JPH10330893A - Nonoriented silicon steel sheet low in core loss after low temperature-short time magnetic annealing - Google Patents

Nonoriented silicon steel sheet low in core loss after low temperature-short time magnetic annealing

Info

Publication number
JPH10330893A
JPH10330893A JP9144073A JP14407397A JPH10330893A JP H10330893 A JPH10330893 A JP H10330893A JP 9144073 A JP9144073 A JP 9144073A JP 14407397 A JP14407397 A JP 14407397A JP H10330893 A JPH10330893 A JP H10330893A
Authority
JP
Japan
Prior art keywords
low
magnetic annealing
steel sheet
iron loss
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9144073A
Other languages
Japanese (ja)
Inventor
Noritaka Takahashi
紀隆 高橋
Akira Hiura
昭 日裏
Yasushi Tanaka
靖 田中
Toshiharu Iizuka
俊治 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP9144073A priority Critical patent/JPH10330893A/en
Publication of JPH10330893A publication Critical patent/JPH10330893A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets

Abstract

PROBLEM TO BE SOLVED: To produce a nonoriented silicon steel sheet in which fine MnS, AlN and oxides checking the growth of particles are made harmless, and low in core loss after low temp., short time magnetic annealing. SOLUTION: This steel sheet is the one having a compsn. contg., by weight, <=0.005% C, <=0.2% P, <=0.005% N, 0.1 to 1% Si, 0.2 to 0.5% Mn, <=0.02% S, <=0.02% T.O and sol.Al in the range satisfying the formula: sol.Al%/T.O %<=0.08, and the balance substantial Fe.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低温短時間磁性焼
鈍後の磁気特性の優れた無方向性電磁鋼板に関する。
The present invention relates to a non-oriented electrical steel sheet having excellent magnetic properties after low-temperature short-time magnetic annealing.

【0002】[0002]

【従来の技術】無方向性電磁鋼板はその製造方法により
フルプロセス材とセミプロセス材に分けられる。このう
ち、フルプロセス材は鉄鋼メーカー側の仕上焼鈍により
所定の磁気特性を得るものであり、一方、セミプロセス
材は、需要家において打抜き加工後に歪取り焼鈍を施
し、所定の磁気特性を得るものである。セミプロセス材
においては、歪取り焼鈍時に、加工歪みの除去と同時に
結晶粒も成長することから、より一層の鉄損の低減が可
能となる。このため歪取り焼鈍は「磁性焼鈍」とも呼ば
れており、磁性焼鈍時における粒成長性を向上させるこ
とが、低鉄損化には重要である。
2. Description of the Related Art Non-oriented electrical steel sheets are classified into full-process materials and semi-process materials according to their manufacturing methods. Among them, the full process material is to obtain predetermined magnetic properties by finish annealing on the steel maker side, while the semi-process material is to obtain the predetermined magnetic characteristics by performing strain relief annealing after punching at the customer. It is. In the case of the semi-process material, the crystal grains grow simultaneously with the removal of the processing strain during the strain relief annealing, so that the iron loss can be further reduced. For this reason, the strain relief annealing is also called “magnetic annealing”, and it is important to improve grain growth during magnetic annealing to reduce iron loss.

【0003】この磁性焼鈍は通常750℃×2時間で行
われるために、粒成長を阻害する微細な析出物が鋼中に
存在すると低鉄損化を図ることができない。これら析出
物の中でも、微細なAlN,MnS,酸化物等は特に粒
成長を阻害し鉄損を大幅に劣化させる。
[0003] Since this magnetic annealing is usually performed at 750 ° C for 2 hours, low iron loss cannot be achieved if fine precipitates that inhibit grain growth are present in the steel. Among these precipitates, fine AlN, MnS, oxides and the like particularly hinder grain growth and significantly reduce iron loss.

【0004】微細AlNを低減する技術として、特開昭
61−119652号公報に記載されているようなAl
量を0.15%以上としてAlNを粗大化させる方法、
特開昭54−163720号公報に記載されているよう
なB添加によるNをBNとして固定する方法、特開昭6
4−4454号公報に記載されているようなZr添加に
よるAlNの析出を抑制する方法等が提案されている。
しかし、Al脱酸においてはAl23 の生成が鉄損劣
化の原因となることが懸念され、また完全にAlNの析
出を抑制できず、磁性焼鈍後に十分な低鉄損化を図るこ
とは困難である。また、特開平8−3699号公報には
Al脱酸で希土類元素を添加することにより高特性化を
達成する方法が開示されているが、希土類元素は高価で
あるために非常なコスト高を招くことは避けられない。
従って、Al添加鋼で磁性焼鈍後に鉄損の低い無方向性
電磁鋼板を安価に製造することは困難な技術であること
が分かる。
[0004] As a technique for reducing fine AlN, Al as disclosed in JP-A-61-119652 has been proposed.
A method in which the amount is made 0.15% or more to coarsen AlN;
A method of fixing N as BN by adding B as described in JP-A-54-163720;
A method of suppressing the precipitation of AlN due to the addition of Zr as described in JP-A-4-4454 has been proposed.
However, in Al deoxidation, there is a concern that the formation of Al 2 O 3 may cause iron loss deterioration, and it is not possible to completely suppress the precipitation of AlN, and to sufficiently reduce iron loss after magnetic annealing. Have difficulty. Japanese Patent Application Laid-Open No. 8-3699 discloses a method of achieving high characteristics by adding a rare earth element by Al deoxidation, but the rare earth element is very expensive, resulting in a very high cost. That is inevitable.
Therefore, it can be seen that it is difficult to inexpensively manufacture a non-oriented electrical steel sheet having low iron loss after magnetic annealing with Al-added steel.

