JPH0967654A - Nonoriented silicon steel sheet excellent in core loss characteristics - Google Patents

Nonoriented silicon steel sheet excellent in core loss characteristics

Info

Publication number
JPH0967654A
JPH0967654A JP7220099A JP22009995A JPH0967654A JP H0967654 A JPH0967654 A JP H0967654A JP 7220099 A JP7220099 A JP 7220099A JP 22009995 A JP22009995 A JP 22009995A JP H0967654 A JPH0967654 A JP H0967654A
Authority
JP
Japan
Prior art keywords
steel sheet
inclusions
iron loss
less
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7220099A
Other languages
Japanese (ja)
Inventor
Yoshihiko Oda
善彦 尾田
Akira Hiura
昭 日裏
Seishi Uei
清史 上井
Kunikazu Tomita
邦和 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP7220099A priority Critical patent/JPH0967654A/en
Publication of JPH0967654A publication Critical patent/JPH0967654A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a nonoriented silicon steel sheet excellent in core loss characteristics even by finish annealing at a low temp. in a short time and magnetic annealing at a low temp. in a short time. SOLUTION: This nonoriented silicon steel sheet has a compsn. consisting of, by weight, >1 to 3.5% Si, 0.1 to 1% Al, 0.1 to 0.8% Mn, <=0.05% Cu and <=0.01% S, and in which the size and the number of inclusions contained therein are regulated to: those having 0.1 to 0.5μm diameter are 500 to 5000 pieces/mm<2> and those having >0.5μm diameter are <=500 pieces/mm<2> . Furthermore, the content of C is regulated to <=0.005%, P to <=0.2% and N to <=0.005%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鉄損特性の優れる
無方向性電磁鋼板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-oriented electrical steel sheet having excellent iron loss characteristics.

【0002】[0002]

【従来の技術】無方向性電磁鋼板は、発電機、電動機、
小型変圧器などの電気機器に広範に使用されている。こ
れらの製品に対し最近では、省エネルギーの流れを受け
て、電気機器が使用される際のエネルギーを出来るだけ
低く抑えたいという要望が強まっており、これまでにも
まして鉄損の少ない鋼板の供給が求められている。
2. Description of the Related Art Non-oriented electrical steel sheets are used in generators, electric motors,
Widely used in electrical equipment such as small transformers. Recently, in response to the trend of energy saving for these products, there is an increasing demand to keep the energy when electric equipment is used as low as possible, and it is even more important to supply steel sheets with less iron loss. It has been demanded.

【0003】一般に、鉄損は使用時の鋼板の結晶粒径が
大きくなるほど少なくなることが知られており、仕上焼
鈍あるいは磁性焼鈍において結晶粒径を粗大化させるこ
との容易な鋼板が求められている。低鉄損が特に要求さ
れるSi+Al量が1〜3%程度の中・高級グレードの
無方向性電磁鋼板においては、仕上焼鈍温度を1000
℃まで高めたり、焼鈍時のラインスピードを下げて焼鈍
時間を長くすることによって結晶粒の粗大化を図ってお
り、製造コストが比較的割高になっているのが現状であ
る。
It is generally known that the iron loss decreases as the crystal grain size of a steel sheet during use increases, and a steel sheet that can easily coarsen the crystal grain size in finish annealing or magnetic annealing is demanded. There is. In the case of medium- and high-grade non-oriented electrical steel sheets in which the amount of Si + Al is about 1 to 3%, which requires low iron loss, the finish annealing temperature is 1000
At present, the crystal grain is coarsened by increasing the temperature to ℃ or by decreasing the line speed during annealing to lengthen the annealing time, and the manufacturing cost is relatively high.

【0004】上記の要望に対して、結晶粒界のピンニン
グサイトとなりやすい介在物あるいは析出物量を低減す
ることや、鋼板中の介在物もしくは析出物の形状・組成
を制御してピンニングサイトとしての機能を失わせる試
みがなされている。
In response to the above demands, the amount of inclusions or precipitates that are likely to become pinning sites at grain boundaries is reduced, or the shape or composition of inclusions or precipitates in a steel sheet is controlled to function as a pinning site. Attempts have been made to lose the.

【0005】例えば、特開平3−249115号公報で
は、SiおよびS量に対して特定範囲のMn量にするこ
とにより、凝固過程でのMnSを増大させ、ピンニング
サイトとして機能しにくい粗大なMnSとすることが提
案されている。また、特開昭62−199720号公報
では、スラブ加熱温度を1150℃以下と低い温度に設
定し、MnSの再固溶を防止することによって微細に分
散しやすい再析出MnS量を制御する方法が提案されて
いる。さらに、特公昭56−33451号公報では、ス
ラブを特定温度に保持することで、AlNを粗大化して
結晶粒の成長に対して無害化を図ることが提案されてい
る。
[0005] For example, in Japanese Patent Application Laid-Open No. 3-249115, by setting the amount of Mn in a specific range with respect to the amounts of Si and S, MnS in the solidification process is increased, and coarse MnS which does not easily function as a pinning site is obtained. It has been proposed to. Further, in Japanese Patent Laid-Open No. 62-199720, there is a method in which the slab heating temperature is set to a low temperature of 1150 ° C. or lower and the re-dissolved MnS is prevented so as to control the amount of re-precipitated MnS that is easily finely dispersed. Proposed. Furthermore, Japanese Patent Publication No. 56-33451 proposes that the slab is kept at a specific temperature to coarsen AlN and make it harmless to the growth of crystal grains.

【0006】一方、特開平1−152239号公報で
は、鋼板中の酸化物の組成、具体的にはSiO2 、Mn
O、Al2 3 に対するMnOの比率を低めることによ
って酸化物の融点を上げ、ピンニングサイトとして機能
しやすい微細介在物の分散を防止することが提案されて
いる。また、特公平5−69910号公報では、直径
0.5〜5μmの酸化物を10〜500個/mm 2
し、これを核としてMnSを凝集析出させ、微細なMn
Sの析出を減らすことが提案されている。
On the other hand, in JP-A-1-152239, the composition of oxides in the steel sheet, specifically SiO 2 and Mn.
It has been proposed to lower the ratio of MnO to O and Al 2 O 3 to raise the melting point of the oxide and prevent the dispersion of fine inclusions that tend to function as pinning sites. Further, in Japanese Examined Patent Publication No. 5-69910, 10 to 500 oxides / mm 2 having a diameter of 0.5 to 5 μm are left, and MnS is agglomerated and precipitated using the oxides as nuclei to form fine Mn particles.
It has been proposed to reduce the precipitation of S.

