JPH0967653A - Nonoriented silicon steel sheet excellent in core loss characteristics - Google Patents

Nonoriented silicon steel sheet excellent in core loss characteristics

Info

Publication number
JPH0967653A
JPH0967653A JP7220098A JP22009895A JPH0967653A JP H0967653 A JPH0967653 A JP H0967653A JP 7220098 A JP7220098 A JP 7220098A JP 22009895 A JP22009895 A JP 22009895A JP H0967653 A JPH0967653 A JP H0967653A
Authority
JP
Japan
Prior art keywords
steel sheet
inclusions
less
iron loss
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7220098A
Other languages
Japanese (ja)
Inventor
Yoshihiko Oda
善彦 尾田
Akira Hiura
昭 日裏
Seishi Uei
清史 上井
Kunikazu Tomita
邦和 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP7220098A priority Critical patent/JPH0967653A/en
Publication of JPH0967653A publication Critical patent/JPH0967653A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a semiprocess silicon steel sheet product and to produce a nonoriented silicon steel sheet excellent in core loss characteristics after the semiprocess product is subjected to magnetic annealing. SOLUTION: This nonoriented silicon steel sheet has a composition consisting of by weight, <=1% Si, 0.1 to 1% Al, 0.1 to 0.8% Mn, <=0.05% Cu and <=0.01% S, and in which the size and the number of inclusions contained therein are regulated to those having 0.1 to 0.5μm diameter are 500 to 5000 pieces/mm<2> and those having >0.5μm diameter are <=500 pieces/mm<2> . Preferably, the content of C is regulated to <=0.005%, P to <=0.2% and N to <=0.005% as well.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鉄損特性の優れる
無方向性電磁鋼板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-oriented electrical steel sheet having excellent iron loss characteristics.

【0002】無方向性電磁鋼板には、鋼板が製鉄所から
出荷される際に仕上焼鈍などを施され、最終的な磁気特
性を具備しているように製造されたフルプロセス製品と
仕上焼鈍後の鋼板を需要家において打抜き加工や剪断加
工を行った後に磁性焼鈍を行い、加工歪の除去および結
晶粒の粗大化を行って所定の磁気特性を得るように配慮
したセミプロセス製品に分けられる。
Non-oriented electrical steel sheets are subjected to finish annealing or the like when the steel sheets are shipped from a steel mill, and are manufactured so as to have final magnetic properties and after the final annealing. The steel sheet is subjected to punching and shearing processes in the consumer side, and then magnetic annealing is performed to remove the processing strain and coarsen the crystal grains to divide into semi-processed products in which predetermined magnetic properties are taken into consideration.

【0003】本発明は、後者に属するもので、セミプロ
セス製品を磁性焼鈍した後の鉄損特性の優れた無方向性
電磁鋼板を提供するものである。
The present invention belongs to the latter and provides a non-oriented electrical steel sheet having excellent iron loss characteristics after magnetic annealing of a semi-processed product.

【0004】[0004]

【従来の技術】無方向性電磁鋼板は、発電機、電動機、
小型変圧器などの電気機器に広範に使用されている。こ
れらの製品に対し最近では、省エネルギーの流れを受け
て、電気機器が使用される際のエネルギーを出来るだけ
低く抑えたいという要望が強まっており、これまでにも
まして鉄損の少ない鋼板の供給が求められている。
2. Description of the Related Art Non-oriented electrical steel sheets are used in generators, electric motors,
Widely used in electrical equipment such as small transformers. Recently, in response to the trend of energy saving for these products, there is an increasing demand to keep the energy when electric equipment is used as low as possible, and it is even more difficult to supply steel sheets with less iron loss. It has been demanded.

【0005】一般に、鉄損は使用時の鋼板の結晶粒径が
大きくなるほど少なくなることが知られており、磁性焼
鈍において結晶粒径を粗大化させることの容易な鋼板が
求められている。そうした要望に対して、結晶粒界のピ
ンニングサイトとなりやすい介在物あるいは析出物量を
低減することや、鋼板中の介在物もしくは析出物の形状
・組成を制御してピンニングサイトとしての機能を失わ
せる試みが成されている。
It is generally known that iron loss decreases as the crystal grain size of a steel sheet during use increases, and a steel sheet that can easily coarsen the crystal grain size in magnetic annealing is demanded. In response to such demands, attempts were made to reduce the amount of inclusions or precipitates that tend to become pinning sites at grain boundaries, and to control the shape and composition of inclusions or precipitates in the steel sheet to lose the function as pinning sites. Has been done.

【0006】例えば、特開平3−249115号公報で
は、SiおよびS量に対して特定範囲のMn量にするこ
とにより、凝固過程でのMnSを増大させ、ピンニング
サイトとして機能しにくい粗大なMnSとすることが提
案されている。また、特開昭62−199720号公報
では、スラブ加熱温度を1150℃以下と低い温度に設
定し、MnSの再固溶を防止することによって微細に分
散しやすい再析出MnS量を制御する方法が提案されて
いる。さらに、特公昭56−33451号公報では、ス
ラブを特定温度に保持することで、AlNを粗大化して
結晶粒の成長に対して無害化を図ることが提案されてい
る。
[0006] For example, in Japanese Patent Laid-Open No. 3-249115, MnS in the solidification process is increased by setting the amount of Mn in a specific range with respect to the amounts of Si and S, and coarse MnS that does not easily function as a pinning site. It is suggested to do so. Further, in Japanese Patent Laid-Open No. 62-199720, there is a method in which the slab heating temperature is set to a low temperature of 1150 ° C. or lower and the re-dissolved MnS is prevented so as to control the amount of re-precipitated MnS that is likely to be finely dispersed. Proposed. Furthermore, Japanese Patent Publication No. 56-33451 proposes that the slab is kept at a specific temperature to coarsen AlN and make it harmless to the growth of crystal grains.