【0005】一方、tr.Al鋼で微細MnSを低減す
る技術として、特開平03−104844号公報のよう
に、脱酸剤としてZr,Alを用いたり、脱酸剤投入か
ら鋳造するまでの時間を調整してMnSの析出核となる
鋼中の酸化物の個数とサイズを調整する方法が開示され
ている。
On the other hand, tr. As a technique for reducing fine MnS in Al steel, as disclosed in Japanese Patent Application Laid-Open No. 03-104844, Zr and Al are used as a deoxidizing agent, or the time from casting of the deoxidizing agent to casting is adjusted to precipitate MnS. A method for adjusting the number and size of oxides in steel as a core is disclosed.

【0006】また酸化物の延性を制御し微細酸化物を低
減する技術として、特開平01−152239号公報の
ように酸化物のMnO比を15%以下、SiO2 比を7
5%以上に規定する方法や、特開平07−070719
号公報のように(Mn)2 /Si≦0.45、Al≦8
ppmとする方法が開示され、延性に富んだ低融点酸化
物の生成を防ぐ技術が提案されている。
As a technique for controlling the ductility of the oxide and reducing the fine oxide, as disclosed in JP-A-01-152239, the MnO ratio of the oxide is 15% or less and the SiO 2 ratio is 7%.
5% or more.
(Mn) 2 /Si≦0.45, Al ≦ 8
A method for controlling the concentration to ppm is disclosed, and a technique for preventing the formation of a low-melting oxide with high ductility has been proposed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、近年、
生産性向上、コスト低減といった観点から需要家におい
て行われる磁性焼鈍は益々低温短時間化の傾向にあり、
磁性焼鈍後に優れた磁気特性を有する無方向性電磁鋼板
を得るためには、より一層の微細析出物の無害化が必要
となっている。
However, in recent years,
From the viewpoints of productivity improvement and cost reduction, magnetic annealing performed by customers tends to be at a lower temperature and shorter time,
In order to obtain a non-oriented electrical steel sheet having excellent magnetic properties after magnetic annealing, it is necessary to further detoxify fine precipitates.

【0008】また、脱P,脱S,脱Mn等の炉外製錬技
術の向上と経済的な観点から、転炉での吹錬時間を短縮
し、酸素吹き上げ量を低下して成分調整する技術が導入
されている。その結果、鋼中酸素量が低減され、特にS
i脱酸系での酸化物の形態は従来と比べ大きく変化して
いる。
[0008] Further, from the viewpoint of improving the refining smelting technology such as de-P, de-S, and de-Mn and from the economical point of view, the blowing time in the converter is shortened, and the oxygen blowing amount is reduced to adjust the components. Technology has been introduced. As a result, the oxygen content in the steel is reduced,
The form of the oxide in the i-deoxidation system has changed greatly as compared with the conventional one.

【0009】こうした状況下において、磁性焼鈍温度の
低温短時間化の要望に応える技術としては上記のいずれ
の提案も十分なものではない。即ち、特開平03−10
4844号公報の方法では、酸化物の数とサイズを調整
するために、脱酸剤としてZr,Alを用いた場合、窒
化物の析出による粒成長性の劣化が予想され、脱酸剤投
入から鋳造する際の時間が極端に短いため、非常なコス
ト高を招く。また、酸化物の延性については言及してお
らず、圧延中に酸化物が展延した場合には粒成長性が劣
化し、特に低温の磁性焼鈍後に安定して低鉄損化を図る
ことができなくなる。
Under these circumstances, none of the above proposals is satisfactory as a technique for meeting the demand for a low-temperature, short-time magnetic annealing temperature. That is, Japanese Patent Laid-Open No. 03-10
In the method disclosed in Japanese Patent No. 4844, when Zr or Al is used as a deoxidizing agent in order to adjust the number and size of oxides, deterioration of grain growth due to precipitation of nitrides is expected, and casting is performed from the input of the deoxidizing agent. The time is extremely short, resulting in extremely high cost. In addition, it does not mention the ductility of the oxide, and if the oxide spreads during rolling, the grain growth is deteriorated, and it is possible to stably reduce the iron loss particularly after low-temperature magnetic annealing. become unable.

【0010】特開平01−152239号公報の方法で
は、酸化物の延性は確かに低減するものの微量Alの混
入による酸化物の低融点化が懸念され、延性の低減は十
分とは言えない。また、微細MnSの低減が行われてい
ないために低温の磁性焼鈍での粒成長性は不安定なもの
となる。
In the method disclosed in Japanese Patent Application Laid-Open No. H01-152239, although the ductility of the oxide is certainly reduced, the melting point of the oxide may be lowered due to the incorporation of a small amount of Al, and the reduction of the ductility cannot be said to be sufficient. In addition, since the reduction of fine MnS is not performed, the grain growth by low-temperature magnetic annealing becomes unstable.