【0007】[0007]

【発明が解決しようとする課題】しかしながら最近で
は、電気機器の省エネルギー化はもちろんのこと、電磁
鋼板およびそれを用いた電気部品の製造過程に対しても
省エネルギーが求められており、その中の具体的要望の
ひとつとして、仕上焼鈍をこれまでよりも低温側・短時
間側で実施したいという要望がある。
However, recently, not only energy saving of electric equipment but also energy saving is demanded not only in the manufacturing process of electromagnetic steel sheets and electric parts using the same, but the concrete One of the specific requests is to perform finish annealing at a lower temperature and shorter time than ever.

【0008】こうした場合、本発明者らの実験によれ
ば、上記したような、MnSの粗大化もしくはAlNの
粗大化、あるいは酸化物系介在物組成の規定、比較的大
きな酸化物の形成とそれによるMnSの吸着だけでは十
分に粒成長させることができず、必要な鉄損特性が得ら
れないことが判明している。
In such a case, according to the experiments by the present inventors, as described above, MnS coarsening or AlN coarsening, or the composition of the oxide-based inclusions, the formation of a relatively large oxide and the It has been proved that the grain growth cannot be sufficiently achieved by only adsorbing MnS according to the above, and the required iron loss characteristics cannot be obtained.

【0009】本発明はこうした低温・短時間での結晶粒
成長を容易にし、低温・短時間での仕上焼鈍あるいは磁
性焼鈍においても鉄損特性の優れた無方向性電磁鋼板を
提供することを目的としている。
An object of the present invention is to provide a non-oriented electrical steel sheet which facilitates such crystal grain growth at low temperature and short time and has excellent iron loss characteristics even in finish annealing or magnetic annealing at low temperature and short time. I am trying.

【0010】[0010]

【課題を解決するための手段】第1発明は、重量%(以
下、同様)で、Si:1%超3.5%以下、Al:0.
1〜1%、Mn:0.1〜0.8%を含有し、Cu:
0.05%以下(0を含む)、S:0.01%以下(0
を含む)である無方向性電磁鋼板であって、鋼板中に含
まれる介在物で直径0.1〜0.5μmのものが500
〜5000個/mm 2、直径0.5μm超えのものが5
00個/mm 2以下であることを特徴とする鉄損特性に
優れた無方向性電磁鋼板である。
The first aspect of the present invention is, in weight% (hereinafter, the same), Si: more than 1% and 3.5% or less, Al: 0.
1 to 1%, Mn: 0.1 to 0.8%, Cu:
0.05% or less (including 0), S: 0.01% or less (0
500), which is a non-oriented electrical steel sheet having a diameter of 0.1 to 0.5 μm.
~ 5000 pieces / mm 2 , 5 with diameter over 0.5 μm
It is a non-oriented electrical steel sheet having excellent iron loss characteristics, which is characterized in that it is not more than 00 pieces / mm 2 .

【0011】第2発明は、C:0.005%以下、P:
0.2%以下、N:0.005%以下、Si:1%超
3.5%以下、Al:0.1〜1%、Mn:0.1〜
0.8%を含有し、Cu:0.05%以下(0を含
む)、S:0.01%以下(0を含む)である無方向性
電磁鋼板であって、鋼板中に含まれる介在物で直径0.
1〜0.5μmのものが500〜5000個/mm 2
直径0.5μm超えのものが500個/mm 2以下であ
ることを特徴とする鉄損特性に優れた無方向性電磁鋼板
である。
The second invention is C: 0.005% or less, P:
0.2% or less, N: 0.005% or less, Si: more than 1% and 3.5% or less, Al: 0.1-1%, Mn: 0.1-
A non-oriented electrical steel sheet containing 0.8%, Cu: 0.05% or less (including 0), S: 0.01% or less (including 0), which is included in the steel sheet. With a diameter of 0.
1 to 0.5 μm is 500 to 5000 pieces / mm 2 ,
It is a non-oriented electrical steel sheet having excellent iron loss characteristics, characterized in that the number of those having a diameter exceeding 0.5 μm is 500 pieces / mm 2 or less.

【0012】(1)介在物、析出物 本発明で、鋼板中に含まれる介在物の大きさおよび個数
を規定した理由について、研究の経緯に沿って基本的な
考え方を述べる。
(1) Inclusions and Precipitates The basic idea of the reason for defining the size and the number of inclusions contained in the steel sheet in the present invention will be described along with the history of research.

【0013】本発明の介在物とは、鋼板中の硫化物、酸
化物、炭化物、窒化物など、あるいはこれらの2元、3
元の複合体の全てを示しており、介在物、析出物、晶出
物などの全てを含む総称である(以下、明細書の中で、
単に介在物と表現する)。
The inclusions of the present invention are sulfides, oxides, carbides, nitrides, etc. in the steel sheet, or their binary, 3 and
It shows all of the original composite and is a general term including all of inclusions, precipitates, crystallized substances, etc. (hereinafter, in the specification,
Simply expressed as inclusions).

