JPH09228006A - Nonoriented silicon steel sheet excellent in magnetic property and its production - Google Patents

Nonoriented silicon steel sheet excellent in magnetic property and its production

Info

Publication number
JPH09228006A
JPH09228006A JP3586496A JP3586496A JPH09228006A JP H09228006 A JPH09228006 A JP H09228006A JP 3586496 A JP3586496 A JP 3586496A JP 3586496 A JP3586496 A JP 3586496A JP H09228006 A JPH09228006 A JP H09228006A
Authority
JP
Japan
Prior art keywords
steel
steel sheet
mno
inclusions
magnetic properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3586496A
Other languages
Japanese (ja)
Other versions
JP3252692B2 (en
Inventor
Mitsuyo Doi
光代 土居
Hiroyoshi Yashiki
裕義 屋鋪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3586496A priority Critical patent/JP3252692B2/en
Publication of JPH09228006A publication Critical patent/JPH09228006A/en
Application granted granted Critical
Publication of JP3252692B2 publication Critical patent/JP3252692B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To produce a nonoriented silicon steel sheet low in the content of Si and excellent in magnetic properties and to provide a method for producing the same. SOLUTION: This nonoriented silicon steel sheet excellent in magnetic properties has a compsn. contg. <=0.01% C, 0.01 to 1.0% Si, 0.01 to 1.0% Mn, <=0.15% P, <=0.035% S, 0.008 to 0.02% tot.O (total oxygen in the steel) and <0.002% sol.Al, also satisfying Mn/S>=10, in which the compositional weight ratios of three kinds of oxide inclusions of MnO, SiO2 and Al2 O3 present in the steel are regulated to MnO/SiO2 <=0.43, 0.1<=Al2 O3 /SiO2 <=1.0 and SiO2 /(SiO2 +MnO+Al2 O3 )<0.75, and the balance Fe with inevitable impurities. As for the method for producing the same, the content of C in molten steel is regulated to <=0.01% and O (oxygen) to <=0.02% by vacuum treatment, thereafter, Al is added thereto in the range so as to regulated the content of sol.Al to <0.002% to deoxidize the same, and next, Si and Mn are added thereto to regulate into required compsns., by which the chemical compsn. of the steel and oxide inclusions in the steel are regulated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電気機器の鉄心と
して広く用いられる磁気特性にすぐれた無方向性電磁鋼
板およびその製造方法に関する。無方向性電磁鋼板に
は、鋼板の製造業者側で冷間圧延後の仕上焼鈍をおこな
い、使用者側ではとくには焼鈍はせずに鉄心に使用する
フルプロセス材と、使用者側にて打抜き加工後焼鈍する
ことを前提に製造されるセミプロセス材とがあるが、本
発明はこれらいずれの場合にも適用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-oriented electrical steel sheet having excellent magnetic properties, which is widely used as an iron core of electric equipment, and a method for producing the same. For non-oriented electrical steel sheets, the steel sheet manufacturer performs finish annealing after cold rolling, and the user side does not particularly anneal the full process material used for the iron core and the user side punches. There is a semi-processed material manufactured on the premise that it is annealed after working, but the present invention is applied to any of these cases.

【0002】[0002]

【従来の技術】電気機器の鉄心に使用される電磁鋼板に
は、無方向性電磁鋼板と方向性電磁鋼板とがあり、電力
用の変圧器に主として用いられる方向性電磁鋼板に対
し、無方向性電磁鋼板は汎用モーターや小形モーターあ
るいは小形変圧器などに広く使用される。電気機器に
は、たとえば発電機のように回転エネルギーを電気エネ
ルギーに変えるものもあり、変圧器のように電圧を上げ
たり下げたりして使用しやすい形に変るもの、あるいは
モーターなど電気エネルギーを回転その他の機械的エネ
ルギーに変えるものがある。このようなエネルギー変換
をおこなう機器においては、発熱などエネルギーの無駄
な損失をできるだけ低く抑える必要があり、それに使用
される鉄心は損失が少なく高効率、すなわち低鉄損で高
磁束密度であることが要求される。
2. Description of the Related Art Magnetic steel sheets used for iron cores of electric appliances include non-oriented electrical steel sheets and grain-oriented electrical steel sheets, which are non-oriented as compared with grain-oriented electrical steel sheets mainly used for power transformers. Magnetic electrical steel sheets are widely used in general-purpose motors, small motors and small transformers. Some electric devices, such as generators, convert rotational energy into electrical energy, and devices such as transformers change into a form that is easy to use by raising or lowering the voltage, or motors that rotate electrical energy. There are other things that can be converted into mechanical energy. In equipment that performs such energy conversion, it is necessary to suppress wasteful loss of energy such as heat generation as low as possible, and the iron core used for it has low loss and high efficiency, that is, low iron loss and high magnetic flux density. Required.

【0003】電磁鋼板の鉄損は、渦電流損とヒシテリシ
ス損とに分けられる。渦電流損は電気抵抗を増せば低下
することから、鉄損の低い無方向性電磁鋼板を得るため
には、通常、電気抵抗を増す効果のあるSiを多く含有
させる。しかしながら、Siの添加は磁束密度を低下さ
せる傾向にあり、さらに添加によりコスト上昇ばかりで
なく、鋼を硬くし、圧延の変形抵抗を増すなどの問題も
生じてくる。
Iron loss of electromagnetic steel sheets is divided into eddy current loss and hysteresis loss. Since the eddy current loss decreases as the electric resistance increases, in order to obtain a non-oriented electrical steel sheet with low iron loss, Si is usually contained in a large amount, which has the effect of increasing the electric resistance. However, the addition of Si tends to lower the magnetic flux density, and the addition of Si not only raises the cost, but also causes problems such as hardening the steel and increasing the deformation resistance of rolling.