【0011】特開平07−070719号公報の方法で
も、酸化物の延性は確かに低減するもののSi量が0.
5%以下になった場合、Si脱酸力が低下し微量Alに
よっても酸化物が低融点化し、延性が増大する。また、
酸化物の非延性確保のためにMn添加量を低下させるた
め、微細MnSの析出を防ぐことができない。そのた
め、磁性焼鈍の温度が低下した場合には、粒成長が不十
分になり鉄損は十分に低減しない。
In the method disclosed in Japanese Patent Application Laid-Open No. 07-070719, the ductility of the oxide is certainly reduced, but the amount of Si is reduced to 0.1.
When the content is less than 5%, the Si deoxidizing power is reduced, the oxide has a low melting point even with a small amount of Al, and the ductility is increased. Also,
Since the amount of added Mn is reduced to ensure non-ductility of the oxide, precipitation of fine MnS cannot be prevented. Therefore, when the temperature of the magnetic annealing is lowered, the grain growth becomes insufficient and the iron loss is not sufficiently reduced.

【0012】以上のようにこれらいずれの方法も、磁性
焼鈍の低温短時間化という要望に応えるものではなく、
鋼中微細析出物をより一層低減するための新しい技術の
出現が羨望されていた。
As described above, none of these methods responds to the demand for shortening the magnetic annealing time at low temperatures.
The advent of a new technology for further reducing fine precipitates in steel was envied.

【0013】本発明の目的は上記のような従来の問題に
鑑み、粒成長を阻害する微細な、MnS,AlN,酸化
物を無害化させることを特徴とする低温短時間磁性焼鈍
後の鉄損の低い無方向性電磁鋼板を提供することにあ
る。
In view of the above-mentioned conventional problems, an object of the present invention is to detoxify MnS, AlN, and oxides, which hinder grain growth, so that iron loss after low-temperature and short-time magnetic annealing is characterized. The object is to provide a non-oriented electrical steel sheet having a low density.

【0014】[0014]

【課題を解決するための手段】前記課題を解決し目的を
達成するために、本発明は以下に示す手段を用いてい
る。 (1)本発明の鋼板は、重量%で、C≦0.005%
と、P≦0.2%と、N≦0.005%と、Si:0.
1〜1%と、Mn:0.2〜0.5%と、S≦0.02
%と、T.O≦0.02%と、下記(1)式を満足する
範囲のsol.Alを含有し、残部が実質的にFeであ
ることを特徴とする低温短時間磁性焼鈍後の鉄損の低い
無方向性電磁鋼板である。 sol.Al%/T.O%≦0.08 …(1)
In order to solve the above problems and achieve the object, the present invention uses the following means. (1) The steel sheet of the present invention has a weight percentage of C ≦ 0.005%.
, P ≦ 0.2%, N ≦ 0.005%, and Si: 0.
1 to 1%, Mn: 0.2 to 0.5%, and S ≦ 0.02
% And T. O ≦ 0.02% and sol. In a range satisfying the following equation (1). A non-oriented electrical steel sheet having low iron loss after low-temperature short-time magnetic annealing, characterized by containing Al and the balance being substantially Fe. sol. Al% / T. O% ≦ 0.08 (1)

【0015】[0015]

【発明の実施の形態】本発明者らは上掲の目的実現のた
めに、Si脱酸系の電磁鋼板において低温短時間磁性焼
鈍後の鉄損を低減する手法に関し検討し、以下のような
実験を行なった。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have studied a technique for reducing iron loss after low-temperature and short-time magnetic annealing in a Si deoxidized magnetic steel sheet in order to realize the above-mentioned object. An experiment was performed.

【0016】低温短時間磁性焼鈍後の鉄損に及ぼす酸素
量の影響を調査するため、C=0.0025%、Si=
0.15%、Mn=0.3%、P=0.1%、S=0.
005%、sol.Al=0.0005%、N=0.0
03%、T.O=0.003〜0.02%の鋼をラボ溶
解、鋳造しインゴットを作製した。これらインゴットを
熱間圧延、酸洗し、引き続きこの熱延板を板厚0.5m
mまで冷間圧延し、750℃×1分間の仕上焼鈍を施
し、さらに磁性焼鈍を行った。磁性焼鈍条件は通常の条
件である750℃×2時間と725℃×1時間の2水準
で行った。
In order to investigate the effect of oxygen content on iron loss after low-temperature short-time magnetic annealing, C = 0.0025%, Si =
0.15%, Mn = 0.3%, P = 0.1%, S = 0.
005%, sol. Al = 0.0005%, N = 0.0
03%, T.P. Lab was melted and cast from O = 0.003 to 0.02% steel to produce an ingot. These ingots were hot-rolled and pickled, and then the hot-rolled sheet was 0.5 m thick.
m, subjected to finish annealing at 750 ° C. × 1 minute, and further magnetically annealed. The magnetic annealing was carried out at two levels of normal conditions of 750 ° C. × 2 hours and 725 ° C. × 1 hour.

【0017】図1にこれらサンプルの磁性焼鈍後の鉄損
W15/50を示す。ここで、磁気特性は25cmエプ
スタイン試験片を用いて行った。磁性焼鈍条件が750
℃×2時間である場合、鉄損W15/50は酸素量の影
響を殆ど受けていない。一方、磁性焼鈍条件が725℃
×1時間である場合には、T.O量(総酸素量)が0.
006%以上での鉄損W15/50は750℃×2時間
の磁性焼鈍後の特性と比べて0.1W/kg程度しか増
大していないものの、T.O量が0.006%未満では
鉄損が急激に増大し、鉄損W15/50が4.7W/k
g以上となる。
FIG. 1 shows the iron loss W15 / 50 of these samples after magnetic annealing. Here, the magnetic properties were measured using a 25 cm Epstein test piece. Magnetic annealing condition is 750
When the temperature is 2 hours, the iron loss W15 / 50 is hardly affected by the amount of oxygen. On the other hand, the magnetic annealing condition is 725 ° C.
× 1 hour, T. O content (total oxygen content) is 0.
Although the iron loss W15 / 50 at 006% or more increases only about 0.1 W / kg compared to the properties after magnetic annealing at 750 ° C. × 2 hours, the T.V. When the O content is less than 0.006%, the iron loss increases sharply, and the iron loss W15 / 50 becomes 4.7 W / k.
g or more.

