JPH03193820A - Production of nonoriented silicon steel sheet excellent in magnetic property - Google Patents
Production of nonoriented silicon steel sheet excellent in magnetic propertyInfo
- Publication number
- JPH03193820A JPH03193820A JP33423889A JP33423889A JPH03193820A JP H03193820 A JPH03193820 A JP H03193820A JP 33423889 A JP33423889 A JP 33423889A JP 33423889 A JP33423889 A JP 33423889A JP H03193820 A JPH03193820 A JP H03193820A
- Authority
- JP
- Japan
- Prior art keywords
- less
- rolling
- steel sheet
- rolled
- hot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 229910000976 Electrical steel Inorganic materials 0.000 title abstract description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 30
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 18
- 239000010959 steel Substances 0.000 claims abstract description 18
- 238000005098 hot rolling Methods 0.000 claims abstract description 16
- 238000000137 annealing Methods 0.000 claims abstract description 15
- 229910052742 iron Inorganic materials 0.000 claims abstract description 15
- 238000005096 rolling process Methods 0.000 claims abstract description 9
- 238000005097 cold rolling Methods 0.000 claims abstract description 6
- 239000012535 impurity Substances 0.000 claims abstract description 6
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 6
- 229910000565 Non-oriented electrical steel Inorganic materials 0.000 claims description 14
- 238000004804 winding Methods 0.000 claims description 4
- 230000004907 flux Effects 0.000 abstract description 13
- 229910052799 carbon Inorganic materials 0.000 abstract description 4
- 239000002344 surface layer Substances 0.000 abstract description 4
- 238000000034 method Methods 0.000 abstract description 3
- 239000000203 mixture Substances 0.000 abstract description 3
- 229910052710 silicon Inorganic materials 0.000 abstract description 3
- 229910052717 sulfur Inorganic materials 0.000 abstract description 3
- 229910052782 aluminium Inorganic materials 0.000 abstract 2
- 229910052796 boron Inorganic materials 0.000 abstract 2
- 229910052698 phosphorus Inorganic materials 0.000 abstract 2
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000011162 core material Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000032683 aging Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は鉄損が低く、磁束密度の高い低Sl無方向性電
磁鋼板の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a low-Sl non-oriented electrical steel sheet with low core loss and high magnetic flux density.
(従来の技術)
無方向性電磁鋼板はモーターや中小型変圧器等の電気機
器の鉄心材料として使用される。(Prior Art) Non-oriented electrical steel sheets are used as core materials for electrical equipment such as motors and small and medium-sized transformers.
ところで、最近では例えばモーターが組込まれるコンプ
レッサー、冷蔵庫、自動車等は高性能化や節電タイプと
すること、また低コスト化とすることが要請されている
。これらに用いられる無方向性電磁鋼板は従来に比べて
鉄損が低く且つ磁束密度が高いものが要求され、さらに
安価であることも重要である。Nowadays, for example, compressors, refrigerators, automobiles, etc. in which motors are incorporated are required to have higher performance, to be energy-saving, and to be lower in cost. The non-oriented electrical steel sheets used for these are required to have lower iron loss and higher magnetic flux density than conventional ones, and it is also important that they be inexpensive.
係る要求に対応する無方向性電磁鋼板としては、例えば
特開昭57−203718号公報に開示されているよう
に0.005%以下の極低炭素で81を0.3〜2.0
%含む電磁鋼を熱間圧延した後、熱延板焼鈍を800℃
以上で行い、また冷延後の焼鈍を800℃以上で2分以
内の高温短時間として結晶粒を成長させ、さらに内部酸
化を生じさせず、鉄損と磁束密度とも改善させる無方向
性電磁鋼板の製造法が提案されている。As a non-oriented electrical steel sheet that meets such requirements, for example, as disclosed in Japanese Patent Application Laid-open No. 57-203718, 81 is 0.3 to 2.0 with ultra-low carbon of 0.005% or less.
After hot rolling electromagnetic steel containing %
A non-oriented electrical steel sheet is processed as described above, and the annealing after cold rolling is performed at a high temperature of 800°C or higher for a short period of time within 2 minutes to grow crystal grains, prevent internal oxidation, and improve iron loss and magnetic flux density. A manufacturing method has been proposed.
また特開昭62−267421号公報には、Sl含有量
を0.6%以下とし、Mnを0.1〜1.0%、A、7
7を0.15〜0.60%含ませ、不可避不純物のC,
S、 N。Furthermore, in Japanese Patent Application Laid-Open No. 62-267421, the Sl content is 0.6% or less, Mn is 0.1 to 1.0%, A, 7
7 in an amount of 0.15 to 0.60%, and unavoidable impurities C,
S, N.
