JP7352082B2 - Non-oriented electrical steel sheet - Google Patents

Non-oriented electrical steel sheet Download PDF

Info

Publication number
JP7352082B2
JP7352082B2 JP2019206712A JP2019206712A JP7352082B2 JP 7352082 B2 JP7352082 B2 JP 7352082B2 JP 2019206712 A JP2019206712 A JP 2019206712A JP 2019206712 A JP2019206712 A JP 2019206712A JP 7352082 B2 JP7352082 B2 JP 7352082B2
Authority
JP
Japan
Prior art keywords
content
mass
oriented electrical
rolling
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019206712A
Other languages
Japanese (ja)
Other versions
JP2021080501A (en
Inventor
鉄州 村川
浩志 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019206712A priority Critical patent/JP7352082B2/en
Publication of JP2021080501A publication Critical patent/JP2021080501A/en
Application granted granted Critical
Publication of JP7352082B2 publication Critical patent/JP7352082B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、無方向性電磁鋼板に関する。 The present invention relates to a non-oriented electrical steel sheet.

無方向性電磁鋼板は、例えばモータの鉄心に使用され、無方向性電磁鋼板には、その板面に平行なすべての方向の平均(以下、「板面内の全周平均(全方向平均)」ということがある)において優れた磁気特性、例えば低鉄損及び高磁束密度が要求される。これまで種々の技術が提案されているが、板面内の全方向において十分な磁気特性を得ることは困難である。例えば、板面内のある特定の方向で十分な磁気特性が得られるとしても、他の方向では十分な磁気特性が得られないことがある。 Non-oriented electrical steel sheets are used, for example, in the iron core of motors. ) requires excellent magnetic properties, such as low iron loss and high magnetic flux density. Although various techniques have been proposed so far, it is difficult to obtain sufficient magnetic properties in all directions within the plate surface. For example, even if sufficient magnetic properties are obtained in a certain direction within the plate surface, sufficient magnetic properties may not be obtained in other directions.

特許第4029430号公報Patent No. 4029430 特許第6319465号公報Patent No. 6319465

本発明は前述の問題点を鑑み、全周平均(全方向平均)で優れた磁気特性を得ることができる無方向性電磁鋼板を提供することを目的とする。 In view of the above problems, an object of the present invention is to provide a non-oriented electrical steel sheet that can obtain excellent magnetic properties averaged over the entire circumference (averaged in all directions).

本発明者らは、上記課題を解決すべく鋭意検討を行った。この結果、化学組成、および{100}結晶粒と{111}結晶粒の平均粒径比を適切なものとすることが重要であることが明らかになった。このような無方向性電磁鋼板の製造には、α-γ変態系の化学組成を前提とし、熱間圧延時にオーステナイトからフェライトへの変態で組織を微細化し、さらに冷間圧延を所定の圧下率とし、中間焼鈍の温度を所定の範囲内に制御して張出再結晶(以下、バルジング)を発生させて通常は発達しにくい{100}結晶粒を発達させやすくし、さらに所定の条件下でスキンパス圧延および仕上げ焼鈍を行うことによって、{100}結晶粒が{111}結晶粒を蚕食することが重要であることも明らかになった。 The present inventors conducted extensive studies to solve the above problems. As a result, it became clear that it is important to make the chemical composition and the average grain size ratio of {100} crystal grains and {111} crystal grains appropriate. The production of such non-oriented electrical steel sheets is based on the assumption that the chemical composition is α-γ transformation system, the structure is refined by transformation from austenite to ferrite during hot rolling, and then cold rolling is carried out at a predetermined reduction rate. The intermediate annealing temperature is controlled within a predetermined range to cause overhang recrystallization (hereinafter referred to as bulging) to facilitate the development of {100} crystal grains, which are normally difficult to develop. By performing skin pass rolling and finish annealing, it has also become clear that it is important that the {100} crystal grains attack the {111} crystal grains.

本発明者らは、このような知見に基づいて更に鋭意検討を重ねた結果、以下に示す発明の諸態様に想到した。 As a result of further intensive studies based on such knowledge, the present inventors have come up with the following aspects of the invention.

(1)
質量%で、
C:0.010%以下、
Si:1.50%~4.00%、
sol.Al:0.0001%~1.0%、
S:0.010%以下、
N:0.010%以下、
Mn、Ni、Co、Pt、Pb、Cu、Auからなる群から選ばれる1種以上:総計で2.50%~5.00%、
Sn:0.000%~0.400%、
Sb:0.000%~0.400%、
P:0.000%~0.400%、及び
Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn、Cdからなる群から選ばれる1種以上:総計で0.0000%~0.0100%を含有し、
Mn含有量(質量%)を[Mn]、Ni含有量(質量%)を[Ni]、Co含有量(質量%)を[Co]、Pt含有量(質量%)を[Pt]、Pb含有量(質量%)を[Pb]、Cu含有量(質量%)を[Cu]、Au含有量(質量%)を[Au]、Si含有量(質量%)を[Si]、sol.Al含有量(質量%)を[sol.Al]としたときに、以下の(1)式を満たし、
残部がFeおよび不純物からなる化学組成を有し、
板厚が0.50mm以下であり、
{100}結晶粒の平均粒径をd100、{111}結晶粒の平均粒径をd111とした場合に、d100/d111>1.1であることを特徴とする無方向性電磁鋼板。
([Mn]+[Ni]+[Co]+[Pt]+[Pb]+[Cu]+[Au])-([Si]+[sol.Al])>0% ・・・(1)
(1)
In mass%,
C: 0.010% or less,
Si: 1.50% to 4.00%,
sol. Al: 0.0001% to 1.0%,
S: 0.010% or less,
N: 0.010% or less,
One or more types selected from the group consisting of Mn, Ni, Co, Pt, Pb, Cu, and Au: 2.50% to 5.00% in total,
Sn: 0.000% to 0.400%,
Sb: 0.000% to 0.400%,
P: 0.000% to 0.400%, and one or more selected from the group consisting of Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn, and Cd: 0.0000% to 0 in total Contains .0100%,
Mn content (mass%) is [Mn], Ni content (mass%) is [Ni], Co content (mass%) is [Co], Pt content (mass%) is [Pt], Pb content amount (mass %) is [Pb], Cu content (mass %) is [Cu], Au content (mass %) is [Au], Si content (mass %) is [Si], sol. The Al content (mass%) was determined by [sol. Al], the following formula (1) is satisfied,
The remainder has a chemical composition consisting of Fe and impurities,
The plate thickness is 0.50 mm or less,
A non-directional electromagnetic device characterized in that d 100 /d 111 >1.1, where d 100 is the average grain size of {100} crystal grains, and d 111 is the average grain size of {111} crystal grains. steel plate.
([Mn]+[Ni]+[Co]+[Pt]+[Pb]+[Cu]+[Au])-([Si]+[sol.Al])>0%...(1)

