JP7428872B2 - Non-oriented electrical steel sheet and its manufacturing method - Google Patents

Non-oriented electrical steel sheet and its manufacturing method Download PDF

Info

Publication number
JP7428872B2
JP7428872B2 JP2019206651A JP2019206651A JP7428872B2 JP 7428872 B2 JP7428872 B2 JP 7428872B2 JP 2019206651 A JP2019206651 A JP 2019206651A JP 2019206651 A JP2019206651 A JP 2019206651A JP 7428872 B2 JP7428872 B2 JP 7428872B2
Authority
JP
Japan
Prior art keywords
mass
content
rolling
steel sheet
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019206651A
Other languages
Japanese (ja)
Other versions
JP2021080497A (en
Inventor
鉄州 村川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019206651A priority Critical patent/JP7428872B2/en
Publication of JP2021080497A publication Critical patent/JP2021080497A/en
Application granted granted Critical
Publication of JP7428872B2 publication Critical patent/JP7428872B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、無方向性電磁鋼板及びその製造方法に関する。 The present invention relates to a non-oriented electrical steel sheet and a method for manufacturing the same.

無方向性電磁鋼板は、例えばモータの鉄心に使用され、無方向性電磁鋼板には、その板面に平行なすべての方向の平均(以下、「板面内の全周平均(全方向平均)」ということがある)において優れた磁気特性、例えば低鉄損及び高磁束密度が要求される。これまで種々の技術が提案されているが、板面内の全方向において十分な磁気特性を得ることは困難である。例えば、板面内のある特定の方向で十分な磁気特性が得られるとしても、他の方向では十分な磁気特性が得られないことがある。 Non-oriented electrical steel sheets are used, for example, in the iron core of motors. ) requires excellent magnetic properties, such as low iron loss and high magnetic flux density. Although various techniques have been proposed so far, it is difficult to obtain sufficient magnetic properties in all directions within the plate surface. For example, even if sufficient magnetic properties are obtained in a certain direction within the plate surface, sufficient magnetic properties may not be obtained in other directions.

特許第4029430号公報Patent No. 4029430 特許第6319465号公報Patent No. 6319465

本発明は前述の問題点を鑑み、全周平均(全方向平均)で優れた磁気特性を得ることができる無方向性電磁鋼板及びその製造方法を提供することを目的とする。 SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to provide a non-oriented electrical steel sheet and a method for manufacturing the same that can obtain excellent magnetic properties on the average all around the circumference (average in all directions).

本発明者らは、上記課題を解決すべく鋭意検討を行った。この結果、化学組成を適切なものとし、冷延率を上げずに冷延組織を微細化させるために熱間圧延時にオーステナイトからフェライトへの変態で組織を微細化し、張出再結晶(以下、バルジング)を発生させることによって、通常は発達しにくい{100}結晶粒を発達させやすくすることが重要であることが明らかになった。バルジングにより発生した{100}結晶粒は、その後の2回目の冷間圧延及び焼鈍による歪誘起粒界移動(SIBM)により、更に富化されることも明らかになった。 The present inventors conducted extensive studies to solve the above problems. As a result, in order to obtain an appropriate chemical composition and refine the cold-rolled structure without increasing the cold-rolling rate, the structure is refined by transformation from austenite to ferrite during hot rolling, and the structure is refined by stretching recrystallization (hereinafter referred to as It has become clear that it is important to facilitate the development of {100} crystal grains, which are normally difficult to develop, by generating bulging. It was also revealed that the {100} grains generated by bulging were further enriched by strain-induced grain boundary migration (SIBM) caused by the subsequent second cold rolling and annealing.

本発明者らは、このような知見に基づいて更に鋭意検討を重ねた結果、以下に示す発明の諸態様に想到した。 As a result of further intensive studies based on such knowledge, the present inventors have come up with the following aspects of the invention.

[1]
質量%で、
C:0.0100%以下、
Si:1.50%~4.00%、
sol.Al:0.0001%~1.0%、
S:0.0100%以下、
N:0.0100%以下、
Mn、Ni、Co、Pt、Pb、Cu、Auからなる群から選ばれる1種以上:総計で2.50%~5.00%、
Sn:0.000%~0.400%、
Sb:0.000%~0.400%、
P:0.000%~0.400%、及び
Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn、Cdからなる群から選ばれる1種以上:総計で0.0000%~0.0100%を含有し、
Mn含有量(質量%)を[Mn]、Ni含有量(質量%)を[Ni]、Co含有量(質量%)を[Co]、Pt含有量(質量%)を[Pt]、Pb含有量(質量%)を[Pb]、Cu含有量(質量%)を[Cu]、Au含有量(質量%)を[Au]、Si含有量(質量%)を[Si]、sol.Al含有量(質量%)を[sol.Al]としたときに、以下の(1)式を満たし、
残部がFe及び不純物からなる化学組成を有し、
平均結晶粒径が500μm以下である鋼組織を有し、
圧延方向から45°傾いた方向におけるB50の値をB50D1、圧延方向から135°傾いた方向におけるB50の値をB50D2としたときに、以下の()式を満たすことを特徴とする無方向性電磁鋼板。
([Mn]+[Ni]+[Co]+[Pt]+[Pb]+[Cu]+[Au])-([Si]+[sol.Al])>0% ・・・(1)
1.85T<(B50D1+B50D2)/2<1.94T・・・(2)
[1]
In mass%,
C: 0.0100% or less,
Si: 1.50% to 4.00%,
sol. Al: 0.0001% to 1.0%,
S: 0.0100% or less,
N: 0.0100% or less,
One or more types selected from the group consisting of Mn, Ni, Co, Pt, Pb, Cu, and Au: 2.50% to 5.00% in total,
Sn: 0.000% to 0.400%,
Sb: 0.000% to 0.400%,
P: 0.000% to 0.400%, and one or more selected from the group consisting of Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn, and Cd: 0.0000% to 0 in total Contains .0100%,
Mn content (mass%) is [Mn], Ni content (mass%) is [Ni], Co content (mass%) is [Co], Pt content (mass%) is [Pt], Pb content amount (mass %) is [Pb], Cu content (mass %) is [Cu], Au content (mass %) is [Au], Si content (mass %) is [Si], sol. The Al content (mass%) was determined by [sol. Al], the following formula (1) is satisfied,
The remainder has a chemical composition consisting of Fe and impurities,
Having a steel structure with an average grain size of 500 μm or less,
Non-directionality characterized by satisfying the following formula ( 2 ), where the value of B50 in the direction inclined at 45 degrees from the rolling direction is B50D1, and the value of B50 in the direction inclined at 135 degrees from the rolling direction is B50D2. Electromagnetic steel plate.
([Mn]+[Ni]+[Co]+[Pt]+[Pb]+[Cu]+[Au])-([Si]+[sol.Al])>0%...(1)
1.85T<(B50D1+B50D2)/2<1.94T...(2)

[2]
質量%で、
Sn:0.020%~0.400%、
Sb:0.020%~0.400%、及び
P:0.020%~0.400%
からなる群から選ばれる1種以上を含有することを特徴とする[1]に記載の無方向性電磁鋼板。
[2]
In mass%,
Sn: 0.020% to 0.400%,
Sb: 0.020% to 0.400%, and P: 0.020% to 0.400%
The non-oriented electrical steel sheet according to [1], characterized in that it contains one or more selected from the group consisting of:

[3]
質量%で、
Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn、Cdからなる群から選ばれる1種以上:総計で0.0005%~0.0100%を含有することを特徴とする[1]又は[2]に記載の無方向性電磁鋼板。
[3]
In mass%,
One or more selected from the group consisting of Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn, and Cd: 0.0005% to 0.0100% in total [1 ] or the non-oriented electrical steel sheet according to [2].

[4]
[1]~[3]のいずれかに記載の無方向性電磁鋼板からなる鉄心を有することを特徴とする回転電機。
[4]
A rotating electrical machine characterized by having an iron core made of the non-oriented electrical steel sheet according to any one of [1] to [3].