【0014】本発明者らはまず始めに、低温度で仕上焼
鈍を行なった試料について介在物および析出物の観察を
行なった。試料の化学組成はC:0.0030%,S
i:1.12%,Mn:0.13%,P:0.051
%,S:0.003%,Al:0.13%,N:0.0
021%であった。観察は走査型電子顕微鏡(以下SE
Mと呼ぶ)および透過型電子顕微鏡(以下TEMと呼
ぶ)を用いて行ない、SEM観察は鋼板断面を直接観
察,TEM観察は抽出レプリカ観察とした。
The inventors of the present invention first observed the inclusions and precipitates of the sample subjected to finish annealing at a low temperature. The chemical composition of the sample is C: 0.0030%, S
i: 1.12%, Mn: 0.13%, P: 0.051
%, S: 0.003%, Al: 0.13%, N: 0.0
It was 021%. Scanning electron microscope (hereinafter SE
(Hereinafter referred to as M) and a transmission electron microscope (hereinafter referred to as TEM), SEM observation was performed by directly observing a steel plate cross section, and TEM observation was performed by extraction replica observation.

【0015】SEM観察の結果、0.2〜0.5μm程
度のAl2 3 ,AlNおよびMnSが観察された。さ
らにTEM観察を行なったところ、数十nm程度の極め
て微細な析出物が認められ、それらがCuSであること
が確認された。これまではそうした微細な析出物はAl
NもしくはMnSと考えられていたが、低温度ではCu
Sが優先的に析出することが新たな知見として得られ
た。このことは本発明にとって極めて重要でキーとなる
発見である。
As a result of SEM observation, Al 2 O 3 , AlN and MnS of about 0.2 to 0.5 μm were observed. Upon further TEM observation, extremely fine precipitates with a size of several tens nm were recognized, and it was confirmed that these were CuS. Until now, such fine precipitates were Al
It was thought to be N or MnS, but at low temperatures Cu
It was obtained as a new finding that S is preferentially precipitated. This is a very important and key finding for the present invention.

【0016】そこで、こうした微細なCuSの生成を防
止する手法について検討を行なった。とくに本発明では
CuおよびSの存在がある程度不可避であるという前提
に立った方策について検討を行なった。
Therefore, a method for preventing the generation of such fine CuS was examined. In particular, in the present invention, a measure based on the premise that the existence of Cu and S is unavoidable to some extent was examined.

【0017】図3は溶鋼の鋳造時の冷却速度と仕上焼鈍
(850℃・1分)後の介在物の大きさと個数の関係を
示している。用いた試料(板厚0.5mm)の化学組
成、冷却速度は図中に示すとおりである。また鉄損も併
せて図中に示しているが、冷却速度の大きい鋼Aが4.
6W/kg、冷却速度の小さい鋼Bが5.6W/kgと
なっており、冷却速度の増大によって鉄損の低下がもた
らされることがわかる。
FIG. 3 shows the relationship between the cooling rate during casting of molten steel and the size and number of inclusions after finish annealing (850 ° C. for 1 minute). The chemical composition and cooling rate of the sample (plate thickness 0.5 mm) used are as shown in the figure. Although iron loss is also shown in the figure, Steel A with a high cooling rate is 4.
Steel B having a low cooling rate of 6 W / kg is 5.6 W / kg, and it can be seen that an increase in the cooling rate causes a decrease in iron loss.

【0018】これらの鋼の介在物分布を比較してみたと
ころ、直径0.5μm超の介在物のサイズと個数はほぼ
同じであった。一方0.1〜0.5μmの介在物の個数
には差異が認められ、鋳造時の冷却速度が速くW15/
50が4.6W/kgと低い鋼Aの方が、鋼Bに比べて
多量の介在物が認められた。さらに、CuSの形態を観
察すると、鋳造時の冷却速度が速い鋼AにはCuSがあ
まり観察されなかったのに対し、鋳造時の冷却速度が遅
くW15/50が5.6W/kgと高い鋼Bには、数1
0nm程度の非常に微細なCuSが多数認められた。
When the inclusion distributions of these steels were compared, the size and number of inclusions having a diameter of more than 0.5 μm were almost the same. On the other hand, a difference was found in the number of inclusions of 0.1 to 0.5 μm, and the cooling rate during casting was fast and W15 /
Compared to Steel B, a larger amount of inclusions was recognized in Steel A having a low 50 of 4.6 W / kg. Furthermore, when observing the morphology of CuS, CuS was not observed so much in steel A having a high cooling rate during casting, whereas the cooling rate during casting was slow and W15 / 50 was as high as 5.6 W / kg. B has the number 1
A lot of very fine CuS having a size of about 0 nm was recognized.

【0019】さらに鉄損が少なく冷却速度が速い鋼板A
について、CuおよびSの形態観察を行った結果、Cu
およびSは0.1〜0.5μmの介在物として、MnO
−MnS−CuSとなっていることが判明した。すなわ
ち、微細なCuSが減少し、0.1〜0.5μmの介在
物が増加した理由は、CuSがMnO−MnSを核に凝
集粗大化したものと推定できる。
Steel plate A with less iron loss and faster cooling rate
As a result of morphological observation of Cu and S,
And S are MnO as inclusions of 0.1 to 0.5 μm.
It was found to be -MnS-CuS. That is, the reason why the fine CuS decreased and the inclusions of 0.1 to 0.5 μm increased can be presumed to be that CuS aggregated and coarsened with MnO—MnS as the nucleus.

【0020】以上のことから、CuSの悪影響を低減
し、優れた鉄損特性を確保するためには、直径0.1〜
0.5μmの介在物を適量、存在させ、微細なCuSを
減少すべきとの知見を得た。
From the above, in order to reduce the adverse effects of CuS and ensure excellent iron loss characteristics, the diameter should be 0.1 to 0.1 mm.
It was found that 0.5 μm inclusions should be present in an appropriate amount to reduce fine CuS.

【0021】次いで、直径0.1〜0.5μmの介在物
の個数の適正範囲について検討を行なった。
Next, an appropriate range of the number of inclusions having a diameter of 0.1 to 0.5 μm was examined.

【0022】図1は直径0.1〜0.5μmの介在物の
個数と鉄損の関係を示している。ここで用いた試料は、
表1に示した鋼板成分の1および5を用い、鋳造時の冷
却速度を変化させ、仕上焼鈍後の直径0.1〜0.5μ
mの介在物の個数を調整したものである。
FIG. 1 shows the relationship between the number of inclusions having a diameter of 0.1 to 0.5 μm and iron loss. The sample used here is
Using the steel sheet components 1 and 5 shown in Table 1, the cooling rate during casting was changed, and the diameter after finish annealing was 0.1 to 0.5 μ.
The number of inclusions of m is adjusted.