(2)
質量%で、
Sn:0.020%~0.400%、
Sb:0.020%~0.400%、及び
P:0.020%~0.400%
からなる群から選ばれる1種以上を含有することを特徴とする上記(1)に記載の無方向性電磁鋼板。
(2)
In mass%,
Sn: 0.020% to 0.400%,
Sb: 0.020% to 0.400%, and P: 0.020% to 0.400%
The non-oriented electrical steel sheet according to (1) above, containing one or more selected from the group consisting of:

(3)
質量%で、Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn、Cdからなる群から選ばれる1種以上:総計で0.0005%~0.0100%を含有することを特徴とする上記(1)又は(2)に記載の無方向性電磁鋼板。
(3)
Contains one or more selected from the group consisting of Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn, and Cd: 0.0005% to 0.0100% in total in mass% The non-oriented electrical steel sheet according to (1) or (2) above.

本発明によれば、全周特性の優れた磁気特性を得ることができる無方向性電磁鋼板を提供することができる。 According to the present invention, it is possible to provide a non-oriented electrical steel sheet that can obtain excellent magnetic properties throughout the circumference.

以下、本発明の実施形態について詳細に説明する。 Embodiments of the present invention will be described in detail below.

まず、本発明の実施形態に係る無方向性電磁鋼板及びその製造方法で用いられる鋼材の化学組成について説明する。以下の説明において、無方向性電磁鋼板又は鋼材に含まれる各元素の含有量の単位である「%」は、特に断りがない限り「質量%」を意味する。本実施形態に係る無方向性電磁鋼板及び鋼材は、フェライト-オーステナイト変態(以下、α-γ変態)が生じ得る化学組成であって、C:0.010%以下、Si:1.50%~4.00%、sol.Al:0.0001%~1.0%、S:0.010%以下、N:0.010%以下、Mn、Ni、Co、Pt、Pb、Cu、Auからなる群から選ばれる1種以上:総計で2.50%~5.00%、Sn:0.000%~0.400%、Sb:0.000%~0.400%、P:0.000%~0.400%、及びMg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn、及びCdからなる群から選ばれる1種以上:総計で0.0000%~0.0100%を含有し、残部がFeおよび不純物からなる化学組成を有する。さらに、Mn、Ni、Co、Pt、Pb、Cu、Au、Siおよびsol.Alの含有量が後述する所定の条件を満たす。不純物としては、鉱石やスクラップ等の原材料に含まれるもの、製造工程において含まれるもの、が例示される。 First, the chemical composition of the steel material used in the non-oriented electrical steel sheet and the manufacturing method thereof according to the embodiment of the present invention will be explained. In the following description, "%", which is the unit of content of each element contained in a non-oriented electrical steel sheet or steel material, means "% by mass" unless otherwise specified. The non-oriented electrical steel sheet and steel material according to the present embodiment have a chemical composition in which ferrite-austenite transformation (hereinafter referred to as α-γ transformation) can occur, with C: 0.010% or less and Si: 1.50% or more. 4.00%, sol. Al: 0.0001% to 1.0%, S: 0.010% or less, N: 0.010% or less, one or more selected from the group consisting of Mn, Ni, Co, Pt, Pb, Cu, and Au. : 2.50% to 5.00% in total, Sn: 0.000% to 0.400%, Sb: 0.000% to 0.400%, P: 0.000% to 0.400%, and One or more selected from the group consisting of Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn, and Cd: Contains 0.0000% to 0.0100% in total, and the remainder is Fe and impurities. It has a chemical composition consisting of: Furthermore, Mn, Ni, Co, Pt, Pb, Cu, Au, Si and sol. The content of Al satisfies a predetermined condition described below. Examples of impurities include those contained in raw materials such as ore and scrap, and those contained in manufacturing processes.

(C:0.010%以下)
Cは、鉄損を高めたり、磁気時効を引き起こしたりする。従って、C含有量は低ければ低いほどよい。このような現象は、C含有量が0.010%超で顕著である。このため、C含有量は0.010%以下とする。C含有量の低減は、板面内の全方向における磁気特性の均一な向上にも寄与する。なお、C含有量の下限は特に限定しないが、精錬時の脱炭処理のコストを踏まえ、0.0005%以上とすることが好ましい。
(C: 0.010% or less)
C increases iron loss and causes magnetic aging. Therefore, the lower the C content, the better. Such a phenomenon is remarkable when the C content exceeds 0.010%. Therefore, the C content is set to 0.010% or less. Reducing the C content also contributes to uniform improvement of magnetic properties in all directions within the plate surface. The lower limit of the C content is not particularly limited, but it is preferably 0.0005% or more, taking into account the cost of decarburization during refining.

(Si:1.50%~4.00%)
Siは、電気抵抗を増大させて、渦電流損を減少させ、鉄損を低減したり、降伏比を増大させて、鉄心への打ち抜き加工性を向上したりする。Si含有量が1.50%未満では、これらの作用効果を十分に得られない。従って、Si含有量は1.50%以上とする。一方、Si含有量が4.00%超では、磁束密度が低下したり、硬度の過度な上昇により打ち抜き加工性が低下したり、冷間圧延が困難になったりする。従って、Si含有量は4.00%以下とする。
(Si: 1.50% to 4.00%)
Si increases electrical resistance, reduces eddy current loss, reduces iron loss, increases yield ratio, and improves punching workability into an iron core. If the Si content is less than 1.50%, these effects cannot be sufficiently obtained. Therefore, the Si content is set to 1.50% or more. On the other hand, if the Si content exceeds 4.00%, the magnetic flux density decreases, the punching workability decreases due to an excessive increase in hardness, and cold rolling becomes difficult. Therefore, the Si content is set to 4.00% or less.