Oを低減させ、また熱間圧延での捲取を700℃以上と
するか、熱間圧延後に熱延板焼鈍を700℃以上で行っ
て結晶粒を成長させ、鉄損の低い無方向性電磁鋼板を製
造する方法が提案されている。Non-directional electromagnetic material with low core loss can be produced by reducing O and by increasing the winding temperature during hot rolling to 700°C or higher, or by annealing the hot rolled sheet at 700°C or higher after hot rolling to grow crystal grains. A method of manufacturing steel plate has been proposed.
(発明が解決しようとする課題)
これらはそれ相応の作用効果があり有効であるが、前記
モーターや中小型変圧器等の電気機器のより一層の高性
能化、高効率化を低コストにて図るには、無方向性電磁
鋼板の鉄損及び磁束密度ともさらに向上させる必要があ
る。また、係る無方向性電磁鋼板は電気機器に応じた形
状に打抜かれた後、あるいはスキンパス圧延されてから
所定形状に打抜かれ歪取焼鈍されるが、この際、鋼板表
面層の粒成長が板厚方向中間部に比べ良好でないことが
あり、磁気特性の向上を妨げている。(Problem to be solved by the invention) Although these methods have corresponding effects and are effective, it is possible to further improve the performance and efficiency of electrical equipment such as the motors and small and medium-sized transformers at low cost. In order to achieve this goal, it is necessary to further improve both the core loss and magnetic flux density of the non-oriented electrical steel sheet. In addition, such non-oriented electrical steel sheets are punched into a shape suitable for electrical equipment, or after being skin-pass rolled, punched into a predetermined shape and strain-relief annealed. It may not be as good as the middle part in the thickness direction, which hinders improvement in magnetic properties.
本発明は歪取焼鈍で粒成長が鋼板表面層でも十分に生じ
、鉄損特性がすぐれ、低S1特有の磁束密度の向上が十
分に達成される無方向性電磁鋼板を得ることを目的とす
る。The purpose of the present invention is to obtain a non-oriented electrical steel sheet in which sufficient grain growth occurs even in the surface layer of the steel sheet during strain relief annealing, excellent iron loss characteristics, and sufficient improvement in magnetic flux density peculiar to low S1. .
(課題を解決するための手段)
上記目的を達成するために、本発明の要旨は、重量%で
C・o、oto%以下
Si ・0.1〜1.2%
Mn ・1.0%以下
P ・0.15%以下
S ・0.005%以下
AN;0.1%超0.8%以下
B ・0.0003〜0.0060%
N ・0.0050%以下
を含有し、残部が鉄及び不可避的不純物からなる鋼スラ
ブを、仕上温度をAr、−50℃以上、Ar、+50℃
以下、捲取温度を650℃以上として熱間圧延し、冷間
圧延し、仕上焼鈍を行うことを特徴とする特許
の製造方法にある。(Means for Solving the Problems) In order to achieve the above object, the gist of the present invention is as follows: C・o, oto% or less in weight% Si: 0.1 to 1.2% Mn: 1.0% or less P ・0.15% or less S ・0.005% or less AN; more than 0.1% and 0.8% or less B ・0.0003 to 0.0060% N ・Contains 0.0050% or less, the balance being iron and unavoidable impurities, the finishing temperature is Ar, -50℃ or higher, Ar, +50℃
The following is a patented manufacturing method characterized by hot rolling at a winding temperature of 650° C. or higher, cold rolling, and final annealing.
また、必要に応じて、前記焼鈍後に圧下率2〜15%の
スキンパスを行うところにある。Further, if necessary, a skin pass with a reduction ratio of 2 to 15% is performed after the annealing.
以下、本発明について詳細に述べる。The present invention will be described in detail below.
低Si無方向性電磁鋼板の磁気特性をよくすべく実験・
検討した結果、Slを0.1〜1.0%含む極低炭素電
磁鋼にBを微量含有させると、鋼板表面層にみられてい
た、歪取焼鈍時の粒成長性の悪さが解決される。また熱
間圧延において、熱間圧延後の変態点通過による細粒化
を防ぎ熱延板の結晶粒の成長を、熱間圧延条件と鋼成分
との組合せで高めることにより鉄損と磁束密度がともに
すぐれることを見出した。Experiments and experiments were conducted to improve the magnetic properties of low-Si non-oriented electrical steel sheets.