【0007】一方、特開平1−152239号公報で
は、鋼板中の酸化物の組成、具体的にはSiO2 、Mn
O、Al2 3 に対するMnOの比率を低めることによ
って酸化物の融点を上げ、ピンニングサイトとして機能
しやすい微細介在物の分散を防止することが提案されて
いる。また、特公平5−69910号公報では、直径
0.5〜5μmの酸化物を10〜500個/mm 2
し、これを核としてMnSを凝集析出させ、微細なMn
Sの析出を減らすことが提案されている。
On the other hand, in JP-A-1-152239, the composition of the oxide in the steel sheet, specifically SiO 2 and Mn.
It has been proposed to lower the ratio of MnO to O and Al 2 O 3 to raise the melting point of the oxide and prevent the dispersion of fine inclusions that tend to function as pinning sites. Further, in Japanese Examined Patent Publication No. 5-69910, 10 to 500 oxides / mm 2 having a diameter of 0.5 to 5 μm are left, and MnS is agglomerated and precipitated using the oxides as nuclei to obtain fine Mn
It has been proposed to reduce the precipitation of S.

【0008】[0008]

【発明が解決しようとする課題】しかしながら最近で
は、電気機器の省エネルギー化はもちろんのこと、電磁
鋼板およびそれを用いた電気部品の製造過程に対しても
省エネルギーが求められており、その中の具体的要望の
ひとつとして、磁性焼鈍をこれまでよりも低温側・短時
間側で実施したいという要望がある。たとえば、従来7
50℃、2時間の条件で実施されていたものを、730
℃、1時間の条件で実施することである。
However, recently, not only energy saving of electric equipment but also energy saving is demanded not only in the manufacturing process of electromagnetic steel sheets and electric parts using the same, but the concrete One of the demands is to carry out magnetic annealing at a lower temperature and shorter time than ever before. For example, conventional 7
What was carried out under the conditions of 50 ° C. and 2 hours was changed to 730
It is carried out under the condition of 1 ° C. for 1 hour.

【0009】こうした場合、本発明者らの実験によれ
ば、上記したような、MnSの粗大化もしくはAlNの
粗大化、あるいは酸化物系介在物組成の規定、比較的大
きな酸化物の形成とそれによるMnSの吸着だけでは十
分に粒成長させることができず、必要な鉄損特性が得ら
れないことが判明している。
In such a case, according to the experiments conducted by the present inventors, as described above, MnS is coarsened or AlN is coarsened, or the composition of oxide-based inclusions is defined, and formation of a relatively large oxide and its formation. It has been proved that the grain growth cannot be sufficiently achieved by only adsorbing MnS according to the above, and the required iron loss characteristics cannot be obtained.

【0010】本発明はこうした低温・短時間での結晶粒
成長を容易にし、低温・短時間での磁性焼鈍においても
鉄損特性の優れた無方向性電磁鋼板を提供することを目
的としている。
An object of the present invention is to provide a non-oriented electrical steel sheet which facilitates such crystal grain growth at low temperature and short time and has excellent iron loss characteristics even in magnetic annealing at low temperature and short time.

【0011】[0011]

【課題を解決するための手段】第1発明は、重量%(以
下、同様)で、Si:1%以下、Al:0.1〜1%、
Mn:0.1〜0.8%を含有し、Cu:0.05%以
下(0を含む)、S:0.01%以下(0を含む)であ
る無方向性電磁鋼板であって、鋼板中に含まれる介在物
で直径0.1〜0.5μmのものが500〜5000個
/mm 2、直径0.5μm超えのものが500個/mm
2以下であることを特徴とする鉄損特性に優れた無方向
性電磁鋼板である。
The first aspect of the present invention is, by weight (hereinafter the same), Si: 1% or less, Al: 0.1 to 1%,
A non-oriented electrical steel sheet containing Mn: 0.1 to 0.8%, Cu: 0.05% or less (including 0), S: 0.01% or less (including 0), Inclusions contained in the steel sheet with a diameter of 0.1 to 0.5 μm are 500 to 5000 pieces / mm 2 , and inclusions with a diameter exceeding 0.5 μm are 500 pieces / mm.
It is a non-oriented electrical steel sheet excellent in iron loss characteristics characterized by being 2 or less.

【0012】第2発明は、C:0.005%以下、P:
0.2%以下、N:0.005%以下、Si:1%以
下、Al:0.1〜1%、Mn:0.1〜0.8%を含
有し、Cu:0.05%以下(0を含む)、S:0.0
1%以下(0を含む)である無方向性電磁鋼板であっ
て、鋼板中に含まれる介在物で直径0.1〜0.5μm
のものが500〜5000個/mm 2、直径0.5μm
超えのものが500個/mm 2以下であることを特徴と
する鉄損特性に優れた無方向性電磁鋼板である。
The second invention is C: 0.005% or less, P:
0.2% or less, N: 0.005% or less, Si: 1% or less, Al: 0.1 to 1%, Mn: 0.1 to 0.8%, Cu: 0.05% or less (Including 0), S: 0.0
A non-oriented electrical steel sheet containing 1% or less (including 0), which is an inclusion contained in the steel sheet and has a diameter of 0.1 to 0.5 μm.
500 to 5000 pieces / mm 2 , diameter 0.5 μm
It is a non-oriented electrical steel sheet having excellent iron loss characteristics, characterized by exceeding 500 pieces / mm 2 .

【0013】(1)介在物、析出物 本発明で、鋼板中に含まれる介在物の大きさおよび個数
を規定した理由について、研究の経緯に沿って基本的な
考え方を述べる。
(1) Inclusions and Precipitates The basic reason for defining the size and the number of inclusions contained in the steel sheet in the present invention will be described along with the history of research.