【0004】一方、ヒシテリシス損は、無方向性電磁鋼
板の場合、Siなどの化学組成が同じであれば、鋼板の
結晶粒径が大きくなるにつれて減少する。ただし、結晶
粒が大きくなると渦電流損は増加する傾向にあり、この
ため鉄損が最小値を示す最適結晶粒径があるとされてい
る。しかし、その最適結晶粒径は、一般の数十%以上の
冷間圧延後の焼鈍によって得られる再結晶粒径よりはか
なり大きいものであり、鉄損低減のためには、焼鈍後の
結晶粒径ができるだけ大きくなるよう、種々の工夫がな
されるのが普通である。
On the other hand, in the case of a non-oriented electrical steel sheet, the hysteresis loss decreases as the crystal grain size of the steel sheet increases if the chemical composition such as Si is the same. However, the eddy current loss tends to increase as the crystal grain size increases, and thus it is said that there is an optimum crystal grain size at which the iron loss becomes the minimum value. However, the optimum grain size is considerably larger than the recrystallized grain size obtained by annealing after cold rolling of several tens% or more in general, and in order to reduce iron loss, the grain size after annealing is reduced. Various measures are usually taken to make the diameter as large as possible.

【0005】Si含有量レベルの低い無方向性電磁鋼板
においては、焼鈍時の結晶粒成長をできるだけ容易にす
るために、粒成長を阻害する微細な析出物の低減がはか
られる。例えば特開昭 63-195217号公報の発明では、so
l.Alを 0.001〜 0.005%(重量%:以下「重量」を省
略)に限定して微細なAlNの生成量を低減させたり、
特開昭 61-119652号公報の発明のように逆にAlを0.15
〜0.60%に高め、AlN析出物を粗大化させてその影響
を減退させたりする方法が知られている。また、SもM
nSの様な析出物となって粒成長を阻害するので、一般
にはできるだけ低く抑えられる。
In a non-oriented electrical steel sheet having a low Si content level, in order to make crystal grain growth during annealing as easy as possible, fine precipitates that inhibit grain growth can be reduced. For example, in the invention disclosed in JP-A-63-195217,
l.Al is limited to 0.001 to 0.005% (weight%: "weight" is omitted hereinafter) to reduce the amount of fine AlN produced,
On the contrary, as in the invention of JP-A-61-119652, Al is replaced by 0.15
It is known to increase the content of AlN precipitates to about 0.60% to coarsen AlN precipitates and reduce the effect. Also, S is M
Since it becomes a precipitate such as nS and hinders grain growth, it is generally kept as low as possible.

【0006】このような窒化物や硫化物の微細析出物の
他に、酸化物系の介在物も結晶粒の成長を阻害すること
が知られている。例えば、上述の特開昭 63-195217号公
報では、C: 0.015%以下、Si: 0.1〜 1.0%、sol.
Al: 0.001〜 0.005%、Mn: 1.5%以下、S: 0.0
08%以下、N:0.0050%以下、tot.O(鋼中の全酸
素):0.02%以下を含む無方向性電磁鋼板において、鋼
中のSiO2 、MnO、Al2 3 の3種の介在物の総
重量に対するMnOの重量の割合を15%以下とすれば、
結晶粒成長を阻害する低融点介在物がなくなって、焼鈍
後の平均結晶粒が大きくなり磁気特性が向上する発明を
提示している。また、sol.Alが0.0005以上0.0010%未
満である以外は全く同一の化学組成で、鋼中の介在物S
iO2 、MnO、Al2 3 の3種の総重量に対するM
nOの重量の割合が15%以下、SiO2 の重量の割合を
75%以上に規制した、上記と同様な粒成長性を改善させ
た電磁鋼板の発明も特開平7-150248号公報に提示されて
いる。
In addition to such fine precipitates of nitrides and sulfides, oxide-based inclusions are known to inhibit the growth of crystal grains. For example, in the above-mentioned JP-A-63-195217, C: 0.015% or less, Si: 0.1-1.0%, sol.
Al: 0.001 to 0.005%, Mn: 1.5% or less, S: 0.0
In a non-oriented electrical steel sheet containing 08% or less, N: 0.0050% or less, tot.O (total oxygen in steel): 0.02% or less, three kinds of interposition of SiO 2 , MnO, and Al 2 O 3 in the steel. If the ratio of the weight of MnO to the total weight of the product is 15% or less,
The invention proposes that the low melting point inclusions that hinder the crystal grain growth are eliminated, the average grain size after annealing increases, and the magnetic properties improve. Also, the inclusions S in the steel have exactly the same chemical composition except that sol.Al is 0.0005 or more and less than 0.0010%.
M based on the total weight of three kinds of iO 2 , MnO, and Al 2 O 3
The weight ratio of nO is 15% or less, and the weight ratio of SiO 2 is
The invention of an electrical steel sheet in which the grain growth property is improved to 75% or more and which is similar to the above is also disclosed in JP-A-7-150248.