[5]
質量%で、
C:0.0100%以下、
Si:1.50%~4.00%、
sol.Al:0.0001%~1.0%、
S:0.0100%以下、
N:0.0100%以下、
Mn、Ni、Co、Pt、Pb、Cu、Auからなる群から選ばれる1種以上:総計で2.50%~5.00%、
Sn:0.000%~0.400%、
Sb:0.000%~0.400%、
P:0.000%~0.400%、及び
Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn、Cdからなる群から選ばれる1種以上:総計で0.0000%~0.0100%を含有し、
Mn含有量(質量%)を[Mn]、Ni含有量(質量%)を[Ni]、Co含有量(質量%)を[Co]、Pt含有量(質量%)を[Pt]、Pb含有量(質量%)を[Pb]、Cu含有量(質量%)を[Cu]、Au含有量(質量%)を[Au]、Si含有量(質量%)を[Si]、sol.Al含有量(質量%)を[sol.Al]としたときに、以下の()式を満たし、
残部がFe及び不純物からなる化学組成を有する鋼材に対して熱間圧延を行う工程と、
前記熱間圧延後の前記鋼材に対して第1の冷間圧延を行う工程と、
前記第1の冷間圧延後に前記鋼材に対して第1の焼鈍を行う工程と、
前記第1の焼鈍後に前記鋼材に対して第2の冷間圧延を行う工程と、
を有し、
前記熱間圧延を行う工程において、仕上げ圧延の最終パスを相変態点Ar1以上の温度で行い、仕上げ圧延の最終パス後の板厚をtf、前記最終パス前の板厚をt1、前記最終パス前の更に一工程前の板厚をt2としたときに、以下の()式且つ()式を満たし、
前記第1の冷間圧延を圧下率80%~92%で行い、
前記第2の冷間圧延を圧下率5%~25%で行うことを特徴とする[1]~[3]のいずれかに記載の無方向性電磁鋼板の製造方法。
([Mn]+[Ni]+[Co]+[Pt]+[Pb]+[Cu]+[Au])-([Si]+[sol.Al])>0%・・・(
0.4<tf/t1<0.8 ・・・(
0.4<t1/t2<0.8 ・・・(
[5]
In mass%,
C: 0.0100% or less,
Si: 1.50% to 4.00%,
sol. Al: 0.0001% to 1.0%,
S: 0.0100% or less,
N: 0.0100% or less,
One or more types selected from the group consisting of Mn, Ni, Co, Pt, Pb, Cu, and Au: 2.50% to 5.00% in total,
Sn: 0.000% to 0.400%,
Sb: 0.000% to 0.400%,
P: 0.000% to 0.400%, and one or more selected from the group consisting of Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn, and Cd: 0.0000% to 0 in total Contains .0100%,
Mn content (mass%) is [Mn], Ni content (mass%) is [Ni], Co content (mass%) is [Co], Pt content (mass%) is [Pt], Pb content amount (mass %) is [Pb], Cu content (mass %) is [Cu], Au content (mass %) is [Au], Si content (mass %) is [Si], sol. The Al content (mass%) was determined by [sol. Al], the following formula ( 3 ) is satisfied,
A step of hot rolling a steel material having a chemical composition in which the balance consists of Fe and impurities;
performing a first cold rolling on the steel material after the hot rolling;
performing a first annealing on the steel material after the first cold rolling;
performing a second cold rolling on the steel material after the first annealing;
has
In the step of performing hot rolling, the final pass of finish rolling is performed at a temperature equal to or higher than the phase transformation point Ar1, the plate thickness after the final pass of finish rolling is tf, the plate thickness before the final pass is t1, and the final pass is When the plate thickness before the previous step is t2, the following equations ( 4 ) and ( 5 ) are satisfied,
The first cold rolling is performed at a reduction rate of 80% to 92%,
The method for producing a non-oriented electrical steel sheet according to any one of [1] to [3], characterized in that the second cold rolling is performed at a reduction rate of 5% to 25%.
([Mn]+[Ni]+[Co]+[Pt]+[Pb]+[Cu]+[Au])-([Si]+[sol.Al])>0%...( 3 )
0.4<tf/t1<0.8...( 4 )
0.4<t1/t2<0.8...( 5 )

[6]
前記第1の焼鈍は、Ac1未満の温度で行うことを特徴とする[5]に記載の無方向性電磁鋼板の製造方法。
[6]
The method for manufacturing a non-oriented electrical steel sheet according to [5], wherein the first annealing is performed at a temperature lower than Ac1.

[7]
前記第2の冷間圧延後に、Ac1未満の温度で1時間以内の第2の焼鈍を行う工程を更に有することを特徴とする[5]又は[6]に記載の無方向性電磁鋼板の製造方法。
[7]
Production of a non-oriented electrical steel sheet according to [5] or [6], further comprising a step of performing a second annealing for less than 1 hour at a temperature of less than Ac1 after the second cold rolling. Method.

[8]
前記鋼材は、
質量%で、
Sn:0.020%~0.400%、
Sb:0.020%~0.400%、及び
P:0.020%~0.400%
からなる群から選ばれる1種以上を含有することを特徴とする[5]~[7]のいずれかに記載の無方向性電磁鋼板の製造方法。
[8]
The steel material is
In mass%,
Sn: 0.020% to 0.400%,
Sb: 0.020% to 0.400%, and P: 0.020% to 0.400%
The method for producing a non-oriented electrical steel sheet according to any one of [5] to [7], characterized in that the method contains one or more selected from the group consisting of:

[9]
前記鋼材は、
質量%で、
Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn、Cdからなる群から選ばれる1種以上:総計で0.0005%~0.0100%を含有することを特徴とする[5]~[8]のいずれかに記載の無方向性電磁鋼板の製造方法。
[9]
The steel material is
In mass%,
One or more selected from the group consisting of Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn, and Cd: 0.0005% to 0.0100% in total [5 ] to [8]. The method for producing a non-oriented electrical steel sheet according to any one of [8].

[10]
前記第1の冷間圧延の圧下率(%)をRm、第2の冷間圧延の圧下率(%)をRsとした場合に、86<Rm+0.2×Rs<92、かつ5<Rs<20を満たすことを特徴とする[5]~[9]のいずれかに記載の無方向性電磁鋼板の製造方法。
[10]
When the rolling reduction ratio (%) of the first cold rolling is Rm and the rolling reduction ratio (%) of the second cold rolling is Rs, 86<Rm+0.2×Rs<92, and 5<Rs< The method for producing a non-oriented electrical steel sheet according to any one of [5] to [9], characterized in that the method satisfies 20.

本発明によれば、全周平均の優れた磁気特性を得ることができる。 According to the present invention, excellent magnetic properties averaged over the entire circumference can be obtained.

以下、本発明の実施形態について詳細に説明する。 Embodiments of the present invention will be described in detail below.

まず、本発明の実施形態に係る無方向性電磁鋼板及びその製造方法で用いられる鋼材の化学組成について説明する。以下の説明において、無方向性電磁鋼板又は鋼材に含まれる各元素の含有量の単位である「%」は、特に断りがない限り「質量%」を意味する。本実施形態に係る無方向性電磁鋼板及び鋼材は、フェライト-オーステナイト変態(以下、α-γ変態)が生じ得る化学組成であって、C:0.0100%以下、Si:1.50%~4.00%、sol.Al:0.0001%~1.0%、S:0.0100%以下、N:0.0100%以下、Mn、Ni、Co、Pt、Pb、Cu、Auからなる群から選ばれる1種以上:総計で2.50%~5.00%、Sn:0.000%~0.400%、Sb:0.000%~0.400%、P:0.000%~0.400%、及びMg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn、及びCdからなる群から選ばれる1種以上:総計で0.0000%~0.0100%を含有し、残部がFeおよび不純物からなる化学組成を有する。さらに、Mn、Ni、Co、Pt、Pb、Cu、Au、Siおよびsol.Alの含有量が後述する所定の条件を満たす。不純物としては、鉱石やスクラップ等の原材料に含まれるもの、製造工程において含まれるもの、が例示される。 First, the chemical composition of the steel material used in the non-oriented electrical steel sheet and the manufacturing method thereof according to the embodiment of the present invention will be explained. In the following description, "%", which is the unit of content of each element contained in a non-oriented electrical steel sheet or steel material, means "% by mass" unless otherwise specified. The non-oriented electrical steel sheet and steel material according to the present embodiment have a chemical composition in which ferrite-austenite transformation (hereinafter referred to as α-γ transformation) can occur, with C: 0.0100% or less and Si: 1.50% or more. 4.00%, sol. Al: 0.0001% to 1.0%, S: 0.0100% or less, N: 0.0100% or less, one or more types selected from the group consisting of Mn, Ni, Co, Pt, Pb, Cu, and Au. : 2.50% to 5.00% in total, Sn: 0.000% to 0.400%, Sb: 0.000% to 0.400%, P: 0.000% to 0.400%, and One or more selected from the group consisting of Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn, and Cd: Contains 0.0000% to 0.0100% in total, and the remainder is Fe and impurities. It has a chemical composition consisting of: Furthermore, Mn, Ni, Co, Pt, Pb, Cu, Au, Si and sol. The content of Al satisfies a predetermined condition described below. Examples of impurities include those contained in raw materials such as ore and scrap, and those contained in manufacturing processes.

(C:0.0100%以下)
Cは、鉄損を高めたり、磁気時効を引き起こしたりする。従って、C含有量は低ければ低いほどよい。このような現象は、C含有量が0.0100%超で顕著である。このため、C含有量は0.0100%以下とする。C含有量の低減は、板面内の全方向における磁気特性の均一な向上にも寄与する。なお、C含有量の下限は特に限定しないが、精錬時の脱炭処理のコストを踏まえ、0.0005%以上とすることが好ましい。
(C: 0.0100% or less)
C increases iron loss and causes magnetic aging. Therefore, the lower the C content, the better. Such a phenomenon is remarkable when the C content exceeds 0.0100%. Therefore, the C content is set to 0.0100% or less. Reducing the C content also contributes to uniform improvement of magnetic properties in all directions within the plate surface. The lower limit of the C content is not particularly limited, but it is preferably 0.0005% or more, taking into account the cost of decarburization during refining.