【0018】これらのサンプルの組織を光学顕微鏡にて
観察したところ、磁性焼鈍条件が725℃×1時間で
T.O量が0.006%未満ではフェライト粒が細粒と
なっていることが判明した。この粒成長性低下の原因を
調査するため、磁性焼鈍後の鋼板のSEM観察を行っ
た。その結果、T.O量が0.006%未満では圧延方
向に展延した0.1μm以下の析出物が粒界上に観察さ
れた。これらの析出物をエネルギー分散型X線分析装置
(EDX)で分析したところ、Mn−Si−Al−Oの
各元素が検出された。このことより、磁性焼鈍条件が7
25℃×1時間でT.O<0.006%における粒成長
性の低下は、Si−Mn−Alの3元系酸化物の融点低
下による展延化のためであると考えられる。
When the structures of these samples were observed with an optical microscope, the magnetic annealing conditions were 725 ° C. × 1 hour and T.V. When the O content was less than 0.006%, it was found that the ferrite grains were fine. In order to investigate the cause of the decrease in grain growth, SEM observation of the steel sheet after magnetic annealing was performed. As a result, T.I. When the O content was less than 0.006%, precipitates of 0.1 μm or less spread in the rolling direction were observed on the grain boundaries. When these precipitates were analyzed by an energy dispersive X-ray analyzer (EDX), each element of Mn-Si-Al-O was detected. From this, the magnetic annealing conditions are 7
T. at 25 ° C for 1 hour. It is considered that the decrease in grain growth at O <0.006% is due to the spread of the ternary oxide of Si—Mn—Al due to a decrease in the melting point.

【0019】このように、通常の磁性焼鈍では問題とな
らなかった5ppmの極微量のAl量であってもT.O
量が低下すると酸化物の延性が増大し、本実験のように
磁性焼鈍条件が低温短時間である場合には磁気特性の向
上は図れない。
As described above, even with a very small amount of Al of 5 ppm, which was not a problem in ordinary magnetic annealing, T.P. O
When the amount is reduced, the ductility of the oxide is increased, and when the magnetic annealing conditions are low temperature and short time as in this experiment, the improvement of the magnetic properties cannot be achieved.

【0020】つまり、近年の転炉における酸素吹き込み
量の低減に伴い、鋼中の酸素量が低減した場合には、従
来では殆ど粒成長性に影響を及ぼさないと考えられてい
た微量のAlでも、粒成長を阻害し、特に低温短時間磁
性焼鈍後に鉄損の低い無方向性電磁鋼板を得るためには
T.O量の調整は重要な因子となることが判明した。
That is, when the amount of oxygen in the steel is reduced in accordance with the recent reduction in the amount of oxygen blown into the converter, even a small amount of Al, which was conventionally considered to have little effect on the grain growth, is used. To obtain a non-oriented electrical steel sheet that inhibits grain growth and has low iron loss especially after low-temperature short-time magnetic annealing, T.I. It has been found that adjustment of the amount of O is an important factor.

【0021】以上の知見に基づき、本発明者らは、(s
ol.Al)/(T.O),及びMn量を一定範囲内に
調整し微細なMnS,AlN,酸化物の析出を抑制する
ようにして、低温短時間磁性焼鈍後の鉄損が低減する無
方向性電磁鋼板を見出し、本発明を完成させた。すなわ
ち、本発明は、鋼組成を下記範囲に特定することによ
り、粒成長を阻害する微細な、MnS,AlN,酸化物
を無害化させることを特徴とする低温短時間磁性焼鈍後
の鉄損の低い無方向性電磁鋼板を提供することができ
る。
Based on the above findings, the present inventors have found that (s
ol. Al) / (TO) and the amount of Mn within a certain range to suppress precipitation of fine MnS, AlN and oxides, and to reduce iron loss after low-temperature short-time magnetic annealing. The present inventors have found a conductive electrical steel sheet and completed the present invention. That is, the present invention specifies the steel composition in the following range to detoxify MnS, AlN, and oxides, which hinder grain growth, thereby reducing iron loss after low-temperature short-time magnetic annealing. A low non-oriented electrical steel sheet can be provided.

【0022】以下に本発明の成分添加理由及び成分限定
理由について説明する。 (1)成分組成範囲 sol.Al:sol.Al%/T.O%≦0.08 sol.Al量がsol.Al%/T.O%で0.08
を超えると、鉄損の低減が図れない。そのため、so
l.Al量はsol.Al%/T.O%≦0.08であ
る。
The reasons for adding the components of the present invention and the reasons for limiting the components will be described below. (1) Component composition range sol. Al: sol. Al% / T. O% ≦ 0.08 sol. Al content is sol. Al% / T. 0.08 at O%
If it exceeds, iron loss cannot be reduced. So so
l. Al content is sol. Al% / T. O% ≦ 0.08.

【0023】これは、以下に示す本発明者らの実験によ
り明らかとなった。C=0.0025%、Si=0.1
5%、Mn=0.35%、P=0.1%、S=0.00
5%、sol.Al=0.0001〜0.002%、N
=0.003%、T.O=0.003〜0.02%の鋼
をラボ溶解、鋳造しインゴットを作製した。これらイン
ゴットを熱間圧延後、酸洗し、引き続き板厚0.5mm
まで冷間圧延し、750℃×1分間の仕上焼鈍を施し、
さらに725℃×1時間の磁性焼鈍を行った。
This has been made clear by the following experiments by the present inventors. C = 0.0025%, Si = 0.1
5%, Mn = 0.35%, P = 0.1%, S = 0.00
5%, sol. Al = 0.0001 to 0.002%, N
= 0.003%; Lab was melted and cast from O = 0.003 to 0.02% steel to produce an ingot. After hot rolling of these ingots, pickling was performed, and subsequently, the sheet thickness was 0.5 mm.
Cold-rolled to 750 ° C for 1 minute,
Further, magnetic annealing was performed at 725 ° C. × 1 hour.

【0024】図2にこれらサンプルの磁性焼鈍後の鉄損
W15/50を示す。ここで、磁気特性は25cmエプ
スタイン試験片を用いて行った。図2より、磁性焼鈍後
の鉄損W15/50はT.Oとsol.Al量の影響を
大きく受けており、sol.Al%/T.O%≦0.0
8の場合にはW15/50<4.7W/kgとなってい
ることが分かる。
FIG. 2 shows the iron loss W15 / 50 of these samples after magnetic annealing. Here, the magnetic properties were measured using a 25 cm Epstein test piece. From FIG. 2, the iron loss W15 / 50 after the magnetic annealing is O and sol. Al is greatly affected by the amount of sol. Al% / T. O% ≦ 0.0
In the case of No. 8, it can be seen that W15 / 50 <4.7 W / kg.

【0025】以上の結果から、T.Oとsol.Al量
をsol.Al%/T.O%≦0.08に調整すること
により延性酸化物の生成を防ぐことができ、低温短時間
磁性焼鈍後に磁気特性の優れた無方向性電磁鋼板を得る
ことができることを見出すことができたのである。 Mn:0.2〜0.5% Mn量が0.2%未満もしくは0.5%を超えると、低
温短時間磁性焼鈍後に低鉄損化が図れない。そのため、
Mn量は0.2〜0.5%である。
From the above results, T.I. O and sol. Al content was sol. Al% / T. By adjusting O% ≦ 0.08, it was possible to prevent the formation of ductile oxide, and it was found that a non-oriented electrical steel sheet having excellent magnetic properties could be obtained after low-temperature short-time magnetic annealing. is there. Mn: 0.2 to 0.5% When the amount of Mn is less than 0.2% or more than 0.5%, low iron loss cannot be achieved after low-temperature short-time magnetic annealing. for that reason,
The Mn content is 0.2 to 0.5%.

【0026】これは、以下に示す本発明者らの実験によ
り明らかとなった。C=0.0025%、Si=0.1
5%、Mn=0.1〜1%、P=0.1%、S=0.0
05%、sol.Al=0.0001%、N=0.00
3%、T.O=0.01%の鋼をラボ溶解、鋳造しイン
ゴットを作製した。これらインゴットを熱間圧延後、酸
洗し、引き続き板厚0.5mmまで冷間圧延し、750
℃×1分間の仕上焼鈍を施し、さらに725℃×1時間
の磁性焼鈍を行った。
This has been made clear by the following experiments by the present inventors. C = 0.0025%, Si = 0.1
5%, Mn = 0.1-1%, P = 0.1%, S = 0.0
05%, sol. Al = 0.0001%, N = 0.00
3%, T.P. O = 0.01% steel was melted in a laboratory and cast to produce an ingot. These ingots are hot-rolled, pickled, and then cold-rolled to a thickness of 0.5 mm,
Finish annealing was performed at 1 ° C. × 1 minute, and magnetic annealing was further performed at 725 ° C. × 1 hour.

【0027】図3にこれらサンプルの磁性焼鈍後の鉄損
W15/50を示す。ここで、磁気特性は25cmエプ
スタイン試験片を用いて行った。図3より、Mn量が
0.2%未満で鉄損W15/50が4.7W/kg以上
となり、Mn量が0.5%を超えたところで、特性が安
定せずばらついていることがわかる。これらのサンプル
の組織を光学顕微鏡にて観察したところ、鉄損W15/
50が4.7W/kg以上のサンプルでは細粒となって
いることが判明した。
FIG. 3 shows the iron loss W15 / 50 of these samples after magnetic annealing. Here, the magnetic properties were measured using a 25 cm Epstein test piece. FIG. 3 shows that the iron loss W15 / 50 becomes 4.7 W / kg or more when the Mn content is less than 0.2%, and the characteristics are not stable and vary when the Mn content exceeds 0.5%. . When the structures of these samples were observed with an optical microscope, iron loss W15 /
It was found that the sample with 50 of 4.7 W / kg or more had fine grains.

【0028】以上の理由は次のように考えられる。Mn
量の増大に伴い、熱延加熱時に再溶解するMnS量は低
減し熱延時に微細析出するMnSが少なくなるため、粒
成長が向上する。その傾向はMn量が約0.5%までは
顕著となっている。1200℃でのMnSの溶解度積
(図4)からも、このことは容易に推測できる。また電
気抵抗の増大といった観点からもMn添加は低鉄損化に
有利である。しかしながら、Si脱酸系の低Si電磁鋼
板ではMn量が増大し、全酸化物に対するMnOの割
合、つまりMnO/(SiO2 +MnO+Al23
にして約50%を超えると酸化物の延性が増大するた
め、Mnの過度の添加は粒成長性の劣化を招く。つま
り、Mn量が0.5%を超えたところでは、成分調整条
件や鋳造時の冷却速度の微妙な変化により、酸化物のM
nO比が変化して延性が生じ、低温短時間磁性焼鈍時の
粒成長性の劣化をもたらしたため、特性にバラツキが生
じたと考えられる。以上より、Mnの過度の添加はコス
ト高にもつながるので、Mn量の上限は0.5%であ
る。
The above reason is considered as follows. Mn
With an increase in the amount, the amount of MnS redissolved during hot rolling is reduced, and the amount of MnS finely precipitated during hot rolling is reduced, so that grain growth is improved. This tendency is remarkable up to an Mn content of about 0.5%. This can easily be inferred from the solubility product of MnS at 1200 ° C. (FIG. 4). Also, from the viewpoint of increasing the electric resistance, the addition of Mn is advantageous for reducing iron loss. However, the amount of Mn increases in the low-Si electrical steel sheet of the Si deoxidized system, and the ratio of MnO to the total oxides, that is, MnO / (SiO 2 + MnO + Al 2 O 3 ).
If it exceeds about 50%, the ductility of the oxide increases, so excessive addition of Mn causes deterioration of the grain growth. That is, when the amount of Mn exceeds 0.5%, the oxide M
It is considered that since the nO ratio was changed to cause ductility and the grain growth during the low-temperature short-time magnetic annealing was deteriorated, the characteristics were varied. As described above, since excessive addition of Mn leads to an increase in cost, the upper limit of the amount of Mn is 0.5%.

【0029】一方、Mn添加量が低下すると、熱延加熱
時に再溶解するMnS量は増大し熱延時に微細析出する
MnSが多くなり粒成長性が低下する。このことは図4
からも推測できる。そのため、酸化物の非延性確保のた
めMn添加量を低減すると、低温短時間の磁性焼鈍時の
粒成長性が劣化する。以上よりMn量の下限値は0.2
%である。本発明は、このような本発明者らの知見に基
づいてなされたものであり、以下にその他の成分組成の
限定理由について説明する。
On the other hand, when the added amount of Mn decreases, the amount of MnS re-dissolved during hot rolling increases, and the amount of MnS finely precipitated during hot rolling increases, and the grain growth property decreases. This is illustrated in FIG.
Can be inferred from Therefore, if the amount of added Mn is reduced in order to ensure non-ductility of the oxide, the grain growth during magnetic annealing at a low temperature for a short time is deteriorated. From the above, the lower limit of the amount of Mn is 0.2
%. The present invention has been made based on such findings of the present inventors, and the reasons for limiting other component compositions will be described below.

【0030】C≦0.005% Cは磁気時効の原因となり磁気特性を劣化させるために
0.005%以下である。 Si:0.1〜1% Siは添加量の増大とともに鉄損が低減する元素である
ため、磁性焼鈍後の鉄損の低減を図るために0.1%以
上添加する必要がある。しかし、1%を超えると磁束密
度が低下するため上限は1%である。
C ≦ 0.005% C is 0.005% or less because it causes magnetic aging and deteriorates magnetic properties. Si: 0.1 to 1% Since Si is an element whose iron loss decreases with an increase in the amount of addition, it is necessary to add 0.1% or more in order to reduce iron loss after magnetic annealing. However, if it exceeds 1%, the magnetic flux density decreases, so the upper limit is 1%.

【0031】P≦0.2% Pは鋼板の打ち抜き性を改善するために必要な元素であ
るが、0.2%を超えて添加すると鋼板が脆化するため
0.2%以下である。 S≦0.02% SはMnと結合しMnSとして微細析出し、粒成長を阻
害するのでできるだけ少ない方が望ましいが、過度の低
減は非常なコスト上昇を招き本発明の目的とする所では
ないので、0.02%が上限である。
P ≦ 0.2% P is an element necessary for improving the punching property of the steel sheet, but if added over 0.2%, the steel sheet becomes brittle, so that the content is 0.2% or less. S ≦ 0.02% S bonds with Mn and precipitates finely as MnS, and hinders grain growth. Therefore, it is desirable that S be as small as possible. However, excessive reduction causes a significant increase in cost and is not the object of the present invention. Therefore, the upper limit is 0.02%.

【0032】N≦0.005% Nは含有量が多い場合には窒化物の析出量が多くなり、
磁性焼鈍時の粒成長性が低下し鉄損が増大するため0.
005%以下である。
N ≦ 0.005% When N is large, the precipitation amount of nitride increases,
Since the grain growth during magnetic annealing decreases and the iron loss increases, 0.
005% or less.

【0033】T.O≦0.02% 酸化物が非延性である場合には、酸化物の粒成長性への
影響は小さいが、量が多いと粒成長を抑制するため、
T.Oの上限は0.02%である。なお、Sb,Snを
磁気特性向上のために添加することはなんら差し支えな
い。
T. O ≦ 0.02% When the oxide is non-ductile, the effect of the oxide on the grain growth is small, but when the amount is large, the grain growth is suppressed.
T. The upper limit of O is 0.02%. It should be noted that Sb and Sn may be added for improving the magnetic properties.