As a result of our investigation, we found that adding a small amount of B to ultra-low carbon electrical steel containing 0.1 to 1.0% Sl solved the problem of poor grain growth during strain relief annealing, which was observed in the surface layer of the steel sheet. Ru. In addition, in hot rolling, core loss and magnetic flux density are reduced by preventing grain refinement due to passing through a transformation point after hot rolling and increasing the growth of crystal grains in hot rolled sheets through a combination of hot rolling conditions and steel components. We found that both were excellent.
この本発明はこの知見に基づくものであり、まず鋼成分
の限定理由から述べる。The present invention is based on this knowledge, and will first be described from the reasons for limiting the steel components.
Cは、その含有量が多いと鉄損を高くし、また磁気時効
を生じるので、0.0100%以下とする。A large content of C increases core loss and causes magnetic aging, so the content should be 0.0100% or less.
Slは、鉄損を低くするために含有させる成分で、その
作用を奏するには0.1%以上必要である。Sl is a component contained in order to lower iron loss, and 0.1% or more is required to exhibit this effect.
しかしその含有量が多くなると磁束密度が劣化し、また
鋼は脆化し作業性およびコスト面で好ましくないので、
1.2%以下とする。However, if the content increases, the magnetic flux density will deteriorate and the steel will become brittle, which is unfavorable in terms of workability and cost.
1.2% or less.
Mnは、固有抵抗を増加させ鉄損を低める作用と熱間圧
延時の脆化割れ防止のために1.0%以下の範囲で含有
させる。Mn is contained in a range of 1.0% or less in order to increase specific resistance and reduce iron loss, and to prevent embrittlement cracking during hot rolling.
Pは、打抜き性を高める作用があるが、その含有量が多
くなると鋼が脆化し、作業性が劣化するので0.15%
以下とする。P has the effect of increasing punching properties, but if its content increases, the steel becomes brittle and workability deteriorates, so it is reduced to 0.15%.
The following shall apply.
Sは、硫化物を形成し結晶粒の成長を害するので0.0
05%以下とする必要がある。S forms sulfides and impairs the growth of crystal grains, so 0.0
It is necessary to keep it below 0.05%.
A、17は、脱酸のために必要な成分で、また鉄損を低
下させる作用があり、これらの効果を得るために0.1
%超金含有せる。一方、その含有量が多くなるとコスト
高となり、また磁束密度が劣化するので0.8%以下と
する。A, 17 is a necessary component for deoxidation and has the effect of reducing iron loss, and in order to obtain these effects, 0.1
% super gold content. On the other hand, if the content increases, the cost will increase and the magnetic flux density will deteriorate, so the content should be 0.8% or less.
Bは、無方向性電磁鋼板の製造において、含有させるこ
とが知られている(例えば特開昭54−183720号
公報参照)が、公知のBはコスト低減のためにAl1の
含有量を0.1%に低めた場合、微細な窒化物A、9N
が析出するので、これを生じさせないように含有させる
のである。係ることから従来はAfi含有量が少ないと
きはBを含有させるが、0.1%超の高A、9では含有
されていない。It is known that B is included in the production of non-oriented electrical steel sheets (see, for example, Japanese Patent Application Laid-Open No. 183720/1983), but the known B has an Al1 content of 0.0000 to reduce cost. When lowered to 1%, fine nitrides A, 9N
is precipitated, so it is contained to prevent this from occurring. For this reason, conventionally B is included when the Afi content is low, but it is not included when the Afi content is high, exceeding 0.1%.
ところで、本発明では、焼鈍なかても歪取焼鈍で鋼板表
面層の粒成長を高めるためにBを含有させるが、この効
果を奏するにはo、oooa%以上必要である。一方そ
の含有量が多くなると磁束密度を劣化するので0.00
60%以下とする。Incidentally, in the present invention, B is contained in order to enhance grain growth in the surface layer of the steel sheet during strain relief annealing among annealing, but B is required to be present in an amount of o, oooa% or more in order to produce this effect. On the other hand, when its content increases, the magnetic flux density deteriorates, so 0.00
60% or less.
Nは、磁気特性を劣化させるので0.0050%以下と
する。Since N deteriorates the magnetic properties, it should be kept at 0.0050% or less.
鋼成分組成は以上のようで、残部が鉄及び不可避的不純
物からなる鋼スラブは連続鋳造あるいは造塊−分塊圧延
により製造される。The steel component composition is as described above, and the steel slab, the remainder of which is iron and unavoidable impurities, is manufactured by continuous casting or ingot-blending and blooming rolling.
鋼スラブは所望温度に加熱された後、熱間圧延される。After the steel slab is heated to the desired temperature, it is hot rolled.