(Si:1.50%~4.00%)
Siは、電気抵抗を増大させて、渦電流損を減少させ、鉄損を低減したり、降伏比を増大させて、鉄心への打ち抜き加工性を向上したりする。Si含有量が1.50%未満では、これらの作用効果を十分に得られない。従って、Si含有量は1.50%以上とする。一方、Si含有量が4.00%超では、磁束密度が低下したり、硬度の過度な上昇により打ち抜き加工性が低下したり、冷間圧延が困難になったりする。従って、Si含有量は4.00%以下とする。
(Si: 1.50% to 4.00%)
Si increases electrical resistance, reduces eddy current loss, reduces iron loss, increases yield ratio, and improves punching workability into an iron core. If the Si content is less than 1.50%, these effects cannot be sufficiently obtained. Therefore, the Si content is set to 1.50% or more. On the other hand, if the Si content exceeds 4.00%, the magnetic flux density decreases, the punching workability decreases due to an excessive increase in hardness, and cold rolling becomes difficult. Therefore, the Si content is set to 4.00% or less.

(sol.Al:0.0001%~1.0%)
sol.Alは、電気抵抗を増大させて、渦電流損を減少させ、鉄損を低減する。sol.Alは、飽和磁束密度に対する磁束密度B50の相対的な大きさの向上にも寄与する。ここで、磁束密度B50とは、5000A/mの磁場における磁束密度である。sol.Al含有量が0.0001%未満では、これらの作用効果を十分に得られない。また、Alには製鋼での脱硫促進効果もある。従って、sol.Al含有量は0.0001%以上とする。一方、sol.Al含有量が1.0%超では、磁束密度が低下したり、降伏比を低下させて、打ち抜き加工性を低下させたりする。従って、sol.Al含有量は1.0%以下とする。
(sol.Al: 0.0001% to 1.0%)
sol. Al increases electrical resistance, reduces eddy current loss, and reduces iron loss. sol. Al also contributes to increasing the relative magnitude of the magnetic flux density B50 to the saturation magnetic flux density. Here, the magnetic flux density B50 is the magnetic flux density in a magnetic field of 5000 A/m. sol. If the Al content is less than 0.0001%, these effects cannot be sufficiently obtained. Furthermore, Al also has the effect of promoting desulfurization in steel manufacturing. Therefore, sol. Al content shall be 0.0001% or more. On the other hand, sol. If the Al content exceeds 1.0%, the magnetic flux density decreases, the yield ratio decreases, and the punching workability decreases. Therefore, sol. Al content shall be 1.0% or less.

(S:0.0100%以下)
Sは、必須元素ではなく、例えば鋼中に不純物として含有される。Sは、微細なMnSの析出により、焼鈍における再結晶及び結晶粒の成長を阻害する。従って、S含有量は低ければ低いほどよい。このような再結晶及び結晶粒成長の阻害による鉄損の増加および磁束密度の低下は、S含有量が0.0100%超で顕著である。このため、S含有量は0.0100%以下とする。なお、S含有量の下限は特に限定しないが、精錬時の脱硫処理のコストを踏まえ、0.0003%以上とすることが好ましい。
(S: 0.0100% or less)
S is not an essential element and is contained, for example, as an impurity in steel. S inhibits recrystallization and crystal grain growth during annealing due to fine MnS precipitation. Therefore, the lower the S content, the better. The increase in core loss and decrease in magnetic flux density due to such inhibition of recrystallization and grain growth are significant when the S content exceeds 0.0100%. Therefore, the S content is set to 0.0100% or less. Note that the lower limit of the S content is not particularly limited, but it is preferably 0.0003% or more, taking into consideration the cost of desulfurization treatment during refining.

(N:0.0100%以下)
NはCと同様に、磁気特性を劣化させるので、N含有量は低ければ低いほどよい。したがって、N含有量は0.0100%以下とする。なお、N含有量の下限は特に限定しないが、精錬時の脱窒処理のコストを踏まえ、0.00100%以上とすることが好ましい。
(N: 0.0100% or less)
Like C, N deteriorates magnetic properties, so the lower the N content, the better. Therefore, the N content is set to 0.0100% or less. Note that the lower limit of the N content is not particularly limited, but it is preferably 0.00100% or more in consideration of the cost of denitrification treatment during refining.

(Mn、Ni、Co、Pt、Pb、Cu、Auからなる群から選ばれる1種以上:総計で2.50%~5.00%)
これらの元素は、α-γ変態を生じさせるために必要な元素であることから、これらの元素の少なくとも1種を総計で2.50%以上含有させる必要がある。一方で、総計で5.00%を超えると、コスト高となり、磁束密度が低下する場合もある。したがって、これらの元素の少なくとも1種を総計で5.00%以下とする。
(One or more types selected from the group consisting of Mn, Ni, Co, Pt, Pb, Cu, and Au: 2.50% to 5.00% in total)
Since these elements are necessary for causing α-γ transformation, it is necessary to contain at least one of these elements in a total amount of 2.50% or more. On the other hand, if the total amount exceeds 5.00%, the cost may increase and the magnetic flux density may decrease. Therefore, the total content of at least one of these elements is 5.00% or less.

また、α-γ変態が生じ得る条件として、さらに以下の条件を満たしているものとする。つまり、Mn含有量(質量%)を[Mn]、Ni含有量(質量%)を[Ni]、Co含有量(質量%)を[Co]、Pt含有量(質量%)を[Pt]、Pb含有量(質量%)を[Pb]、Cu含有量(質量%)を[Cu]、Au含有量(質量%)を[Au]、Si含有量(質量%)を[Si]、sol.Al含有量(質量%)を[sol.Al]としたときに、質量%で、以下の(1)式を満たすことが好ましい。
([Mn]+[Ni]+[Co]+[Pt]+[Pb]+[Cu]+[Au])-([Si]+[sol.Al])>0% ・・・(1)
In addition, the following conditions are further assumed to be satisfied as conditions under which α-γ transformation can occur. In other words, Mn content (mass%) is [Mn], Ni content (mass%) is [Ni], Co content (mass%) is [Co], Pt content (mass%) is [Pt], Pb content (mass%) is [Pb], Cu content (mass%) is [Cu], Au content (mass%) is [Au], Si content (mass%) is [Si], sol. The Al content (mass%) was determined by [sol. Al], it is preferable that the following formula (1) is satisfied in terms of mass %.
([Mn]+[Ni]+[Co]+[Pt]+[Pb]+[Cu]+[Au])-([Si]+[sol.Al])>0%...(1)

前述の(1)式を満たさない場合には、α-γ変態が生じないため、磁束密度が低くなる。 If the above-mentioned formula (1) is not satisfied, the α-γ transformation does not occur and the magnetic flux density becomes low.

(Sn:0.000%~0.400%、Sb:0.000%~0.400%、P:0.000%~0.400%)
SnやSbは冷間圧延、再結晶後の集合組織を改善して、その磁束密度を向上させる。そのため、これらの元素を必要に応じて含有させてもよいが、過剰に含まれると鋼を脆化させる。したがって、Sn含有量、Sb含有量はいずれも0.400%以下とする。また、Pは再結晶後の鋼板の硬度を確保するために含有させてもよいが、過剰に含まれると鋼の脆化を招く。したがって、P含有量は0.400%以下とする。以上のように磁気特性等のさらなる効果を付与する場合には、0.020%~0.400%のSn、0.020%~0.400%のSb、及び0.020%~0.400%のPからなる群から選ばれる1種以上を含有することが好ましい。
(Sn: 0.000% to 0.400%, Sb: 0.000% to 0.400%, P: 0.000% to 0.400%)
Sn and Sb improve the texture after cold rolling and recrystallization, and improve the magnetic flux density. Therefore, although these elements may be contained as necessary, if they are contained in excess, the steel becomes brittle. Therefore, the Sn content and the Sb content are both 0.400% or less. Further, P may be included in order to ensure the hardness of the steel sheet after recrystallization, but if it is included in excess, it will cause embrittlement of the steel. Therefore, the P content is set to 0.400% or less. In order to impart further effects such as magnetic properties as described above, 0.020% to 0.400% Sn, 0.020% to 0.400% Sb, and 0.020% to 0.400% % of P is preferably contained.

(Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn、及びCdからなる群から選ばれる1種以上:総計で0.0000%~0.0100%)
Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn及びCdは、溶鋼の鋳造時に溶鋼中のSと反応して硫化物若しくは酸硫化物又はこれらの両方の析出物を生成する。以下、Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn及びCdを総称して「粗大析出物生成元素」ということがある。粗大析出物生成元素の析出物の粒径は1μm~2μm程度であり、MnS、TiN、AlN等の微細析出物の粒径(100nm程度)よりはるかに大きい。このため、これら微細析出物は粗大析出物生成元素の析出物に付着し、中間焼鈍における再結晶及び結晶粒の成長を阻害しにくくなる。これらの作用効果を十分に得るためには、これらの元素の総計が0.0005%以上であることが好ましい。但し、これらの元素の総計が0.0100%を超えると、硫化物若しくは酸硫化物又はこれらの両方の総量が過剰となり、中間焼鈍における再結晶及び結晶粒の成長が阻害される。従って、粗大析出物生成元素の含有量は総計で0.0100%以下とする。
(One or more selected from the group consisting of Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn, and Cd: 0.0000% to 0.0100% in total)
Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn, and Cd react with S in the molten steel during casting of the molten steel to generate precipitates of sulfides, oxysulfides, or both of these. Hereinafter, Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn, and Cd may be collectively referred to as "coarse precipitate-forming elements." The particle size of the precipitates of coarse precipitate-forming elements is about 1 μm to 2 μm, which is much larger than the particle size (about 100 nm) of fine precipitates such as MnS, TiN, AlN, etc. Therefore, these fine precipitates adhere to the precipitates of the coarse precipitate-forming elements, making it difficult to inhibit recrystallization and crystal grain growth during intermediate annealing. In order to fully obtain these effects, it is preferable that the total content of these elements is 0.0005% or more. However, when the total amount of these elements exceeds 0.0100%, the total amount of sulfides, oxysulfides, or both becomes excessive, and recrystallization and crystal grain growth during intermediate annealing are inhibited. Therefore, the total content of coarse precipitate-forming elements is set to 0.0100% or less.

次に、本実施形態に係る無方向性電磁鋼板の集合組織について説明する。製造方法の詳細については後述するが、本実施形態に係る無方向性電磁鋼板はα-γ変態が生じ得る化学組成であり、熱間圧延での仕上げ圧延終了直後の急冷によって組織を微細化することによって{100}結晶粒が成長した組織となる。これにより、本実施形態に係る無方向性電磁鋼板は例えば{100}<011>方位の集積強度が100超となり、圧延方向に対して45°方向の磁束密度B50が特に高くなる。このように特定の方向で磁束密度が高くなるが、全体的に全方向平均で高い磁束密度が得られる。{100}<011>方位の集積強度が100以下になると、磁束密度を低下させる{111}<112>方位の集積強度が高くなり、全体的に磁束密度が低下してしまう。 Next, the texture of the non-oriented electrical steel sheet according to this embodiment will be explained. The details of the manufacturing method will be described later, but the non-oriented electrical steel sheet according to this embodiment has a chemical composition in which α-γ transformation can occur, and the structure is refined by rapid cooling immediately after finish rolling in hot rolling. This results in a structure in which {100} crystal grains have grown. As a result, the non-oriented electrical steel sheet according to the present embodiment has, for example, an integrated strength of over 100 in the {100}<011> direction, and a particularly high magnetic flux density B50 in the 45° direction with respect to the rolling direction. In this way, although the magnetic flux density becomes high in a specific direction, a high magnetic flux density is obtained overall in all directions on average. When the integrated strength of the {100}<011> direction becomes 100 or less, the integrated strength of the {111}<112> direction, which lowers the magnetic flux density, becomes high, and the magnetic flux density decreases as a whole.

{100}<011>方位の集積強度は、X線回折法又は電子線後方散乱回折(electron backscatter diffraction:EBSD)法により測定することができる。X線及び電子線の試料からの反射角等が結晶方位毎に異なるため、ランダム方位試料を基準にしてこの反射強度等で結晶方位強度を求めることができる。 The integrated intensity in the {100}<011> direction can be measured by an X-ray diffraction method or an electron backscatter diffraction (EBSD) method. Since the reflection angle of X-rays and electron beams from the sample differs depending on the crystal orientation, the crystal orientation strength can be determined from the reflection intensity and the like using a randomly oriented sample as a reference.

次に、本実施形態に係る無方向性電磁鋼板の厚さについて説明する。本実施形態に係る無方向性電磁鋼板の厚さは、0.50mm以下である。厚さが0.50mm超であると、優れた高周波鉄損を得ることができない。従って、厚さは0.50mm以下とする。 Next, the thickness of the non-oriented electrical steel sheet according to this embodiment will be explained. The thickness of the non-oriented electrical steel sheet according to this embodiment is 0.50 mm or less. If the thickness exceeds 0.50 mm, excellent high frequency iron loss cannot be obtained. Therefore, the thickness should be 0.50 mm or less.

次に、本実施形態に係る無方向性電磁鋼板の磁気特性について説明する。磁気特性を調べる際には、本実施形態に係る無方向性電磁鋼板の磁束密度であるB50の値を測定する。製造された無方向性電磁鋼板において、その圧延方向の一方と他方とは区別できない。そのため本実施形態では、圧延方向とはその一方及び他方の双方向をいう。圧延方向におけるB50の値をB50L、圧延方向から45°傾いた方向におけるB50の値をB50D1、圧延方向から90°傾いた方向におけるB50の値をB50C、圧延方向から135°傾いた方向におけるB50の値をB50D2とすると、B50D1及びB50D2が最も高く、B50L+B50Cが最も低いという磁束密度の異方性がみられる。 Next, the magnetic properties of the non-oriented electrical steel sheet according to this embodiment will be explained. When examining the magnetic properties, the value of B50, which is the magnetic flux density of the non-oriented electrical steel sheet according to this embodiment, is measured. In the produced non-oriented electrical steel sheet, one rolling direction cannot be distinguished from the other. Therefore, in this embodiment, the rolling direction refers to both directions. The value of B50 in the rolling direction is B50L, the value of B50 in the direction inclined at 45 degrees from the rolling direction is B50D1, the value of B50 in the direction inclined at 90 degrees from the rolling direction is B50C, the value of B50 in the direction inclined at 135 degrees from the rolling direction. When the value is B50D2, there is anisotropy in the magnetic flux density such that B50D1 and B50D2 are the highest and B50L+B50C is the lowest.

ここで、例えば時計回り(反時計回りでもよい)の方向を正の方向とした磁束密度の全方位(0°~360°)分布を考えた場合、圧延方向を0°(一方向)及び180°(他方向)とすると、B50D1は45°及び225°のB50値、B50D2は135°及び315°のB50値となる。45°のB50値と225°のB50値とは厳密に一致し、135°のB50値と315°のB50値とは厳密に一致する。しかしながら、B50D1とB50D2とは、実際の製造に際して磁気特性を同じにすることが容易でない場合があることから、厳密には一致しない場合がある。本実施形態に係る無方向性電磁鋼板では、B50D1及びB50D2の平均値を用いて、以下の(2)を満たす。
1.85T<(B50D1+B50D2)/2<1.94T・・・(2)
Here, for example, when considering the omnidirectional (0° to 360°) distribution of magnetic flux density with the clockwise (or counterclockwise) direction as the positive direction, the rolling direction is 0° (unidirectional) and 180°. degree (other direction), B50D1 has B50 values of 45° and 225°, and B50D2 has B50 values of 135° and 315°. The B50 value at 45° and the B50 value at 225° exactly match, and the B50 value at 135° and the B50 value at 315° match exactly. However, B50D1 and B50D2 may not match exactly because it may not be easy to make them have the same magnetic properties during actual manufacturing. The non-oriented electrical steel sheet according to this embodiment satisfies the following (2) using the average value of B50D1 and B50D2.
1.85T<(B50D1+B50D2)/2<1.94T...(2)

このように、本実施形態において磁束密度を測定すると、(2)式のようにB50D1及びB50D2の平均値が1.85T以上1.94T以下という高い磁束密度が確認される。 As described above, when the magnetic flux density is measured in this embodiment, a high magnetic flux density is confirmed in which the average value of B50D1 and B50D2 is 1.85 T or more and 1.94 T or less, as shown in equation (2).

なお、上記の45°は、理論的な値であり、実際の製造に際しては45°に一致させることが容易でない場合があることから、厳密には45°に一致していないものも含むものとする。このことは、当該135°,225°,315°についても同様である。 Note that the above 45° is a theoretical value, and it may not be easy to match it to 45° in actual manufacturing, so it includes cases that do not strictly match 45°. This also applies to the angles of 135°, 225°, and 315°.

磁束密度の測定は、圧延方向に対して45°方向等から55mm角の試料を切り出し,単板磁気測定装置を用いて行うことができる。 The magnetic flux density can be measured by cutting out a 55 mm square sample from a direction such as 45° with respect to the rolling direction, and using a single-plate magnetic measuring device.

次に、本実施形態に係る無方向性電磁鋼板の製造方法について説明する。本実施形態では、熱間圧延、冷間圧延(第1の冷間圧延)、中間焼鈍(第1の焼鈍)、スキンパス圧延(第2の冷間圧延)、仕上げ焼鈍(第2の焼鈍)、歪取焼鈍(第3の焼鈍)等を行う。 Next, a method for manufacturing a non-oriented electrical steel sheet according to this embodiment will be explained. In this embodiment, hot rolling, cold rolling (first cold rolling), intermediate annealing (first annealing), skin pass rolling (second cold rolling), finish annealing (second annealing), Strain relief annealing (third annealing) etc. are performed.