【0014】本発明の介在物とは、鋼板中の硫化物、酸
化物、炭化物、窒化物など、あるいはこれらの2元、3
元の複合体の全てを示しており、介在物、析出物、晶出
物などの全てを含む総称である(以下、明細書の中で、
単に介在物と表現する)。
The inclusions of the present invention are sulfides, oxides, carbides, nitrides, etc. in the steel sheet, or their binary, 3 and
It shows all of the original composite and is a general term including all of inclusions, precipitates, crystallized substances, etc. (hereinafter, in the specification,
Simply expressed as inclusions).

【0015】図3は磁性焼鈍条件と鉄損の関係を示して
いる。鋼板の成分は図中に示したとおりであり、熱延・
冷延によって板厚0.5mmにした後、730〜760
℃、2時間の磁性焼鈍を行い、25cmエプスタイン試
験(JISC2550)で鉄損(W15/50)を測定
している。
FIG. 3 shows the relationship between magnetic annealing conditions and iron loss. The components of the steel sheet are as shown in the figure.
After making the plate thickness 0.5 mm by cold rolling, 730 to 760
Magnetic annealing is performed at 2 ° C. for 2 hours, and iron loss (W15 / 50) is measured by a 25 cm Epstein test (JISC2550).

【0016】図3から磁性焼鈍温度が750℃以上の場
合、鉄損が5.0W/kg程度と低いが、わずか20℃
低い730℃で磁性焼鈍を行なうと6.6W/kgと急
激に高くなることがかる。この場合の結晶粒径を求めて
みると750℃以上の磁性焼鈍では40μm程度と大き
く、730℃では20μm以下と前者の半分以下となっ
ていた。このことから、磁性焼鈍温度が低くなると従来
の鋼板では粒成長が急激に抑制されるようになり、その
結果として鉄損が高くなるという問題を有することがわ
かる。
From FIG. 3, when the magnetic annealing temperature is 750 ° C. or higher, the iron loss is as low as about 5.0 W / kg, but only 20 ° C.
When magnetic annealing is carried out at a low temperature of 730 ° C., it can be rapidly increased to 6.6 W / kg. The crystal grain size in this case was as large as about 40 μm in the magnetic annealing at 750 ° C. or higher, and was 20 μm or less at 730 ° C., which was less than half of the former. From this, it can be seen that when the magnetic annealing temperature is lowered, grain growth is rapidly suppressed in the conventional steel sheet, and as a result, iron loss is increased.

【0017】そこでそうした低温度での粒成長性の阻害
要因を調査することを目的として、前記の鋼板中の磁性
焼鈍前の介在物の観察を行った。ここで、介在物の大き
さと個数の測定観察は、直径0.1μmまでは走査型電
子顕微鏡(SEM)を用い、それ以下の直径のものは透
過型電子顕微鏡(TEM)を用いて行った。SEM観察
は鋼板の断面を直接観察し、TEM観察は抽出レプリカ
を用いて行った。
Then, for the purpose of investigating such a factor inhibiting the grain growth property at a low temperature, the inclusions in the steel sheet before magnetic annealing were observed. Here, the size and number of inclusions were measured and observed by using a scanning electron microscope (SEM) up to a diameter of 0.1 μm, and by using a transmission electron microscope (TEM) for diameters smaller than 0.1 μm. The SEM observation was performed by directly observing the cross section of the steel sheet, and the TEM observation was performed using an extraction replica.

【0018】SEM観察の結果、0.2〜0.5μm程
度のAl2 3 、AlN、0.1〜1μm程度のMnS
が観察された。さらにTEM観察を行ったところ、0.
1μm未満のAl2 3 、MnSは観察されなかった
が、数10nm程度のCuSが多数観察された。
As a result of SEM observation, Al 2 O 3 and AlN of about 0.2 to 0.5 μm and MnS of about 0.1 to 1 μm were obtained.
Was observed. Further TEM observation revealed that
Al 2 O 3 and MnS of less than 1 μm were not observed, but many CuS of several tens of nm were observed.

【0019】発明者らは、この微細なCuSの析出防
止、あるいはCuSの凝集粗大化が、磁性焼鈍時の結晶
粒の成長性を促進させ、鉄損を少なくするものと研究を
続け、介在物の形態を変えるために、溶鋼の鋳造時の冷
却速度を変更した試験を行った。
The inventors have continued their research to prevent the precipitation of fine CuS or coarsen the aggregate of CuS to accelerate the growth of crystal grains during magnetic annealing and reduce iron loss, and to improve the inclusions. In order to change the morphology, a test was conducted in which the cooling rate during casting of molten steel was changed.

【0020】図4は溶鋼の鋳造時の冷却速度と磁性焼鈍
(730℃・1時間)後の介在物の大きさと個数の関係
を示している。用いた試料(板厚0.5mm)の化学組
成、冷却速度は図中に示すとおりである。また鉄損も併
せて図中に示しているが、冷却速度の大きい鋼Aが4.
0W/kg、冷却速度の小さい鋼Bが6.1W/kgと
なっており、冷却速度の増大によって鉄損の低下がもた
らされることがわかる。
FIG. 4 shows the relationship between the cooling rate during casting of molten steel and the size and number of inclusions after magnetic annealing (730 ° C. for 1 hour). The chemical composition and cooling rate of the sample (plate thickness 0.5 mm) used are as shown in the figure. Although iron loss is also shown in the figure, Steel A with a high cooling rate is 4.
Steel W having a cooling rate of 0 W / kg and a low cooling rate was 6.1 W / kg, and it can be seen that an increase in the cooling rate causes a decrease in iron loss.