【0007】酸化物系の介在物が結晶粒の成長を阻害す
る理由については、上記の発明ではMnOの重量の割合
が15%を超えSiO2 の重量の割合が75%を下回るよう
になると、その軟化点が低下して介在物が圧延中に伸ば
され、これが焼鈍時の結晶粒成長を妨げるためとしてい
る。鋼中の酸化物系介在物の組成比率を変えれば介在物
は球状になり、そうなると結晶粒成長を抑制する作用は
小さいので、粒成長性は改善されるという。しかしなが
ら、MnOの重量の割合を15%以下にする方法として、
これらの発明では転炉出鋼時に従来よりも多量のFe−
Mn合金を添加し、Mnによる溶鋼の脱酸を強化してい
る。Si含有量が低く、他の合金元素をほとんど添加し
ないこのような無方向性電磁鋼板では、コストをできる
だけ低くして作ることも強く要望されているが、脱酸の
ためにMnOを生じて多量のMnを消耗させることはコ
ストの上昇を招く。さらに、SiO2 介在物の比率を増
し75%以上になるようにすると、連続鋳造時のノズル閉
塞を生じやすくなり、鋼板から電気機器の鉄心にするた
めの打抜き加工性を劣化させ、さらに製品の疵発生の原
因になりやすい。
The reason why the oxide-based inclusions inhibit the growth of crystal grains is that in the above invention, when the weight ratio of MnO exceeds 15% and the weight ratio of SiO 2 becomes less than 75%, This is because the softening point is lowered and the inclusions are stretched during rolling, which hinders the crystal grain growth during annealing. If the composition ratio of oxide inclusions in the steel is changed, the inclusions become spherical, and if so, the effect of suppressing crystal grain growth is small, so grain growth is said to be improved. However, as a method for reducing the weight ratio of MnO to 15% or less,
In these inventions, a large amount of Fe-
A Mn alloy is added to enhance the deoxidation of molten steel by Mn. In such a non-oriented electrical steel sheet having a low Si content and containing almost no other alloying elements, it is strongly desired to make the cost as low as possible, but MnO is generated due to deoxidation and a large amount is produced. Consuming Mn of causes an increase in cost. Further, if the ratio of SiO 2 inclusions is increased to 75% or more, nozzle clogging during continuous casting is likely to occur, which deteriorates the punching workability for converting the steel sheet into the iron core of electrical equipment, and further It is easy to cause defects.

【0008】[0008]

【発明が解決しようとする課題】本発明は、鋼中の酸化
物系介在物の形態が磁気特性向上に影響していることに
着目し、その組成比率を変えることにより、磁気特性ば
かりでなくその製造コストや外観あるいは打抜き加工性
も改善した、Si含有量の低い無方向性電磁鋼板および
その製造方法を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention focuses on the fact that the morphology of oxide inclusions in steel affects the improvement of magnetic properties, and by changing the composition ratio, not only the magnetic properties but also the magnetic properties are improved. It is an object of the present invention to provide a non-oriented electrical steel sheet having a low Si content, which is improved in the manufacturing cost, appearance, and punching workability, and a manufacturing method thereof.

【0009】[0009]

【課題を解決するための手段】本発明者らは、溶鋼の段
階で極低炭素化する方法で製造される、Si 1.0%以
下、Mn 1.0%以下の純鉄系の無方向性電磁鋼板におい
て、化学組成ではとくに異常がないにもかかわらず磁気
特性の劣るものがしばしば出現することに遭遇し、その
原因と対策の検討をおこなった。まず、ほぼ同じ組成で
同じ製造条件であるとして製造された鋼板の中から、磁
気特性の大きく異るサンプルを抽出し、金属組織や製造
工程の条件を詳細に調査した。その結果、磁気特性のよ
くないサンプルは結晶粒の成長が悪く、さらに調査をす
すめたところ、その原因は酸化物系介在物の分散状態が
結晶粒成長を阻害しているためと推定された。すなわ
ち、熱間圧延で展伸した低融点の酸化物が、冷間圧延で
微細に破砕されて点列状に分散し、これが焼鈍中の粒界
移動を妨げ結晶粒の成長を阻害するのである。これらの
酸化物系介在物の組成を調査した結果、粒成長阻害が甚
だしい場合は、MnOの比率が高くなる傾向が見出され
た。
DISCLOSURE OF THE INVENTION The inventors of the present invention are directed to a pure iron-based non-oriented electrical steel sheet containing Si of 1.0% or less and Mn of 1.0% or less, which is manufactured by a method of extremely reducing carbon in a molten steel stage. , We found that the magnetic composition often had inferior magnetic properties even though there was no abnormality in the chemical composition, and we investigated the cause and countermeasures. First, samples having greatly different magnetic properties were extracted from steel sheets manufactured under almost the same composition and under the same manufacturing conditions, and the metallographic structure and manufacturing process conditions were investigated in detail. As a result, the samples with poor magnetic properties showed poor crystal grain growth. Further investigation further suggested that the cause was that the dispersed state of oxide inclusions hinders the crystal grain growth. That is, the low-melting-point oxide spread by hot rolling is finely crushed by cold rolling and dispersed in a point sequence, which hinders the grain boundary migration during annealing and inhibits the growth of crystal grains. . As a result of investigating the composition of these oxide-based inclusions, it was found that the MnO ratio tends to be high when the grain growth is extremely inhibited.

【0010】そこで次に、脱炭を主目的としておこなう
溶鋼の真空処理の条件や脱酸剤の添加方法を変え、これ
ら酸化物系介在物の組成をとくに意図して変化させて種
々の鋼を溶製し、圧延、焼鈍等をおこなって磁気特性に
およぼす介在物の影響を調査した。
Then, the conditions for vacuum treatment of molten steel, which is mainly used for decarburization, and the method of adding a deoxidizing agent are changed, and the composition of these oxide-based inclusions is changed with particular intention to obtain various steels. The effects of inclusions on the magnetic properties were investigated by melting, rolling, annealing, etc.

【0011】この場合、酸化物系の介在物は、その組成
を変化させ無害化しようとしているとはいえ、総量は少
ないほど磁気特性や結晶粒成長性によい筈であり、その
ためにはtot.Oはできるだけ低くすべきである。通常、
脱酸を目的に添加されるAlは、鋼中の酸化物の形態は
変えるがtot.Oは低下できず、その上、添加量が増して
sol.Alが存在するようになると、微細なAlNが析出
してきて結晶粒成長を阻害する。そこで、真空処理にお
ける脱炭は同時に有力な脱酸方法でもあることから、真
空における脱炭反応の活用による溶鋼の脱酸を極力おこ
なわせてtot.Oを低減させ、その上で、sol.Alが 0.0
02%を超えないようAlを添加して補完的な脱酸をおこ
なった後、SiやMnなどを添加して目的とする化学組
成に調整するようにした。
In this case, although the oxide-based inclusions are intended to be rendered harmless by changing their composition, the smaller the total amount, the better the magnetic properties and the crystal grain growth property. O should be as low as possible. Normal,
Al, which is added for the purpose of deoxidizing, changes the form of oxides in steel, but cannot decrease tot.O.
When sol.Al comes to exist, fine AlN is deposited and hinders crystal grain growth. Therefore, since decarburization in vacuum treatment is also a powerful deoxidizing method, detoxification of molten steel by utilizing decarburizing reaction in vacuum is performed as much as possible to reduce tot.O, and then sol.Al. Is 0.0
Al was added so as not to exceed 02% to perform complementary deoxidation, and then Si, Mn, etc. were added to adjust to a desired chemical composition.