【0023】[0023]

【表1】 [Table 1]

【0024】表1に表示しない残部はFe及び不可避不
純物である。鋼板の板厚は0.5mmで、鋼板中に含ま
れる0.5μm超えの介在物の個数は112〜131個
であり、鉄損W15/50の値は850℃・1分の仕上
焼鈍後のものである。
The balance not shown in Table 1 is Fe and inevitable impurities. The plate thickness of the steel plate is 0.5 mm, the number of inclusions exceeding 0.5 μm contained in the steel plate is 112 to 131, and the value of the iron loss W15 / 50 is 850 ° C. for 1 minute after finish annealing. It is a thing.

【0025】図1から明らかなように、鉄損に対して直
径0.1〜0.5μmの介在物の個数が大きく影響を及
ぼしていることが明らかあり、適性な領域が存在するこ
と、それらの値は、500〜5000個/mm 2、好ま
しくは1000〜3000個/mm 2の範囲とすべきこ
とがわかる。直径0.1〜0.5μmの介在物の個数が
500個/mm 2未満の場合は10mm程度の非常に微
細なCuSが多数析出しており、これにより仕上焼鈍時
の粒成長が阻害され、劣化したものと考える。一方、直
径0.1〜0.5μmの介在物の個数が500〜500
0個/mm 2の場合は10mm程度の非常に微細なCu
Sは見当たらず、0.1〜0.5μm程度のMnS−M
nO−CuSが多数認められた。従来、0.1〜0.5
μm程度の細かい介在物が多数存在すると、結晶粒の成
長を阻害すると考えられていたが、本発明の範囲内に介
在物の大きさ、個数を制御することにより、10nm程
度の非常に微細なCuSが減少し、従来の鋼板よりも優
れた鉄損特性の無方向性電磁鋼板が得られることがわか
った。また直径0.1〜0.5μmの介在物の個数が5
000個/mm 2を超えると鉄損が高くなる傾向にある
が、これは介在物の個数が多くなり、それらの中でピン
ニングサイトとして機能するものが多くなるためと考え
られる。ここで、0.1〜0.5μmの介在物の組成は
特に規定しない。CuSの凝集粗大化の図れるものであ
れば、どのような介在物でもよい。
As is apparent from FIG. 1, it is clear that the number of inclusions having a diameter of 0.1 to 0.5 μm has a great influence on the iron loss, and that there is an appropriate region, It is understood that the value of should be in the range of 500 to 5000 pieces / mm 2 , preferably 1000 to 3000 pieces / mm 2 . When the number of inclusions having a diameter of 0.1 to 0.5 μm is less than 500 / mm 2, a large number of very fine CuS having a size of about 10 mm are precipitated, which hinders grain growth during finish annealing, I think that it has deteriorated. On the other hand, the number of inclusions having a diameter of 0.1 to 0.5 μm is 500 to 500.
In the case of 0 pieces / mm 2 , very fine Cu of about 10 mm
S is not found, MnS-M of about 0.1 to 0.5 μm
Many nO-CuS were recognized. Conventionally, 0.1-0.5
It was thought that the presence of a large number of inclusions of about μm hinders the growth of crystal grains. It was found that CuS is reduced and a non-oriented electrical steel sheet having iron loss characteristics superior to those of conventional steel sheets can be obtained. Also, the number of inclusions having a diameter of 0.1 to 0.5 μm is 5
If it exceeds 000 pieces / mm 2 , the iron loss tends to be high, but it is considered that this is because the number of inclusions increases, and many of them function as pinning sites. Here, the composition of the inclusions of 0.1 to 0.5 μm is not particularly specified. Any inclusions may be used as long as they can agglomerate and coarsen CuS.

【0026】次に、直径0.5μm超えの介在物の個数
の適正範囲について述べる。図2は、直径0.5μm超
えの介在物の個数と鉄損の関係を示している。本図は、
表1に示した鋼板の1および5を用い、鋳造前の溶鋼の
脱ガス時間を変化させて、仕上焼鈍後の0.5μm超え
の介在物の個数を調整して得られたものである。また、
鋳造時の冷却速度を変化させて、0.1〜0.5μmの
介在物の個数を発明の範囲内に調整している。表1に表
示しない残部はFe及び不可避不純物である。また、鋼
板の板厚は0.5mmで、鉄損W15/50の値は図中
に示される条件で仕上焼鈍を行なった後のものである。
Next, an appropriate range of the number of inclusions having a diameter exceeding 0.5 μm will be described. FIG. 2 shows the relationship between the number of inclusions having a diameter exceeding 0.5 μm and iron loss. This figure shows
It was obtained by using the steel sheets 1 and 5 shown in Table 1 and changing the degassing time of the molten steel before casting to adjust the number of inclusions exceeding 0.5 μm after finish annealing. Also,
The number of inclusions of 0.1 to 0.5 μm is adjusted within the range of the invention by changing the cooling rate during casting. The balance not shown in Table 1 is Fe and inevitable impurities. The plate thickness of the steel plate is 0.5 mm, and the value of iron loss W15 / 50 is that after the finish annealing is performed under the conditions shown in the figure.

【0027】図2から、直径0.5μm超えの介在物の
個数が500個/mm 2以下になるとW15/50が低
くなる傾向が認められ、300個/mm 2以下の範囲と
すれば安定して低い鉄損が得られるようになることがわ
かる。500個/mm 2を超えると、W15/50が高
くなる。この原因は、磁壁の移動が妨げられ、ヒステリ
シス損が増大し、それに起因して鉄損が多くなるものと
推定する。
From FIG. 2, it is recognized that W15 / 50 tends to be low when the number of inclusions having a diameter of more than 0.5 μm is 500 pieces / mm 2 or less, and is stable when the number is 300 pieces / mm 2 or less. It can be seen that low iron loss can be obtained. When it exceeds 500 pieces / mm 2 , W15 / 50 becomes high. It is estimated that this is because the movement of the domain wall is hindered, the hysteresis loss increases, and the iron loss increases due to the increase.