まず、上述した鋼材を加熱し、熱間圧延を施す。鋼材は、例えば通常の連続鋳造によって製造されるスラブである。熱間圧延の粗圧延及び仕上げ圧延はγ域(Ar1以上)の温度で行う。つまり、仕上げ圧延の仕上げ温度がAr1以上となるように熱間圧延を行う。これにより、その後の冷却によってオーステナイトからフェライトへ変態することにより組織は微細化する。微細化された状態でその後冷間圧延を施すと、張出再結晶(以下、バルジング)が発生しやすく、通常は成長しにくい{100}結晶粒を成長させやすくすることができる。 First, the above-mentioned steel material is heated and hot rolled. The steel material is, for example, a slab manufactured by normal continuous casting. Rough rolling and finish rolling of hot rolling are performed at a temperature in the γ range (Ar1 or higher). That is, hot rolling is performed so that the finishing temperature of finish rolling becomes Ar1 or higher. As a result, the structure becomes finer by transforming from austenite to ferrite through subsequent cooling. If cold rolling is then performed in the refined state, overhang recrystallization (hereinafter referred to as bulging) is likely to occur, and {100} crystal grains, which are normally difficult to grow, can be made to grow easily.

本実施形態では、熱間圧延程において、仕上げ圧延の最終パス後の板厚をtf、最終パス前の板厚をt1、最終パス前の更に一工程前の板厚をt2としたときに、以下の(3)式且つ(4)式を満たす。
0.4<tf/t1<0.8・・・(3)
0.4<t1/t2<0.8・・・(4)
In this embodiment, in the hot rolling process, when the plate thickness after the final pass of finish rolling is tf, the plate thickness before the final pass is t1, and the plate thickness one step before the final pass is t2, The following equations (3) and (4) are satisfied.
0.4<tf/t1<0.8...(3)
0.4<t1/t2<0.8...(4)

tf/t1、t1/t2のいずれかが0.4以下となると、1つのパスで高い歪を与えることになり、鋼板が反ってしまし、熱間圧延時に鋼板の制御がむずかしくなる。一方、tf/t1、t1/t2のいずれかが0.8以上であると、歪を十分に与えることができず、動的再結晶という現象によって熱間圧延後の結晶粒径を十分に小さくすることができない。ここで、動的再結晶とは、圧延加工中に再結晶する現象のことである。一般的に熱間圧延では、仕上げ圧延時の圧下率が低いため与える歪量が少なく、加工後に再結晶をする(静的再結晶)。動的再結晶では再結晶の核となる箇所が多い、一方、静的再結晶では再結晶粒の核となる箇所が少ないという特徴がある。そのため、動的再結晶は静的再結晶よりも結晶粒径が小さくなる。具体的には動的再結晶を活用することで10μm以下の平均結晶粒径を熱延板で実現できる。以上のように動的再結晶を利用すると、熱間圧延後の結晶粒径をより微細化することができるため、バルジングが発生しやすくすることができる。 If either tf/t1 or t1/t2 is less than 0.4, a high strain will be applied in one pass, causing the steel plate to warp and making it difficult to control the steel plate during hot rolling. On the other hand, if either tf/t1 or t1/t2 is 0.8 or more, sufficient strain cannot be applied, and the grain size after hot rolling cannot be sufficiently reduced due to the phenomenon of dynamic recrystallization. Can not do it. Here, dynamic recrystallization refers to a phenomenon of recrystallization during rolling. Generally, in hot rolling, the reduction rate during finish rolling is low, so the amount of strain imparted is small, and recrystallization occurs after processing (static recrystallization). Dynamic recrystallization has many locations that serve as recrystallization nuclei, while static recrystallization is characterized in that there are fewer locations that serve as recrystallized grain nuclei. Therefore, dynamic recrystallization results in smaller crystal grain sizes than static recrystallization. Specifically, by utilizing dynamic recrystallization, an average grain size of 10 μm or less can be achieved in hot rolled sheets. As described above, when dynamic recrystallization is used, the crystal grain size after hot rolling can be made finer, so that bulging can be made more likely to occur.

その後、熱間圧延板焼鈍は行わずに巻き取り、酸洗を経て、熱間圧延鋼板に対して冷間圧延を行う。冷間圧延では圧下率を80%~92%とすることが好ましい。圧下率が80%未満ではバルジングが発生しにくくなり、圧下率が92%超ではその後のバルジングによって{100}結晶粒が成長しやすくなるが、熱間圧延鋼板を厚くしないといけなく、熱間圧延の巻取りが困難になり、操業が困難になりやすくなる。 Thereafter, the hot-rolled steel plate is wound up without being annealed, pickled, and then cold-rolled to the hot-rolled steel plate. In cold rolling, the reduction ratio is preferably 80% to 92%. When the rolling reduction is less than 80%, bulging is less likely to occur, and when the rolling reduction is over 92%, {100} grains tend to grow due to subsequent bulging. It becomes difficult to wind up the rolling material, and the operation becomes difficult.

冷間圧延が終了すると、続いて中間焼鈍を行う。本実施形態では、オーステナイトへ変態しない温度で中間焼鈍を行う。つまり、中間焼鈍の温度をAc1未満とすることが好ましい。このように中間焼鈍を行うことによってバルジングが生じ、{100}結晶粒が成長しやすくなる。また、中間焼鈍の時間は、5秒間~60秒間とすることが好ましい。 After the cold rolling is completed, intermediate annealing is subsequently performed. In this embodiment, intermediate annealing is performed at a temperature that does not transform into austenite. That is, it is preferable that the temperature of intermediate annealing be less than Ac1. By performing intermediate annealing in this manner, bulging occurs and {100} crystal grains tend to grow. Further, the time for intermediate annealing is preferably 5 seconds to 60 seconds.

中間焼鈍が終了すると、次にスキンパス圧延を行う。上述したようにバルジングが発生した状態で(スキンパス)圧延、焼鈍を行うと、バルジングが発生した部分を起点に{100}結晶粒が更に成長する。これはスキンパス圧延により、{100}<011>結晶粒には歪がたまりにくく、{111}<112>結晶粒には歪がたまりやすい性質があり、その後の焼鈍で歪の少ない{100}<011>結晶粒が歪の差を駆動力に{111}<112>結晶粒を蚕食するためである。歪差を駆動力にして発生するこの蚕食現象は歪誘起粒界移動(以下、SIBM)と呼ばれる。スキンパス圧延の圧下率は5%~25%とすることが好ましい。圧下率が5%未満では歪量が少なすぎるため、この後の焼鈍で歪誘起粒界移動(以下、SIBM)が起きなくなり、{100}<011>結晶粒は大きくならない。一方、圧下率が25%超では歪量が多くなり過ぎ、{111}<112>結晶粒の中から新しい結晶粒が生まれる再結晶核生成(以下Nucleation)が発生する。このNucleationではほとんどの生まれてくる粒が{111}<112>結晶粒のため、磁気特性が悪くなる。 After the intermediate annealing is completed, skin pass rolling is performed next. As described above, when rolling and annealing are performed in a state where bulging has occurred (skin pass), {100} crystal grains further grow starting from the portion where bulging has occurred. This is due to skin pass rolling, where {100}<011> crystal grains are less likely to accumulate strain, while {111}<112> crystal grains are prone to strain, and subsequent annealing results in less strain. This is because the {111}<112> crystal grains are eaten away by the difference in strain used by the 011> crystal grains as a driving force. This grain erosion phenomenon, which occurs using the strain difference as a driving force, is called strain-induced grain boundary migration (hereinafter referred to as SIBM). The rolling reduction ratio of skin pass rolling is preferably 5% to 25%. If the rolling reduction is less than 5%, the amount of strain is too small, so strain-induced grain boundary migration (hereinafter referred to as SIBM) does not occur in subsequent annealing, and {100}<011> crystal grains do not become large. On the other hand, if the reduction rate exceeds 25%, the amount of strain becomes too large, and recrystallization nucleation (hereinafter referred to as nucleation) in which new crystal grains are generated from {111}<112> crystal grains occurs. In this nucleation, most of the grains produced are {111}<112> crystal grains, resulting in poor magnetic properties.

なお、無方向性電磁鋼板において、所定の歪の分布を有するようにする場合には、冷間圧延の圧下率(%)をRm、スキンパス圧延時の圧下率(%)をRsとした場合に、86<Rm+0.2×Rs<92、かつ5<Rs<20を満たすように冷間圧延及びスキンパス圧延の圧下率を調整することが好ましい。 In addition, when making a non-oriented electrical steel sheet have a predetermined strain distribution, when the rolling reduction (%) during cold rolling is Rm and the rolling reduction (%) during skin pass rolling is Rs. , 86<Rm+0.2×Rs<92, and 5<Rs<20. It is preferable to adjust the rolling reduction ratio of cold rolling and skin pass rolling.