【0012】その結果、前述の特開平7-150248号公報の
発明のようにSiO2 、MnOおよびAl2 3 の3種
の総重量に対するSiO2 の重量の割合を75%以上にす
るよりは、それを75%未満とした方がより一層磁気特性
が改善されることが明らかになった。また前述の特開昭
63-195217号公報の発明では、MnO量の割合の低下の
ため、転炉出鋼時の真空処理前にMnを添加して脱酸を
おこなわせている。これに対し、鋼中に脱酸生成物を作
らない真空処理による脱酸を極力おこなわせると、鋼中
の酸化物系非金属介在物量は大幅に低減するが、それと
共に介在物の組成が変化して磁気特性の向上により適し
たものとなり、さらに向上効果が大きくなったのではな
いかと考えられた。
As a result, the ratio of the weight of SiO 2 to the total weight of three kinds of SiO 2 , MnO and Al 2 O 3 is set to 75% or more as in the invention of Japanese Patent Application Laid-Open No. 7-150248 mentioned above. , It was clarified that the magnetic properties were further improved when it was made less than 75%. In addition, the above-mentioned
In the invention of 63-195217, since the ratio of the amount of MnO decreases, Mn is added before the vacuum treatment at the time of tapping the converter to perform deoxidation. On the other hand, if deoxidation is performed as much as possible by vacuum treatment that does not produce deoxidation products in steel, the amount of oxide-based non-metallic inclusions in the steel is significantly reduced, but the composition of inclusions changes with it. Therefore, it is considered that the magnetic properties became more suitable and the improvement effect became larger.

【0013】以上のような知見に基づき、磁気特性ばか
りでなく表面疵の発生や打抜き性への影響、さらには製
造時の作業性等を調査して、好ましい酸化物系介在物の
組成の限界を明確にし、製造時の条件も検討して本発明
を完成させた。本発明の要旨は次のとおりである。
Based on the above knowledge, not only the magnetic properties but also the influence on the occurrence of surface flaws and punchability, and the workability during manufacturing are investigated, and the limit of the composition of the preferable oxide inclusions is investigated. The present invention has been completed by clarifying the above and considering the conditions during manufacturing. The gist of the present invention is as follows.

【0014】(1) 重量%で、C:≦0.01%、Si:0.01
〜 1.0%、Mn:0.01〜 1.0%、P:≦0.15%、S:≦
0.035%、tot.O(鋼中の全酸素): 0.008〜0.02%、
sol.Al:< 0.002%で、かつMn(%)/S(%)≧
10であって(以下このような組成比の(%)を省略して
記述する)、さらに鋼中に存在するMnO、SiO2
よびAl2 3 の3種の酸化物系介在物の組成重量比が MnO/SiO2 ≦0.43 ・・・・・・・・・・・・・・・・・・ 0.1≦Al2 3 /SiO2 ≦ 1.0 ・・・・・・・・・・・・・ SiO2 /(SiO2 +MnO+Al2 3 )< 0.75 ・・・・・ であり、残部はFeおよび不可避的不純物であることを
特徴とする磁気特性にすぐれた無方向性電磁鋼板。
(1) C: ≦ 0.01% by weight, Si: 0.01
~ 1.0%, Mn: 0.01 ~ 1.0%, P: ≤ 0.15%, S: ≤
0.035%, tot.O (total oxygen in steel): 0.008-0.02%,
sol.Al: <0.002% and Mn (%) / S (%) ≧
10, the composition weight of three oxide inclusions of MnO, SiO 2 and Al 2 O 3 which are present in the steel (hereinafter, such composition ratio (%) is omitted). The ratio is MnO / SiO 2 ≦ 0.43 ······ 0.1 ≦ Al 2 O 3 / SiO 2 ≦ 1.0 ・ ・ ・SiO 2 / (SiO 2 + MnO + Al 2 O 3 ) <0.75, and the balance being Fe and unavoidable impurities, which is a non-oriented electrical steel sheet with excellent magnetic properties.

【0015】(2) 真空処理により溶鋼中のCを0.01%以
下、O(酸素)を0.02%以下に調整した後、sol.Alが
0.002%未満となる範囲にてAlを添加して脱酸し、次
いでSiおよびMnを添加して所要組成に調整すること
により、鋼の化学組成および鋼中の酸化物系介在物を制
御することを特徴とする請求項1の無方向性電磁鋼板の
製造方法。
(2) After adjusting C in molten steel to 0.01% or less and O (oxygen) to 0.02% or less by vacuum treatment, sol.
Controlling the chemical composition of steel and oxide-based inclusions in steel by adding Al in a range of less than 0.002% to deoxidize it, and then adding Si and Mn to adjust the required composition. The method for manufacturing a non-oriented electrical steel sheet according to claim 1.

【0016】成分および酸化物系介在物を調整して得ら
れた鋳片は、通常の条件の熱間圧延、冷間圧延、および
焼鈍等の工程で電磁鋼板とすればよい。より磁気特性を
向上させたい場合は必要に応じ冷間圧延前に焼鈍をおこ
なってもよいが、本発明は、できるだけ製造コストを低
くして十分な性能の無方向性電磁鋼板を得ることもその
目標の一つであり、余分の工程はできるだけなくす方が
望ましい。
The slab obtained by adjusting the components and oxide-based inclusions may be made into a magnetic steel sheet by processes such as hot rolling, cold rolling and annealing under normal conditions. If desired to further improve the magnetic properties, it may be annealed before cold rolling, if necessary, the present invention, the production cost as low as possible to obtain a non-oriented electrical steel sheet of sufficient performance This is one of the goals, and it is desirable to eliminate extra steps as much as possible.