(sol.Al:0.0001%~1.0%)
sol.Alは、電気抵抗を増大させて、渦電流損を減少させ、鉄損を低減する。sol.Alは、飽和磁束密度に対する磁束密度B50の相対的な大きさの向上にも寄与する。ここで、磁束密度B50とは、5000A/mの磁場における磁束密度である。sol.Al含有量が0.0001%未満では、これらの作用効果を十分に得られない。また、Alには製鋼での脱硫促進効果もある。従って、sol.Al含有量は0.0001%以上とする。一方、sol.Al含有量が1.0%超では、磁束密度が低下したり、降伏比を低下させて、打ち抜き加工性を低下させたりする。従って、sol.Al含有量は1.0%以下とする。
(sol.Al: 0.0001% to 1.0%)
sol. Al increases electrical resistance, reduces eddy current loss, and reduces iron loss. sol. Al also contributes to increasing the relative magnitude of the magnetic flux density B50 to the saturation magnetic flux density. Here, the magnetic flux density B50 is the magnetic flux density in a magnetic field of 5000 A/m. sol. If the Al content is less than 0.0001%, these effects cannot be sufficiently obtained. Furthermore, Al also has the effect of promoting desulfurization in steel manufacturing. Therefore, sol. Al content shall be 0.0001% or more. On the other hand, sol. If the Al content exceeds 1.0%, the magnetic flux density decreases, the yield ratio decreases, and the punching workability decreases. Therefore, sol. Al content shall be 1.0% or less.

(S:0.010%以下)
Sは、必須元素ではなく、例えば鋼中に不純物として含有される。Sは、微細なMnSの析出により、焼鈍における再結晶及び結晶粒の成長を阻害する。従って、S含有量は低ければ低いほどよい。このような再結晶及び結晶粒成長の阻害による鉄損の増加および磁束密度の低下は、S含有量が0.010%超で顕著である。このため、S含有量は0.010%以下とする。なお、S含有量の下限は特に限定しないが、精錬時の脱硫処理のコストを踏まえ、0.0003%以上とすることが好ましい。
(S: 0.010% or less)
S is not an essential element and is contained, for example, as an impurity in steel. S inhibits recrystallization and crystal grain growth during annealing due to fine MnS precipitation. Therefore, the lower the S content, the better. The increase in core loss and decrease in magnetic flux density due to inhibition of recrystallization and grain growth are significant when the S content exceeds 0.010%. Therefore, the S content is set to 0.010% or less. Note that the lower limit of the S content is not particularly limited, but it is preferably 0.0003% or more, taking into consideration the cost of desulfurization treatment during refining.

(N:0.010%以下)
NはCと同様に、磁気特性を劣化させるので、N含有量は低ければ低いほどよい。したがって、N含有量は0.010%以下とする。なお、N含有量の下限は特に限定しないが、精錬時の脱窒処理のコストを踏まえ、0.0010%以上とすることが好ましい。
(N: 0.010% or less)
Like C, N deteriorates magnetic properties, so the lower the N content, the better. Therefore, the N content is set to 0.010% or less. Note that the lower limit of the N content is not particularly limited, but it is preferably 0.0010% or more in consideration of the cost of denitrification treatment during refining.

(Mn、Ni、Co、Pt、Pb、Cu、Auからなる群から選ばれる1種以上:総計で2.50%~5.00%)
これらの元素は、α-γ変態を生じさせるために必要な元素であることから、これらの元素の少なくとも1種を総計で2.50%以上含有させる必要がある。一方で、総計で5.00%を超えると、コスト高となり、磁束密度が低下する場合もある。したがって、これらの元素の少なくとも1種を総計で5.00%以下とする。
(One or more types selected from the group consisting of Mn, Ni, Co, Pt, Pb, Cu, and Au: 2.50% to 5.00% in total)
Since these elements are necessary for causing α-γ transformation, it is necessary to contain at least one of these elements in a total amount of 2.50% or more. On the other hand, if the total amount exceeds 5.00%, the cost may increase and the magnetic flux density may decrease. Therefore, the total content of at least one of these elements is 5.00% or less.

また、α-γ変態が生じ得る条件として、さらに以下の条件を満たしているものとする。つまり、Mn含有量(質量%)を[Mn]、Ni含有量(質量%)を[Ni]、Co含有量(質量%)を[Co]、Pt含有量(質量%)を[Pt]、Pb含有量(質量%)を[Pb]、Cu含有量(質量%)を[Cu]、Au含有量(質量%)を[Au]、Si含有量(質量%)を[Si]、sol.Al含有量(質量%)を[sol.Al]としたときに、質量%で、以下の(1)式を満たすものとする。
([Mn]+[Ni]+[Co]+[Pt]+[Pb]+[Cu]+[Au])-([Si]+[sol.Al])>0% ・・・(1)
In addition, the following conditions are further assumed to be satisfied as conditions under which α-γ transformation can occur. In other words, Mn content (mass%) is [Mn], Ni content (mass%) is [Ni], Co content (mass%) is [Co], Pt content (mass%) is [Pt], Pb content (mass%) is [Pb], Cu content (mass%) is [Cu], Au content (mass%) is [Au], Si content (mass%) is [Si], sol. The Al content (mass%) was determined by [sol. Al], the following equation (1) shall be satisfied in mass %.
([Mn]+[Ni]+[Co]+[Pt]+[Pb]+[Cu]+[Au])-([Si]+[sol.Al])>0%...(1)

前述の(1)式を満たさない場合には、α-γ変態が生じないため、磁束密度が低くなる。 If the above-mentioned formula (1) is not satisfied, the α-γ transformation does not occur and the magnetic flux density becomes low.

(Sn:0.000%~0.400%、Sb:0.000%~0.400%、P:0.000%~0.400%)
SnやSbは冷間圧延、再結晶後の集合組織を改善して、その磁束密度を向上させる。そのため、これらの元素を必要に応じて含有させてもよいが、過剰に含まれると鋼を脆化させる。したがって、Sn含有量、Sb含有量はいずれも0.400%以下とする。また、Pは再結晶後の鋼板の硬度を確保するために含有させてもよいが、過剰に含まれると鋼の脆化を招く。したがって、P含有量は0.400%以下とする。以上のように磁気特性等のさらなる効果を付与する場合には、0.020%~0.400%のSn、0.020%~0.400%のSb、及び0.020%~0.400%のPからなる群から選ばれる1種以上を含有することが好ましい。
(Sn: 0.000% to 0.400%, Sb: 0.000% to 0.400%, P: 0.000% to 0.400%)
Sn and Sb improve the texture after cold rolling and recrystallization, and improve the magnetic flux density. Therefore, although these elements may be contained as necessary, if they are contained in excess, the steel becomes brittle. Therefore, the Sn content and the Sb content are both 0.400% or less. Further, P may be included in order to ensure the hardness of the steel sheet after recrystallization, but if it is included in excess, it will cause embrittlement of the steel. Therefore, the P content is set to 0.400% or less. In order to impart further effects such as magnetic properties as described above, 0.020% to 0.400% Sn, 0.020% to 0.400% Sb, and 0.020% to 0.400% % of P is preferably contained.

(Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn、及びCdからなる群から選ばれる1種以上:総計で0.0000%~0.0100%)
Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn及びCdは、溶鋼の鋳造時に溶鋼中のSと反応して硫化物若しくは酸硫化物又はこれらの両方の析出物を生成する。以下、Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn及びCdを総称して「粗大析出物生成元素」ということがある。粗大析出物生成元素の析出物の粒径は1μm~2μm程度であり、MnS、TiN、AlN等の微細析出物の粒径(100nm程度)よりはるかに大きい。このため、これら微細析出物は粗大析出物生成元素の析出物に付着し、中間焼鈍などの焼鈍における再結晶及び結晶粒の成長を阻害しにくくなる。これらの作用効果を十分に得るためには、これらの元素の総計が0.0005%以上であることが好ましい。但し、これらの元素の総計が0.0100%を超えると、硫化物若しくは酸硫化物又はこれらの両方の総量が過剰となり、中間焼鈍などの焼鈍における再結晶及び結晶粒の成長が阻害される。従って、粗大析出物生成元素の含有量は総計で0.0100%以下とする。
(One or more selected from the group consisting of Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn, and Cd: 0.0000% to 0.0100% in total)
Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn, and Cd react with S in the molten steel during casting of the molten steel to generate precipitates of sulfides, oxysulfides, or both of these. Hereinafter, Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn, and Cd may be collectively referred to as "coarse precipitate-forming elements." The particle size of the precipitates of coarse precipitate-forming elements is about 1 μm to 2 μm, which is much larger than the particle size (about 100 nm) of fine precipitates such as MnS, TiN, AlN, etc. Therefore, these fine precipitates adhere to the precipitates of coarse precipitate-forming elements, making it difficult to inhibit recrystallization and growth of crystal grains during annealing such as intermediate annealing. In order to fully obtain these effects, it is preferable that the total content of these elements is 0.0005% or more. However, when the total amount of these elements exceeds 0.0100%, the total amount of sulfides, oxysulfides, or both becomes excessive, and recrystallization and crystal grain growth during annealing such as intermediate annealing are inhibited. Therefore, the total content of coarse precipitate-forming elements is set to 0.0100% or less.

次に、本実施形態に係る無方向性電磁鋼板の厚さについて説明する。本実施形態に係る無方向性電磁鋼板の厚さは、0.50mm以下である。厚さが0.50mm超であると、優れた高周波鉄損を得ることができない。従って、厚さは0.50mm以下とする。 Next, the thickness of the non-oriented electrical steel sheet according to this embodiment will be explained. The thickness of the non-oriented electrical steel sheet according to this embodiment is 0.50 mm or less. If the thickness exceeds 0.50 mm, excellent high frequency iron loss cannot be obtained. Therefore, the thickness should be 0.50 mm or less.

次に、本実施形態に係る無方向性電磁鋼板の金属組織について説明する。本実施形態に係る無方向性電磁鋼板は、さらに全体的に全方向に対して高い磁束密度が得られるような歪の分布を有する。製造方法の詳細については後述するが、本実施形態に係る無方向性電磁鋼板はα-γ変態が生じ得る化学組成であり、熱間圧延が完了してその後冷却されると、オーステナイトからフェライトに変態し、組織が微細化する。さらに本実施形態の無方向性電磁鋼板では、冷間圧延、中間焼鈍、スキンパス圧延を経ることによって、{100}結晶粒には歪が比較的少なく、{111}結晶粒に歪みが溜まりやすい結晶構造となっている。その後、仕上げ焼鈍を行うことにより{100}結晶粒が{111}結晶粒を蚕食し、{100}結晶粒の平均粒径が{111}結晶粒の平均粒径よりも大きくなり、磁気特性が向上する。本実施形態に係る無方向性電磁鋼板では、{100}結晶粒の平均粒径をd100、{111}結晶粒の平均粒径をd111とした場合に、d100/d111>1.1である。(d100/d111)が1.1以下では、{100}結晶粒による蚕食が不十分であるため、磁気特性の向上効果が不十分となる。また、スキンパス圧延後は歪が多いままであるが、仕上げ焼鈍を行うことによって歪を開放し、加工性に優れた無方向性電磁鋼板を提供することができる。 Next, the metal structure of the non-oriented electrical steel sheet according to this embodiment will be explained. The non-oriented electrical steel sheet according to the present embodiment further has a strain distribution such that a high magnetic flux density can be obtained in all directions as a whole. The details of the manufacturing method will be described later, but the non-oriented electrical steel sheet according to this embodiment has a chemical composition in which α-γ transformation can occur, and when hot rolling is completed and then cooled, austenite transforms into ferrite. It undergoes metamorphosis and its structure becomes finer. Furthermore, in the non-oriented electrical steel sheet of this embodiment, by undergoing cold rolling, intermediate annealing, and skin pass rolling, the {100} crystal grains have relatively little strain, while the {111} crystal grains have relatively little strain. It has a structure. After that, by performing finish annealing, the {100} crystal grains eat away at the {111} crystal grains, the average grain size of the {100} crystal grains becomes larger than the average grain size of the {111} crystal grains, and the magnetic properties improve. improves. In the non-oriented electrical steel sheet according to the present embodiment, when the average grain size of {100} crystal grains is d 100 and the average grain size of {111} crystal grains is d 111 , d 100 /d 111 >1. It is 1. When (d 100 /d 111 ) is less than 1.1, the effect of improving magnetic properties becomes insufficient because the {100} crystal grains are insufficiently etched. Furthermore, although a large amount of strain remains after skin pass rolling, finishing annealing can release the strain and provide a non-oriented electrical steel sheet with excellent workability.

なお、{100}結晶粒の平均粒径および{111}結晶粒の平均粒径は、電子後方散乱回折(以下EBSD)によって測定することができる。EBSDにより得られた情報を元に、[100]から裕度20度以内のものを抜粋し、その平均粒径を解析ソフトで円相当平均を求めたものを{100}結晶粒の平均粒径とする。一方、{111}から裕度20度以内のものを抜粋し、その平均粒径を解析ソフトで円相当平均を求めたものを{111}結晶粒の平均粒径とする。 Note that the average grain size of {100} crystal grains and the average grain size of {111} crystal grains can be measured by electron backscatter diffraction (hereinafter referred to as EBSD). Based on the information obtained by EBSD, we extracted the grains within a margin of 20 degrees from [100], and calculated the average grain size using analysis software to obtain the circle equivalent average, which is the average grain size of {100} grains. shall be. On the other hand, those with a tolerance of 20 degrees or less are extracted from {111}, and the average grain size of the grains is calculated as a circle-equivalent average using analysis software, and the result is defined as the average grain size of {111} grains.