熱間圧延では、熱間圧延後γ相からα相への変態点通過
により結晶粒が細粒化しないようにする。このため、仕
上温度をAr、 −50℃以上、Ar、+5Q℃以下と
する。Ar、 −50℃以上とするのは仕上温度がAr
、以下では熱間圧延終了後に変態による細粒化は生じな
いが、低くなりすぎると加工組織が熱延板に残存し磁気
特性がよくならないので、Ar、 50℃を下限とす
る。一方、仕上温度がAr、+5Q℃超に高くなると、
熱間圧延後に変態点を通過する結晶粒の比率が高くなり
、熱延板の結晶粒の細粒化が生じ磁気特性が劣化する。In hot rolling, grains are prevented from becoming finer by passing through a transformation point from γ phase to α phase after hot rolling. For this reason, the finishing temperature is set to Ar, -50°C or higher, and Ar, +5Q°C or lower. Ar, -50℃ or higher means finishing temperature is Ar
, below, grain refinement due to transformation does not occur after hot rolling is completed, but if the temperature is too low, the processed structure will remain in the hot rolled sheet and the magnetic properties will not improve, so the lower limit of Ar is set at 50°C. On the other hand, when the finishing temperature becomes higher than Ar, +5Q℃,
After hot rolling, the ratio of crystal grains that pass through the transformation point increases, causing grain refinement in the hot rolled sheet and deteriorating the magnetic properties.
熱間圧延での捲取はNを粒成長を阻害しない比較的粗大
なAfINとして析出させ、冷間圧延後の焼鈍で微細な
AJNの析出が生じないようにするために、650℃以
上の温度で捲取る。During hot rolling, N is precipitated as relatively coarse AfIN that does not inhibit grain growth, and in order to prevent the precipitation of fine AJN during annealing after cold rolling, the temperature is 650°C or higher. Wind it up.
その後、冷間圧延し、仕上焼鈍する。Thereafter, it is cold rolled and finish annealed.
焼鈍後は必要に応じて圧下率2〜15%でスキンパス圧
延する。圧下率を2%以上とするのは歪取焼鈍で結晶粒
の成長を生じさせるためである。しかし、圧下率が高く
なると粒成長性が劣化するので15%を上限とする。After annealing, skin pass rolling is performed at a reduction rate of 2 to 15% as required. The reason why the rolling reduction ratio is set to 2% or more is to cause grain growth to occur during strain relief annealing. However, as the rolling reduction rate increases, grain growth deteriorates, so the upper limit is set at 15%.
次に、実施例を示す。Next, examples will be shown.
第1表に記載の鋼成分のサンプルを供試材として、同表
に示す条件にて無方向性電磁鋼板を製造した。一部の供
試材はスキンパス圧延を施した。Non-oriented electrical steel sheets were manufactured using samples having the steel components listed in Table 1 as test materials under the conditions shown in the table. Some of the test materials were subjected to skin pass rolling.
得られた鋼板(0,50mm t )について、鉄損、
磁束密度を測定し、その結果を第2表に示す。For the obtained steel plate (0.50 mm t), iron loss,
The magnetic flux density was measured and the results are shown in Table 2.
上記第2表より明らかの通り、本発明の鉄損値は比較材
より極めてすぐれている。また磁束密度も高いものが得
られた。As is clear from Table 2 above, the iron loss value of the present invention is extremely superior to that of the comparative materials. Also, a product with high magnetic flux density was obtained.
(発明の効果)
本発明によると、鉄損が低くかつ磁束密度の高い無方向
性電磁鋼板が得られる。(Effects of the Invention) According to the present invention, a non-oriented electrical steel sheet with low iron loss and high magnetic flux density can be obtained.
Claims (2)
ブを、仕上温度をAr_1−50℃〜Ar_1+50℃
、捲取温度を650℃以上として熱間圧延し、冷間圧延
し、仕上焼鈍することを特徴とする磁気特性のすぐれた
無方向性電磁鋼板の製造方法。(1) C in weight%; 0.010% or less Si; 0.1-1.2% Mn; 1.0% or less P; 0.15% or less S; 0.005% or less Al; 0.1% A steel slab containing more than 0.8% or less B; 0.0003 to 0.0060% N; 0.0050% or less, with the balance consisting of iron and unavoidable impurities, at a finishing temperature of Ar_1-50℃ to Ar_1+50℃
A method for producing a non-oriented electrical steel sheet with excellent magnetic properties, comprising hot rolling at a winding temperature of 650° C. or higher, cold rolling, and final annealing.