【0017】[0017]

【発明の実施の形態】本発明の実施に際し、各要因や条
件を限定した理由を以下に述べる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for limiting each factor and condition in implementing the present invention will be described below.

【0018】(1) C Cは磁気特性を劣化させる元素なので製品の鋼板におい
ては少ないほどよい。
(1) C C is an element that deteriorates the magnetic properties, so the smaller it is, the better it is in the product steel sheet.

【0019】ただし、溶鋼の真空処理による脱炭ないし
は脱酸素の段階においては、到達真空度にもよるが溶鋼
中のCが 0.001%を下回る状態になると、tot.Oを0.02
%以下に低減できなくなるので多少の残存は避けられな
い。顕著な悪影響が現われない限界として、 0.010%以
下に限定する。
However, at the stage of decarburization or deoxygenation of molten steel by vacuum treatment, if C in molten steel becomes less than 0.001%, tot.
%, It cannot be reduced to below%, so some residual is unavoidable. The limit is 0.010% or less so that no significant adverse effect appears.

【0020】(2) Si Siは含有量が増すほど鋼の電気抵抗が高くなり、鉄損
低減に有効である。しかし一方では、含有量が増すと磁
束密度の低下を来すので、十分な磁束密度を確保するた
め、その含有量の上限を 1.0%とする。また、sol.Al
が 0.002%未満でMnOの量を多くしないようにするに
は、Siの脱酸効果が重要であり、そのためには少なく
とも0.05%以上の含有が必要である。したがって、Si
の含有範囲を0.05〜 1.0%とする。
(2) Si As the content of Si increases, the electric resistance of steel increases, which is effective in reducing iron loss. However, on the other hand, as the content increases, the magnetic flux density decreases, so in order to secure a sufficient magnetic flux density, the upper limit of the content is 1.0%. Also, sol.Al
Of less than 0.002% does not increase the amount of MnO, the deoxidizing effect of Si is important, and at least 0.05% or more is required for this purpose. Therefore, Si
Content range of 0.05 to 1.0%.

【0021】(3) Mn 本発明の場合、MnはSの存在による熱間圧延時の割れ
すなわち熱間脆性の抑止と、結晶粒成長阻害の低減を主
目的にその含有量を調整する。この効果を得るために
は、少なくともMn/Sが10以上となるよう含有してい
ることが必須である。Mnは電気抵抗を増すので鉄損の
低減に有意であるが、その効果はSiに比較して小さ
く、上記のSの害の抑止効果は含有量を増しても飽和し
てしまい、コスト上昇を来すので、上限を 1.0%とす
る。
(3) Mn In the present invention, the content of Mn is adjusted mainly for the purpose of suppressing cracking during hot rolling due to the presence of S, that is, hot embrittlement, and reducing grain growth inhibition. In order to obtain this effect, it is essential that the Mn / S content be at least 10 or more. Mn increases electric resistance and is therefore significant in reducing iron loss, but its effect is smaller than that of Si, and the effect of suppressing the harmful effect of S is saturated even if the content is increased, resulting in an increase in cost. The upper limit is 1.0%.

【0022】(4) P Pは鋼に不可避的に混入してくる不純物の一つである
が、無方向性電磁鋼板の場合、電気抵抗を増し硬さを高
くして打抜き性を向上させる効果があるので、積極的に
添加する。ただし鋼を脆化させる傾向があるため、その
含有量は多くても0.15%までとする。
(4) P P is one of the impurities that are inevitably mixed in the steel, but in the case of non-oriented electrical steel sheet, the effect of increasing electrical resistance and hardness to improve punchability Therefore, it is added positively. However, since it tends to embrittle steel, its content should be at most 0.15%.

【0023】(5) S Sは、磁気特性を劣化させるのでその含有量は少なけれ
ば少ないほどよい。ただし、鋼板の打抜き性や切削性を
改善する効果があるので、必要に応じて添加するが、そ
の場合でも含有量は 0.035%までとする。上述のように
Mn/Sを10以上とすることにより磁気特性劣化や熱間
脆性を軽減できても、これを超える含有は影響が顕著に
なる。
(5) Since S S deteriorates the magnetic properties, the smaller the content, the better. However, it has the effect of improving the punchability and machinability of the steel sheet, so it is added if necessary, but even in that case the content is up to 0.035%. As described above, if Mn / S is set to 10 or more, magnetic property deterioration and hot brittleness can be reduced, but if the content exceeds this, the effect becomes remarkable.

【0024】とくに磁気特性を重視する場合、望ましく
は 0.006%以下とする。しかし、打抜き性や切削性を強
く要望される場合には、 0.015〜 0.035%とするのがよ
い。
When the magnetic characteristics are emphasized, the content is preferably 0.006% or less. However, when punching property and machinability are strongly desired, 0.015 to 0.035% is preferable.

【0025】(6) Al Alは健全な鋳片を得るための溶鋼の脱酸剤として添加
する。添加により脱酸生成物の一部は浮上するが、残余
は酸化物系介在物を形成し、さらに過剰のAlはsol.A
lとして鋼中に残存する。sol.AlはAlNの微細析出
物を形成しやすく、その量が増すと結晶粒成長や磁壁移
動の障害になる。そこで、sol.Al量は0.002%未満と
する。
(6) Al Al is added as a deoxidizing agent for molten steel to obtain a sound cast piece. Although a part of the deoxidized product floats by the addition, the balance forms oxide inclusions, and the excess Al is sol.A.
It remains in the steel as l. sol.Al easily forms fine precipitates of AlN, and if the amount increases, it becomes an obstacle to crystal grain growth and domain wall movement. Therefore, the sol.Al amount is less than 0.002%.