次に、本実施形態に係る無方向性電磁鋼板の磁気特性について説明する。磁気特性を調べる際には、本実施形態に係る無方向性電磁鋼板に対して、さらに800℃で2時間の条件で焼鈍を施した後に磁束密度を測定する。さらに800℃で2時間の条件で焼鈍を施した後に磁束密度を測定する。この無方向性電磁鋼板は、圧延方向となす角度のうち小さい方の角度が45°となる2つの方向において、磁気特性が最も優れる。一方、圧延方向となす角度が0°、90°の2つの方向において、磁気特性が最も劣る。ここで、当該45°は、理論的な値であり、実際の製造に際しては45°に一致させることが容易でない場合がある。したがって、理論的には、磁気特性が最も優れる方向が、圧延方向となす角度のうち小さい方の角度が45°となる2つの方向であれば、実際の無方向性電磁鋼板においては、当該45°は、(厳密に)45°に一致していないものも含むものとする。このことは、当該0°、90°においても同じである。また、理論的には、磁気特性が最も優れる2つの方向の磁気特性は同じになるが、実際の製造に際しては当該2つの方向の磁気特性を同じにすることが容易でない場合がある。したがって、理論的には、磁気特性が最も優れる2つの方向の磁気特性が同じであれば、当該同じは、(厳密に)同じでないものも含むものとする。このことは、磁気特性が最も劣る2つの方向においても同じである。尚、以上の角度は、時計回りおよび反時計回りの何れの向きの角度も正の値を有するものとして表記したものである。時計回りの方向を負の方向とし、反時計回りの方向を正の方向とする場合、前述した圧延方向となす角度のうち小さい方の角度が45°となる2つの方向は、前述した圧延方向となす角度のうち絶対値の小さい方の角度が45°、-45°となる2つの方向となる。また、前述した圧延方向となす角度のうち小さい方の角度が45°となる2つの方向は、圧延方向となす角度が45°、135°となる2つの方向とも表記できる。本実施形態において磁束密度を測定すると、圧延方向に対して45°方向の磁束密度B50が1.75T以上となる。なお、圧延方向に対して45°方向の磁束密度が高いものの、全周平均(全方向平均)でも高い磁束密度が得られる。 Next, the magnetic properties of the non-oriented electrical steel sheet according to this embodiment will be explained. When examining the magnetic properties, the non-oriented electrical steel sheet according to this embodiment is further annealed at 800° C. for 2 hours, and then the magnetic flux density is measured. Further, the magnetic flux density is measured after annealing at 800° C. for 2 hours. This non-oriented electrical steel sheet has the best magnetic properties in two directions where the smaller angle with the rolling direction is 45°. On the other hand, the magnetic properties are the poorest in two directions where the angle with the rolling direction is 0° and 90°. Here, the 45° is a theoretical value, and it may not be easy to match it to 45° in actual manufacturing. Therefore, theoretically, if the direction in which the magnetic properties are the best is two directions in which the smaller angle with the rolling direction is 45°, then in actual non-oriented electrical steel sheets, the 45° ° includes angles that do not (strictly) correspond to 45°. This is the same at 0° and 90°. Further, theoretically, the magnetic properties in the two directions where the magnetic properties are the best are the same, but in actual manufacturing, it may not be easy to make the magnetic properties in the two directions the same. Therefore, theoretically, if the magnetic properties in the two directions with the best magnetic properties are the same, the term "same" includes those that are not (strictly) the same. This is also true in the two directions where the magnetic properties are the worst. Note that the above angles are expressed assuming that both clockwise and counterclockwise angles have positive values. When the clockwise direction is a negative direction and the counterclockwise direction is a positive direction, the two directions in which the smaller angle is 45 degrees with the rolling direction mentioned above are the rolling directions mentioned above. There are two directions in which the angle with the smaller absolute value is 45° and -45°. Moreover, the two directions in which the smaller angle between the angles with the rolling direction mentioned above is 45° can also be written as two directions in which the angles with the rolling direction are 45° and 135°. When measuring the magnetic flux density in this embodiment, the magnetic flux density B50 in the 45° direction with respect to the rolling direction is 1.75T or more. Note that although the magnetic flux density is high in the 45° direction with respect to the rolling direction, a high magnetic flux density can be obtained even on an average around the entire circumference (average in all directions).

磁束密度の測定は、圧延方向に対して45°、0°方向等から55mm角の試料を切り出し,単板磁気測定装置を用いて行うことができる。 The magnetic flux density can be measured by cutting out a 55 mm square sample from a direction of 45°, 0°, etc. with respect to the rolling direction, and using a single plate magnetic measuring device.

次に、本実施形態に係る無方向性電磁鋼板の製造方法について説明する。本実施形態では、熱間圧延、冷間圧延、中間焼鈍、スキンパス圧延、仕上げ焼鈍等を行う。 Next, a method for manufacturing a non-oriented electrical steel sheet according to this embodiment will be described. In this embodiment, hot rolling, cold rolling, intermediate annealing, skin pass rolling, finish annealing, etc. are performed.

まず、上述した鋼材を加熱し、熱間圧延を施す。鋼材は、例えば通常の連続鋳造によって製造されるスラブである。熱間圧延の粗圧延および仕上げ圧延はγ域(Ar1以上)の温度で行う。つまり、仕上げ圧延の最終パスを通過する際の温度(仕上温度)がAr1以上となるように熱間圧延を行うことが好ましい。これにより、その後の冷却によってオーステナイトからフェライトへ変態することにより組織は微細化する。微細化された状態でその後冷間圧延を施すと、バルジングが発生しやすく、通常は成長しにくい{100}結晶粒を成長させやすくすることができる。 First, the above-mentioned steel material is heated and hot rolled. The steel material is, for example, a slab manufactured by normal continuous casting. Rough rolling and finish rolling of hot rolling are performed at a temperature in the γ range (Ar1 or higher). That is, it is preferable to perform hot rolling so that the temperature (finishing temperature) when passing through the final pass of finish rolling becomes Ar1 or higher. As a result, the structure becomes finer by transforming from austenite to ferrite through subsequent cooling. If cold rolling is then performed in the refined state, bulging tends to occur and {100} crystal grains, which are normally difficult to grow, can be made to grow easily.