【0021】これらの鋼の介在物分布を比較してみたと
ころ、直径0.5μm超の介在物の大きさと個数はほぼ
同じであった。一方0.1〜0.5μmの介在物の個数
には差異が認められ、鋳造時の冷却速度が速くW15/
50が4.0W/kgと低い鋼Aの方が、鋼Bに比べて
多量の介在物が認められた。さらに、CuSの形態を観
察すると、鋳造時の冷却速度が速い鋼AにはCuSがあ
まり観察されなかったのに対し、鋳造時の冷却速度が遅
くW15/50が6.1W/kgと高い鋼Bには、数1
0nm程度の非常に微細なCuSが多数認められた。
When the inclusion distributions of these steels were compared, the size and number of inclusions having a diameter of more than 0.5 μm were almost the same. On the other hand, a difference was found in the number of inclusions of 0.1 to 0.5 μm, and the cooling rate during casting was fast and W15 /
In Steel A having a low 50 of 4.0 W / kg, a large amount of inclusions was recognized as compared with Steel B. Further, observing the morphology of CuS, CuS was not observed so much in the steel A having a high cooling rate during casting, whereas the cooling rate during casting was slow and W15 / 50 was as high as 6.1 W / kg. B has the number 1
A lot of very fine CuS having a size of about 0 nm was recognized.

【0022】さらに鉄損が少なく冷却速度が速い鋼板A
について、CuおよびSの形態観察を行った結果、Cu
およびSは0.1〜0.5μmの介在物として、MnO
−MnS−CuSとなっていることが判明した。すなわ
ち、微細なCuSが減少し、0.1〜0.5μmの介在
物が増加した理由は、CuSがMnO−MnSを核に凝
集粗大化したものと推定できる。
Steel plate A with less iron loss and faster cooling rate
As a result of morphological observation of Cu and S,
And S are MnO as inclusions of 0.1 to 0.5 μm.
It was found to be -MnS-CuS. That is, the reason why the fine CuS decreased and the inclusions of 0.1 to 0.5 μm increased can be presumed to be that CuS aggregated and coarsened with MnO—MnS as the nucleus.

【0023】以上のことから、CuSの悪影響を低減
し、優れた鉄損特性を確保するためには、直径0.1〜
0.5μmの介在物を適量、存在させ、微細なCuSを
減少すべきとの知見を得た。
From the above, in order to reduce the adverse effects of CuS and ensure excellent iron loss characteristics, the diameter of 0.1 to 0.1
It was found that 0.5 μm inclusions should be present in an appropriate amount to reduce fine CuS.

【0024】次いで、直径0.1〜0.5μmの介在物
の個数の適正範囲について検討を行なった。
Next, an appropriate range of the number of inclusions having a diameter of 0.1 to 0.5 μm was examined.

【0025】図1は直径0.1〜0.5μmの介在物の
個数と鉄損の関係を示している。ここで用いた試料は、
表1に示した鋼板成分の2および6を用い、鋳造時の冷
却速度を変化させ、仕上焼鈍後の直径0.1〜0.5μ
mの介在物の個数を調整したものである。
FIG. 1 shows the relationship between the number of inclusions having a diameter of 0.1 to 0.5 μm and iron loss. The sample used here is
Using the steel sheet components 2 and 6 shown in Table 1, the cooling rate during casting was changed, and the diameter after finish annealing was 0.1 to 0.5 μ.
The number of inclusions of m is adjusted.

【0026】[0026]

【表1】 [Table 1]

【0027】表1に表示しない残部はFe及び不可避不
純物である。鋼板の板厚は0.5mmで、鋼板中に含ま
れる0.5μm超えの介在物の個数は110〜240個
であり、鉄損W15/50の値は730℃・1時間の磁
性焼鈍後のものである。
The balance not shown in Table 1 is Fe and unavoidable impurities. The plate thickness of the steel plate is 0.5 mm, the number of inclusions exceeding 0.5 μm contained in the steel plate is 110 to 240, and the value of the core loss W15 / 50 is 730 ° C. for 1 hour after magnetic annealing. It is a thing.

【0028】図1から明らかなように、鉄損に対して直
径0.1〜0.5μmの介在物の個数が大きく影響を及
ぼしていることが明らかあり、適性な領域が存在するこ
と、それらの値は、500〜5000個/mm 2、好ま
しくは1000〜3000個/mm 2の範囲とすべきこ
とがわかる。直径0.1〜0.5μmの介在物の個数が
500個/mm 2未満の場合は10mm程度の非常に微
細なCuSが多数析出しており、これにより磁性焼鈍時
の粒成長が阻害され、劣化したものと考える。一方、直
径0.1〜0.5μmの介在物の個数が500〜500
0個/mm 2の場合は10mm程度の非常に微細なCu
Sは見当たらず、0.1〜0.5μm程度のMnS−M
nO−CuSが多数認められた。従来、0.1〜0.5
μm程度の細かい介在物が多数存在すると、結晶粒の成
長を阻害すると考えられていたが、本発明の範囲内に介
在物の大きさ、個数を制御することにより、10nm程
度の非常に微細なCuSが減少し、従来の鋼板よりも優
れた鉄損特性の無方向性電磁鋼板が得られることがわか
った。また直径0.1〜0.5μmの介在物の個数が5
000個/mm 2を超えると鉄損が高くなる傾向にある
が、これは介在物の個数が多くなり、それらの中でピン
ニングサイトとして機能するものが多くなるためと考え
られる。ここで、0.1〜0.5μmの介在物の組成は
特に規定しない。CuSの凝集粗大化の図れるものであ
れば、どのような介在物でもよい。
As is apparent from FIG. 1, it is clear that the number of inclusions having a diameter of 0.1 to 0.5 μm has a great influence on the iron loss, and that there is an appropriate region, It is understood that the value of should be in the range of 500 to 5000 pieces / mm 2 , preferably 1000 to 3000 pieces / mm 2 . When the number of inclusions having a diameter of 0.1 to 0.5 μm is less than 500 / mm 2, a large number of very fine CuS having a size of about 10 mm are precipitated, which hinders grain growth during magnetic annealing, I think that it has deteriorated. On the other hand, the number of inclusions having a diameter of 0.1 to 0.5 μm is 500 to 500.
In the case of 0 pieces / mm 2 , very fine Cu of about 10 mm
S is not found, MnS-M of about 0.1 to 0.5 μm
Many nO-CuS were recognized. Conventionally, 0.1-0.5
It was thought that the presence of a large number of inclusions of about μm hinders the growth of crystal grains. It was found that CuS is reduced and a non-oriented electrical steel sheet having iron loss characteristics superior to those of conventional steel sheets can be obtained. Also, the number of inclusions having a diameter of 0.1 to 0.5 μm is 5
If it exceeds 000 pieces / mm 2 , the iron loss tends to be high, but it is considered that this is because the number of inclusions increases, and many of them function as pinning sites. Here, the composition of the inclusions of 0.1 to 0.5 μm is not particularly specified. Any inclusions may be used as long as they can agglomerate and coarsen CuS.