【0026】なお、sol.Alを低減することにより、N
が多く含有されてもAlNの微細析出物の生成は抑制で
きるが、SiとMnの存在によりSi−Mn−N系の微
細析出物の発生の危険性が出てくる。したがって、Nは
できるだけ少なくすべきで、0.005%以下とするのが望
ましい。
By reducing sol.Al, N
Although the formation of AlN fine precipitates can be suppressed even if a large amount of Si is contained, the presence of Si and Mn poses a risk of generating Si—Mn—N-based fine precipitates. Therefore, N should be as small as possible, preferably 0.005% or less.

【0027】(7) tot.O(全酸素) 鋼中のtot.Oの量を 0.008〜0.02%とする。これは次の
ような結果に基づいている。
(7) tot.O (total oxygen) The amount of tot.O in steel is set to 0.008 to 0.02%. This is based on the following results.

【0028】C: 0.003〜 0.005%、Si: 0.2〜 0.3
%、Mn: 0.2〜 0.3%、sol.Al:< 0.002%とした
tot.O量の種々異る鋼を実験室的に到達真空度を変える
ことにより溶製し、熱間圧延、冷間圧延および焼鈍をお
こなって 0.5mm厚の鋼板とした後、JIS-C-2550に規定の
エプスタイン試験法により磁気特性を調査した。
C: 0.003 to 0.005%, Si: 0.2 to 0.3
%, Mn: 0.2 to 0.3%, sol.Al: <0.002%
Steel with various tot.O contents was melted in the laboratory by changing the ultimate vacuum, hot-rolled, cold-rolled and annealed to form a 0.5 mm thick steel plate, and then JIS-C- The magnetic properties were investigated by the Epstein test method specified in 2550.

【0029】図1にこれらの鋼板の酸素量に対する鉄損
値(W15/50 )の測定結果を示す。
FIG. 1 shows the results of measuring the iron loss value (W 15/50 ) with respect to the oxygen content of these steel sheets.

【0030】この結果から明らかなように、tot.O量が
0.008%未満、または0.02%を超える場合鉄損値が悪く
なっている。0.02%を超えると介在物量が増し、磁気特
性が劣化したものと考えられる。 0.008%未満で悪くな
る理由は明らかではないが、鋼板の結晶粒径が大きくな
っていないことから、O量が少なくなりすぎたため介在
物の分散状態が変化し、焼鈍時の結晶粒成長を阻害した
のではないかと考えられた。また、実際の工場における
製造にて、C量の上限の 0.010%を十分下回る量に制御
した上でtot.Oを 0.008%以下に低減するには、溶鋼真
空処理の排気設備の能力の限界や酸素の供給等を配慮し
た高価な耐火材の選定など、コストの大幅上昇を招くの
で現実的には困難である。
As is clear from this result, the amount of tot.O is
If it is less than 0.008% or exceeds 0.02%, the iron loss value is bad. It is considered that when the content exceeds 0.02%, the amount of inclusions increases and the magnetic properties deteriorate. It is not clear why it becomes worse at less than 0.008%, but since the crystal grain size of the steel sheet is not large, the dispersed state of inclusions changes due to too little O content, which hinders crystal grain growth during annealing. I was wondering if I did. In addition, in production in an actual factory, in order to reduce the tot.O to 0.008% or less while controlling the amount to be well below the upper limit of C of 0.010%, the limit of the capacity of the exhaust equipment for molten steel vacuum processing and It is practically difficult because it causes a large increase in cost, such as selection of expensive refractory materials in consideration of oxygen supply and the like.

【0031】(8) 酸化物系介在物の組成 tot.Oを低減させて、Alをできるだけ使用しないよう
にすれば、酸化物系介在物の主要組成物はMnOとSi
2 になると推定される。そこで上述の組成範囲の実験
室的に製造した電磁鋼板にて、介在物中のSiO2 に対
するMnOの重量組成比を取り、鉄損との関係を調べて
みると図2のような結果が得られた。すなわち、MnO
/SiO2 が 3/ 7以下、または0.43以下とすることに
より良好な磁気特性が得られる。これはMnOの比率を
低下させると介在物の軟化点が上昇し、熱間圧延による
介在物の展伸、および冷間圧延による破砕が抑制され、
結晶粒成長が促進されたためと考えられる。
(8) If the composition tot. O of the oxide-based inclusions is reduced and Al is not used as much as possible, the main composition of the oxide-based inclusions is MnO and Si.
It is estimated to be O 2 . Therefore, in a laboratory-made electromagnetic steel sheet with the above composition range, the weight composition ratio of MnO to SiO 2 in inclusions was taken, and the relationship with iron loss was examined, and the results shown in Fig. 2 were obtained. Was given. That is, MnO
Good magnetic properties can be obtained by setting / SiO 2 to 3/7 or less, or 0.43 or less. This is because when the ratio of MnO is decreased, the softening point of inclusions rises, expansion of inclusions due to hot rolling and crushing due to cold rolling are suppressed,
This is probably because the crystal grain growth was promoted.

【0032】このようにMnOの比率の低下が好ましい
とすれば、tot.Oが限定された場合のSi量に対するA
lの使用量を十分配慮すべきであると思われる。そこで
酸化物系介在物のSiO2 に対するAl2 3 の比との
関係を調査してみた。その結果、Al2 3 /SiO2
が 0.1以上 1.0以下の範囲で磁気特性が良好であること
が判明した。このAl2 3 比が 1.0を超えると磁気特
性が悪くなるのは、sol.Alの増加による微細なAlN
析出が主な原因である。 0.1を下回るとよくない理由は
明らかでないが、粒成長性や磁気特性に悪影響をおよぼ
すSi−Mn−N系の微細析出物の生成によるのではな
いかと考えられる。
If it is preferable to decrease the ratio of MnO, the amount of A with respect to the amount of Si when tot.
It seems that the amount of l used should be carefully considered. Therefore, the relationship between the oxide inclusions and the ratio of Al 2 O 3 to SiO 2 was investigated. As a result, Al 2 O 3 / SiO 2
It was found that the magnetic properties were good in the range of 0.1 to 1.0. If the Al 2 O 3 ratio exceeds 1.0, the magnetic properties deteriorate.
Precipitation is the main cause. The reason why it is not good if it is less than 0.1 is not clear, but it is considered that it may be due to the formation of Si—Mn—N type fine precipitates which adversely affect the grain growth property and the magnetic properties.