その後、熱間圧延板焼鈍は行わずに巻き取り、酸洗を経て、熱間圧延鋼板に対して冷間圧延を行う。冷間圧延では圧下率を80%~92%とすることが好ましい。なお、圧下率が高いほどその後のバルジングによって{100}結晶粒が成長しやすくなるが、熱間圧延鋼板の巻取りが困難になり、操業が困難になりやすくなる。 Thereafter, the hot-rolled steel plate is wound up without being annealed, pickled, and then cold-rolled to the hot-rolled steel plate. In cold rolling, the reduction ratio is preferably 80% to 92%. Note that the higher the rolling reduction rate, the easier it is for {100} crystal grains to grow due to subsequent bulging, but it becomes more difficult to wind up the hot-rolled steel sheet, making the operation more difficult.

冷間圧延が終了すると、続いて中間焼鈍を行う。本実施形態では、オーステナイトへ変態しない温度で中間焼鈍を行う。つまり、中間焼鈍の温度をAc1未満とすることが好ましい。このように中間焼鈍を行うことによってバルジングが生じ、{100}結晶粒が成長しやすくなる。また、中間焼鈍の時間は、5~60秒とすることが好ましい。 After the cold rolling is completed, intermediate annealing is subsequently performed. In this embodiment, intermediate annealing is performed at a temperature that does not transform into austenite. That is, it is preferable that the temperature of intermediate annealing be less than Ac1. By performing intermediate annealing in this manner, bulging occurs and {100} crystal grains tend to grow. Further, the time for intermediate annealing is preferably 5 to 60 seconds.

中間焼鈍が終了すると、次に2回目の冷間圧延(スキンパス圧延)を行う。上述したようにバルジングが発生した状態で圧延を行うと、バルジングが発生した部分を起点に{100}結晶粒がさらに成長する。スキンパス圧延の圧下率は5%~25%とすることが好ましく、これにより、{100}結晶粒には歪が比較的少なく、{111}結晶粒に歪みが溜まりやすい結晶構造となる。 After the intermediate annealing is completed, a second cold rolling (skin pass rolling) is performed. If rolling is performed in a state where bulging has occurred as described above, {100} crystal grains will further grow starting from the portion where bulging has occurred. The rolling reduction ratio in skin pass rolling is preferably 5% to 25%, thereby creating a crystal structure in which {100} crystal grains have relatively little strain and {111} crystal grains tend to have strain.

スキンパス圧延を施した後、歪を開放して加工性を向上させるために仕上げ焼鈍を行うことが好ましい。仕上げ焼鈍も同様にオーステナイトへ変態しない温度とし、仕上げ焼鈍の温度をAc1未満とすることが好ましい。このように仕上げ焼鈍を行うことによって、{100}結晶粒が{111}結晶粒を蚕食し、磁気特性が向上する。また、仕上げ焼鈍の時間は、1200秒以下とすることが好ましい。 After skin pass rolling, it is preferable to perform finish annealing to release strain and improve workability. It is preferable that the finish annealing is also performed at a temperature that does not transform into austenite, and the temperature of the finish annealing is less than Ac1. By performing finish annealing in this manner, the {100} crystal grains attack the {111} crystal grains, and the magnetic properties are improved. Further, the time for finish annealing is preferably 1200 seconds or less.

以上のように本実施形態に係る無方向性電磁鋼板を製造することができる。 As described above, the non-oriented electrical steel sheet according to this embodiment can be manufactured.

次に、本発明の実施形態に係る無方向性電磁鋼板について、実施例を示しながら具体的に説明する。以下に示す実施例は、本発明の実施形態に係る無方向性電磁鋼板のあくまでも一例にすぎず、本発明に係る無方向性電磁鋼板が下記の例に限定されるものではない。 Next, a non-oriented electrical steel sheet according to an embodiment of the present invention will be specifically described while showing examples. The examples shown below are merely examples of non-oriented electrical steel sheets according to embodiments of the present invention, and the non-oriented electrical steel sheets according to the present invention are not limited to the following examples.

(第1の実施例)
溶鋼を鋳造することにより、以下の表1に示す成分のインゴットを作製した。ここで、式左辺とは、前述の(1)式の左辺の値を表している。その後、作製したインゴットを1150℃まで加熱して熱間圧延を行い、板厚が2.5mmになるように圧延した。そして、仕上げ圧延終了後に水冷し熱間圧延鋼板を巻き取った。この時の仕上げ圧延の最終パスの段階での温度(仕上温度)は800℃であり、Ar1よりも高い温度であった。また、巻き取り時の巻取り温度は500℃とした。
(First example)
Ingots having the components shown in Table 1 below were produced by casting molten steel. Here, the left side of the equation represents the value on the left side of the above-mentioned equation (1). Thereafter, the produced ingot was heated to 1150° C. and hot rolled to a thickness of 2.5 mm. After completion of finish rolling, the hot rolled steel plate was cooled with water and wound up. The temperature at the final pass stage of finish rolling (finishing temperature) at this time was 800°C, which was higher than Ar1. Further, the winding temperature during winding was 500°C.

次に、熱間圧延鋼板において酸洗によりスケールを除去し、狙いの板厚の1.1倍の板厚(0.110~0.550mm)になるまで冷間圧延を行った。そして、無酸化雰囲気中でAc1よりも低い700℃まで加熱して中間焼鈍を行った。次いで、No.110、No.111及びNo.115以外の試料では、9%の圧下率で狙いの板厚(0.10~0.50mm)になるまで2回目の冷間圧延(スキンパス圧延)を行った。なお、No.110とNo.115は2回目の冷間圧延を省略した。また、No.111は1回目の冷間圧延で0.40mmに圧延し、2回目の冷間圧延(スキンパス圧延)で0.35mmに圧延した。 Next, scale was removed from the hot rolled steel plate by pickling, and cold rolling was performed until the plate thickness became 1.1 times the target thickness (0.110 to 0.550 mm). Then, intermediate annealing was performed by heating to 700° C., which is lower than Ac1, in a non-oxidizing atmosphere. Next, No. 110, No. 111 and no. For samples other than No. 115, a second cold rolling (skin pass rolling) was performed at a rolling reduction rate of 9% until the target thickness (0.10 to 0.50 mm) was achieved. In addition, No. 110 and no. No. 115 omitted the second cold rolling. Also, No. No. 111 was rolled to 0.40 mm in the first cold rolling, and rolled to 0.35 mm in the second cold rolling (skin pass rolling).

そして、2回目の冷間圧延(スキンパス圧延)の後にAc1よりも低い800℃で30秒の仕上げ焼鈍を行い、混粒度を測定した。 Then, after the second cold rolling (skin pass rolling), finish annealing was performed for 30 seconds at 800° C., which is lower than Ac1, and the mixed grain size was measured.