【0029】次に、直径0.5μm超えの介在物の個数
の適正範囲について述べる。図2は、直径0.5μm超
えの介在物の個数と鉄損の関係を示している。本図は、
表1に示した鋼板の2および7を用い、鋳造前の溶鋼の
脱ガス時間を変化させて、仕上焼鈍後の0.5μm超え
の介在物の個数を調整して得られたものである。また、
鋳造時の冷却速度を変化させて、0.1〜0.5μmの
介在物の個数を発明の範囲内に調整している。表1に表
示しない残部はFe及び不可避不純物である。また、鋼
板の板厚は0.5mmで、鉄損W15/50の値は73
0℃・1時間の磁性焼鈍後のものである。
Next, an appropriate range of the number of inclusions having a diameter exceeding 0.5 μm will be described. FIG. 2 shows the relationship between the number of inclusions having a diameter exceeding 0.5 μm and iron loss. This figure shows
It was obtained by using the steel sheets 2 and 7 shown in Table 1 and changing the degassing time of the molten steel before casting to adjust the number of inclusions exceeding 0.5 μm after finish annealing. Also,
The number of inclusions of 0.1 to 0.5 μm is adjusted within the range of the invention by changing the cooling rate during casting. The balance not shown in Table 1 is Fe and inevitable impurities. The steel plate has a thickness of 0.5 mm and the core loss W15 / 50 is 73
After magnetic annealing at 0 ° C. for 1 hour.

【0030】図2から、直径0.5μm超えの介在物の
個数が500個/mm 2以下になるとW15/50が低
くなる傾向が認められ、300個/mm 2以下の範囲と
すれば安定して低い鉄損が得られるようになることがわ
かる。500個/mm 2を超えると、W15/50が高
くなる。この原因は、磁壁の移動が妨げられ、ヒステリ
シス損が増大し、それに起因して鉄損が多くなるものと
推定する。
From FIG. 2, it is recognized that W15 / 50 tends to be lowered when the number of inclusions having a diameter of more than 0.5 μm is 500 pieces / mm 2 or less, and is stable when the number is 300 pieces / mm 2 or less. It can be seen that low iron loss can be obtained. When it exceeds 500 pieces / mm 2 , W15 / 50 becomes high. It is estimated that this is because the movement of the domain wall is hindered, the hysteresis loss increases, and the iron loss increases due to the increase.

【0031】このことから、直径0.5μm超えの介在
物の個数を500個/mm 2以下に、好ましくは、30
0個/mm 2以下と規定する。
Therefore, the number of inclusions having a diameter of more than 0.5 μm should be 500 / mm 2 or less, preferably 30.
It is defined as 0 pieces / mm 2 or less.

【0032】(2)成分 Cuは、CuSを形成し有害な成分である。0.05%
を超えた場合、介在物の大きさ、個数が本発明の範囲内
であっても、微細なCuSの生成を防止することができ
ないため、0.05%以下とする。
(2) Component Cu is a harmful component which forms CuS. 0.05%
If it exceeds the range, even if the size and number of inclusions are within the range of the present invention, it is not possible to prevent the generation of fine CuS, so the content is made 0.05% or less.

【0033】Sは、MnS、CuSなど有害成分となる
硫化物を形成する。かつ赤熱脆性の発生の原因となるの
で0.01%以下とする。
S forms sulfides which are harmful components such as MnS and CuS. In addition, it causes red hot brittleness, so the content is made 0.01% or less.

【0034】Siは、鋼板の固有抵抗を上げ、鉄損を少
なくするのに有効な成分であるが、1%を超えると磁束
密度が低下するため上限を1%とする。
Si is an effective component for increasing the specific resistance of the steel sheet and reducing the iron loss, but if it exceeds 1%, the magnetic flux density decreases, so the upper limit is made 1%.

【0035】Alは、少量添加した場合には、微細なA
lNを形成し、結晶粒の成長を阻害し、鉄損を多くす
る。そのために0.1%以上を添加する。この場合に
は、AlNは粗大化し、結晶粒の成長を阻害せず、かつ
固有抵抗を上昇させ、もって鉄損を少なくする。一方、
1%超えでは、磁束密度を低下させる。ゆえに、0.1
〜1%とする。
When Al is added in a small amount, fine A
It forms 1N, inhibits the growth of crystal grains, and increases iron loss. Therefore, 0.1% or more is added. In this case, AlN coarsens, does not hinder the growth of crystal grains, and increases the specific resistance, thereby reducing iron loss. on the other hand,
If it exceeds 1%, the magnetic flux density is lowered. Therefore, 0.1
To 1%.