【0033】磁気特性は良好であっても、製造上あるい
は製品の使用上難点のある鋼は量産には適応できない。
そのような観点から酸化物系介在物の組成の影響を調べ
ると、Al2 3 の増加は鋳込み時のノズル詰まりを起
こしやすく、鋼板の表面欠陥を多くし、さらに電磁鋼板
を打抜いたり切削したりする際の工具寿命を低下させる
傾向がある。しかしながらtot.Oを限定し、かつAl2
3 /SiO2 が 1.0以下である範囲に限定すれば、こ
のような問題はなくなる。
Steel having good magnetic properties but having difficulty in production or use of the product cannot be applied to mass production.
Examining the effect of the composition of oxide inclusions from such a viewpoint, an increase in Al 2 O 3 tends to cause nozzle clogging at the time of casting, increasing the surface defects of the steel sheet, and further punching and cutting electromagnetic steel sheets. It tends to shorten the tool life when doing. However, limiting tot.O, and Al 2
If the O 3 / SiO 2 is limited to a range of 1.0 or less, such a problem disappears.

【0034】SiO2 に対するMnOやAl2 3 の比
を上述のように規制したとしても、酸化物系介在物の組
成のほとんどすべてをSiO2 となるようにすると、磁
気特性がやや劣ってくるばかりでなく、工具寿命を短く
し打抜き性を悪くする。磁気特性を悪くする理由は、介
在物の形態変化による影響の相違と思われる。工具寿命
に対しては硬いSiO2 そのものが影響をおよぼすため
と推定され、MnOやAl2 3 等がある程度混在する
酸化物系介在物が好ましいと考えられた。そのような範
囲はSiO2 比率すなわちSiO2 /(SiO2 +Mn
O+Al2 3)が0.75未満である。
Even if the ratio of MnO or Al 2 O 3 to SiO 2 is regulated as described above, if almost all the composition of oxide inclusions is changed to SiO 2 , the magnetic properties will be slightly inferior. Not only that, but it shortens the tool life and deteriorates punchability. The reason for deteriorating the magnetic properties seems to be the difference in the effect due to the morphological change of inclusions. It is presumed that hard SiO 2 itself has an influence on the tool life, and it was considered that oxide inclusions in which MnO, Al 2 O 3 and the like are mixed to some extent are preferable. Such a range is a SiO 2 ratio, that is, SiO 2 / (SiO 2 + Mn
O + Al 2 O 3 ) is less than 0.75.

【0035】以上の、酸化物系介在物におけるSi
2 、MnOおよびAl2 3 の組成比の限界は、前述
のように、および式にまとめられる。さらにこの
本発明範囲を表示すれば、図3に示す太線でかこまれた
範囲になる。
The above Si in the oxide inclusions
The compositional limits of O 2 , MnO and Al 2 O 3 are summarized above and in the equation. Further, when the range of the present invention is displayed, the range surrounded by the thick line shown in FIG. 3 is displayed.

【0036】ただし、現実の鋼板中に存在する個々の酸
化物系介在物の組成は、同じ鋳片から得た鋼板であって
も、それぞれが同一ではなくばらついている。しかしな
がら鋼板中に存在する全酸化物系介在物の80%以上がこ
の組成範囲に入っておれば、良好な磁気特性の無方向性
電磁鋼板が得られている。すなわち、実質的に酸化物系
介在物の組成がここで定める組成範囲であればよい。
However, the composition of the individual oxide-based inclusions present in the actual steel sheet is not the same but varies with the steel sheets obtained from the same cast piece. However, if 80% or more of all oxide-based inclusions present in the steel sheet fall within this composition range, a non-oriented electrical steel sheet with good magnetic properties is obtained. That is, the composition of the oxide inclusions may be substantially within the composition range defined here.

【0037】(9) 溶鋼の脱酸処理方法 tot.Oの量を 0.008〜0.02%とするには、減圧下でのC
O発生による脱酸を活用し到達真空度および真空処理時
間を制御して、溶鋼中のCを 0.002〜 0.005%となるよ
うにする。到達真空度は0.01気圧程度が望ましいが、0.
05気圧程度でも処理時間を長くすることにより所要のto
t.O範囲に低下できる。その後Alを添加し、次いでS
iおよびMnを添加して鋼成分を調整するのがよい。溶
鋼の真空処理前、ないしは真空処理中の脱酸昇熱を目的
とするAlの添加は極力避ける。
(9) Method for deoxidizing molten steel To make the amount of tot.O 0.008 to 0.02%, C under reduced pressure is used.
The ultimate vacuum and the vacuum treatment time are controlled by utilizing the deoxidation caused by the generation of O so that the C in the molten steel becomes 0.002 to 0.005%. The ultimate vacuum is preferably 0.01 atm, but
Even if the pressure is about 05 atm, the required to
It can be lowered to the t.O range. Then add Al, then S
It is preferable to add i and Mn to adjust the steel composition. Prior to vacuum treatment of molten steel or during vacuum treatment, addition of Al for the purpose of deoxidation heating is avoided as much as possible.