【0028】このことから、直径0.5μm超えの介在
物の個数を500個/mm 2以下に、好ましくは、30
0個/mm 2以下と規定する。
From the above, the number of inclusions having a diameter of more than 0.5 μm should be 500 / mm 2 or less, preferably 30.
It is defined as 0 pieces / mm 2 or less.

【0029】(2)成分 Cuは、CuSを形成し有害な成分である。0.05%
を超えた場合、介在物の大きさ、個数が本発明の範囲内
であっても、微細なCuSの生成を防止することができ
ないため、0.05%以下とする。
(2) Component Cu is a harmful component which forms CuS. 0.05%
If it exceeds the range, even if the size and number of inclusions are within the range of the present invention, it is not possible to prevent the generation of fine CuS, so the content is made 0.05% or less.

【0030】Sは、MnS、CuSなど有害成分となる
硫化物を形成する。かつ赤熱脆性の発生の原因となるの
で0.01%以下とする。
S forms sulfides which are harmful components such as MnS and CuS. In addition, it causes red hot brittleness, so the content is made 0.01% or less.

【0031】Siは、鋼板の固有抵抗を上げ、鉄損を少
なくするのに有効な成分であり1%超とする。一方3.
5%を越えると飽和磁束密度の低下に伴い磁束密度が低
下するため上限を3.5%とする。
Si is an effective component for increasing the specific resistance of the steel sheet and reducing iron loss, and is set to more than 1%. Meanwhile, 3.
If it exceeds 5%, the magnetic flux density decreases with the decrease of the saturation magnetic flux density, so the upper limit is made 3.5%.

【0032】Alは、少量添加した場合には、微細なA
lNを形成し、結晶粒の成長を阻害し、鉄損を多くす
る。そのために0.1%以上を添加する。この場合に
は、AlNは粗大化し、結晶粒の成長を阻害せず、かつ
固有抵抗を上昇させ、もって鉄損を少なくする。一方、
1%超えでは、磁束密度を低下させる。ゆえに、0.1
〜1%とする。
When Al is added in a small amount, fine A
It forms 1N, inhibits the growth of crystal grains, and increases iron loss. Therefore, 0.1% or more is added. In this case, AlN coarsens, does not hinder the growth of crystal grains, and increases the specific resistance, thereby reducing iron loss. on the other hand,
If it exceeds 1%, the magnetic flux density is lowered. Therefore, 0.1
To 1%.

【0033】Mnは、鋼板の固有抵抗を上げて鉄損を少
なくするのに有効な成分であり、かつ熱間圧延時の赤熱
脆性を防止するために0.1%以上とする。また、0.
8%を超えると磁束密度が低下するため、0.1〜0.
8%とする。
Mn is a component effective for increasing the specific resistance of the steel sheet and reducing iron loss, and is set to 0.1% or more in order to prevent red hot embrittlement during hot rolling. Also, 0.
If it exceeds 8%, the magnetic flux density decreases, so 0.1 to 0.
8%.

【0034】更に、より優れた鉄損特性の無方向性電磁
鋼板を得るために、Cは、鉄損を多くする有害な成分
で、Cの析出による磁気時効の原因となるので0.00
5%以下とする。
Further, in order to obtain a non-oriented electrical steel sheet having more excellent iron loss characteristics, C is a harmful component which increases iron loss and causes the magnetic aging due to the precipitation of C, so 0.00
5% or less.

【0035】Pは、鋼板の打ち抜き性を改善するために
必要な成分であるが、0.2%を超えて添加すると鋼板
が脆くなるので0.2%以下とする。
P is a component necessary for improving the punchability of the steel sheet, but if it is added in an amount exceeding 0.2%, the steel sheet becomes brittle, so P is made 0.2% or less.

【0036】Nは、焼鈍時の結晶粒の成長を阻害するA
lNが多くなり、鉄損を多くするので0.005%以下
とする。
N is an A that inhibits the growth of crystal grains during annealing.
Since 1N increases and iron loss increases, the content is made 0.005% or less.

【0037】なお、本発明では、Sb、Sn、B、Zr
を磁気特性向上のために添加することは何らさしつかえ
ない。
In the present invention, Sb, Sn, B, Zr
It may be added at all to improve the magnetic properties.

【0038】[0038]

【発明の実施の形態】本発明の鋼板の製造方法は、直径
0.5μm超と直径0.1〜0.5μmの介在物の個数
を、所定の範囲内に調整できるものであればよい。
BEST MODE FOR CARRYING OUT THE INVENTION The method for manufacturing a steel sheet according to the present invention is only required to be able to adjust the number of inclusions having a diameter of more than 0.5 μm and a diameter of 0.1 to 0.5 μm within a predetermined range.

【0039】主に1次脱酸生成物である直径0.5μm
超の介在物の制御は、例えば、溶鋼脱ガス処理還流時間
を長くするとか、またはスラグ組成の調整によりスラグ
からの再酸化を調整することなどにより行う。
Diameter of 0.5 μm, which is mainly a primary deoxidation product
The control of extra inclusions is performed by, for example, increasing the reflux time of the molten steel degassing process or adjusting the reoxidation from the slag by adjusting the slag composition.

【0040】主に2次脱酸生成物である直径0.1〜
0.5μmの介在物の制御は、鋳造速度、鋳造時の加
熱、補助加熱、保熱、鋳造厚さ、冷却条件など溶鋼の凝
固冷却速度を調整することにより行う。
The diameter of the secondary deoxidation product is 0.1 to 0.1
The inclusions of 0.5 μm are controlled by adjusting the solidification cooling rate of the molten steel such as casting speed, heating during casting, auxiliary heating, heat retention, casting thickness, and cooling conditions.