【0036】Mnは、鋼板の固有抵抗を上げて鉄損を少
なくするのに有効な成分であり、かつ熱間圧延時の赤熱
脆性を防止するために0.1%以上とする。また、0.
8%を超えると磁束密度が低下するため、0.1〜0.
8%とする。
Mn is a component effective in increasing the specific resistance of the steel sheet and reducing iron loss, and is set to 0.1% or more in order to prevent red hot embrittlement during hot rolling. Also, 0.
If it exceeds 8%, the magnetic flux density decreases, so 0.1 to 0.
8%.

【0037】更に、より優れた鉄損特性の無方向性電磁
鋼板を得るために、Cは、鉄損を多くする有害な成分
で、Cの析出による磁気時効の原因となるので0.00
5%以下とする。
Further, in order to obtain a non-oriented electrical steel sheet having more excellent iron loss characteristics, C is a harmful component that increases iron loss and causes the magnetic aging due to the precipitation of C, so 0.00
5% or less.

【0038】Pは、鋼板の打ち抜き性を改善するために
必要な成分であるが、0.2%を超えて添加すると鋼板
が脆くなるので0.2%以下とする。
P is a component necessary for improving the punchability of the steel sheet, but if it is added in an amount exceeding 0.2%, the steel sheet becomes brittle, so P is made 0.2% or less.

【0039】Nは、焼鈍時の結晶粒の成長を阻害するA
lNが多くなり、鉄損を多くするので0.005%以下
とする。
N inhibits the growth of crystal grains during annealing A
Since 1N increases and iron loss increases, the content is made 0.005% or less.

【0040】なお、本発明では、Sb、Sn、B、Zr
を磁気特性向上のために添加することは何らさしつかえ
ない。
In the present invention, Sb, Sn, B, Zr
It may be added at all to improve the magnetic properties.

【0041】(3)製造方法 鋼板中の0.1〜0.5μmの介在物の大きさ、個数の
調整のために、溶鋼の鋳造の鋳造凝固時の冷却速度を1
0℃/秒から30℃/秒とする。この冷却速度を確保す
るために、鋳片の厚みを薄くするとか、冷却スプレーの
強化などを実施する。
(3) Manufacturing method In order to adjust the size and number of inclusions of 0.1 to 0.5 μm in the steel sheet, the cooling rate during casting and solidification in the casting of molten steel is set to 1
The rate is 0 ° C / sec to 30 ° C / sec. In order to secure this cooling rate, the thickness of the slab is reduced, or cooling spray is strengthened.

【0042】鋼板中の0.5μm超えの介在物の大き
さ、個数の調整のために、溶鋼の鋳造前の脱ガス処理を
10分以上実施するか、あるいは鋳造中の溶鋼の流れの
調整、鋳造中の電磁攪拌の調整で実施する。
In order to adjust the size and number of inclusions exceeding 0.5 μm in the steel sheet, degassing treatment before casting of molten steel is performed for 10 minutes or more, or the flow of molten steel during casting is adjusted, It is carried out by adjusting the electromagnetic stirring during casting.

【0043】また、Cuの少ない原料、副原料を用いて
精錬することが好ましい。Sについても溶銑の脱硫、取
鍋精錬などで脱Sするか、Sの少ない原料、副原料を用
いて精錬することが好ましい。
Further, it is preferable to use a raw material containing a small amount of Cu and an auxiliary raw material for refining. It is preferable that S is also desulfurized by desulfurization of hot metal, ladle refining, or the like, or is refined by using a raw material having a small amount of S and auxiliary raw materials.

【0044】このような転炉または電気炉で得た溶鋼
を、造塊鋳造または連続鋳造し、熱間加工を行う。熱間
加工は、分塊圧延、粗圧延、仕上熱延の内、仕上熱延は
必須であるが、分塊圧延、粗圧延は鋳造後の鋼塊、鋼
片、鋳造板などの厚さ寸法、リジング抑制などにより選
択する。
The molten steel obtained in such a converter or electric furnace is subjected to ingot casting or continuous casting and hot working. For hot working, finish rolling is indispensable among slab rolling, rough rolling and finish hot rolling, but slab rolling and rough rolling are the thickness dimensions of steel ingot, steel slab, cast plate, etc. after casting. , Ridging suppression, etc.

【0045】熱間圧延後の熱延板焼鈍は行ってもよいが
必須ではない。次いで、一回の冷間圧延、もしくは中間
焼鈍をはさんだ2回以上の冷間圧延により所定の板厚と
した後に、仕上焼鈍を実施する。
Annealing of the hot rolled sheet after hot rolling may be performed, but is not essential. Next, finish annealing is performed after one cold rolling or two or more cold rollings with intermediate annealing to obtain a predetermined plate thickness.

【0046】さらに、打抜き加工や剪断加工後に磁性焼
鈍を行うことで、磁性焼鈍後の鉄損特性の優れた無方向
性電磁鋼板を製造する。
Further, magnetic annealing is carried out after punching and shearing to produce a non-oriented electrical steel sheet having excellent iron loss characteristics after magnetic annealing.

【0047】[0047]

【実施例】表1は鋼板の成分で、表示しない残部はFe
及び不可避不純物である。
[Examples] Table 1 shows the composition of the steel sheet, and the balance not shown is Fe.
And unavoidable impurities.

【0048】表2は溶鋼の鋳造前の脱ガス処理時間、溶
鋼の鋳造の鋳造凝固時の冷却速度、仕上焼鈍条件、磁性
焼鈍条件と、介在物の大きさと個数と、鉄損W15/5
0と磁束密度B50を25cmエプスタイン試験(JI
SC2550)で、鋼板の長手方向と幅方向に測定した
平均値の結果を表示している。
Table 2 shows the degassing treatment time before casting of molten steel, the cooling rate during casting and solidification of casting of molten steel, finish annealing conditions, magnetic annealing conditions, size and number of inclusions, and iron loss W15 / 5.
0 and magnetic flux density B50 of 25 cm Epstein test (JI
SC2550), the result of the average value measured in the longitudinal direction and the width direction of the steel sheet is displayed.

