C21D 8/12 H01F 1/16
Claims (2)
れらの混入をそれぞれ S:40 ppm以下、 O:30 ppm以下、 N:50 ppm以下 に抑制し、残部はFeおよび不可避的不純物の組成にな
り、 歪取り焼鈍前の結晶粒径が35μm 以下で、かつ 750℃,
2hの歪取り焼鈍後の結晶粒径が65μm 以上となること
を特徴とする歪取り焼鈍後の磁気特性に優れる無方向性
電磁鋼板。1. C: 0.005 wt% or less, Si: 0.1-3.5 wt%, Mn: 0.1-1.5 wt%, Al: 0.6-2.0 wt%, and Ti: 0.0015-0.0050 wt% as impurities (however, , 0.0015 wt%), and the mixture of S, O and N is suppressed to S: 40 ppm or less, O: 30 ppm or less, N: 50 ppm or less, and the balance is Fe. And the composition of unavoidable impurities, the grain size before strain relief annealing is 35 μm or less, and 750 ° C,
A non-oriented electrical steel sheet having excellent magnetic properties after stress relief annealing, which has a crystal grain size of 65 μm or more after stress relief annealing for 2 hours.
れらの混入をそれぞれ S:40 ppm以下、 O:30 ppm以下、 N:50 ppm以下 に抑制し、残部はFeおよび不可避的不純物の組成になる
鋼スラブを、熱間圧延し、ついで冷間圧延したのち、仕
上げ焼鈍を施して無方向性電磁鋼板を製造するに当た
り、 仕上げ熱間圧延後、最終冷間圧延前までの間に少なくと
も1回、 700〜900 ℃の温度範囲において30分〜10時間
加熱した後、少なくとも 500℃までを50℃/min以下の冷
却速度で冷却する焼鈍処理を施すことにより、歪取り焼
鈍前の結晶粒径が35μm 以下で、かつ 750℃, 2hの歪
取り焼鈍後の結晶粒径が65μm 以上となる鋼組織とする
ことを特徴とする歪取り焼鈍後の磁気特性に優れる無方
向性電磁鋼板の製造方法。2. C: 0.005 wt% or less, Si: 0.1-3.5 wt%, Mn: 0.1-1.5 wt%, Al: 0.6-2.0 wt% and Ti: 0.0015-0.0050 wt% (however, as impurities) , 0.0015 wt%), and the mixture of S, O and N is suppressed to S: 40 ppm or less, O: 30 ppm or less, N: 50 ppm or less, and the balance is Fe. The steel slab with the composition of unavoidable impurities is hot-rolled, then cold-rolled, and then finish-annealed to manufacture a non-oriented electrical steel sheet.After finishing hot-rolling and before final cold-rolling , At least once in the temperature range of 700 to 900 ℃ for 30 minutes to 10 hours, and then at least 500 ℃ is cooled at a cooling rate of 50 ℃ / min or less to remove strain. The grain size before annealing is 35μm or less, and the grain size is 6 after strain relief annealing at 750 ℃ for 2h. A method for producing a non-oriented electrical steel sheet having excellent magnetic properties after strain relief annealing, characterized by having a steel structure of 5 μm or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32763797A JP3458682B2 (en) | 1997-11-28 | 1997-11-28 | Non-oriented electrical steel sheet excellent in magnetic properties after strain relief annealing and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32763797A JP3458682B2 (en) | 1997-11-28 | 1997-11-28 | Non-oriented electrical steel sheet excellent in magnetic properties after strain relief annealing and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11158589A JPH11158589A (en) | 1999-06-15 |
JP3458682B2 true JP3458682B2 (en) | 2003-10-20 |
Family
ID=18201283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32763797A Expired - Lifetime JP3458682B2 (en) | 1997-11-28 | 1997-11-28 | Non-oriented electrical steel sheet excellent in magnetic properties after strain relief annealing and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3458682B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9466411B2 (en) | 2011-09-27 | 2016-10-11 | Jfe Steel Corporation | Non-oriented electrical steel sheet |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003105508A (en) * | 2001-09-27 | 2003-04-09 | Nippon Steel Corp | Nonoriented silicon steel sheet having excellent workability, and production method therefor |
KR100940719B1 (en) | 2002-12-23 | 2010-02-08 | 주식회사 포스코 | Method for manufacturing non-oriented electrical steel sheet having higher magnetic induction after stress relief annealing |
CN102373367A (en) * | 2010-08-26 | 2012-03-14 | 宝山钢铁股份有限公司 | Cold-rolled electromagnetic steel plate for rapid cycling synchrotron and manufacturing method thereof |
-
1997
- 1997-11-28 JP JP32763797A patent/JP3458682B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9466411B2 (en) | 2011-09-27 | 2016-10-11 | Jfe Steel Corporation | Non-oriented electrical steel sheet |
Also Published As
Publication number | Publication date |
---|---|
JPH11158589A (en) | 1999-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3172439B2 (en) | Grain-oriented silicon steel having high volume resistivity and method for producing the same | |
US7377986B2 (en) | Method for production of non-oriented electrical steel strip | |
JP2019026891A (en) | Nonoriented magnetic steel sheet, and method of producing the same | |
JP7465354B2 (en) | Non-oriented electrical steel sheet and its manufacturing method | |
JP3458683B2 (en) | Method for producing non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing | |
JP3458682B2 (en) | Non-oriented electrical steel sheet excellent in magnetic properties after strain relief annealing and method for producing the same | |
JP6146582B2 (en) | Method for producing non-oriented electrical steel sheet | |
EP0798392B1 (en) | Production method for grain oriented silicon steel sheet having excellent magnetic characteristics | |
JP3037878B2 (en) | Non-oriented electrical steel sheet excellent in iron loss after strain relief annealing and method for producing the same | |
JPH059666A (en) | Grain oriented electrical steel sheet and its manufacture | |
JP3430833B2 (en) | Non-oriented electrical steel sheet having excellent magnetic properties after strain relief annealing and method for producing the same | |
JP2005002401A (en) | Method for producing non-oriented silicon steel sheet | |
JP4062833B2 (en) | Method for producing non-oriented electrical steel sheet with excellent magnetic properties | |
JP4283533B2 (en) | Manufacturing method of unidirectional electrical steel sheet | |
JP2000017330A (en) | Production of nonoriented silicon steel sheet low in iron loss | |
JP2888226B2 (en) | Non-oriented electrical steel sheet with low iron loss | |
JP3148567B2 (en) | Non-oriented electrical steel sheet excellent in iron loss after low-temperature short-time strain relief annealing and method for producing the same | |
JP3169490B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
JPH0967654A (en) | Nonoriented silicon steel sheet excellent in core loss characteristics | |
JP2001158948A (en) | Nonoriented silicon steel sheet low in core loss and producing method therefor | |
JPH05186834A (en) | Production of nonoriented silicon steel sheet having high magnetic flux density and low iron loss | |
JPH0617548B2 (en) | Non-oriented electrical steel sheet with excellent rust resistance | |
JP4267320B2 (en) | Manufacturing method of unidirectional electrical steel sheet | |
JP3766745B2 (en) | Non-oriented electrical steel sheet with low iron loss after magnetic annealing | |
JP2003064456A (en) | Nonoriented silicon steel sheet for semiprocess, and production method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20030708 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070808 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080808 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080808 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090808 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090808 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100808 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110808 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120808 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120808 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130808 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term |