【0041】例えば、鋼板中の0.5μm超の介在物の
大きさ、個数の調整のために、溶鋼鋳造前の脱ガス処理
を6分以上実施するか、あるいは鋳造中の溶鋼の流れの
調整、鋳造中の電磁攪拌の調整で実施する。
For example, in order to adjust the size and number of inclusions of more than 0.5 μm in the steel plate, degassing treatment is performed before the molten steel casting for 6 minutes or more, or the flow of molten steel during casting is adjusted. , By adjusting the electromagnetic stirring during casting.

【0042】鋼板中の0.1〜0.5μmの介在物の大
きさ、個数の調整のために、溶鋼鋳造の鋳造凝固時の冷
却速度を10℃/秒から20℃/秒程度とする。この冷
却速度を確保するために、鋳片の厚みを薄くするとか、
冷却スプレーの強化などを実施する。
In order to adjust the size and number of inclusions of 0.1 to 0.5 μm in the steel sheet, the cooling rate during solidification of molten steel casting is set to about 10 ° C./sec to 20 ° C./sec. In order to secure this cooling rate, the thickness of the slab should be reduced,
Strengthen the cooling spray.

【0043】また、Cuの少ない原料、副原料を用いて
精錬することが好ましい。Sについても溶銑の脱硫、取
鍋精錬などで脱Sするか、Sの少ない原料、副原料を用
いて精錬することが好ましい。
Further, it is preferable to use a raw material containing a small amount of Cu and an auxiliary raw material for refining. It is preferable that S is also desulfurized by desulfurization of hot metal, ladle refining, or the like, or is refined by using a raw material having a small amount of S and auxiliary raw materials.

【0044】このように真空溶解炉、転炉または電気炉
で得た溶鋼を、脱ガス処理などを施し、造塊鋳造、連続
鋳造あるいはストリップキャスターで鋳造し、熱片状態
での直送圧延あるいは鋼片再加熱後に熱間加工を行う。
熱間加工は、分塊圧延、粗圧延、仕上熱延の内、仕上熱
延は必須であるが、分塊圧延、粗圧延は鋳造後の鋼塊、
鋼片、鋳造板などの厚さ寸法、リジング抑制などにより
選択する。
The molten steel thus obtained in the vacuum melting furnace, converter or electric furnace is subjected to degassing treatment, etc., and then ingot casting, continuous casting or casting with a strip caster, and direct rolling in a hot piece state or steel Hot working is performed after reheating one side.
Hot working, slab rolling, rough rolling, finish hot rolling, finish hot rolling is essential, but slab rolling, rough rolling is a steel ingot after casting,
Select by the thickness of steel slabs, cast plates, etc., and suppression of ridging.

【0045】次いで、酸洗後、熱延板焼鈍は行ってもよ
いが必須ではない。次いで、一回の冷間圧延、もしくは
中間焼鈍をはさんだ2回以上の冷間圧延で60〜95%
の圧下率を採り、所定の板厚とする。
Next, after pickling, hot-rolled sheet annealing may be performed, but it is not essential. Then, 60 to 95% by one cold rolling or two or more cold rollings with intermediate annealing.
The reduction ratio is taken to obtain a predetermined plate thickness.

【0046】仕上焼鈍は、700〜1000℃の温度範
囲で実施する。必要により打抜き加工や剪断加工後に磁
性焼鈍を行うことで、より鉄損特性の優れた無方向性電
磁鋼板を製造する。
The finish annealing is carried out in the temperature range of 700 to 1000 ° C. If necessary, magnetic annealing is performed after punching or shearing to manufacture a non-oriented electrical steel sheet with more excellent iron loss characteristics.

【0047】[0047]

【実施例】表2は溶鋼鋳造前の脱ガス処理時間、溶鋼鋳
造の鋳造凝固時の冷却速度、仕上焼鈍条件、磁性焼鈍条
件、介在物の大きさと個数、25cmエプスタイン試験
(JISC2550)で鋼板の長手方向と幅方向の各々
を測定した平均値の鉄損W15/50と磁束密度B50
の結果とを表示している。
[Examples] Table 2 shows degassing time before molten steel casting, cooling rate during solidification of molten steel casting, finish annealing conditions, magnetic annealing conditions, size and number of inclusions, 25 cm Epstein test (JISC2550) Average iron loss W15 / 50 and magnetic flux density B50 measured in the longitudinal and width directions
The results of and are displayed.

【0048】なお、鋼板の成分は表1のとおりである。Table 1 shows the components of the steel sheet.

【0049】[0049]

【表2】 [Table 2]

【0050】熱間圧延で板厚2mmの鋼板を得て、酸洗
し、鋼板成分番号4〜7および11〜12については8
50℃、3時間の熱延板焼鈍を行った。
A steel plate having a plate thickness of 2 mm was obtained by hot rolling, pickled, and steel plate components Nos. 4 to 7 and 11 to 12 were 8
The hot-rolled sheet was annealed at 50 ° C. for 3 hours.

【0051】次いで、板厚0.5mmまで冷間圧延し、
表2の仕上焼鈍を行った。表2に示すように、本発明の
鋼板は、同一の熱延板焼鈍条件、仕上焼鈍条件、磁性焼
鈍条件の時、磁束密度を維持しつつ鉄損の少ない鋼板が
得られている。
Then, cold rolling is performed to a plate thickness of 0.5 mm,
The finish annealing shown in Table 2 was performed. As shown in Table 2, in the steel sheet of the present invention, under the same hot-rolled sheet annealing condition, finish annealing condition, and magnetic annealing condition, a steel sheet with a small iron loss while maintaining the magnetic flux density is obtained.

【0052】なお、直径0.1〜0.5μmの介在物の
個数が500個/mm 2未満の比較例の鋼板のSEM観
察、TEM観察の結果では、10nm程度の非常に微細
なCuSが多数観察された。これにより、焼鈍時の結晶
粒の成長が阻害され、鉄損が多くなっていると推定す
る。
Incidentally, the results of SEM observation and TEM observation of the steel sheet of the comparative example in which the number of inclusions having a diameter of 0.1 to 0.5 μm is less than 500 pieces / mm 2 show that there are many very fine CuS particles of about 10 nm. Was observed. It is presumed that this inhibits the growth of crystal grains during annealing and increases iron loss.