ブを、仕上温度をAr_1−50℃以上、Ar_1+5
0℃以下、捲取温度を650℃以上として熱間圧延し、
冷間圧延し、仕上焼鈍し、その後、圧下率2〜15%で
スキンパス圧延を行うことを特徴とする磁気特性のすぐ
れた無方向性電磁鋼板の製造方法。(2) C in weight%; 0.010% or less Si; 0.1-1.2% Mn; 1.0% or less P; 0.15% or less S; 0.005% or less Al; 0.1% A steel slab containing ultra-0.8% or less B; 0.0003 to 0.0060% N; 0.0050% or less, with the balance consisting of iron and unavoidable impurities, at a finishing temperature of Ar_1-50°C or higher, Ar_1+5
Hot rolling at a temperature of 0°C or lower and a winding temperature of 650°C or higher,
A method for producing a non-oriented electrical steel sheet with excellent magnetic properties, which comprises cold rolling, final annealing, and then skin pass rolling at a rolling reduction of 2 to 15%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33423889A JPH03193820A (en) | 1989-12-22 | 1989-12-22 | Production of nonoriented silicon steel sheet excellent in magnetic property |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33423889A JPH03193820A (en) | 1989-12-22 | 1989-12-22 | Production of nonoriented silicon steel sheet excellent in magnetic property |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03193820A true JPH03193820A (en) | 1991-08-23 |
Family
ID=18275091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33423889A Pending JPH03193820A (en) | 1989-12-22 | 1989-12-22 | Production of nonoriented silicon steel sheet excellent in magnetic property |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03193820A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0796923A1 (en) * | 1996-03-21 | 1997-09-24 | Kawasaki Steel Corporation | Method of making a non-oriented magnetic steel sheet, and product |
-
1989
- 1989-12-22 JP JP33423889A patent/JPH03193820A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0796923A1 (en) * | 1996-03-21 | 1997-09-24 | Kawasaki Steel Corporation | Method of making a non-oriented magnetic steel sheet, and product |
US5766375A (en) * | 1996-03-21 | 1998-06-16 | Kawasaki Steel Corporation | Non-oriented magnetic steel sheet having excellent bending workability |
EP0796923B1 (en) * | 1996-03-21 | 2001-08-29 | Kawasaki Steel Corporation | Method of making a non-oriented magnetic steel sheet, and product |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9637805B2 (en) | Non-grain-oriented electrical steel strip or sheet, component manufactured from it and method for producing a non-grain-oriented electrical steel strip or sheet | |
JP2022545027A (en) | 600MPa class non-oriented electrical steel sheet and manufacturing method thereof | |
KR20150016434A (en) | Non-oriented electrical steel sheet and method for manufacturing the same | |
JP4123629B2 (en) | Electrical steel sheet and manufacturing method thereof | |
JP3430794B2 (en) | Non-oriented electrical steel sheet excellent in magnetic properties and method for producing the same | |
JP3399726B2 (en) | Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss | |
KR100240993B1 (en) | The manufacturing method for non-oriented electric steel sheet with excellent hysterisys loss | |
JPH03193820A (en) | Production of nonoriented silicon steel sheet excellent in magnetic property | |
JP4013262B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JPH032323A (en) | Manufacture of nonoriented silicon steel sheet having high magnetic flux density | |
JP7428872B2 (en) | Non-oriented electrical steel sheet and its manufacturing method | |
JP7428873B2 (en) | Non-oriented electrical steel sheet and its manufacturing method | |
JP7415138B2 (en) | Manufacturing method of non-oriented electrical steel sheet | |
JP7415135B2 (en) | Manufacturing method of non-oriented electrical steel sheet | |
JP7415134B2 (en) | Manufacturing method of non-oriented electrical steel sheet | |
CN114616353B (en) | Non-oriented electromagnetic steel sheet | |
JP7415136B2 (en) | Manufacturing method of non-oriented electrical steel sheet | |
JPH0657332A (en) | Manufacture of non-oriented silicon steel sheet having high magnetic flux density and low iron loss | |
JPH0797628A (en) | Production of nonoriented silicon steel sheet high in magnetic flux density and low in core loss | |
JP3053407B2 (en) | Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss | |
KR100321035B1 (en) | Method for manufacturing non-oriented electrical steel sheet with superior magnetic properties after heat treatment | |
KR100501000B1 (en) | Non-oriented electrical steel sheet with low iron loss after stress relief annealing and its manufacturing method | |
JPH03193822A (en) | Production of non-oriented electrical sheet having high magnetic flux density and low iron loss | |
KR19980026183A (en) | Non-oriented electrical steel sheet with low iron loss after stress relief annealing | |
KR920004950B1 (en) | Making process for the electric steel plate |