【0049】[0049]

【表2】 [Table 2]

【0050】熱間圧延で板厚2mmの鋼板を得て、酸洗
し、次いで、板厚0.5mmまで冷間圧延し、表2の仕
上焼鈍と磁性焼鈍を行った。
A steel plate having a plate thickness of 2 mm was obtained by hot rolling, pickled, and then cold rolled to a plate thickness of 0.5 mm, and finish annealing and magnetic annealing shown in Table 2 were performed.

【0051】表2に示すように、本発明の鋼板は、磁性
焼鈍が低温度でかつ短時間であっても、高い磁束密度を
維持しつつ鉄損の少ない鋼板が得られている。
As shown in Table 2, the steel sheet of the present invention is a steel sheet having a high magnetic flux density and a small iron loss even when the magnetic annealing is performed at a low temperature for a short time.

【0052】なお、直径0.1〜0.5μmの介在物の
個数が500個/mm 2未満の比較例の鋼板のSEM観
察、TEM観察の結果では、10nm程度の非常に微細
なCuSが多数観察された。これにより、磁性焼鈍時の
結晶粒の成長が阻害され、鉄損が多くなっていたと推定
される。
Incidentally, the results of SEM observation and TEM observation of the steel sheet of the comparative example in which the number of inclusions having a diameter of 0.1 to 0.5 μm is less than 500 pieces / mm 2 show that there are many very fine CuS particles of about 10 nm. Was observed. It is presumed that this hindered the growth of crystal grains during magnetic annealing and increased iron loss.

【0053】また、直径0.1〜0.5μmの介在物の
個数が5000個/mm 2超えの比較例の鋼板のSEM
観察、TEM観察の結果では、10nm程度の非常に微
細なCuSは認められなかった。これにより、微細なC
uSの悪影響は無いが、0.1〜0.5μmの介在物の
個数が多いために磁性焼鈍時の結晶粒の成長が阻害さ
れ、鉄損が多くなっていたと推定される。
The SEM of the steel sheet of the comparative example in which the number of inclusions having a diameter of 0.1 to 0.5 μm exceeds 5000 pieces / mm 2
As a result of observation and TEM observation, very fine CuS of about 10 nm was not recognized. This allows fine C
Although there is no adverse effect of uS, it is presumed that the large number of inclusions of 0.1 to 0.5 μm hindered the growth of crystal grains during magnetic annealing and increased iron loss.

【0054】[0054]

【発明の効果】本発明は、鋼板中の介在物の大きさ、個
数を規定することで、磁性焼鈍が低い温度で短かい時間
でも結晶粒の成長が図れ、鉄損特性の優れた無方向性電
磁鋼板が得られた。
EFFECTS OF THE INVENTION The present invention regulates the size and number of inclusions in a steel sheet so that crystal grains can grow even at a short time at a low temperature of magnetic annealing, and the iron loss characteristics are excellent in non-oriented. A magnetic electrical steel sheet was obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】直径0.1〜0.5μmの介在物の個数と鉄損
の関係を示す図である。
FIG. 1 is a diagram showing the relationship between iron loss and the number of inclusions having a diameter of 0.1 to 0.5 μm.

【図2】直径0.5μm超えの介在物の個数と鉄損の関
係を示す図である。
FIG. 2 is a diagram showing a relationship between the number of inclusions having a diameter exceeding 0.5 μm and iron loss.

【図3】磁性焼鈍条件と鉄損の関係を示す図である。FIG. 3 is a diagram showing a relationship between magnetic annealing conditions and iron loss.

【図4】溶鋼の鋳造時の冷却速度と介在物の大きさと個
数の関係を示す図である。
FIG. 4 is a diagram showing the relationship between the cooling rate during the casting of molten steel and the size and number of inclusions.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 冨田 邦和 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kunikazu Tomita 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%で、Si:1%以下、Al:0.1
〜1%、Mn:0.1〜0.8%、を含有し、Cu:
0.05%以下、S:0.01%以下である無方向性電
磁鋼板であって、鋼板中に含まれる介在物で直径0.1
〜0.5μmのものが500〜5000個/mm 2、直
径0.5μm超えのものが500個/mm 2以下である
ことを特徴とする鉄損特性に優れた無方向性電磁鋼板。
1. By weight%, Si: 1% or less, Al: 0.1
˜1%, Mn: 0.1-0.8%, Cu:
A non-oriented electrical steel sheet having 0.05% or less and S: 0.01% or less, in which inclusions included in the steel sheet have a diameter of 0.1.
A non-oriented electrical steel sheet having excellent iron loss characteristics, characterized in that the number of particles of 0.5 to 0.5 μm is 500 to 5000 pieces / mm 2 , and the diameter of particles exceeding 0.5 μm is 500 pieces / mm 2 or less.
【請求項2】重量%で、C:0.005%以下、P:
0.2%以下、N:0.005%以下、Si:1%以
下、Al:0.1〜1%、Mn:0.1〜0.8%を含
有し、Cu:0.05%以下、S:0.01%以下であ
る無方向性電磁鋼板であって、鋼板中に含まれる介在物
で直径0.1〜0.5μmのものが500〜5000個
/mm 2、直径0.5μm超えのものが500個/mm
2以下であることを特徴とする鉄損特性に優れた無方向
性電磁鋼板。
2. C: 0.005% or less by weight%, P:
0.2% or less, N: 0.005% or less, Si: 1% or less, Al: 0.1 to 1%, Mn: 0.1 to 0.8%, Cu: 0.05% or less , S: 0.01% or less in the non-oriented electrical steel sheet, the inclusions included in the steel sheet having a diameter of 0.1 to 0.5 μm are 500 to 5000 pieces / mm 2 , and a diameter of 0.5 μm. Over 500 pieces / mm
A non-oriented electrical steel sheet with excellent iron loss characteristics characterized by being 2 or less.
JP7220098A 1995-08-29 1995-08-29 Nonoriented silicon steel sheet excellent in core loss characteristics Pending JPH0967653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7220098A JPH0967653A (en) 1995-08-29 1995-08-29 Nonoriented silicon steel sheet excellent in core loss characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7220098A JPH0967653A (en) 1995-08-29 1995-08-29 Nonoriented silicon steel sheet excellent in core loss characteristics