スキンパス圧延を施した後、歪を開放して加工性を向上させるために仕上げ焼鈍を行う。仕上げ焼鈍も同様にオーステナイトへ変態しない温度とし、仕上げ焼鈍の温度をAc1未満とする。このように仕上げ焼鈍を行うことによって、{100}<011>結晶粒が{111}<112>結晶粒を蚕食し、磁気特性を向上させることができる。また、仕上げ焼鈍時に600℃~Ac1となる時間を1200秒以内とする。この焼鈍時間が短すぎるとスキンパスで入れた歪がほとんど残り、複雑な形状を打ち抜くときに反りが発生する。一方、焼鈍時間が長すぎると結晶粒が粗大になり過ぎ、打ち抜き時にダレが大きくなり、打ち抜き精度が出なくなる。 After skin pass rolling, finish annealing is performed to release strain and improve workability. Similarly, the final annealing temperature is set to a temperature that does not transform to austenite, and the final annealing temperature is lower than Ac1. By performing final annealing in this manner, the {100}<011> crystal grains attack the {111}<112> crystal grains, thereby improving the magnetic properties. Furthermore, the time required for the temperature to reach Ac1 from 600°C during final annealing is set to within 1200 seconds. If this annealing time is too short, most of the strain introduced by the skin pass will remain, causing warping when punching out a complex shape. On the other hand, if the annealing time is too long, the crystal grains will become too coarse, leading to large sagging during punching and resulting in poor punching accuracy.

仕上焼鈍が終了すると、所望の鉄鋼部材とすべく、無方向性電磁鋼板の成形加工等が行われる。そして、無方向性電磁鋼板からなる鉄鋼部材に成形加工等(例えば打ち抜き)により生じた歪等を除去すべく、鉄鋼部材に歪取焼鈍を施す。本実施形態では、Ac1よりも下で、SIBMが発生し、結晶粒径も粗大に出来るようにするため、歪取焼鈍の温度を例えば800℃程度とし、歪取焼鈍の時間を2時間程度とする。 When the final annealing is completed, the non-oriented electrical steel sheet is subjected to forming processing and the like in order to obtain the desired steel member. Then, the steel member made of a non-oriented electromagnetic steel sheet is subjected to strain relief annealing in order to remove distortion caused by forming or the like (for example, punching). In this embodiment, the temperature of strain relief annealing is set to about 800°C, and the time of strain relief annealing is set to about 2 hours, in order to generate SIBM and make the crystal grain size coarser below Ac1. do.

本実施形態に係る無方向性電磁鋼板(鉄鋼部材)では、上述の製造方法のうち、主に、熱間圧延時の大圧下による動的再結晶化とスキンパス圧延とを組み合わせることにより、鋼組織における平均結晶粒径が500μm以下の微細な値となり、45°方向のB50が1.85T以上1.94T以下(例えば1.9T)という高い磁束密度が得られ、優れた磁気特性が実現する。 In the non-oriented electrical steel sheet (steel member) according to the present embodiment, among the above-mentioned manufacturing methods, the steel structure is mainly obtained by combining dynamic recrystallization by large reduction during hot rolling and skin pass rolling. The average crystal grain size at is a fine value of 500 μm or less, and a high magnetic flux density with B50 in the 45° direction of 1.85 T or more and 1.94 T or less (for example, 1.9 T) is obtained, and excellent magnetic properties are realized.

以上のように本実施形態に係る無方向性電磁鋼板からなる鉄鋼部材を製造することができる。 As described above, a steel member made of a non-oriented electrical steel sheet according to this embodiment can be manufactured.

本実施形態に係る無方向性電磁鋼板からなる鉄鋼部材は、例えば回転電機の鉄心に適用される。この場合、本実施形態に係る無方向性電磁鋼板から個々の平板状薄板を切り出し、これらの平板状薄板を適宜積層することにより、回転電機に用いられる鉄心が作製される。
この鉄心は、優れた磁気特性を有する無方向性電磁鋼板が適用されているために鉄損が低く抑えられており、優れたトルクを有する回転電機が実現する。
A steel member made of a non-oriented electromagnetic steel sheet according to the present embodiment is applied, for example, to an iron core of a rotating electric machine. In this case, an iron core for use in a rotating electrical machine is produced by cutting out individual flat thin plates from the non-oriented electromagnetic steel sheet according to the present embodiment and laminating these flat thin plates as appropriate.
Since this iron core is made of non-oriented electrical steel sheet with excellent magnetic properties, iron loss is suppressed to a low level, and a rotating electric machine with excellent torque is realized.

次に、本発明の実施形態に係る無方向性電磁鋼板について、実施例を示しながら具体的に説明する。以下に示す実施例は、本発明の実施形態に係る無方向性電磁鋼板のあくまでも一例にすぎず、本発明に係る無方向性電磁鋼板が下記の例に限定されるものではない。 Next, a non-oriented electrical steel sheet according to an embodiment of the present invention will be specifically described while showing examples. The examples shown below are merely examples of non-oriented electrical steel sheets according to embodiments of the present invention, and the non-oriented electrical steel sheets according to the present invention are not limited to the following examples.

(第1の実施例)
溶鋼を鋳造することにより、以下の表1に示す成分のインゴットを作製した。ここで、式左辺とは、前述の(1)式の左辺の値を表している。その後、作製したインゴットを1150℃まで加熱して熱間圧延を行い、板厚が2.5mmになるように圧延した。そして、仕上げ圧延終了後に水冷し熱間圧延鋼板を巻き取った。この時の仕上げ圧延の最終パスの段階での温度(仕上温度)は830℃であり、すべてAr1より大きい温度だった。なお、γ-α変態が起こらないNo.108については、仕上温度を850℃とした。この時、仕上げの板厚tf、仕上げ一つ前の板厚t1、仕上げ二つ前の板厚t2は表1に示す。
(First example)
Ingots having the components shown in Table 1 below were produced by casting molten steel. Here, the left side of the equation represents the value on the left side of the above-mentioned equation (1). Thereafter, the produced ingot was heated to 1150° C. and hot rolled to a thickness of 2.5 mm. After completion of finish rolling, the hot rolled steel plate was cooled with water and wound up. The temperature at the stage of the final pass of finish rolling (finishing temperature) at this time was 830°C, which was all higher than Ar1. In addition, No. 1, in which γ-α transformation does not occur. Regarding No. 108, the finishing temperature was 850°C. At this time, the finishing plate thickness tf, the plate thickness t1 before finishing, and the plate thickness t2 before finishing two are shown in Table 1.

次に、熱間圧延鋼板において酸洗によりスケールを除去し、冷間圧延を行い、その時の圧下率を表1に示した。そして、無酸化雰囲気中において700℃で30秒の中間焼鈍を行った。次いで、2回目の冷間圧延(スキンパス圧延)を表1に示す圧下率で行った。 Next, scale was removed from the hot rolled steel plate by pickling, and cold rolling was performed. Table 1 shows the rolling reduction ratio at that time. Then, intermediate annealing was performed at 700° C. for 30 seconds in a non-oxidizing atmosphere. Next, a second cold rolling (skin pass rolling) was performed at the rolling reduction ratio shown in Table 1.

次に、2回目の冷間圧延(スキンパス圧延)の後に仕上げ焼鈍を表1の条件で行い、55mm角の試料を剪断加工で作成した後、歪取焼鈍を表2の条件で行った。その後、磁束密度B50を測定した。測定試料は55mm角の試料を圧延方向に45°の方向に採取した。そして、試料を測定し、圧延方向に対して45°、135°の磁束密度B50をそれぞれ測定し、その平均値を表2に示す。 Next, after the second cold rolling (skin pass rolling), finish annealing was performed under the conditions shown in Table 1, and after creating a 55 mm square sample by shearing, strain relief annealing was performed under the conditions shown in Table 2. After that, the magnetic flux density B50 was measured. The measurement sample was a 55 mm square sample taken at an angle of 45° to the rolling direction. Then, the samples were measured, and the magnetic flux densities B50 at 45° and 135° with respect to the rolling direction were measured, respectively, and the average values are shown in Table 2.

表1中の下線は、本発明の範囲から外れた条件を示している。発明例であるNo.101~No.107、No.109、No.110、No.113は、いずれも45°方向の磁束密度B50が良好な値であった。一方、比較例であるNo.108はSi濃度が高く、式左辺の値が0以下であり、α-γ変態しない組成であったことから、磁気密度B50はいずれも低かった。比較例であるNo.111は、熱延の最終パス、その前のパスで圧下率が低いため、磁束密度B50が低かった。比較例であるNo.112は冷延圧下率とスキンパス圧延率の関係が推奨条件を外れたため、磁束密度B50が低かった。比較例であるNo.114は歪取焼鈍の温度が低く、SIBMが未発達であったため、磁束密度B50が低かった。 The underlines in Table 1 indicate conditions outside the scope of the present invention. Invention example No. 101~No. 107, No. 109, No. 110, No. No. 113 had a good magnetic flux density B50 in the 45° direction. On the other hand, the comparative example No. In No. 108, the Si concentration was high, the value on the left side of the equation was 0 or less, and the composition did not undergo α-γ transformation, so the magnetic density B50 was low in all cases. Comparative example No. In No. 111, the magnetic flux density B50 was low because the rolling reduction was low in the final pass of hot rolling and in the previous pass. Comparative example No. No. 112 had a low magnetic flux density B50 because the relationship between cold rolling reduction and skin pass rolling reduction was outside the recommended conditions. Comparative example No. In No. 114, the strain relief annealing temperature was low and the SIBM was underdeveloped, so the magnetic flux density B50 was low.