【0053】また、直径0.1〜0.5μmの介在物の
個数が5000個/mm 2超えの比較例の鋼板のSEM
観察、TEM観察の結果では、10nm程度の非常に微
細なCuSは認められなかった。これにより、微細なC
uSの悪影響は無いが、0.1〜0.5μmの介在物の
個数が多いために焼鈍時の結晶粒の成長が阻害され、鉄
損が多くなっていると推定する。
The SEM of the steel sheet of the comparative example in which the number of inclusions having a diameter of 0.1 to 0.5 μm exceeds 5000 pieces / mm 2
As a result of observation and TEM observation, very fine CuS of about 10 nm was not recognized. This allows fine C
Although there is no adverse effect of uS, it is presumed that the large number of inclusions of 0.1 to 0.5 μm hinders the growth of crystal grains during annealing and causes a large iron loss.

【0054】請求項2記載の発明の鋼板である鋼板番号
1(鋼板成分番号1)は、本発明鋼板の鋼板番号24
(鋼板成分番号8)に対して、成分、仕上焼鈍条件、介
在物の個数がほぼ同一であるが、C量が少ないのでより
鉄損が少なく優れている。
The steel plate No. 1 (steel plate component No. 1) which is the steel plate of the invention of claim 2 is the steel plate No. 24 of the steel plate of the present invention.
The composition, finish annealing conditions, and the number of inclusions are almost the same as those of (Steel plate composition No. 8), but the iron loss is better because the C content is small.

【0055】請求項2記載の発明の鋼板である鋼板番号
1(鋼板成分番号1)は、本発明鋼板の鋼板番号25
(鋼板成分番号9)に対して、成分、仕上焼鈍条件、介
在物の個数がほぼ同一であるが、N量が少ないのでより
鉄損が少なく優れている。
Steel plate No. 1 (steel plate component No. 1) which is the steel plate of the invention of claim 2 is steel plate No. 25 of the steel plate of the present invention.
Compared with (Steel plate composition number 9), the composition, finish annealing conditions, and the number of inclusions are almost the same, but the iron content is smaller and it is excellent because the N content is small.

【0056】請求項2記載の発明の鋼板である鋼板番号
1(鋼板成分番号1)は、本発明鋼板の鋼板番号26
(鋼板成分番号10)に対して、成分、仕上焼鈍条件、
介在物の個数がほぼ同一であるが、P量が少ないのでよ
り鉄損が少なく優れている。なお、比較鋼板の鋼板番号
27(鋼板成分番号11)は、鋼板中のSi量が多め
で、鋼板番号28(鋼板成分番号12)は、鋼板中のA
l量が多めであるために、鉄損は優れているが、磁束密
度の低下が大きい。
The steel plate No. 1 (steel plate component No. 1) which is the steel plate of the invention of claim 2 is the steel plate No. 26 of the steel plate of the present invention.
(Steel plate composition number 10), composition, finish annealing conditions,
Although the number of inclusions is almost the same, since the amount of P is small, the iron loss is small and it is excellent. The steel plate number 27 (steel plate component number 11) of the comparative steel plate has a large amount of Si in the steel plate, and the steel plate number 28 (steel plate component number 12) is A in the steel plate.
Since the amount of 1 is large, the iron loss is excellent, but the magnetic flux density is largely reduced.

【0057】比較鋼板の鋼板番号31(鋼板成分番号1
5)は、鋼板中のMn量が多めで、鉄損は優れている
が、成分、仕上焼鈍条件、介在物の個数がほぼ同一の本
発明の鋼板である鋼板番号1(鋼板成分番号1)に比較
して磁束密度の低下が大きい。
Steel plate number 31 of the comparative steel plate (steel plate component number 1
5) has a large amount of Mn in the steel sheet and is excellent in iron loss, but steel sheet number 1 (steel sheet component number 1) which is a steel sheet of the present invention having substantially the same composition, finish annealing conditions, and the number of inclusions. The decrease in magnetic flux density is larger than that of.

【0058】[0058]

【発明の効果】本発明は、鋼板中のCu量、S量と鋼板
中の介在物の大きさ、個数とを規定することで、磁束密
度を維持しつつ鉄損特性の優れた無方向性電磁鋼板が得
られた。
INDUSTRIAL APPLICABILITY The present invention regulates the amount of Cu and the amount of S in a steel sheet and the size and number of inclusions in the steel sheet, thereby maintaining the magnetic flux density and achieving excellent non-directionality of iron loss characteristics. A magnetic steel sheet was obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】直径0.1〜0.5μmの介在物の個数と鉄損
との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the number of inclusions having a diameter of 0.1 to 0.5 μm and iron loss.

【図2】直径0.5μm超の介在物の個数と鉄損との関
係を示す図である。
FIG. 2 is a diagram showing a relationship between the number of inclusions having a diameter exceeding 0.5 μm and iron loss.

【図3】溶鋼鋳造時の冷却速度と介在物の大きさと個数
と鉄損との関係を示す図である。
FIG. 3 is a diagram showing the relationship between the cooling rate during molten steel casting, the size and number of inclusions, and iron loss.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 冨田 邦和 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kunikazu Tomita 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%で、Si:1%超3.5%以下、A
l:0.1〜1%、Mn:0.1〜0.8%、を含有
し、Cu:0.05%以下、S:0.01%以下である
無方向性電磁鋼板であって、鋼板中に含まれる介在物で
直径0.1〜0.5μmのものが500〜5000個/
mm 2、直径0.5μm超えのものが500個/mm 2
以下であることを特徴とする鉄損特性に優れた無方向性
電磁鋼板。
1. By weight%, Si: more than 1% and 3.5% or less, A
A non-oriented electrical steel sheet containing l: 0.1-1%, Mn: 0.1-0.8%, Cu: 0.05% or less, S: 0.01% or less, 500 to 5000 inclusions contained in the steel sheet and having a diameter of 0.1 to 0.5 μm
mm 2 and diameter over 0.5 μm 500 pieces / mm 2
A non-oriented electrical steel sheet excellent in iron loss characteristics characterized by being as follows.
【請求項2】重量%で、C:0.005%以下、P:
0.2%以下、N:0.005%以下、Si:1%超
3.5%以下、Al:0.1〜1%、Mn:0.1〜
0.8%を含有し、Cu:0.05%以下、S:0.0
1%以下である無方向性電磁鋼板であって、鋼板中に含
まれる介在物で直径0.1〜0.5μmのものが500
〜5000個/mm 2、直径0.5μm超えのものが5
00個/mm 2以下であることを特徴とする鉄損特性に
優れた無方向性電磁鋼板。
2. C: 0.005% or less by weight%, P:
0.2% or less, N: 0.005% or less, Si: more than 1% and 3.5% or less, Al: 0.1-1%, Mn: 0.1-
Contains 0.8%, Cu: 0.05% or less, S: 0.0
A non-oriented electrical steel sheet having a content of 1% or less, the inclusions included in the steel sheet having a diameter of 0.1 to 0.5 μm is 500.
~ 5000 pieces / mm 2 , 5 with diameter over 0.5 μm
A non-oriented electrical steel sheet having excellent iron loss characteristics, which is less than 00 pieces / mm 2 .
JP7220099A 1995-08-29 1995-08-29 Nonoriented silicon steel sheet excellent in core loss characteristics Pending JPH0967654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7220099A JPH0967654A (en) 1995-08-29 1995-08-29 Nonoriented silicon steel sheet excellent in core loss characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7220099A JPH0967654A (en) 1995-08-29 1995-08-29 Nonoriented silicon steel sheet excellent in core loss characteristics

Publications (1)

Publication Number Publication Date
JPH0967654A true JPH0967654A (en) 1997-03-11

Family

ID=16745911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7220099A Pending JPH0967654A (en) 1995-08-29 1995-08-29 Nonoriented silicon steel sheet excellent in core loss characteristics

Country Status (1)

Country Link
JP (1) JPH0967654A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7513959B2 (en) 2002-12-05 2009-04-07 Jfe Steel Corporation Non-oriented electrical steel sheet and method for manufacturing the same
JP2010248559A (en) * 2009-04-14 2010-11-04 Nippon Steel Corp Nonoriented electrical steel sheet
WO2013038020A1 (en) * 2011-09-16 2013-03-21 Voestalpine Stahl Gmbh Non-grain-oriented higher-strength electrical strip with high polarisation and method for the production thereof
JP2019035114A (en) * 2017-08-16 2019-03-07 新日鐵住金株式会社 Nonoriented electromagnetic steel sheet
JP2021502489A (en) * 2017-11-30 2021-01-28 バオシャン アイアン アンド スティール カンパニー リミテッド Non-oriented electrical steel sheet with excellent magnetic properties and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7513959B2 (en) 2002-12-05 2009-04-07 Jfe Steel Corporation Non-oriented electrical steel sheet and method for manufacturing the same
EP2489753A1 (en) 2002-12-05 2012-08-22 JFE Steel Corporation Non-oriented magnetic steel sheet and method for production thereof
JP2010248559A (en) * 2009-04-14 2010-11-04 Nippon Steel Corp Nonoriented electrical steel sheet
WO2013038020A1 (en) * 2011-09-16 2013-03-21 Voestalpine Stahl Gmbh Non-grain-oriented higher-strength electrical strip with high polarisation and method for the production thereof
JP2019035114A (en) * 2017-08-16 2019-03-07 新日鐵住金株式会社 Nonoriented electromagnetic steel sheet
JP2021502489A (en) * 2017-11-30 2021-01-28 バオシャン アイアン アンド スティール カンパニー リミテッド Non-oriented electrical steel sheet with excellent magnetic properties and its manufacturing method

Similar Documents

Publication Publication Date Title
KR102095142B1 (en) Non-oriented electrical steel sheet and production method thereof
KR100912974B1 (en) Non-oriented magnetic steel sheet with low iron loss
JP2010209467A (en) Improved method for producing non-oriented electrical steel sheet
JPH10183309A (en) Non-oriented silicon steel sheet having excellent magnetic property and its manufacture
CN114540711B (en) High-grade non-oriented electrical steel and preparation method thereof
JPH0967654A (en) Nonoriented silicon steel sheet excellent in core loss characteristics
JPH05140649A (en) Manufacture of now-oriented silicon steel sheet excellent in magnetic property
JPH0967653A (en) Nonoriented silicon steel sheet excellent in core loss characteristics
JP3458683B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing
JP3037878B2 (en) Non-oriented electrical steel sheet excellent in iron loss after strain relief annealing and method for producing the same
JP3551849B2 (en) Primary recrystallization annealed sheet for unidirectional electrical steel sheet
JP3458682B2 (en) Non-oriented electrical steel sheet excellent in magnetic properties after strain relief annealing and method for producing the same
JP2000017330A (en) Production of nonoriented silicon steel sheet low in iron loss
JP2021080501A (en) Non-oriented magnetic steel sheet
JP3310004B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPH08269532A (en) Method of refining steel for nonoriented silicon steel sheet
JPH09263909A (en) Nonoriented silicon steel sheet excellent in core loss characteristic
JPH10310850A (en) Nonoriented silicon steel sheet excellent in magnetic property and its production
KR100490999B1 (en) Method For Manufacturing Grain-Oriented Silicon Steel Containing High Silicon By Strip Casting Process
JP3424178B2 (en) Non-oriented electrical steel sheet with low iron loss
JP2003064456A (en) Nonoriented silicon steel sheet for semiprocess, and production method therefor
JP4626046B2 (en) Method for producing semi-processed non-oriented electrical steel sheet
JP2001158948A (en) Nonoriented silicon steel sheet low in core loss and producing method therefor
JPH10330893A (en) Nonoriented silicon steel sheet low in core loss after low temperature-short time magnetic annealing
JPS6055567B2 (en) Manufacturing method of non-oriented silicon steel sheet with low iron loss

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011030