Publications (1)

Publication Number Publication Date
JPH0967653A true JPH0967653A (en) 1997-03-11

Family

ID=16745896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7220098A Pending JPH0967653A (en) 1995-08-29 1995-08-29 Nonoriented silicon steel sheet excellent in core loss characteristics

Country Status (1)

Country Link
JP (1) JPH0967653A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002954A (en) * 2002-04-05 2004-01-08 Nippon Steel Corp Non-oriented electromagnetic steel sheet extremely superior in core loss and magnetic flux density, and manufacturing method therefor
EP1689901A1 (en) * 2003-11-10 2006-08-16 Posco Cold rolled steel sheet having aging resistance and superior formability, and process for producing the same
JP2010174376A (en) * 2002-04-05 2010-08-12 Nippon Steel Corp Non-oriented electromagnetic steel sheet extremely excellent in core loss and magnetic flux density
CN101921956A (en) * 2010-06-23 2010-12-22 北京科技大学 High-magnetic induction, low-iron loss, low-carbon, low-silicon and non-oriented electrical steel and manufacturing method thereof
KR101485036B1 (en) * 2012-10-29 2015-01-21 주식회사 포스코 Steel and manufacturing method of it
EP4001451A4 (en) * 2019-08-26 2022-07-27 Baoshan Iron & Steel Co., Ltd. Cu-containing non-oriented electrical steel sheet and manufacturing method therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002954A (en) * 2002-04-05 2004-01-08 Nippon Steel Corp Non-oriented electromagnetic steel sheet extremely superior in core loss and magnetic flux density, and manufacturing method therefor
JP2010174376A (en) * 2002-04-05 2010-08-12 Nippon Steel Corp Non-oriented electromagnetic steel sheet extremely excellent in core loss and magnetic flux density
EP1689901A1 (en) * 2003-11-10 2006-08-16 Posco Cold rolled steel sheet having aging resistance and superior formability, and process for producing the same
EP1689901A4 (en) * 2003-11-10 2008-10-15 Posco Cold rolled steel sheet having aging resistance and superior formability, and process for producing the same
CN101921956A (en) * 2010-06-23 2010-12-22 北京科技大学 High-magnetic induction, low-iron loss, low-carbon, low-silicon and non-oriented electrical steel and manufacturing method thereof
KR101485036B1 (en) * 2012-10-29 2015-01-21 주식회사 포스코 Steel and manufacturing method of it
EP4001451A4 (en) * 2019-08-26 2022-07-27 Baoshan Iron & Steel Co., Ltd. Cu-containing non-oriented electrical steel sheet and manufacturing method therefor
JP2022545025A (en) * 2019-08-26 2022-10-24 バオシャン アイアン アンド スティール カンパニー リミテッド Cu-containing non-oriented electrical steel sheet and manufacturing method thereof

Similar Documents

Publication Publication Date Title
DE602004008909T2 (en) IMPROVED METHOD FOR THE PRODUCTION OF NON-ORIENTED ELECTRON BELT
US7662242B2 (en) Non-oriented electrical steel superior in core loss
CN115003843A (en) Non-oriented electrical steel sheet and method for manufacturing the same
CN111868280B (en) Non-oriented electromagnetic steel sheet
US4493739A (en) Process for producing a grain-oriented electromagnetic steel sheet or strip having a low watt loss and a grain-oriented electromagnetic steel strip having uniform magnetic properties
JP3889100B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties
JPH0967653A (en) Nonoriented silicon steel sheet excellent in core loss characteristics
JPH0967654A (en) Nonoriented silicon steel sheet excellent in core loss characteristics
JP3458683B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing
JP3456295B2 (en) Melting method of steel for non-oriented electrical steel sheet
JP3551849B2 (en) Primary recrystallization annealed sheet for unidirectional electrical steel sheet
KR100872607B1 (en) Nonoriented electromagnetic steel sheet excellent in blankability and magnetic characteristics after strain removal annealing, and method for production thereof
JP3458682B2 (en) Non-oriented electrical steel sheet excellent in magnetic properties after strain relief annealing and method for producing the same
JP2021080501A (en) Non-oriented magnetic steel sheet
WO2024142579A1 (en) Non-oriented magnetic steel sheet with excellent punching workability
CN113166871A (en) Non-oriented electrical steel sheet and method for manufacturing the same
JPH09263909A (en) Nonoriented silicon steel sheet excellent in core loss characteristic
JPH10310850A (en) Nonoriented silicon steel sheet excellent in magnetic property and its production
JP2001158948A (en) Nonoriented silicon steel sheet low in core loss and producing method therefor
JP7492162B2 (en) Non-oriented electrical steel sheet, manufacturing method thereof, and hot-rolled steel sheet
TWI746297B (en) Non-oriented electromagnetic steel sheet, manufacturing method thereof, and hot-rolled steel sheet
JPH0967656A (en) Nonoriented silicon steel sheet excellent in low magnetic field characteristics
JP2003064456A (en) Nonoriented silicon steel sheet for semiprocess, and production method therefor
JP2003247052A (en) Nonoriented silicon steel sheet having excellent high frequency property
JPH0967655A (en) Nonoriented silicon steel sheet excellent in low magnetic field characteristics

Legal Events

Date Code Title Description
A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20050616

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060619

A61 First payment of annual fees (during grant procedure)

Effective date: 20060810

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees