JP2013227649A - Steel plate for high output reluctance motor iron core, method of manufacturing the steel plate, rotor for reluctance motor and stator using the steel plate as raw material, and reluctance motor - Google Patents

Steel plate for high output reluctance motor iron core, method of manufacturing the steel plate, rotor for reluctance motor and stator using the steel plate as raw material, and reluctance motor Download PDF

Info

Publication number
JP2013227649A
JP2013227649A JP2012224694A JP2012224694A JP2013227649A JP 2013227649 A JP2013227649 A JP 2013227649A JP 2012224694 A JP2012224694 A JP 2012224694A JP 2012224694 A JP2012224694 A JP 2012224694A JP 2013227649 A JP2013227649 A JP 2013227649A
Authority
JP
Japan
Prior art keywords
reluctance motor
mass
steel sheet
less
iron core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012224694A
Other languages
Japanese (ja)
Other versions
JP6110097B2 (en
Inventor
Susumu Fujiwara
進 藤原
Tomonaga Iwazu
智永 岩津
Yukio Katagiri
幸男 片桐
Morihiro Saito
守弘 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2012224694A priority Critical patent/JP6110097B2/en
Publication of JP2013227649A publication Critical patent/JP2013227649A/en
Application granted granted Critical
Publication of JP6110097B2 publication Critical patent/JP6110097B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide: a steel sheet that can make an output torque greater when using the same as an iron core of a reluctance motor; a method of manufacturing the steel plate; a rotor and a stator, using the steel plate as an iron core material; and a motor.SOLUTION: A steel sheet in which a value of magnetic flux density Bis at least 1.0 T when strength of a magnetic field is 500 A/m and Bis at least 1.70 T when being 5,000 A/m is used as an iron core steel sheet of a reluctance motor. It is desirable that a metal structure of the steel sheet is a ferrite single-phase structure in which a crystal grain size is at least 25 μm, since the magnetic flux density in a low magnetic field side becomes high.

Description

本発明は、電気自動車やハイブリッド自動車或いは工作機械など広範囲な用途に使用されるスイッチトリラクタンスモータおよび/またはシンクロナスリラクタンスモータを初めとするリラクタンストルクを活用するモータ(以下これらを総称してリラクタンスモータと記す)の鉄心用鋼板とその製造方法、これを素材とするリラクタンスモータ用ロータ、ステータおよびリラクタンスモータに関する。   The present invention relates to a motor using a reluctance torque such as a switched reluctance motor and / or a synchronous reluctance motor used in a wide range of applications such as an electric vehicle, a hybrid vehicle, or a machine tool (hereinafter collectively referred to as a reluctance motor). And a manufacturing method thereof, a rotor for a reluctance motor using the same, a stator, and a reluctance motor.

リラクタンスモータは、高価な永久磁石を必ずしも必要としないため、永久磁石を大量に使用するPMモータと比較して高トルクが得にくいものの、安価かつ高速回転領域での効率に優れており、ハイブリッド自動車及び電気自動車の駆動用モータ及び発電用モータ、家電製品、並びに各種の工作機械や産業機械用のモータ等、広範囲な用途への適用が期待されている。   Reluctance motors do not necessarily require expensive permanent magnets, so although it is difficult to obtain high torque compared to PM motors that use a large amount of permanent magnets, they are inexpensive and have excellent efficiency in the high-speed rotation region. In addition, it is expected to be applied to a wide range of applications such as electric motor drive motors and power generation motors, home appliances, and motors for various machine tools and industrial machines.

リラクタンスモータの鉄心は、固定子(ステータ)と回転子(ロータ)とに分けられる。ステータ側の鉄心には巻線を通じて交流磁界が直接付与されるので、効率を高くするために高透磁率であると同時に、体積抵抗率を高めて鉄損を低減できることが要求される。
このため、一般にステータ側の鉄心には、極低炭素鋼にSiを添加して軟磁気特性を改善したいわゆる電磁鋼板が用いられる(例えば、特許文献1を参照)。
The iron core of a reluctance motor is divided into a stator (stator) and a rotor (rotor). Since an AC magnetic field is directly applied to the stator-side iron core through the winding, it is required to have high magnetic permeability in order to increase efficiency, and at the same time, to increase the volume resistivity and to reduce iron loss.
For this reason, a so-called electromagnetic steel sheet in which soft magnetic properties are improved by adding Si to an extremely low carbon steel is generally used for the iron core on the stator side (see, for example, Patent Document 1).

ロータ側の鉄心にはステータ側から発生する磁界による吸引力に基づき高トルクを得るため、高透磁率かつ高磁束密度であることが望ましい。また、ステータのみに電磁鋼板を使用すると電磁鋼板の製品歩留りが低下して、モータの製造コストが高くなるので、通常はロータ側の鉄心にもステータ側と同じ電磁鋼板が用いられる(特許文献1を参照)。   It is desirable that the rotor side iron core has a high magnetic permeability and a high magnetic flux density in order to obtain a high torque based on an attractive force generated by a magnetic field generated from the stator side. In addition, when the electromagnetic steel sheet is used only for the stator, the product yield of the electromagnetic steel sheet is reduced and the manufacturing cost of the motor is increased. See).

また、ロータおよびまたはステータの鉄心材として、SiとAlを合計で0.2%未満の構造用鋼であるSPCC極薄材を用いる電動機が特許文献2に開示されている。SPCC材は、SiやAl含有量が電磁鋼板と比べて低いことから、いわゆる電磁鋼板よりも磁束密度が高くなり、少ない磁力で高い磁束密度となると考えられ、高効率化に有効である。   Further, Patent Document 2 discloses an electric motor that uses an SPCC ultrathin material that is a structural steel of less than 0.2% in total of Si and Al as a core material of a rotor and / or a stator. Since the SPCC material has a lower Si or Al content than the electromagnetic steel sheet, the SPCC material has a higher magnetic flux density than a so-called electromagnetic steel sheet, and is considered to have a high magnetic flux density with a small magnetic force, which is effective for high efficiency.

特開2011−35996号公報JP 2011-35996 A 特開2002−78251号公報JP 2002-78251 A

しかしながら、特許文献2では、SiおよびAl含有量を制限することで素材の磁束密度の向上を図っているが、いわゆるSPCC材では、C,Mn等の不純物元素が多く含まれるため、飽和磁束密度の向上は必ずしも十分ではなく、また、一般的なSPCC材では、結晶粒径は平均で25μm以下の細かい粒径しか得られず、低磁場側での磁束密度も極低炭素で不可避的な不純物含有量も少ない電磁鋼板と比べ、必ずしも十分な磁束密度の高さは得られない。   However, although Patent Document 2 attempts to improve the magnetic flux density of the material by limiting the Si and Al contents, the so-called SPCC material contains a large amount of impurity elements such as C and Mn. In general SPCC materials, the crystal grain size is only 25 μm or less on average, and the magnetic flux density on the low magnetic field side is extremely low carbon, which is an unavoidable impurity. Compared with a magnetic steel sheet with a small content, a sufficiently high magnetic flux density cannot always be obtained.

従って、本発明は、上記のような課題を解決するためになされたものであり、リラクタンスモータの鉄心として用いるときに、出力トルクをより大きくでき、最大回転数をより高くできる鋼板を提供することを目的とする。
また、本発明は、そのようなリラクタンスモータの鉄心用鋼板の製造方法を提供することも目的とする。
さらに、本発明は、前記鋼板を鉄心として使用したリラクタンスモータのロータおよびリラクタンスモータを提供することも目的とする。
なお、リラクタンスモータとは、一般にスイッチトリラクタンスモータやシンクロナスリラクタンスモータのことを意味する場合が多いが、本発明ではリラクタンストルクを活用するモータであれば良く、IPMモータを含むあらゆる種類のリラクタンストルクを活用するモータの鉄心への適用が可能である。
Therefore, the present invention has been made to solve the above-described problems, and provides a steel sheet that can increase the output torque and increase the maximum rotational speed when used as an iron core of a reluctance motor. With the goal.
Another object of the present invention is to provide a method for producing a steel sheet for an iron core of such a reluctance motor.
Another object of the present invention is to provide a reluctance motor rotor and a reluctance motor using the steel plate as an iron core.
The reluctance motor generally means a switched reluctance motor or a synchronous reluctance motor. However, in the present invention, any reluctance torque may be used as long as it uses a reluctance torque, and includes any IPM motor. It can be applied to the iron core of motors that utilize

そこで、本発明者らは、上記課題を解決すべく、種々検討した結果、磁束密度が高く、リラクタンスモータの高出力化に有効な鋼板およびその製造方法を見出した。また、これら種々の鋼板を素材としてリラクタンスモータを試作し、モータの性能評価を行った結果、電磁鋼板を素材とした場合と比べて、高出力、高効率が得られることを見出した。
即ち、本発明は、磁界の強さが500A/mの時の磁束密度B500の値が1.00T以上かつ5000A/mの時の磁束密度B5000の値が1.70T以上であることを特徴とするリラクタンスモータの鉄心用鋼板およびその製造方法、更にはこれを素材としたリラクタンスモータのロータ、ステータおよびリラクタンスモータを開示するものである。
Accordingly, as a result of various studies to solve the above-mentioned problems, the present inventors have found a steel plate having a high magnetic flux density and effective for increasing the output of a reluctance motor, and a method for manufacturing the same. Moreover, as a result of making a reluctance motor as a prototype using these various steel plates and evaluating the performance of the motor, it was found that higher output and higher efficiency can be obtained compared to the case of using electromagnetic steel plates.
That is, according to the present invention, the value of the magnetic flux density B 500 when the magnetic field strength is 500 A / m is 1.00 T or more and the value of the magnetic flux density B 5000 when the magnetic field strength is 5000 A / m is 1.70 T or more. The present invention discloses a reluctance motor iron core steel plate and a manufacturing method thereof, and a reluctance motor rotor, stator, and reluctance motor using the same.

本発明によれば、リラクタンスモータの鉄心として用いるときに、電磁鋼板を素材としたリラクタンスモータの出力トルクをより大きくでき、最大回転数をより高くできる鋼板を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, when using as an iron core of a reluctance motor, the steel plate which can enlarge the output torque of the reluctance motor which used the electromagnetic steel plate as a raw material, and can make a maximum rotation speed higher can be provided.

実施例で作製したロータの概略図である。It is the schematic of the rotor produced in the Example.

本発明のリラクタンスモータの鉄心用鋼板は、磁界の強さが500A/mの時の磁束密度B500の値が1.00T以上かつ5000A/mの時の磁束密度B5000の値が1.70T以上であることを特徴とするリラクタンスモータの鉄心用鋼板およびその製造方法を特徴とするものである。 Core steel sheet for reluctance motor of the present invention, the value of the magnetic flux density B 5000 when the value is 1.00T or more and 5000A / m of the magnetic flux density B 500 when the intensity of the magnetic field 500A / m is 1.70T The present invention is characterized by the iron core steel sheet for a reluctance motor and the method for manufacturing the same.

磁気特性を限定する理由は以下の通りである。
<磁界の強さが500A/mの時の磁束密度B500の値が1.00T以上かつ5000A/mの時の磁束密度B5000の値が1.70T以上>
磁界の強さが5000A/mの時の磁束密度B5000の値を1.70T以上としているのは、高速回転させる際にd軸とq軸でのインダクタンスの値の差(突極比)に基づくリラクタンストルクを有効に活用し、とくに従来の電磁鋼板よりも高トルク、高出力化を図るためである。一般に、リラクタンストルクを有効に活用するには、5000A/m以上の高磁場における磁束密度が高いことが有効であり、本発明では、磁界の強さが5000A/mの時の磁束密度B5000の値が1.70T以上とする。また、低磁場における磁束密度を高めると比較的低トルク域での効率にも有利となるので、磁界の強さが500A/mの時の磁束密度B500の値が1.00T以上とすることが好ましい。
The reason for limiting the magnetic properties is as follows.
<The value of the magnetic flux density B 500 when the magnetic field strength is 500 A / m is 1.00 T or more and the value of the magnetic flux density B 5000 when the magnetic field strength is 5000 A / m is 1.70 T or more>
The value of the magnetic flux density B 5000 when the magnetic field strength is 5000 A / m is set to 1.70 T or more because of the difference in inductance value (saliency ratio) between the d-axis and the q-axis when rotating at high speed. This is to make effective use of the reluctance torque based thereon, and in particular to achieve higher torque and higher output than conventional electromagnetic steel sheets. In general, in order to effectively utilize the reluctance torque, it is effective that the magnetic flux density is high in a high magnetic field of 5000 A / m or more. In the present invention, the magnetic flux density B 5000 when the magnetic field strength is 5000 A / m is effective. The value is 1.70T or more. In addition, increasing the magnetic flux density in a low magnetic field is also advantageous for efficiency in a relatively low torque region, so the value of magnetic flux density B 500 when the magnetic field strength is 500 A / m should be 1.00 T or more. Is preferred.

板厚を限定する理由は以下の通りである。
<板厚>
板厚が厚くなると、渦電流損が増大しモータ効率が低下する。ロータ鉄心材としてはその影響を受けにくいため、0.5mm以下とすることが好ましい。一方、ステータ鉄心材としては、その影響が大きくなるため、鉄損抑制の観点から板厚は0.2mm以下であることが好ましい。
The reason for limiting the plate thickness is as follows.
<Thickness>
As the plate thickness increases, eddy current loss increases and motor efficiency decreases. Since it is hard to receive the influence as a rotor iron core material, it is preferable to set it as 0.5 mm or less. On the other hand, since the influence becomes large as a stator iron core material, it is preferable that plate | board thickness is 0.2 mm or less from a viewpoint of iron loss suppression.

金属組織を限定する理由は以下の通りである。
<不可避的に含まれる介在物を除く金属組織がフェライト単相、平均の結晶粒径:25μm以上>
金属組織を高い飽和磁束密度を有するフェライト単相組織とすることで高磁場における磁束密度を高くすることが可能となる。また、結晶粒径を大きくすることで、磁壁の移動が容易になることに起因して、低磁場側の磁束密度も同時に高くすることが可能となる。
本発明では、磁界の強さが500A/mの時の磁束密度B500の値を安定して1.00T以上とするためには、フェライト結晶粒径は25μm以上にすることが好ましい。
The reason for limiting the metal structure is as follows.
<Metal structure excluding inclusions inevitably contained is a ferrite single phase, average crystal grain size: 25 μm or more>
By making the metal structure a ferrite single-phase structure having a high saturation magnetic flux density, the magnetic flux density in a high magnetic field can be increased. In addition, by increasing the crystal grain size, it becomes possible to simultaneously increase the magnetic flux density on the low magnetic field side due to the easy movement of the domain wall.
In the present invention, the ferrite crystal grain size is preferably 25 μm or more in order to stably set the magnetic flux density B 500 value when the magnetic field strength is 500 A / m to 1.00 T or more.

本発明の鋼板は、C:0.010質量%以下、Si:0質量%〜1.0質量%、Mn:0質量%〜0.5質量%、P:0.10質量%以下、S:0.010質量%以下、酸可溶Al:0.005質量%以下、N:0.005%以下、O:0.020質量%以下、残部がFe及び不可避的不純物からなる成分組成を有することが好ましい。また、鋼材の成分の内、Si:0.01%質量以下であるほうがより好ましく、Ti、Nb及びVからなる群から選択される1種以上の成分を合計して0.005質量%〜0.020質量%さらに含有してもよい。また、Cu:0.03質量%〜0.2質量%及びNi:0質量%〜0.2質量%からなる群から選択される1種以上の成分をさらに含有してもよい。   The steel plate of the present invention has C: 0.010 mass% or less, Si: 0 mass% to 1.0 mass%, Mn: 0 mass% to 0.5 mass%, P: 0.10 mass% or less, S: 0.010% by mass or less, acid-soluble Al: 0.005% by mass or less, N: 0.005% or less, O: 0.020% by mass or less, and the balance is composed of Fe and inevitable impurities Is preferred. Further, among the components of the steel material, Si is more preferably 0.01% by mass or less, and a total of one or more components selected from the group consisting of Ti, Nb and V is 0.005% by mass to 0%. Further, it may be contained in an amount of .020 mass%. Moreover, you may further contain 1 or more types of components selected from the group which consists of Cu: 0.03- mass 0.2% and Ni: 0 mass-0.2 mass%.

鋼材の成分組成を限定する理由は以下の通りである。
<C:0.010質量%以下>
Cは、鋼中に固溶して鋼中の転位等の格子欠陥へ集積したり、炭化物として析出する等により、磁壁の移動を抑制するため、とくに低磁場側の磁束密度を低下させる元素であり、できるだけ少なくすることが好ましい。低磁場側での磁束密度を確保する観点からは、0.010質量%までは許容できるので、上限を0.010質量%とする。
The reason for limiting the component composition of the steel is as follows.
<C: 0.010 mass% or less>
C is an element that lowers the magnetic flux density especially on the low magnetic field side in order to suppress the domain wall movement by solid solution in the steel and accumulating in lattice defects such as dislocations in the steel or by precipitation as carbides. Yes, it is preferable to reduce as much as possible. From the viewpoint of securing the magnetic flux density on the low magnetic field side, up to 0.010% by mass is acceptable, so the upper limit is made 0.010% by mass.

<Si:0質量%〜1.0質量%>
Siは体積抵抗率を高め、渦電流損を小さくするのに有効な他、磁気異方性や磁歪の改善を通じて、低磁場側の磁束密度の向上に有効な元素である。しかし、一方で添加量の増加に伴い飽和磁束密度を低下させ、高磁場側では不利となる。本発明ではSiは無添加とし、0.01質量%以下とすることが望ましいが、渦電流損改善の観点からSiを添加する場合、5000A/mにおける磁束密度確保の観点から1.0質量%以下にすることが好ましい。
<Si: 0% by mass to 1.0% by mass>
Si is an element effective for increasing the volume resistivity and reducing the eddy current loss, and for improving the magnetic flux density on the low magnetic field side by improving the magnetic anisotropy and magnetostriction. However, on the other hand, the saturation magnetic flux density is lowered as the addition amount increases, which is disadvantageous on the high magnetic field side. In the present invention, Si is not added and is preferably 0.01% by mass or less, but when Si is added from the viewpoint of improving eddy current loss, 1.0% by mass from the viewpoint of securing a magnetic flux density at 5000 A / m. The following is preferable.

<Mn:0質量%〜0.5質量%>
Mnは、体積抵抗率を高め、渦電流損を小さくするのに有効な元素である。しかし、一方で添加量の増加に伴い、Siと同様に飽和磁束密度を低下させ、高磁場側では不利となる。本発明では添加しなくてもよいが、添加する場合は、0.5質量%以下にすることが好ましい。
<Mn: 0% by mass to 0.5% by mass>
Mn is an element effective for increasing volume resistivity and reducing eddy current loss. On the other hand, however, the saturation magnetic flux density is lowered in the same manner as Si as the addition amount increases, which is disadvantageous on the high magnetic field side. Although it is not necessary to add in this invention, when adding, it is preferable to make it 0.5 mass% or less.

<P:0.10質量%以下>
Pは、微量の添加で高強度化に有効な元素であり、降伏比を高め、打抜き加工の際に、打抜き端面のダレによる塑性変形の抑制に有効な元素である。この効果を得るためには、0.01質量%以上添加することが望ましい。一方、0.10質量%を超えて添加しても、降伏比を増加させる効果は飽和するばかりか、低温での靭性を劣化させるようになるため、上限を0.10質量%とする。なお、Pは他の元素と比べ、少ない添加量で高強度化が可能であり、飽和磁束密度の低下も効果的に抑制することができる。
<P: 0.10% by mass or less>
P is an element effective for increasing strength by adding a small amount, and is an element effective for increasing the yield ratio and suppressing plastic deformation due to sagging of the punched end face during punching. In order to obtain this effect, it is desirable to add 0.01% by mass or more. On the other hand, even if added over 0.10% by mass, the effect of increasing the yield ratio is not only saturated, but also the toughness at low temperatures is deteriorated, so the upper limit is made 0.10% by mass. In addition, compared with other elements, P can be increased in strength with a small addition amount, and a decrease in saturation magnetic flux density can also be effectively suppressed.

<S:0.010質量%以下>
Sは、高温脆化を引き起こす元素であり、大量に含有させると、熱間圧延時に表面欠陥を生じ、表面品質を劣化させる。また、MnS、TiS等の介在物として析出すると、磁壁の移動を妨げるため、とくに低磁場側での磁束密度には有害である。したがって、できるだけ低減することが望まれる。0.010質量%までは許容できるため、上限を0.010質量%とする。
<S: 0.010 mass% or less>
S is an element that causes high-temperature embrittlement. If it is contained in a large amount, S causes surface defects during hot rolling and degrades the surface quality. Further, if it precipitates as inclusions such as MnS and TiS, the movement of the domain wall is hindered, which is harmful to the magnetic flux density particularly on the low magnetic field side. Therefore, it is desired to reduce as much as possible. Since 0.010 mass% is acceptable, the upper limit is set to 0.010 mass%.

<酸可溶Al:0.005質量%以下>
一般的に、Alは脱酸剤として添加されるほか、Siと同様に鋼の体積抵抗率を上昇させるのに有効な元素である。しかし、酸可溶Alとして0.005%を超えて含有させると、鋼中に微細なAlNが析出してフェライトの粒成長が抑制され、これらの結果として、磁壁の移動が抑制され、低磁場側での磁束密度の低下を招く。
<Acid-soluble Al: 0.005% by mass or less>
In general, Al is added as a deoxidizer, and is an element effective for increasing the volume resistivity of steel, similar to Si. However, when it is contained in excess of 0.005% as acid-soluble Al, fine AlN precipitates in the steel, and ferrite grain growth is suppressed. As a result, the domain wall movement is suppressed, and the low magnetic field is reduced. The magnetic flux density on the side is reduced.

<N:0.005%以下>
Nは、Cと同様に鋼中に固溶して鋼中の転位等の格子欠陥へ集積する等により、磁壁の移動を抑制するため、とくに低磁場側の磁束密度を低下させる元素であり、できるだけ少なくすることが好ましい。リラクタンスモータのロータ鉄心として用いるのに適した磁束密度を確保する観点からは、0.005質量%までは許容できるので、上限を0.005質量%とする。
<N: 0.005% or less>
N is an element that lowers the magnetic flux density especially on the low magnetic field side in order to suppress the movement of the domain wall by, for example, solid solution in steel and accumulating in lattice defects such as dislocations in the steel as in C. It is preferable to reduce as much as possible. From the viewpoint of securing a magnetic flux density suitable for use as a rotor core of a reluctance motor, 0.005 mass% is acceptable, so the upper limit is set to 0.005 mass%.

<O:0.020質量%以下>
Oは、Al,Si,Mn,Fe等と酸化物系介在物として鋼中に晶出し、磁壁の移動を抑制するため、できるだけ低減することが好ましい。しかし、Ti,Al等の析出物と比べ比較的粗大で、磁壁の移動の抑制効果は大きくなく、0.020質量%までは許容できる。したがって、上限を0.020%とする。
<O: 0.020 mass% or less>
O is preferably reduced as much as possible in order to crystallize in the steel as oxide inclusions such as Al, Si, Mn, Fe and the like and suppress the movement of the domain wall. However, it is relatively coarse as compared with precipitates such as Ti and Al, and the effect of suppressing the domain wall movement is not large, and is acceptable up to 0.020% by mass. Therefore, the upper limit is made 0.020%.

<Ti、Nb及びVの1種以上:0.005質量%〜0.020質量%>
Ti、Nb及びVは、鋼中で窒化物を形成し固溶Nを固定するのに有効である。その効果を得るためには、0.005質量%以上の添加が必要である。しかし、0.020質量%を超えて添加すると、Nを固定するのに必要な量を超え、TiやNbおよびV系の微細な炭化物が析出し、磁壁の移動を抑制して、低磁場側での磁束密度の低下を招く。
<One or more of Ti, Nb and V: 0.005 mass% to 0.020 mass%>
Ti, Nb and V are effective in forming nitrides in steel and fixing solute N. In order to acquire the effect, 0.005 mass% or more needs to be added. However, if added over 0.020% by mass, it exceeds the amount necessary to fix N, Ti, Nb and V-based fine carbides precipitate, suppress the domain wall movement, and lower the magnetic field side. Causes a decrease in magnetic flux density.

<Cu:0.03質量%〜0.2質量%及びNi:0質量%〜0.2質量%からなる群から選択される1種以上>
Cuは、鋼中に固溶してCuSとして析出するが、MnSやTiS等の他の硫化物とくらべ比較的粗大なため、磁壁の移動の障害になり難く、低磁場側での磁束密度の向上に有効である。この効果を得るためには少なくとも0.03質量%以上の添加が必要である。
しかし、0.2質量%を超えて添加してもその効果は飽和するとともに、製造コストの増大を招く。一方、Cuを単独で添加すると、熱間圧延時に耳割れ等の表面欠陥を生じやすくなる。Niは、Cuによる熱間圧延時の表面欠陥発生を抑制するのに有効な元素である。Niの添加は必ずしも必須ではないが、本発明では0.2質量%を超えて添加しても、その効果は飽和するととともに製造コストの増加を招く。
<One or more selected from the group consisting of Cu: 0.03% by mass to 0.2% by mass and Ni: 0% by mass to 0.2% by mass>
Cu dissolves in steel and precipitates as CuS, but it is relatively coarse compared to other sulfides such as MnS and TiS, so it is difficult to obstruct the domain wall movement, and the magnetic flux density on the low magnetic field side is low. It is effective for improvement. In order to obtain this effect, it is necessary to add at least 0.03% by mass or more.
However, even if added over 0.2% by mass, the effect is saturated and the manufacturing cost is increased. On the other hand, when Cu is added alone, surface defects such as ear cracks are likely to occur during hot rolling. Ni is an element effective for suppressing the occurrence of surface defects during hot rolling with Cu. The addition of Ni is not necessarily essential, but even if added in excess of 0.2% by mass in the present invention, the effect is saturated and the manufacturing cost is increased.

<絶縁皮膜の形成>
本発明では、高速回転域でより優れた効率を図る場合には、渦電流損の低減を目的として、鋼板の少なくとも片方の表面に、有機材料からなる絶縁皮膜、無機材料からなる絶縁皮膜及び有機・無機複合材料からなる絶縁皮膜を形成することが好ましい。
<Formation of insulation film>
In the present invention, when aiming at higher efficiency in a high-speed rotation region, for the purpose of reducing eddy current loss, an insulating film made of an organic material, an insulating film made of an inorganic material, and an organic material are formed on at least one surface of the steel plate. -It is preferable to form an insulating film made of an inorganic composite material.

次に、本発明のリラクタンスモータの鉄心用鋼板の製造方法について説明する。
本発明によるリラクタンスモータの鉄心用鋼板の製造方法は、前述の成分組成を有するスラブを連続鋳造し、1100℃以上の温度に加熱した加熱炉に挿入して加熱後、800℃以上の温度で仕上圧延を行い、700℃以下の温度で巻取って熱間圧延コイルとした後、酸洗によりスケールを除去し、1回または中間焼鈍を含む2回以上の冷間圧延にて板厚:0.1〜0.5mmの冷延鋼板とし、700〜900℃の温度まで加熱して再結晶焼鈍を施し、必要に応じて、得られた冷延鋼板に伸び率:0.5%以下の条件で、テンションレベラーおよび/またはスキンパス圧延を施すことを特徴とする。また、必要に応じて得られた冷延鋼板の少なくとも片方の表面に、有機材料からなる絶縁皮膜、無機材料からなる絶縁皮膜又は有機・無機複合材料からなる絶縁皮膜を形成することをも特徴とする。
Next, the manufacturing method of the steel sheet for iron cores of the reluctance motor of this invention is demonstrated.
The method for manufacturing a steel sheet for an iron core of a reluctance motor according to the present invention is a method of continuously casting a slab having the above-described composition, inserting it into a heating furnace heated to a temperature of 1100 ° C. or higher, and heating it to a temperature of 800 ° C. or higher. After rolling and winding at a temperature of 700 ° C. or less to form a hot rolling coil, the scale is removed by pickling, and the sheet thickness is set to 0. 1 or 2 cold rollings including intermediate annealing. A cold-rolled steel sheet of 1 to 0.5 mm is heated to a temperature of 700 to 900 ° C. and subjected to recrystallization annealing. If necessary, the resulting cold-rolled steel sheet has an elongation of 0.5% or less. , Tension leveler and / or skin pass rolling. Further, it is also characterized in that an insulating film made of an organic material, an insulating film made of an inorganic material, or an insulating film made of an organic / inorganic composite material is formed on at least one surface of a cold-rolled steel sheet obtained as necessary. To do.

<熱間圧延/加熱温度:1100℃以上、仕上圧延温度:800℃以上、巻取温度:550〜700℃>
熱間圧延における加熱温度は、1100℃以上でないと800℃以上の仕上圧延温度の確保が困難である。仕上圧延温度は、低くなりすぎると変形抵抗が大きくなり、製造性が劣化する。800℃までは許容できるため、本発明では800℃以上に限定する。また、巻取温度はTi、Nb、Vを添加した場合には析出物の粗大化を図るため、できるだけ高温とすることが好ましいが、高くなりすぎるとスケール厚さが増大し、製造性が劣化する。析出物の粗大化およびスケール厚さの観点から、巻取温度は550℃〜700℃とすることが好ましい。
<Hot rolling / heating temperature: 1100 ° C. or higher, finish rolling temperature: 800 ° C. or higher, winding temperature: 550 to 700 ° C.>
If the heating temperature in hot rolling is not 1100 ° C. or higher, it is difficult to ensure a finish rolling temperature of 800 ° C. or higher. If the finish rolling temperature is too low, the deformation resistance increases and the manufacturability deteriorates. Since it can tolerate up to 800 ° C., it is limited to 800 ° C. or higher in the present invention. In addition, when Ti, Nb, and V are added, the coiling temperature is preferably as high as possible in order to coarsen the precipitates. However, if it is too high, the scale thickness increases and the productivity deteriorates. To do. From the viewpoint of coarsening of precipitates and scale thickness, the winding temperature is preferably 550 ° C to 700 ° C.

<冷間圧延、冷間圧延後の板厚:0.1〜0.5mm>
冷間圧延条件は、特に規定する必要は無く、通常の方法に従い実施すればよい。また、冷間圧延後の板厚は、渦電流損の低減の観点からはできるだけ薄くすることが好ましく、上限を0.5mmとする。しかし、0.1mmを超えて薄くすると生産性が大幅に劣化する。したがって、板圧の下限は、0.1mmとする。
なお、ロータおよびステータ鉄心は打抜き加工により製造されることが一般的であるが、打抜き加工性の観点からは、冷間圧延ままで降伏比が高く、硬質な方が打抜き端面のダレやバリの発生が抑制でき有利である。したがって、鋼帯の製造工程では最終焼鈍を施さずに冷間圧延ままの状態で絶縁皮膜を塗布し、ロータまたはステータ形状に打抜き加工後に再結晶焼鈍を施すことが打抜き性の観点からより好ましい。また、こうすることで打抜きに歪による低磁場側での磁気特性の劣化も防止することが可能となる。
<Cold rolling, thickness after cold rolling: 0.1 to 0.5 mm>
The cold rolling conditions do not need to be specified in particular, and may be performed according to a normal method. The sheet thickness after cold rolling is preferably as thin as possible from the viewpoint of reducing eddy current loss, and the upper limit is set to 0.5 mm. However, if the thickness exceeds 0.1 mm, the productivity is greatly deteriorated. Therefore, the lower limit of the plate pressure is 0.1 mm.
In general, the rotor and stator core are manufactured by punching. However, from the viewpoint of punching workability, the yield ratio is high as it is cold-rolled, and the harder one is more prone to sag and burrs on the punched end face. The generation can be advantageously suppressed. Therefore, in the steel strip manufacturing process, it is more preferable from the viewpoint of punchability to apply the insulating film in the state of cold rolling without performing the final annealing and to perform the recrystallization annealing after the punching process into the rotor or stator shape. In addition, by doing so, it is possible to prevent the deterioration of magnetic characteristics on the low magnetic field side due to punching distortion.

<焼鈍加熱温度:700〜900℃>
低磁場側での磁束密度を確保するためには、フェライトを完全に再結晶させる必要がある。このため、700℃以上の加熱が必要である。しかし、900℃を超える温度まで加熱すると製造コストが増大するため、本発明では、上限を900℃とする。なお、焼鈍はバッチ焼鈍、連続焼鈍のいずれでも構わないが、生産性やコストの観点から連続焼鈍を施す場合、加熱温度の下限温度は、800℃以上とすることが好ましい。
<Annealing heating temperature: 700 to 900 ° C.>
In order to secure the magnetic flux density on the low magnetic field side, it is necessary to completely recrystallize the ferrite. For this reason, heating at 700 ° C. or higher is necessary. However, since the manufacturing cost increases when heated to a temperature exceeding 900 ° C., the upper limit is set to 900 ° C. in the present invention. In addition, although annealing may be either batch annealing or continuous annealing, the lower limit temperature of the heating temperature is preferably set to 800 ° C. or higher when continuous annealing is performed from the viewpoint of productivity and cost.

<伸び率:0.5%以下のテンションレベラーおよび/またはスキンパス圧延>
リラクタンスモータのロータおよびステータは、鋼板を積層して形成されるため、素材となる鋼板には良好な板形状であることが要求され、良好な板形状を確保するためには、テンションレベラーやスキンパス圧延が有効である。一方、テンションレベラーやスキンパス圧延等による形状修正では、僅かながら鋼中に格子欠陥が導入され、低磁場側での磁束密度には有害となる。したがって、連続焼鈍における張力制御等のみで良好な板形状を得ることが好ましいが、テンションレベラーやスキンパス圧延を付与する場合、伸び率が0.5%までは許容できるため、伸び率の上限は0.5%とする。
<Elongation: 0.5% or less tension leveler and / or skin pass rolling>
Since the rotor and stator of a reluctance motor are formed by laminating steel plates, the steel plate used as the material is required to have a good plate shape. To ensure a good plate shape, a tension leveler or skin path is required. Rolling is effective. On the other hand, in the shape correction by tension leveler, skin pass rolling or the like, lattice defects are slightly introduced in the steel, which is harmful to the magnetic flux density on the low magnetic field side. Therefore, it is preferable to obtain a good plate shape only by tension control or the like in continuous annealing. However, when a tension leveler or skin pass rolling is applied, the elongation is allowed up to 0.5%, so the upper limit of elongation is 0. .5%.

<絶縁皮膜の形成>
本発明では、渦電流損の低減を目的として、鋼板の少なくとも片方の表面に、有機材料からなる絶縁皮膜、無機材料からなる絶縁皮膜及び有機・無機複合材料からなる絶縁皮膜を形成することが好ましい。無機材料からなる絶縁皮膜の例としては、六価クロムのような有害物質を含まず、リン酸二水素アルミニウムを含有する無機質系水溶液が挙げられるが、良好な絶縁が得られれば、有機材料からなる絶縁皮膜又は有機・無機複合材料からなる絶縁皮膜を用いてもよい。絶縁被膜は、上記で例示した材料を鋼板の表面に塗布することにより形成することができる。
<Formation of insulation film>
In the present invention, for the purpose of reducing eddy current loss, it is preferable to form an insulating film made of an organic material, an insulating film made of an inorganic material, and an insulating film made of an organic / inorganic composite material on at least one surface of the steel sheet. . Examples of the insulating film made of an inorganic material include an inorganic aqueous solution that does not contain a harmful substance such as hexavalent chromium and contains aluminum dihydrogen phosphate. An insulating film made of an organic / inorganic composite material may be used. The insulating coating can be formed by applying the material exemplified above to the surface of the steel plate.

<実施例1>
表1に示す化学組成を有する鋼を真空溶解し、これらの鋳片を1250℃に加熱し、950℃で仕上圧延して560℃で巻取り、板厚1.6mmの熱間圧延鋼板を得た。これらの熱間圧延鋼板を酸洗後、1回の冷間圧延にて0.2mm厚まで圧延を施し、連続焼鈍ラインにて850℃で60s均熱する熱サイクルにて再結晶焼鈍を施した。なお、連続焼鈍における冷却はガスジェット冷却とし、ライン内の張力を制御して良好な板形状が得られるように通板した。その後、連続塗装ラインに通板して、Cr系酸化物およびMg酸化物を含有する半有機組成の約1μm厚さの絶縁皮膜を鋼板の両面に形成した。
<Example 1>
Steel having the chemical composition shown in Table 1 is melted in vacuum, these slabs are heated to 1250 ° C., finish-rolled at 950 ° C. and wound at 560 ° C. to obtain a hot-rolled steel plate having a thickness of 1.6 mm. It was. After pickling these hot-rolled steel sheets, rolling was performed to a thickness of 0.2 mm by one cold rolling, and recrystallization annealing was performed in a thermal cycle that was soaked at 850 ° C. for 60 s in a continuous annealing line. . The cooling in the continuous annealing was gas jet cooling, and the plate was passed so as to obtain a good plate shape by controlling the tension in the line. Thereafter, the sheet was passed through a continuous coating line, and an insulating film having a semi-organic composition containing Cr-based oxide and Mg oxide and having a thickness of about 1 μm was formed on both surfaces of the steel sheet.

得られた鋼帯からJIS5号試験片を切り出し、引張試験に供した。また、圧延方向および圧延方向と直角方向から、幅:10mm、長さ:100mmの短冊状の試験片を各10枚づつ打抜き加工により採取し、JIS C 2550に規定されたエプスタイン試験枠を小型に設計した小型のエプスタイン試験枠を用い、直流磁化測定に供した。各サンプルの降伏強さ、引張強さ、降伏比(YR)を求めた他、磁化測定では、消磁後の初磁化曲線を測定し、初磁化曲線において、磁界の強さが500A/mのときの磁束密度(B500)と5000A/mのときの磁束密度(B5000)を測定し、それぞれ表2に示した。 A JIS No. 5 test piece was cut out from the obtained steel strip and subjected to a tensile test. In addition, a strip-shaped test piece having a width of 10 mm and a length of 100 mm was sampled by punching from the rolling direction and a direction perpendicular to the rolling direction, and the Epstein test frame specified in JIS C 2550 was made compact. The designed small Epstein test frame was used for DC magnetization measurement. In addition to obtaining the yield strength, tensile strength, and yield ratio (YR) of each sample, in the magnetization measurement, the initial magnetization curve after demagnetization is measured, and when the magnetic field strength is 500 A / m in the initial magnetization curve The magnetic flux density (B 500 ) and the magnetic flux density (B 5000 ) at 5000 A / m were measured and shown in Table 2, respectively.

Figure 2013227649
Figure 2013227649

Figure 2013227649
Figure 2013227649

表2からわかるように、C,S,Al,N,O等の不純物元素が本発明範囲を超えるNo.5、No.10〜13鋼およびTiやNbが本発明範囲を超えて添加されたNo.20、21、22鋼では、析出物、介在物の影響により、結晶粒径の微細化も相まって磁界の強さが500A/mのときの磁束密度B500の値が1.00Tよりも低くなることがわかる。また、SiやMnが本発明範囲を超えるNo.8、9、22鋼では、磁界の強さが5000A/mのときの磁束密度B5000が、1.70Tよりも低くなる。一方、本発明範囲の化学成分を有する鋼では、低磁場から高磁場までの広い範囲で良好な磁束密度を示す。 As can be seen from Table 2, no. 5, no. No. 10-13 steel and Ti and Nb added beyond the scope of the present invention. In Steel Nos. 20, 21, and 22, due to the influence of precipitates and inclusions, the magnetic flux density B 500 is lower than 1.00 T when the magnetic field strength is 500 A / m, coupled with the refinement of the crystal grain size. I understand that. Moreover, Si and Mn are No. exceeding the scope of the present invention. The 8,9,22 steel, the strength of the magnetic field flux density B 5000 in the case of 5000A / m, lower than 1.70T. On the other hand, steel having chemical components in the range of the present invention exhibits good magnetic flux density in a wide range from a low magnetic field to a high magnetic field.

<実施例2>
表1に示す化学組成を有する鋼の中で、鋼No.3およびNo.15の鋳片を1150℃に加熱し、810℃で仕上圧延して500℃、600℃、700℃と巻取温度を3水準変化させ、板厚2.3mmの熱間圧延鋼帯を得た。得られた熱間圧延鋼帯を酸洗後、一旦0.6mmまで冷間圧延を行い、800℃で60s均熱処理する中間焼鈍を施し、更に0.5mm厚まで圧延を施した後、650℃、750℃および850℃で60s均熱する連続焼鈍を施した。なお、連続焼鈍における冷却はガスジェット冷却とし、ライン内の張力を制御して良好な板形状が得られるように通板した。その後、連続塗装ラインに通板して、Cr系酸化物およびMg酸化物を含有する半有機組成の約1μm厚さの絶縁皮膜を鋼板の両面に形成した。
<Example 2>
Among the steels having the chemical composition shown in Table 1, steel no. 3 and no. 15 slabs were heated to 1150 ° C. and finish-rolled at 810 ° C., and the coiling temperature was changed to three levels of 500 ° C., 600 ° C. and 700 ° C. to obtain a hot-rolled steel strip having a plate thickness of 2.3 mm . After pickling the obtained hot-rolled steel strip, it is once cold-rolled to 0.6 mm, subjected to an intermediate annealing that is soaked at 800 ° C. for 60 s, further rolled to a thickness of 0.5 mm, and then 650 ° C. Continuous annealing was performed at 750 ° C. and 850 ° C. for 60 s. The cooling in the continuous annealing was gas jet cooling, and the plate was passed so as to obtain a good plate shape by controlling the tension in the line. Thereafter, the sheet was passed through a continuous coating line, and an insulating film having a semi-organic composition containing Cr-based oxide and Mg oxide and having a thickness of about 1 μm was formed on both surfaces of the steel sheet.

得られた鋼帯からJIS5号試験片を切り出し、引張試験に供した。また、圧延方向および圧延方向と直角方向から、幅:10mm、長さ:100mmの短冊状の試験片を各10枚づつ打抜き加工により採取し、JIS C 2550に規定されたエプスタイン試験枠を小型に設計した小型のエプスタイン試験枠(1次巻線:240ターン、2次巻線:400ターン)を用いて直流磁化測定に供した。各サンプルの降伏強さ、引張強さ、降伏比(YR)を求めた他、磁化測定では、消磁後の初磁化曲線を測定し、初磁化曲線において、磁界の強さが500A/mのときの磁束密度(B500)と5000A/mのときの磁束密度(B5000)を測定し、それぞれ表3に示した。 A JIS No. 5 test piece was cut out from the obtained steel strip and subjected to a tensile test. In addition, a strip-shaped test piece having a width of 10 mm and a length of 100 mm was sampled by punching from the rolling direction and a direction perpendicular to the rolling direction, and the Epstein test frame specified in JIS C 2550 was made compact. The designed small Epstein test frame (primary winding: 240 turns, secondary winding: 400 turns) was used for DC magnetization measurement. In addition to obtaining the yield strength, tensile strength, and yield ratio (YR) of each sample, in the magnetization measurement, the initial magnetization curve after demagnetization is measured, and when the magnetic field strength is 500 A / m in the initial magnetization curve The magnetic flux density (B 500 ) and the magnetic flux density (B 5000 ) at 5000 A / m were measured and are shown in Table 3, respectively.

Figure 2013227649
Figure 2013227649

表3からわかるように、焼鈍温度が650℃の比較例では、再結晶が不十分で結晶粒径が小さい上、未再結晶組織となるため、磁界の強さが100A/mのときの磁束密度B500の値が1.0Tよりも低くなることがわかる。また、熱間圧延における巻取温度が500℃の場合、Ti添加のNo.15鋼においては、微細なTiCの析出に起因して、磁界の強さが100A/mのときの磁束密度B500が、1.00Tよりも低くなる。一方、本発明範囲の熱間圧延条件および焼鈍温度で製造すると、低磁場から高磁場までの広い範囲で良好な磁束密度を示すことがわかる。 As can be seen from Table 3, in the comparative example where the annealing temperature is 650 ° C., recrystallization is insufficient, the crystal grain size is small, and an unrecrystallized structure is formed. Therefore, the magnetic flux when the magnetic field strength is 100 A / m. It can be seen that the value of the density B500 is lower than 1.0T. Further, when the coiling temperature in hot rolling is 500 ° C., the Ti addition No. In Steel No. 15, due to the precipitation of fine TiC, the magnetic flux density B 500 when the magnetic field strength is 100 A / m is lower than 1.00 T. On the other hand, when manufactured under the hot rolling conditions and annealing temperature within the range of the present invention, it can be seen that a good magnetic flux density is exhibited in a wide range from a low magnetic field to a high magnetic field.

<実施例3>
実施例2で製造したNo.3鋼の600℃巻取、850℃焼鈍した鋼帯について、オフラインにて伸び率:0.2%、0.5%および1.0%のスキンパス(SKP)圧延を施した。得られた鋼帯からJIS5号試験片を切り出し、引張試験に供した。また、圧延方向および圧延方向と直角方向から、幅:10mm、長さ:100mmの短冊状の試験片を各10枚づつ打抜き加工により採取し、JIS C 2550に規定されたエプスタイン試験枠を小型に設計した小型のエプスタイン試験枠(1次巻線:240ターン、2次巻線:400ターン)を用いて直流磁化測定に供した。各サンプルの降伏強さ、引張強さ、降伏比(YR)を求めた他、磁化測定では、消磁後の初磁化曲線を測定し、初磁化曲線において、磁界の強さが100A/mのときの磁束密度(B500)と5000A/mのときの磁束密度(B5000)を測定し、それぞれ表4に示した。
<Example 3>
No. manufactured in Example 2 Three steel strips rolled up at 600 ° C. and annealed at 850 ° C. were subjected to skin pass (SKP) rolling with an elongation of 0.2%, 0.5%, and 1.0% offline. A JIS No. 5 test piece was cut out from the obtained steel strip and subjected to a tensile test. In addition, a strip-shaped test piece having a width of 10 mm and a length of 100 mm was sampled by punching from the rolling direction and a direction perpendicular to the rolling direction, and the Epstein test frame specified in JIS C 2550 was made compact. The designed small Epstein test frame (primary winding: 240 turns, secondary winding: 400 turns) was used for DC magnetization measurement. In addition to obtaining the yield strength, tensile strength, and yield ratio (YR) of each sample, in the magnetization measurement, the initial magnetization curve after demagnetization is measured, and when the magnetic field strength is 100 A / m in the initial magnetization curve The magnetic flux density (B 500 ) and the magnetic flux density (B 5000 ) at 5000 A / m were measured and are shown in Table 4, respectively.

Figure 2013227649
Figure 2013227649

表4からわかるように、スキンパスにおける伸び率が0.5%を超えると、磁界の強さが500A/mのときの磁束密度B500の値が1.00Tよりも低くなるが、スキンパスにおける伸び率が0.5%以下の場合、低磁場から高磁場までの広い範囲で良好な磁束密度を示すことがわかる。 As can be seen from Table 4, when the elongation rate in the skin pass exceeds 0.5%, the value of the magnetic flux density B 500 when the magnetic field strength is 500 A / m is lower than 1.00 T. It can be seen that when the rate is 0.5% or less, a good magnetic flux density is exhibited in a wide range from a low magnetic field to a high magnetic field.

<実施例4>
実施例1で製造した鋼No.3鋼、No.8鋼およびNo.22鋼の冷延鋼板および市販の無方向性電磁鋼板(35A300)をロータおよびステータ鉄心の素材として、図1の模式図に示す固定子12極、回転子8極のSRモータを試作し、モータ性能評価を行った。なお、試作したSRモータは、鉄心の積高さ:40mm、ステータ外径:136mm、ロータ外径:83.2mm、ギャップは0.2mmとした。なお、固定子の鉄心には市販の無方向性電磁鋼板(35A300)を使用した。直流電源からインバータを介して試作したモータを回転させ、2000rpm、3000rpmおよび4000rpmの時の最大トルクを測定し、モータの性能評価とした。評価結果を表6に示す。
<Example 4>
Steel No. manufactured in Example 1 3 steel, no. SR motor with 12 poles of stator and 8 poles of rotor shown in the schematic diagram of FIG. 1, using cold rolled steel sheet of No. 8 steel and No. 22 steel and commercially available non-oriented electrical steel sheet (35A300) as material of rotor and stator core Was prototyped and the motor performance was evaluated. The prototype SR motor had an iron core stack height of 40 mm, a stator outer diameter of 136 mm, a rotor outer diameter of 83.2 mm, and a gap of 0.2 mm. A commercially available non-oriented electrical steel sheet (35A300) was used for the iron core of the stator. A prototype motor was rotated from a DC power source via an inverter, and the maximum torque at 2000 rpm, 3000 rpm, and 4000 rpm was measured to evaluate the performance of the motor. The evaluation results are shown in Table 6.

Figure 2013227649
Figure 2013227649

表5からわかるように、本発明範囲の高い磁束密度を有するNo.3の鋼板をロータおよび/またはステータの鉄心材に適用したモータでは、比較のNo.8鋼、No.22鋼をロータ、ステータのいずれかまたは両方に適用した場合と比べ、高トルク(出力)が得られている他、ロータおよびステータの鉄心材に市販の電磁鋼板(35A300)を適用した場合と比べても、高トルク(出力)が得られることがわかる。   As can be seen from Table 5, No. 1 having a high magnetic flux density within the range of the present invention. No. 3 was applied to the motor in which the steel plate of No. 3 was applied to the rotor and / or stator core. No. 8 steel, no. Compared to the case where 22 steel is applied to either or both of the rotor and the stator, high torque (output) is obtained, and compared to the case where a commercially available electrical steel sheet (35A300) is applied to the core material of the rotor and stator. However, it can be seen that high torque (output) can be obtained.

1 固定子
2 回転子
1 Stator 2 Rotor

Claims (16)

磁界の強さが500A/mの時の磁束密度B500の値が1.00T以上かつ5000A/mの時の磁束密度B5000の値が1.70T以上であることを特徴とするリラクタンスモータの鉄心用鋼板。 The reluctance motor the field strength values of the magnetic flux density B 5000 when the value is 1.00T or more and 5000A / m of the magnetic flux density B 500 when the 500A / m is equal to or not less than 1.70T Steel sheet for iron core. 板厚が0.5mm以下であることを特徴とする請求項1に記載したリラクタンスモータのロータ鉄心用鋼板。   The steel plate for a rotor core of a reluctance motor according to claim 1, wherein the plate thickness is 0.5 mm or less. 板厚が0.2mm以下であることを特徴とする請求項1に記載したリラクタンスモータのステータ鉄心用鋼板。   The steel sheet for a stator core of a reluctance motor according to claim 1, wherein the plate thickness is 0.2 mm or less. 不可避的に含まれる介在物を除く金属組織がフェライト単相であり、そのフェライト結晶粒径が平均粒径で25μm以上であることを特徴とする請求項1に記載のリラクタンスモータの鉄心用鋼板。   The steel sheet for iron core of a reluctance motor according to claim 1, wherein the metal structure excluding inclusions inevitably contained is a ferrite single phase, and the ferrite crystal grain diameter is 25 µm or more in average grain diameter. C:0.10質量%以下、Si:0質量%〜1.0質量%、Mn:0質量%〜0.5質量%、P:0.10質量%以下、S:0.010質量%以下、酸可溶Al:0.005質量%以下、N:0.005%以下、O:0.020質量%以下、残部がFe及び不可避的不純物からなる成分組成を有することを特徴とする請求項1〜4に記載のリラクタンスモータの鉄心用鋼板。   C: 0.10 mass% or less, Si: 0 mass% to 1.0 mass%, Mn: 0 mass% to 0.5 mass%, P: 0.10 mass% or less, S: 0.010 mass% or less The acid-soluble Al: 0.005% by mass or less, N: 0.005% or less, O: 0.020% by mass or less, and the balance has a component composition composed of Fe and inevitable impurities. A steel sheet for an iron core of a reluctance motor according to 1 to 4. Si:0.01質量%以下であることを特徴とする請求項5に記載のリラクタンスモータの鉄心用鋼板。   The steel sheet for iron core of a reluctance motor according to claim 5, wherein Si: 0.01% by mass or less. Ti、Nb及びVからなる群から選択される1種以上の成分を合計して0.005質量%〜0.020質量%さらに含有することを特徴とする請求項5又は6に記載のリラクタンスモータの鉄心用鋼板。   The reluctance motor according to claim 5 or 6, further comprising 0.005 mass% to 0.020 mass% in total of at least one component selected from the group consisting of Ti, Nb, and V. Steel sheet for iron core. Cu:0.03質量%〜0.2質量%及びNi:0質量%〜0.2質量%からなる群から選択される1種以上の成分をさらに含有することを特徴とする請求項5〜7のいずれか一項に記載のリラクタンスモータの鉄心用鋼板。   It further contains 1 or more types of components selected from the group which consists of Cu: 0.03 mass%-0.2 mass% and Ni: 0 mass%-0.2 mass%. A steel sheet for an iron core of a reluctance motor according to any one of claims 7 to 9. 鋼板の少なくとも片方の表面に、有機材料からなる絶縁皮膜、無機材料からなる絶縁皮膜又は有機・無機複合材料からなる絶縁皮膜が形成されていることを特徴とする請求項1〜8のいずれか一項に記載のリラクタンスモータの鉄心用鋼板。   9. An insulating film made of an organic material, an insulating film made of an inorganic material, or an insulating film made of an organic / inorganic composite material is formed on at least one surface of the steel plate. The steel sheet for iron cores of the reluctance motor according to item. 請求項5〜8に示した成分組成を有するスラブを連続鋳造し、1100℃以上の温度に加熱した加熱炉に挿入して加熱後、800℃以上の温度で仕上圧延を行い、700℃以下の温度で巻取って熱間圧延コイルとした後、酸洗によりスケールを除去し、1回または中間焼鈍を含む2回以上の冷間圧延にて冷延鋼板とし、700〜900℃の温度まで加熱して再結晶焼鈍を施すことを特徴とする請求項1および2に記載したリラクタンスモータの鉄心用鋼板の製造方法。   A slab having the component composition shown in claims 5 to 8 is continuously cast, inserted into a heating furnace heated to a temperature of 1100 ° C. or higher, heated, and then finish-rolled at a temperature of 800 ° C. or higher. After winding at temperature to form a hot rolled coil, the scale is removed by pickling and cold rolled steel sheet is formed by cold rolling at least once including intermediate annealing or heating to a temperature of 700 to 900 ° C. Then, recrystallization annealing is performed, The manufacturing method of the steel sheet for iron cores of the reluctance motor according to claim 1 and 2. 得られた冷延鋼板に伸び率:0.5%以下の条件で、テンションレベラーおよび/またはスキンパス圧延を施すことを特徴とする請求項10に記載のリラクタンスモータの鉄心用鋼板の製造方法。   The method for producing a steel sheet for an iron core of a reluctance motor according to claim 10, wherein the obtained cold-rolled steel sheet is subjected to tension leveler and / or skin pass rolling under the condition of elongation: 0.5% or less. 得られた冷延鋼板の少なくとも片方の表面に、有機材料からなる絶縁皮膜、無機材料からなる絶縁皮膜又は有機・無機複合材料からなる絶縁皮膜を形成することを特徴とする請求項10または11記載のリラクタンスモータの鉄心用鋼板の製造方法。   12. An insulating film made of an organic material, an insulating film made of an inorganic material, or an insulating film made of an organic / inorganic composite material is formed on at least one surface of the obtained cold-rolled steel sheet. Of manufacturing steel sheets for iron cores of reluctance motors. 請求項5〜8に示した成分組成を有するスラブを連続鋳造し、1100℃以上の温度に加熱した加熱炉に挿入して加熱後、800℃以上の温度で仕上圧延を行い、700℃以下の温度で巻取って熱間圧延コイルとした後、酸洗によりスケールを除去し、1回または中間焼鈍を含む2回以上の冷間圧延にて冷延鋼板とし、得られた冷延鋼帯に絶縁皮膜を塗布後、ロータ形状に加工した後で、700〜900℃の温度まで加熱して再結晶焼鈍を施すことを特徴とする請求項1または2に記載したリラクタンスモータの鉄心用鋼板の製造方法。   A slab having the component composition shown in claims 5 to 8 is continuously cast, inserted into a heating furnace heated to a temperature of 1100 ° C. or higher, heated, and then finish-rolled at a temperature of 800 ° C. or higher. After winding at temperature to form a hot-rolled coil, the scale is removed by pickling and cold-rolled steel sheet is obtained by cold rolling at least once, including intermediate annealing, or the obtained cold-rolled steel strip. The steel sheet for iron core of a reluctance motor according to claim 1 or 2, wherein the insulating film is applied and then processed into a rotor shape, and then recrystallization annealing is performed by heating to a temperature of 700 to 900 ° C. Method. 請求項1、2又は4〜9に記載した鋼板をロータ鉄心の素材とすることを特徴とするリラクタンスモータのロータ。   A rotor for a reluctance motor, characterized in that the steel sheet according to claim 1, 2 or 4-9 is used as a material for a rotor core. 請求項1,3〜9に記載の鋼板をステータ鉄心の素材とすることを特徴とするリラクタンスモータのステータ。   A stator for a reluctance motor, wherein the steel plate according to claim 1 is used as a material for a stator core. 請求項14に記載したロータと請求項15に記載したステータの少なくとも一方を組込むことを特徴とするリラクタンスモータ。   A reluctance motor comprising at least one of the rotor according to claim 14 and the stator according to claim 15.
JP2012224694A 2012-03-30 2012-10-10 High power reluctance motor steel core steel plate and manufacturing method thereof, rotor for reluctance motor using the same, stator and reluctance motor Active JP6110097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012224694A JP6110097B2 (en) 2012-03-30 2012-10-10 High power reluctance motor steel core steel plate and manufacturing method thereof, rotor for reluctance motor using the same, stator and reluctance motor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012078459 2012-03-30
JP2012078459 2012-03-30
JP2012224694A JP6110097B2 (en) 2012-03-30 2012-10-10 High power reluctance motor steel core steel plate and manufacturing method thereof, rotor for reluctance motor using the same, stator and reluctance motor

Publications (2)

Publication Number Publication Date
JP2013227649A true JP2013227649A (en) 2013-11-07
JP6110097B2 JP6110097B2 (en) 2017-04-05

Family

ID=49675560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012224694A Active JP6110097B2 (en) 2012-03-30 2012-10-10 High power reluctance motor steel core steel plate and manufacturing method thereof, rotor for reluctance motor using the same, stator and reluctance motor

Country Status (1)

Country Link
JP (1) JP6110097B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018174650A (en) * 2017-03-31 2018-11-08 Jfeスチール株式会社 Iron core and motor including the same
KR101977507B1 (en) * 2017-12-22 2019-05-10 주식회사 포스코 Steel sheet for magnetic field shielding and method for manufacturing the same

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735628A (en) * 1980-08-13 1982-02-26 Kawasaki Steel Corp Manufacture of nonoriented electrical steel strip with superior magnetic characteristic
JPH0463228A (en) * 1990-07-02 1992-02-28 Nippon Steel Corp Manufacture of nonoriented silicon steel sheet excellent in magnetic property before and after magnetic annealing
JPH04280921A (en) * 1991-03-07 1992-10-06 Nippon Steel Corp Production of steel sheet for particle accelerator by continuous annealing
JPH0860247A (en) * 1994-08-23 1996-03-05 Sumitomo Metal Ind Ltd Production of nonoriented silicon steel sheet excellent in magnetic property
JPH08246052A (en) * 1995-03-03 1996-09-24 Sumitomo Metal Ind Ltd Production of nonoriented silicon steel sheet
JPH09228006A (en) * 1996-02-23 1997-09-02 Sumitomo Metal Ind Ltd Nonoriented silicon steel sheet excellent in magnetic property and its production
JPH1088297A (en) * 1996-09-06 1998-04-07 Nkk Corp Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing
JPH10102219A (en) * 1996-09-27 1998-04-21 Sumitomo Metal Ind Ltd Nonoriented silicon steel sheet excellent in magnetic property, and its production
JPH10330893A (en) * 1997-06-02 1998-12-15 Nkk Corp Nonoriented silicon steel sheet low in core loss after low temperature-short time magnetic annealing
JPH1161257A (en) * 1997-08-08 1999-03-05 Nkk Corp Production of non-oriented silicon steel sheet having low iron loss and low magnetic anisotropy
JP2010121150A (en) * 2008-11-17 2010-06-03 Sumitomo Metal Ind Ltd Non-oriented electrical steel sheet for rotating machine, the rotating machine, and method of manufacturing the same
US20110273054A1 (en) * 2010-05-04 2011-11-10 Gwynne Johnston Electrical steel, a motor, and a method for manufacture of electrical steel with high strength and low electrical losses

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735628A (en) * 1980-08-13 1982-02-26 Kawasaki Steel Corp Manufacture of nonoriented electrical steel strip with superior magnetic characteristic
JPH0463228A (en) * 1990-07-02 1992-02-28 Nippon Steel Corp Manufacture of nonoriented silicon steel sheet excellent in magnetic property before and after magnetic annealing
JPH04280921A (en) * 1991-03-07 1992-10-06 Nippon Steel Corp Production of steel sheet for particle accelerator by continuous annealing
JPH0860247A (en) * 1994-08-23 1996-03-05 Sumitomo Metal Ind Ltd Production of nonoriented silicon steel sheet excellent in magnetic property
JPH08246052A (en) * 1995-03-03 1996-09-24 Sumitomo Metal Ind Ltd Production of nonoriented silicon steel sheet
JPH09228006A (en) * 1996-02-23 1997-09-02 Sumitomo Metal Ind Ltd Nonoriented silicon steel sheet excellent in magnetic property and its production
JPH1088297A (en) * 1996-09-06 1998-04-07 Nkk Corp Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing
JPH10102219A (en) * 1996-09-27 1998-04-21 Sumitomo Metal Ind Ltd Nonoriented silicon steel sheet excellent in magnetic property, and its production
JPH10330893A (en) * 1997-06-02 1998-12-15 Nkk Corp Nonoriented silicon steel sheet low in core loss after low temperature-short time magnetic annealing
JPH1161257A (en) * 1997-08-08 1999-03-05 Nkk Corp Production of non-oriented silicon steel sheet having low iron loss and low magnetic anisotropy
JP2010121150A (en) * 2008-11-17 2010-06-03 Sumitomo Metal Ind Ltd Non-oriented electrical steel sheet for rotating machine, the rotating machine, and method of manufacturing the same
US20110273054A1 (en) * 2010-05-04 2011-11-10 Gwynne Johnston Electrical steel, a motor, and a method for manufacture of electrical steel with high strength and low electrical losses

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018174650A (en) * 2017-03-31 2018-11-08 Jfeスチール株式会社 Iron core and motor including the same
KR101977507B1 (en) * 2017-12-22 2019-05-10 주식회사 포스코 Steel sheet for magnetic field shielding and method for manufacturing the same
WO2019124982A1 (en) * 2017-12-22 2019-06-27 주식회사 포스코 Steel sheet for shielding magnetic field and method for manufacturing same
CN111492725A (en) * 2017-12-22 2020-08-04 株式会社Posco Steel sheet for shielding magnetic field and method for manufacturing the same
EP3731614A4 (en) * 2017-12-22 2021-01-20 Posco Steel sheet for shielding magnetic field and method for manufacturing same
JP2021507988A (en) * 2017-12-22 2021-02-25 ポスコPosco Magnetic field shielding steel sheet and its manufacturing method
CN111492725B (en) * 2017-12-22 2023-09-19 浦项股份有限公司 Steel sheet for shielding magnetic field and method for manufacturing same

Also Published As

Publication number Publication date
JP6110097B2 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
JP4855222B2 (en) Non-oriented electrical steel sheet for split core
JP5699642B2 (en) Motor core
JP5713100B2 (en) Non-oriented electrical steel sheet, method for producing the same, laminated body for motor core and method for producing the same
JP5219434B2 (en) Manufacturing method of steel sheet for rotor core of permanent magnet embedded motor
JP4389691B2 (en) Non-oriented electrical steel sheet for rotor and manufacturing method thereof
US20160362762A1 (en) Steel sheet for rotor core for ipm motor, and method for manufacturing same
JP2012036459A (en) Non-oriented magnetic steel sheet and production method therefor
JP2013076159A (en) Steel sheet for rotor core of ipm motor excellent in flatness, method for manufacturing the same, rotor core of ipm motor, and ipm motor
JP6339768B2 (en) Steel plate for rotor core of IPM motor excellent in field weakening and manufacturing method thereof
KR102024964B1 (en) Method for producing steel plate for rotor cores for ipm motors
JP6110097B2 (en) High power reluctance motor steel core steel plate and manufacturing method thereof, rotor for reluctance motor using the same, stator and reluctance motor
JP5671872B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2005060811A (en) High-tensile non-oriented magnetic steel sheet and its production method
JP2017106059A (en) Nonoriented magnetic steel sheet and production method therefor
JP2013076161A (en) Steel sheet for rotor core of high-speed ipm motor, method of manufacturing the same, rotor core of ipm motor, and ipm motor
JP4265508B2 (en) Non-oriented electrical steel sheet for rotor and manufacturing method thereof
JP2013076160A (en) Steel sheet for rotor core of ipm motor excellent in punching property, method for manufacturing the same, rotor core of ipm motor, and ipm motor
JP2011089204A (en) Nonoriented silicon steel sheet for rotor and production method therefor
JP2016180176A (en) Steel sheet for rotor iron core of ipm motor, manufacturing method thereof, rotor iron core of ipm rotor, and ipm motor
JP2012092446A (en) Steel sheet for rotor core of ipm motor excellent in magnetic property
JP2002146493A (en) Nonoriented silicon steel sheet having excellent mechanical strength property and magnetic property and its production method
JP2016194144A (en) Rotor iron core steel sheet for ipm motor, and method for manufacturing the same
JP5947539B2 (en) Steel plate for rotor core of high-speed rotation IPM motor excellent in magnetic property anisotropy, manufacturing method thereof, rotor core of IPM motor and IPM motor
JP5468107B2 (en) Steel plate for rotor core of embedded permanent magnet motor
JP2016194145A (en) Rotor iron core steel sheet for ipm motor, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160822

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161219

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20161219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170309

R150 Certificate of patent or registration of utility model

Ref document number: 6110097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350