【0034】また、製造方法については本発明では特に
限定されない。すなわち、鋼の溶製方法、電磁鋼板の圧
延方法及び熱処理方法は通常採用される条件であればよ
い。例えば、転炉で成分調整した溶鋼を鋳造し熱間圧延
を行う。熱延板焼鈍は行ってもよいが必須ではない。次
いで酸洗後冷間圧延、もしくは中間焼鈍を含む2回以上
の冷間圧延により所定の板厚とした後、仕上焼鈍を行う
方法を採用してもよい。以下に本発明の実施例を挙げ、
本発明の効果を立証する。
The manufacturing method is not particularly limited in the present invention. That is, the smelting method of the steel, the rolling method of the electromagnetic steel sheet, and the heat treatment method may be any conditions that are usually adopted. For example, molten steel whose composition is adjusted in a converter is cast and hot-rolled. Hot rolled sheet annealing may be performed, but is not essential. Next, a method of performing cold rolling after pickling, or performing cold rolling two or more times including intermediate annealing to obtain a predetermined thickness, and then performing finish annealing may be employed. The following are examples of the present invention,
The effect of the present invention will be proved.

【0035】[0035]

【実施例】表1に示す成分の鋼(本発明例:No.1〜
9、比較例:No.10〜20)を用い、転炉で吹錬し
た後に脱ガス処理を行うことにより所定の成分に調整後
鋳造した。次にこのインゴットをスラブ加熱温度120
0℃で1時間加熱し、板厚2mmまで熱間圧延を行っ
た。なおこの際の仕上げ温度は800℃、巻取り温度は
675℃とした。次にこの熱延板を酸洗し、その後、板
厚0.5mmまで冷間圧延を行い、750℃×1分間の
仕上焼鈍を施し、次いで725℃×1時間の磁性焼鈍を
行った。
EXAMPLES Steel having the components shown in Table 1 (Examples of the present invention: No. 1 to No. 1)
9, Comparative Example: No. 10 to 20), the mixture was blown in a converter and then degassed, adjusted to predetermined components, and cast. Next, this ingot was heated at a slab heating temperature of 120.
Heating was performed at 0 ° C. for 1 hour, and hot rolling was performed to a thickness of 2 mm. In this case, the finishing temperature was 800 ° C. and the winding temperature was 675 ° C. Next, the hot-rolled sheet was pickled, cold-rolled to a thickness of 0.5 mm, subjected to finish annealing at 750 ° C. × 1 minute, and then to magnetic annealing at 725 ° C. × 1 hour.

【0036】磁気特性は25cmエプスタイン試験片を
用いて測定した。各鋼板の磁気特性(鉄損W15/5
0,磁束密度B50)を表1に併せて示す。同表より、
本発明例No.1〜9は、鉄損W15/50が4.7W
/kg以下かつ磁束密度が1.74T以上であり、鉄損
及び磁束密度がともに良好である。これに対し、比較例
No.10,12〜20は磁束密度は1.74T以上で
あるが、C,Mn,S,N,T.O量及び(sol.A
l)/(T.O)値のいずれかが本発明で規定する範囲
外であるため、鉄損W15/50は4.8W/kg以上
と劣っている。また、比較例No.11は鉄損W15/
50は4.7W/kg以下であるが、Si量が多いた
め、磁束密度B50は1.71T以下と劣っている。以
上より、鋼板成分を本発明範囲内に制御した場合(本発
明例No.1〜9)に、低温短時間磁性焼鈍後の鉄損の
低い無方向性電磁鋼板が得られることがわかる。
The magnetic properties were measured using a 25 cm Epstein test piece. Magnetic properties of each steel sheet (iron loss W15 / 5
0, magnetic flux density B50) are also shown in Table 1. From the table,
Invention Example No. 1 to 9 have an iron loss W15 / 50 of 4.7 W.
/ Kg or less and the magnetic flux density is 1.74 T or more, and both iron loss and magnetic flux density are good. On the other hand, in Comparative Example No. 10, 12 to 20 have a magnetic flux density of 1.74 T or more, but C, Mn, S, N, T.P. O content and (sol.A
l) / (TO) value is out of the range specified in the present invention, so that the iron loss W15 / 50 is inferior to 4.8 W / kg or more. Also, in Comparative Example No. 11 is iron loss W15 /
50 is 4.7 W / kg or less, but the magnetic flux density B50 is inferior to 1.71 T or less due to the large amount of Si. From the above, it can be seen that when the steel sheet component is controlled within the range of the present invention (Examples Nos. 1 to 9), a non-oriented electrical steel sheet with low iron loss after low-temperature short-time magnetic annealing is obtained.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【発明の効果】以上述べたように、本発明によれば鋼組
成を特定することにより、低温短時間磁性焼鈍後の鉄損
の低い無方向性電磁鋼板を提供することができる。
As described above, according to the present invention, by specifying the steel composition, it is possible to provide a non-oriented electrical steel sheet having low iron loss after low-temperature short-time magnetic annealing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る酸素量(T.O)と
磁性焼鈍後の鉄損(W15/50)との関係を示す図。
FIG. 1 is a view showing a relationship between an oxygen amount (TO) and iron loss (W15 / 50) after magnetic annealing according to an embodiment of the present invention.