次に、磁気特性を調べるために、仕上げ焼鈍の後に800℃で2時間の歪取焼鈍を行い、磁束密度B50を測定した。測定試料は55mm角の試料を圧延方向に0°と45°の2種類の方向に採取した。そして、この2種類の試料を測定し、圧延方向に対して、45°方向の値を45°方向の磁束密度B50とし、圧延方向に対して、0°、45°、90°、135°の平均値を磁束密度B50の全周平均とした。混粒度および磁気特性の測定結果を表1に示す。 Next, in order to examine the magnetic properties, strain relief annealing was performed at 800° C. for 2 hours after finish annealing, and the magnetic flux density B50 was measured. The measurement samples were 55 mm square samples taken in two directions: 0° and 45° in the rolling direction. Then, these two types of samples were measured, and the value in the 45° direction with respect to the rolling direction was taken as the magnetic flux density B50 in the 45° direction, and the values at 0°, 45°, 90°, and 135° with respect to the rolling direction were The average value was taken as the all-circumference average of magnetic flux density B50. Table 1 shows the measurement results of mixed particle size and magnetic properties.

表1中の下線は、本発明の範囲から外れた条件を示している。発明例であるNo.101~No.107、No.109、No.111~No.114は、いずれも45°方向及び全周平均共に磁束密度B50は良好な値であった。一方、比較例であるNo.108はSi濃度が高く、式左辺の値が0以下であり、α-γ変態しない組成であったことから、磁気密度B50はいずれも低かった。比較例であるNo.110とNo.115は、d100/d111が1.1よりも小さくなっていたため、磁束密度が低かった。 The underlines in Table 1 indicate conditions outside the scope of the present invention. Invention example No. 101~No. 107, No. 109, No. 111~No. No. 114 had a good magnetic flux density B50 in both the 45° direction and the average around the entire circumference. On the other hand, the comparative example No. In No. 108, the Si concentration was high, the value on the left side of the equation was 0 or less, and the composition did not undergo α-γ transformation, so the magnetic density B50 was low in all cases. Comparative example No. 110 and no. No. 115 had a low magnetic flux density because d 100 /d 111 was smaller than 1.1.

(第2の実施例)
溶鋼を鋳造することにより、以下の表2に示す成分のインゴットを作製した。その後、作製したインゴットを1150℃まで加熱して熱間圧延を行い、板厚が2.5mmになるように圧延した。そして、仕上げ圧延終了後に水冷し熱間圧延鋼板を巻き取った。この時の仕上げ圧延の最終パスの段階での仕上温度は830℃であり、すべてAr1より大きい温度だった。また、巻き取り時の巻取り温度は500℃とした。
(Second example)
Ingots having the components shown in Table 2 below were produced by casting molten steel. Thereafter, the produced ingot was heated to 1150° C. and hot rolled to a thickness of 2.5 mm. After completion of finish rolling, the hot rolled steel plate was cooled with water and wound up. The finishing temperature at the stage of the final pass of finish rolling at this time was 830°C, which was all higher than Ar1. Further, the winding temperature during winding was 500°C.

次に、熱間圧延鋼板において酸洗によりスケールを除去し、板厚が0.385mmになるまで冷間圧延を行った。そして、無酸化雰囲気中でAc1よりも低い700℃まで加熱して中間焼鈍を行った。次いで、板厚が0.35mmになるまで2回目の冷間圧延(スキンパス圧延)を行った。 Next, scale was removed from the hot rolled steel plate by pickling, and cold rolling was performed until the plate thickness became 0.385 mm. Then, intermediate annealing was performed by heating to 700° C., which is lower than Ac1, in a non-oxidizing atmosphere. Next, a second cold rolling (skin pass rolling) was performed until the plate thickness became 0.35 mm.

さらに、2回目の冷間圧延(スキンパス圧延)の後にAc1よりも低い800℃で30秒の仕上げ焼鈍を行い、混粒度を測定した。 Furthermore, after the second cold rolling (skin pass rolling), finish annealing was performed for 30 seconds at 800° C., which is lower than Ac1, and the mixed grain size was measured.

次に、磁気特性を調べるために、仕上げ焼鈍の後に800℃で2時間の歪取焼鈍を行い、磁束密度B50および鉄損W10/400を測定した。磁束密度B50に関しては第1の実施例と同様の手順で測定した。一方で鉄損W10/400は、最大磁束密度が1.0Tになるように400Hzの交流磁場をかけた時に試料に生じる全周平均のエネルギーロス(W/kg)として測定した。混粒度および磁気特性の測定結果を表3に示す。 Next, in order to investigate the magnetic properties, strain relief annealing was performed at 800° C. for 2 hours after finish annealing, and the magnetic flux density B50 and iron loss W10/400 were measured. The magnetic flux density B50 was measured using the same procedure as in the first example. On the other hand, iron loss W10/400 was measured as the average energy loss (W/kg) occurring around the entire circumference of the sample when an alternating current magnetic field of 400 Hz was applied so that the maximum magnetic flux density was 1.0 T. Table 3 shows the measurement results of mixed particle size and magnetic properties.

No.201~No.214は全て発明例であり、いずれも磁気特性が良好であった。特に、No.202~No.204はNo.201、No.205~No.214よりも磁束密度B50が高く、No.205~No.214はNo.201~No.204よりも鉄損W10/400が低かった。 No. 201~No. No. 214 were all invention examples, and all had good magnetic properties. In particular, No. 202~No. 204 is No. 201, No. 205~No. The magnetic flux density B50 is higher than that of No. 214. 205~No. 214 is No. 201~No. Iron loss W10/400 was lower than 204.

Claims (3)

質量%で、
C:0.010%以下、
Si:1.50%~4.00%、
sol.Al:0.0001%~1.0%、
S:0.010%以下、
N:0.010%以下、
Mn、Ni、Co、Pt、Pb、Cu、Auからなる群から選ばれる1種以上:総計で2.50%~5.00%、
Sn:0.000%~0.400%、
Sb:0.000%~0.400%、
P:0.000%~0.400%、及び
Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn、Cdからなる群から選ばれる1種以上:総計で0.0000%~0.0100%を含有し、
Mn含有量(質量%)を[Mn]、Ni含有量(質量%)を[Ni]、Co含有量(質量%)を[Co]、Pt含有量(質量%)を[Pt]、Pb含有量(質量%)を[Pb]、Cu含有量(質量%)を[Cu]、Au含有量(質量%)を[Au]、Si含有量(質量%)を[Si]、sol.Al含有量(質量%)を[sol.Al]としたときに、以下の(1)式を満たし、
残部がFeおよび不純物からなる化学組成を有し、
板厚が0.50mm以下であり、
{100}結晶粒の平均粒径をd100、{111}結晶粒の平均粒径をd111とした場合に、d100/d111>1.1であることを特徴とする無方向性電磁鋼板。
([Mn]+[Ni]+[Co]+[Pt]+[Pb]+[Cu]+[Au])-([Si]+[sol.Al])>0% ・・・(1)
In mass%,
C: 0.010% or less,
Si: 1.50% to 4.00%,
sol. Al: 0.0001% to 1.0%,
S: 0.010% or less,
N: 0.010% or less,
One or more types selected from the group consisting of Mn, Ni, Co, Pt, Pb, Cu, and Au: 2.50% to 5.00% in total,
Sn: 0.000% to 0.400%,
Sb: 0.000% to 0.400%,
P: 0.000% to 0.400%, and one or more selected from the group consisting of Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn, and Cd: 0.0000% to 0 in total Contains .0100%,
Mn content (mass%) is [Mn], Ni content (mass%) is [Ni], Co content (mass%) is [Co], Pt content (mass%) is [Pt], Pb content amount (mass %) is [Pb], Cu content (mass %) is [Cu], Au content (mass %) is [Au], Si content (mass %) is [Si], sol. The Al content (mass%) was determined by [sol. Al], the following formula (1) is satisfied,
The remainder has a chemical composition consisting of Fe and impurities,
The plate thickness is 0.50 mm or less,
A non-directional electromagnetic device characterized in that d 100 /d 111 >1.1, where d 100 is the average grain size of {100} crystal grains, and d 111 is the average grain size of {111} crystal grains. steel plate.
([Mn]+[Ni]+[Co]+[Pt]+[Pb]+[Cu]+[Au])-([Si]+[sol.Al])>0%...(1)
質量%で、
Sn:0.020%~0.400%、
Sb:0.020%~0.400%、及び
P:0.020%~0.400%
からなる群から選ばれる1種以上を含有することを特徴とする請求項1に記載の無方向性電磁鋼板。
In mass%,
Sn: 0.020% to 0.400%,
Sb: 0.020% to 0.400%, and P: 0.020% to 0.400%
The non-oriented electrical steel sheet according to claim 1, characterized in that it contains one or more selected from the group consisting of:
質量%で、Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn、Cdからなる群から選ばれる1種以上:総計で0.0005%~0.0100%を含有することを特徴とする請求項1又は2に記載の無方向性電磁鋼板。 Contains one or more selected from the group consisting of Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn, and Cd: 0.0005% to 0.0100% in total in mass% The non-oriented electrical steel sheet according to claim 1 or 2.
JP2019206712A 2019-11-15 2019-11-15 Non-oriented electrical steel sheet Active JP7352082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019206712A JP7352082B2 (en) 2019-11-15 2019-11-15 Non-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019206712A JP7352082B2 (en) 2019-11-15 2019-11-15 Non-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2021080501A JP2021080501A (en) 2021-05-27
JP7352082B2 true JP7352082B2 (en) 2023-09-28

Family

ID=75964331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019206712A Active JP7352082B2 (en) 2019-11-15 2019-11-15 Non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP7352082B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7164069B1 (en) * 2021-04-02 2022-11-01 日本製鉄株式会社 Non-oriented electrical steel sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6007642A (en) 1997-12-08 1999-12-28 National Steel Corporation Super low loss motor lamination steel
JP2017145462A (en) 2016-02-17 2017-08-24 新日鐵住金株式会社 Electromagnetic steel sheet, and method for producing the same
JP2018115362A (en) 2017-01-17 2018-07-26 Jfeスチール株式会社 Nonoriented electromagnetic steel sheet and method for producing the same
JP2018141206A (en) 2017-02-28 2018-09-13 新日鐵住金株式会社 Electromagnetic steel sheet, and method for producing the same
JP2019019355A (en) 2017-07-13 2019-02-07 新日鐵住金株式会社 Electromagnetic steel and method for producing the same, motor core for rotor and method for producing the same, motor core for stator and method for producing the same, and method for producing motor core
JP2019178380A (en) 2018-03-30 2019-10-17 日本製鉄株式会社 Electromagnetic steel sheet, and manufacturing method of electromagnetic steel sheet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101493059B1 (en) * 2012-12-27 2015-02-11 주식회사 포스코 Non-oriented electrical steel steet and method for the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6007642A (en) 1997-12-08 1999-12-28 National Steel Corporation Super low loss motor lamination steel
JP2017145462A (en) 2016-02-17 2017-08-24 新日鐵住金株式会社 Electromagnetic steel sheet, and method for producing the same
JP2018115362A (en) 2017-01-17 2018-07-26 Jfeスチール株式会社 Nonoriented electromagnetic steel sheet and method for producing the same
JP2018141206A (en) 2017-02-28 2018-09-13 新日鐵住金株式会社 Electromagnetic steel sheet, and method for producing the same
JP2019019355A (en) 2017-07-13 2019-02-07 新日鐵住金株式会社 Electromagnetic steel and method for producing the same, motor core for rotor and method for producing the same, motor core for stator and method for producing the same, and method for producing motor core
JP2019178380A (en) 2018-03-30 2019-10-17 日本製鉄株式会社 Electromagnetic steel sheet, and manufacturing method of electromagnetic steel sheet

Also Published As

Publication number Publication date
JP2021080501A (en) 2021-05-27

Similar Documents

Publication Publication Date Title
CN110612358B (en) Non-oriented electromagnetic steel sheet
CN110573640A (en) Non-oriented electromagnetic steel sheet
WO2022196805A1 (en) Non-directional electromagnetic steel sheet and method for manufacturing same
CN110573639B (en) Non-oriented electromagnetic steel sheet
JP7352082B2 (en) Non-oriented electrical steel sheet
CN114286871B (en) Method for producing non-oriented electromagnetic steel sheet
JP2004332031A (en) Method for manufacturing non-oriented electromagnetic steel sheet superior in magnetic properties
KR20230144606A (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP7415136B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP7415135B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP7415138B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP7415134B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP3551849B2 (en) Primary recrystallization annealed sheet for unidirectional electrical steel sheet
JP7428873B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP7428872B2 (en) Non-oriented electrical steel sheet and its manufacturing method
CN114651079B (en) Non-oriented electromagnetic steel sheet
JP7288215B2 (en) Non-oriented electrical steel sheet
JP7211532B2 (en) Method for manufacturing non-oriented electrical steel sheet
CN116981790A (en) Non-oriented electromagnetic steel sheet and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230828

R151 Written notification of patent or utility model registration

Ref document number: 7352082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151