(第2の実施例)
溶鋼を鋳造することにより、以下の表2に示す成分のインゴットを作製した。その後、表3に示すように、作製したインゴットを1150℃まで加熱して熱間圧延を行い、板厚が2.5mmになるように圧延した。そして、仕上げ圧延終了後に水冷し熱間圧延鋼板を巻き取った。この時の仕上げ圧延の最終パスの段階での仕上温度は830℃であり、すべてAr1より大きい温度だった。また、この時の各パスの圧下率は表2に示す通りである。
(Second example)
Ingots having the components shown in Table 2 below were produced by casting molten steel. Thereafter, as shown in Table 3, the manufactured ingots were heated to 1150° C. and hot rolled to a plate thickness of 2.5 mm. After completion of finish rolling, the hot rolled steel plate was cooled with water and wound up. The finishing temperature at the stage of the final pass of finish rolling at this time was 830°C, which was all higher than Ar1. Further, the rolling reduction ratio of each pass at this time is as shown in Table 2.

次に、熱間圧延鋼板において酸洗によりスケールを除去し、板厚が0.30mmになるまで冷間圧延を行った。そして、無酸化雰囲気中で中間焼鈍を行い、再結晶率が85%となるように中間焼鈍の温度を制御した。次いで、板厚が0.27mmになるまで2回目の冷間圧延(スキンパス圧延)を行った。 Next, scale was removed from the hot rolled steel plate by pickling, and cold rolling was performed until the plate thickness became 0.30 mm. Then, intermediate annealing was performed in a non-oxidizing atmosphere, and the temperature of the intermediate annealing was controlled so that the recrystallization rate was 85%. Next, a second cold rolling (skin pass rolling) was performed until the plate thickness became 0.27 mm.

次に、磁気特性を調べるために2回目の冷間圧延(スキンパス圧延)の後に800℃で30秒の仕上げ焼鈍を行い、55mm角の試料を剪断加工で作成した後、800℃で2時間の歪取焼鈍を行い、磁束密度B50を測定した。磁束密度B50は第1の実施例と同様の手順で測定した。 Next, in order to investigate the magnetic properties, after the second cold rolling (skin pass rolling), final annealing was performed at 800°C for 30 seconds, and a 55 mm square sample was prepared by shear processing, and then it was heated at 800°C for 2 hours. Strain relief annealing was performed and the magnetic flux density B50 was measured. The magnetic flux density B50 was measured using the same procedure as in the first example.

No.201~No.214は全て発明例であり、いずれも磁気特性が良好であった。特に、No.202~No.204はNo.201、No.205~No.214よりも磁束密度B50が高かった。 No. 201~No. No. 214 were all invention examples, and all had good magnetic properties. In particular, No. 202~No. 204 is No. 201, No. 205~No. The magnetic flux density B50 was higher than that of 214.

Claims (10)

質量%で、
C:0.0100%以下、
Si:1.50%~4.00%、
sol.Al:0.0001%~1.0%、
S:0.0100%以下、
N:0.0100%以下、
Mn、Ni、Co、Pt、Pb、Cu、Auからなる群から選ばれる1種以上:総計で2.50%~5.00%、
Sn:0.000%~0.400%、
Sb:0.000%~0.400%、
P:0.000%~0.400%、及
g、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn、Cdからなる群から選ばれる1種以上:総計で0.0000%~0.0100%を含有し、
Mn含有量(質量%)を[Mn]、Ni含有量(質量%)を[Ni]、Co含有量(質量%)を[Co]、Pt含有量(質量%)を[Pt]、Pb含有量(質量%)を[Pb]、Cu含有量(質量%)を[Cu]、Au含有量(質量%)を[Au]、Si含有量(質量%)を[Si]、sol.Al含有量(質量%)を[sol.Al]としたときに、以下の(1)式を満たし、
残部がFe及び不純物からなる化学組成を有し、
平均結晶粒径が500μm以下である鋼組織を有し、
圧延方向から45°傾いた方向におけるB50の値をB50D1、圧延方向から135°傾いた方向におけるB50の値をB50D2としたときに、以下の(2)式を満たすことを特徴とする無方向性電磁鋼板。
([Mn]+[Ni]+[Co]+[Pt]+[Pb]+[Cu]+[Au])-([Si]+[sol.Al])>0% ・・・(1)
1.85T<(B50D1+B50D2)/2<1.94T・・・(2)
In mass%,
C: 0.0100% or less,
Si: 1.50% to 4.00%,
sol. Al: 0.0001% to 1.0%,
S: 0.0100% or less,
N: 0.0100% or less,
One or more types selected from the group consisting of Mn, Ni, Co, Pt, Pb, Cu, and Au: 2.50% to 5.00% in total,
Sn: 0.000% to 0.400%,
Sb: 0.000% to 0.400%,
P: 0.000% to 0.400%, and
Contains a total of 0.0000% to 0.0100% of one or more selected from the group consisting of Mg , Ca, Sr, Ba, Ce, La, Nd, Pr, Zn, and Cd,
Mn content (mass%) is [Mn], Ni content (mass%) is [Ni], Co content (mass%) is [Co], Pt content (mass%) is [Pt], Pb content amount (mass %) is [Pb], Cu content (mass %) is [Cu], Au content (mass %) is [Au], Si content (mass %) is [Si], sol. The Al content (mass%) was determined by [sol. Al], the following formula (1) is satisfied,
The remainder has a chemical composition consisting of Fe and impurities,
Having a steel structure with an average grain size of 500 μm or less,
Non-directionality characterized by satisfying the following formula (2), where the value of B50 in the direction inclined at 45 degrees from the rolling direction is B50D1, and the value of B50 in the direction inclined at 135 degrees from the rolling direction is B50D2 Electromagnetic steel plate.
([Mn]+[Ni]+[Co]+[Pt]+[Pb]+[Cu]+[Au])-([Si]+[sol.Al])>0%...(1)
1.85T<(B50D1+B50D2)/2<1.94T...(2)
質量%で、
Sn:0.020%~0.400%、
Sb:0.020%~0.400%、及び
P:0.020%~0.400%
からなる群から選ばれる1種以上を含有することを特徴とする請求項1に記載の無方向性電磁鋼板。
In mass%,
Sn: 0.020% to 0.400%,
Sb: 0.020% to 0.400%, and P: 0.020% to 0.400%
The non-oriented electrical steel sheet according to claim 1, characterized in that it contains one or more selected from the group consisting of:
質量%で、
Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn、Cdからなる群から選ばれる1種以上:総計で0.0005%~0.0100%を含有することを特徴とする請求項1又は2に記載の無方向性電磁鋼板。
In mass%,
A claim characterized in that it contains one or more selected from the group consisting of Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn, and Cd: 0.0005% to 0.0100% in total. The non-oriented electrical steel sheet according to 1 or 2.
請求項1~3のいずれか1項に記載の無方向性電磁鋼板からなる鉄心を有することを特徴とする回転電機。 A rotating electrical machine comprising an iron core made of the non-oriented electrical steel sheet according to any one of claims 1 to 3. 質量%で、
C:0.0100%以下、
Si:1.50%~4.00%、
sol.Al:0.0001%~1.0%、
S:0.0100%以下、
N:0.0100%以下、
Mn、Ni、Co、Pt、Pb、Cu、Auからなる群から選ばれる1種以上:総計で2.50%~5.00%、
Sn:0.000%~0.400%、
Sb:0.000%~0.400%、
P:0.000%~0.400%、及
g、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn、Cdからなる群から選ばれる1種以上:総計で0.0000%~0.0100%を含有し、
Mn含有量(質量%)を[Mn]、Ni含有量(質量%)を[Ni]、Co含有量(質量%)を[Co]、Pt含有量(質量%)を[Pt]、Pb含有量(質量%)を[Pb]、Cu含有量(質量%)を[Cu]、Au含有量(質量%)を[Au]、Si含有量(質量%)を[Si]、sol.Al含有量(質量%)を[sol.Al]としたときに、以下の()式を満たし、
残部がFe及び不純物からなる化学組成を有する鋼材に対して熱間圧延を行う工程と、
前記熱間圧延後の前記鋼材に対して第1の冷間圧延を行う工程と、
前記第1の冷間圧延後に前記鋼材に対して第1の焼鈍を行う工程と、
前記第1の焼鈍後に前記鋼材に対して第2の冷間圧延を行う工程と、
を有し、
前記熱間圧延を行う工程において、仕上げ圧延の最終パスを相変態点Ar1以上の温度で行い、仕上げ圧延の最終パス後の板厚をtf、前記最終パス前の板厚をt1、前記最終パス前の更に一工程前の板厚をt2としたときに、以下の()式且つ()式を満たし、
前記第1の冷間圧延を圧下率80%~92%で行い、
前記第2の冷間圧延を圧下率5%~25%で行うことを特徴とする請求項1~3のいずれか1項に記載の無方向性電磁鋼板の製造方法。
([Mn]+[Ni]+[Co]+[Pt]+[Pb]+[Cu]+[Au])-([Si]+[sol.Al])>0%・・・(
0.4<tf/t1<0.8 ・・・(
0.4<t1/t2<0.8 ・・・(
In mass%,
C: 0.0100% or less,
Si: 1.50% to 4.00%,
sol. Al: 0.0001% to 1.0%,
S: 0.0100% or less,
N: 0.0100% or less,
One or more types selected from the group consisting of Mn, Ni, Co, Pt, Pb, Cu, and Au: 2.50% to 5.00% in total,
Sn: 0.000% to 0.400%,
Sb: 0.000% to 0.400%,
P: 0.000% to 0.400%, and
Contains a total of 0.0000% to 0.0100% of one or more selected from the group consisting of Mg , Ca, Sr, Ba, Ce, La, Nd, Pr, Zn, and Cd,
Mn content (mass%) is [Mn], Ni content (mass%) is [Ni], Co content (mass%) is [Co], Pt content (mass%) is [Pt], Pb content amount (mass %) is [Pb], Cu content (mass %) is [Cu], Au content (mass %) is [Au], Si content (mass %) is [Si], sol. The Al content (mass%) was determined by [sol. Al], the following formula ( 3 ) is satisfied,
A step of hot rolling a steel material having a chemical composition in which the balance consists of Fe and impurities;
performing a first cold rolling on the steel material after the hot rolling;
performing a first annealing on the steel material after the first cold rolling;
performing a second cold rolling on the steel material after the first annealing;
has
In the step of performing hot rolling, the final pass of finish rolling is performed at a temperature equal to or higher than the phase transformation point Ar1, the plate thickness after the final pass of finish rolling is tf, the plate thickness before the final pass is t1, and the final pass is When the plate thickness before the previous step is t2, the following equations ( 4 ) and ( 5 ) are satisfied,
The first cold rolling is performed at a reduction rate of 80% to 92%,
4. The method for producing a non-oriented electrical steel sheet according to claim 1, wherein the second cold rolling is performed at a reduction rate of 5% to 25%.
([Mn]+[Ni]+[Co]+[Pt]+[Pb]+[Cu]+[Au])-([Si]+[sol.Al])>0%...( 3 )
0.4<tf/t1<0.8...( 4 )
0.4<t1/t2<0.8...( 5 )
前記第1の焼鈍は、Ac1未満の温度で行うことを特徴とする請求項5に記載の無方向性電磁鋼板の製造方法。 6. The method for manufacturing a non-oriented electrical steel sheet according to claim 5, wherein the first annealing is performed at a temperature lower than Ac1. 前記第2の冷間圧延後に、Ac1未満の温度で1時間以内の第2の焼鈍を行う工程を更に有することを特徴とする請求項5又は6に記載の無方向性電磁鋼板の製造方法。 The method for manufacturing a non-oriented electrical steel sheet according to claim 5 or 6, further comprising the step of performing a second annealing at a temperature lower than Ac1 for one hour or less after the second cold rolling. 前記鋼材は、
質量%で、
Sn:0.020%~0.400%、
Sb:0.020%~0.400%、及び
P:0.020%~0.400%
からなる群から選ばれる1種以上を含有することを特徴とする請求項5~7のいずれか1項に記載の無方向性電磁鋼板の製造方法。
The steel material is
In mass%,
Sn: 0.020% to 0.400%,
Sb: 0.020% to 0.400%, and P: 0.020% to 0.400%
The method for producing a non-oriented electrical steel sheet according to any one of claims 5 to 7, characterized in that the method contains one or more selected from the group consisting of:
前記鋼材は、
質量%で、
Mg、Ca、Sr、Ba、Ce、La、Nd、Pr、Zn、Cdからなる群から選ばれる1種以上:総計で0.0005%~0.0100%を含有することを特徴とする請求項5~8のいずれか1項に記載の無方向性電磁鋼板の製造方法。
The steel material is
In mass%,
A claim characterized in that it contains one or more selected from the group consisting of Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn, and Cd: 0.0005% to 0.0100% in total. The method for producing a non-oriented electrical steel sheet according to any one of items 5 to 8.
前記第1の冷間圧延の圧下率(%)をRm、第2の冷間圧延の圧下率(%)をRsとした場合に、86<Rm+0.2×Rs<92、かつ5<Rs<20を満たすことを特徴とする請求項5~9のいずれか1項に記載の無方向性電磁鋼板の製造方法。 When the rolling reduction ratio (%) of the first cold rolling is Rm and the rolling reduction ratio (%) of the second cold rolling is Rs, 86<Rm+0.2×Rs<92, and 5<Rs< The method for producing a non-oriented electrical steel sheet according to any one of claims 5 to 9, wherein the non-oriented electrical steel sheet satisfies 20.
JP2019206651A 2019-11-15 2019-11-15 Non-oriented electrical steel sheet and its manufacturing method Active JP7428872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019206651A JP7428872B2 (en) 2019-11-15 2019-11-15 Non-oriented electrical steel sheet and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019206651A JP7428872B2 (en) 2019-11-15 2019-11-15 Non-oriented electrical steel sheet and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2021080497A JP2021080497A (en) 2021-05-27
JP7428872B2 true JP7428872B2 (en) 2024-02-07