【図2】本発明の実施の形態に係る酸素(T.O)、s
ol.Al量と磁性焼鈍後の鉄損(W15/50)との
関係を示す図。
FIG. 2 shows oxygen (TO) and s according to an embodiment of the present invention.
ol. The figure which shows the relationship between the amount of Al and the iron loss (W15 / 50) after magnetic annealing.

【図3】本発明の実施の形態に係るMn量と磁性焼鈍後
の鉄損(W15/50)との関係を示す図。
FIG. 3 is a diagram showing a relationship between the amount of Mn and iron loss (W15 / 50) after magnetic annealing according to the embodiment of the present invention.

【図4】本発明の実施の形態に係るMnSの溶解度曲線
を示す図。
FIG. 4 is a diagram showing a solubility curve of MnS according to the embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 飯塚 俊治 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Shunji Iizuka 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Inside Nihon Kokan Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C≦0.005%と、P≦
0.2%と、N≦0.005%と、Si:0.1〜1%
と、Mn:0.2〜0.5%と、S≦0.02%と、
T.O≦0.02%と、下記(1)式を満足する範囲の
sol.Alを含有し、残部が実質的にFeであること
を特徴とする低温短時間磁性焼鈍後の鉄損の低い無方向
性電磁鋼板。 sol.Al%/T.O%≦0.08 …(1)
1. The method according to claim 1, wherein C ≦ 0.005% and P ≦
0.2%, N ≦ 0.005%, and Si: 0.1 to 1%
And Mn: 0.2-0.5%, S ≦ 0.02%,
T. O ≦ 0.02% and sol. In a range satisfying the following equation (1). A non-oriented electrical steel sheet having low iron loss after low-temperature short-time magnetic annealing, characterized by containing Al and the balance being substantially Fe. sol. Al% / T. O% ≦ 0.08 (1)
JP9144073A 1997-06-02 1997-06-02 Nonoriented silicon steel sheet low in core loss after low temperature-short time magnetic annealing Pending JPH10330893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9144073A JPH10330893A (en) 1997-06-02 1997-06-02 Nonoriented silicon steel sheet low in core loss after low temperature-short time magnetic annealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9144073A JPH10330893A (en) 1997-06-02 1997-06-02 Nonoriented silicon steel sheet low in core loss after low temperature-short time magnetic annealing

Publications (1)

Publication Number Publication Date
JPH10330893A true JPH10330893A (en) 1998-12-15

Family

ID=15353660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9144073A Pending JPH10330893A (en) 1997-06-02 1997-06-02 Nonoriented silicon steel sheet low in core loss after low temperature-short time magnetic annealing

Country Status (1)

Country Link
JP (1) JPH10330893A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013227649A (en) * 2012-03-30 2013-11-07 Nisshin Steel Co Ltd Steel plate for high output reluctance motor iron core, method of manufacturing the steel plate, rotor for reluctance motor and stator using the steel plate as raw material, and reluctance motor
JP2015131993A (en) * 2014-01-14 2015-07-23 Jfeスチール株式会社 Non-oriented silicon steel sheet having excellent magnetic property

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013227649A (en) * 2012-03-30 2013-11-07 Nisshin Steel Co Ltd Steel plate for high output reluctance motor iron core, method of manufacturing the steel plate, rotor for reluctance motor and stator using the steel plate as raw material, and reluctance motor
JP2015131993A (en) * 2014-01-14 2015-07-23 Jfeスチール株式会社 Non-oriented silicon steel sheet having excellent magnetic property

Similar Documents

Publication Publication Date Title
JP4126479B2 (en) Method for producing non-oriented electrical steel sheet
KR950005791B1 (en) Method of manufacturing silicon steel sheet having grains precisely arranged in goss orientation
JP2639227B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP3458683B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing
JPH1088298A (en) Nonoriented silicon steel sheet
JP3037878B2 (en) Non-oriented electrical steel sheet excellent in iron loss after strain relief annealing and method for producing the same
US4338143A (en) Non-oriented silicon steel sheet with stable magnetic properties
JPH10330893A (en) Nonoriented silicon steel sheet low in core loss after low temperature-short time magnetic annealing
JPH11236618A (en) Production of low core loss nonoriented silicon steel sheet
JP3458682B2 (en) Non-oriented electrical steel sheet excellent in magnetic properties after strain relief annealing and method for producing the same
JP2888226B2 (en) Non-oriented electrical steel sheet with low iron loss
JPH0967654A (en) Nonoriented silicon steel sheet excellent in core loss characteristics
JP2000017330A (en) Production of nonoriented silicon steel sheet low in iron loss
JP4062833B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties
JP3424178B2 (en) Non-oriented electrical steel sheet with low iron loss
JP2871308B2 (en) Method for producing grain-oriented silicon steel sheet having crystal orientation integrated in Goss orientation
JPH0317892B2 (en)
JP3845871B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density
JP3766745B2 (en) Non-oriented electrical steel sheet with low iron loss after magnetic annealing
JP2003064456A (en) Nonoriented silicon steel sheet for semiprocess, and production method therefor
EP0205619B1 (en) Method of manufacturing unidirectional silicon steel slab having excellent surface and magnetic properties
JPH1112701A (en) Nonoriented silicon steel sheet with low iron loss
JPWO2021045212A1 (en) Directional electromagnetic steel plate and its manufacturing method
JPH09263909A (en) Nonoriented silicon steel sheet excellent in core loss characteristic
JPH11131196A (en) Nonoriented silicon steel sheet minimal in iron loss