Family

ID=75964524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019206651A Active JP7428872B2 (en) 2019-11-15 2019-11-15 Non-oriented electrical steel sheet and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7428872B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017145462A (en) 2016-02-17 2017-08-24 新日鐵住金株式会社 Electromagnetic steel sheet, and method for producing the same
JP2017193731A (en) 2016-04-18 2017-10-26 新日鐵住金株式会社 Electromagnetic steel sheet, and method for producing the same
JP2018135556A (en) 2017-02-21 2018-08-30 新日鐵住金株式会社 Electromagnetic steel sheet, and method for producing the same
JP2018141206A (en) 2017-02-28 2018-09-13 新日鐵住金株式会社 Electromagnetic steel sheet, and method for producing the same
JP2019019355A (en) 2017-07-13 2019-02-07 新日鐵住金株式会社 Electromagnetic steel and method for producing the same, motor core for rotor and method for producing the same, motor core for stator and method for producing the same, and method for producing motor core
JP2019178380A (en) 2018-03-30 2019-10-17 日本製鉄株式会社 Electromagnetic steel sheet, and manufacturing method of electromagnetic steel sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017145462A (en) 2016-02-17 2017-08-24 新日鐵住金株式会社 Electromagnetic steel sheet, and method for producing the same
JP2017193731A (en) 2016-04-18 2017-10-26 新日鐵住金株式会社 Electromagnetic steel sheet, and method for producing the same
JP2018135556A (en) 2017-02-21 2018-08-30 新日鐵住金株式会社 Electromagnetic steel sheet, and method for producing the same
JP2018141206A (en) 2017-02-28 2018-09-13 新日鐵住金株式会社 Electromagnetic steel sheet, and method for producing the same
JP2019019355A (en) 2017-07-13 2019-02-07 新日鐵住金株式会社 Electromagnetic steel and method for producing the same, motor core for rotor and method for producing the same, motor core for stator and method for producing the same, and method for producing motor core
JP2019178380A (en) 2018-03-30 2019-10-17 日本製鉄株式会社 Electromagnetic steel sheet, and manufacturing method of electromagnetic steel sheet

Also Published As

Publication number Publication date
JP2021080497A (en) 2021-05-27

Similar Documents

Publication Publication Date Title
KR20190112757A (en) Manufacturing method of non-oriented electrical steel sheet and non-oriented electrical steel sheet
WO2022196805A1 (en) Non-directional electromagnetic steel sheet and method for manufacturing same
WO2019131974A1 (en) Oriented electromagnetic steel sheet
JP7352082B2 (en) Non-oriented electrical steel sheet
TWI753650B (en) Manufacturing method of non-oriented electrical steel sheet
JP7428872B2 (en) Non-oriented electrical steel sheet and its manufacturing method
WO2022196807A1 (en) Non-oriented electromagnetic steel sheet and method for manufacturing same
JP7428873B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP7415134B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP7415138B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP7415135B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP7415136B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP7295465B2 (en) Non-oriented electrical steel sheet
CN114616353B (en) Non-oriented electromagnetic steel sheet
TWI755150B (en) Manufacturing method of non-oriented electrical steel sheet
CN116981790A (en) Non-oriented electromagnetic steel sheet and method for producing same
JPH0757887B2 (en) Manufacturing method of non-oriented electrical steel sheet with developed {100} &lt;uvw&gt; texture
JPH03193820A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JPS6347335A (en) Production of grain oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240108

R151 Written notification of patent or utility model registration

Ref document number: 7428872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151