【0038】これは、Alを真空処理による脱酸が終了
する前に添加するとtot.Oが目標範囲に入らなくなるば
かりでなく、介在物組成がAl2 3 の多いものになっ
てしまうからである。真空処理後にAlを添加すれば、
介在物中に適量のAl2 3 が含まれてSiO2 の比率
の増大を抑制でき、式を満足させることができる。
This is because if Al is added before the completion of deoxidation by vacuum treatment, not only tot.O does not fall within the target range, but also the composition of inclusions becomes large in Al 2 O 3. is there. If Al is added after the vacuum treatment,
The inclusion can contain an appropriate amount of Al 2 O 3 to suppress an increase in the ratio of SiO 2 and satisfy the formula.

【0039】SiまたはMnは、昇熱目的あるいは目標
組成によっては真空処理前ないしは真空処理中に添加し
てもよいが、式を満足させ、さらに酸化物系介在物の
組成を図3に示す本発明範囲にするには、Alの添加後
とするのがよい。
Si or Mn may be added before the vacuum treatment or during the vacuum treatment depending on the purpose of heating or the target composition, but the formula is satisfied and the composition of the oxide-based inclusions is shown in FIG. In order to make it within the scope of the invention, it is preferable to add Al.

【0040】溶鋼中のCは、tot.Oを本発明の目標範囲
に制御するために、溶鋼中ではある程度以上の存在が重
要である。しかし、鋳片を最終の電磁鋼板にする製造工
程において、たとえば焼鈍工程などで雰囲気による脱炭
が生じて低減することがあるので、電磁鋼板の化学組成
としてはC量の下限をとくには規制しない。
It is important that C in the molten steel be present to some extent or more in the molten steel in order to control tot.O within the target range of the present invention. However, in the manufacturing process for making the cast slab into the final electrical steel sheet, decarburization due to the atmosphere may occur in the annealing step, for example, and this may be reduced, so the lower limit of the C content is not particularly restricted as the chemical composition of the electrical steel sheet. .

【0041】鋳片を最終の電磁鋼板に仕上げるための製
造工程において、よりよい磁気特性を得るために望まし
い条件は次のとおりである。すなわち、熱間圧延のスラ
ブ加熱温度は1200℃以下、仕上温度は 860〜 950℃と
し、巻取温度は 600〜 700℃とするのがよい。スラブ加
熱温度を1200℃以下とするのは、とくに磁気特性が劣化
しがちなSの含有量が多い場合、スラブ加熱温度を下げ
ることにより改善できるためで、1150℃以下にできれば
なおよい。ただし、仕上温度が確保できなくなるので加
熱温度低下には限度がある。仕上温度は 860℃以上が望
ましいのは、 600〜 700℃の巻取温度と組合せることに
より、特性改善されるからである。これは巻き取った状
態で十分再結晶がおこなわれるためと考えられる。 950
℃を超える仕上温度は、1200℃以下のスラブ加熱では実
現困難であり、その上表面疵が増すなど製品外観の劣化
を来す。
In the manufacturing process for finishing the cast slab into the final electromagnetic steel sheet, desirable conditions for obtaining better magnetic properties are as follows. That is, it is preferable that the slab heating temperature in hot rolling is 1200 ° C or lower, the finishing temperature is 860 to 950 ° C, and the coiling temperature is 600 to 700 ° C. The reason why the slab heating temperature is set to 1200 ° C. or lower is that it can be improved by lowering the slab heating temperature, especially when the content of S, which tends to deteriorate the magnetic properties, is large. However, since the finishing temperature cannot be secured, there is a limit to the decrease in heating temperature. The finishing temperature of 860 ° C or higher is desirable because the characteristics can be improved by combining it with the winding temperature of 600 to 700 ° C. It is considered that this is because recrystallization is sufficiently performed in the wound state. 950
Finishing temperatures above ℃ are difficult to achieve by heating slabs below 1200 ℃, and in addition, surface defects increase and the product appearance deteriorates.

【0042】[0042]

【実施例】【Example】

〔実施例1〕表1に化学組成を示すが、tot.Oは0.02%
以下とすることを目標とし、溶鋼の真空処理によりtot.
Oを0.02%以下としてからAlを添加後SiおよびMn
含有量を調整するようにしたもの、真空処理前または処
理中にAlを添加したもの、真空処理前または処理中に
SiおよびMnを添加したもの等、成分の調整方法を変
え、16種の鋼スラブを溶製した。これらスラブを1180℃
に加熱して仕上温度 870〜 890℃、巻取温度 660〜 680
℃として 2.0mmに熱間圧延後、脱スケールおよび冷間圧
延して 0.5mm厚に仕上げ、 850℃にて均熱 1 minの焼鈍
と、通常の無方向性電磁鋼板と同様の表面絶縁コーティ
ングをおこなった。
[Example 1] The chemical composition is shown in Table 1, and tot.O is 0.02%.
The target is to:
After adding O after 0.02% or less of Si, Si and Mn
16 types of steels with different composition adjustment methods, such as those with adjusted content, those with Al added before or during vacuum treatment, those with Si and Mn added before or during vacuum treatment, etc. The slab was melted. These slabs at 1180 ℃
Finishing temperature 870 ~ 890 ℃, winding temperature 660 ~ 680
After hot rolling to 2.0 mm at 2.0 ° C, descaling and cold rolling to finish to 0.5 mm thickness, annealing at 850 ° C for 1 min soaking, and surface insulation coating similar to ordinary non-oriented electrical steel sheets. I did it.

【0043】[0043]

【表1】 [Table 1]

【0044】得られた鋼板により、鋼の介在物組成の分
析、磁気特性の測定、および打抜き性評価試験をおこな
った。介在物組成はエネルギー分散型X線分析法により
分析し、磁気特性についてはJIS-C-2550に規定のエプス
タイン試験法に基づいて実施し、鉄損(W15/50 )およ
び磁束密度(B50)を求めた。打抜き性については、ク
リアランス 5%、 8%および10%としたコーナーR部0.
12mmの20mm角ブランク3種を同時に打抜けるSKD-11の金
型により、エマルジョン潤滑にて 200回/minの打抜き
をおこない、バリ発生の相対評価により判定した。
The obtained steel sheet was subjected to analysis of the composition of inclusions in the steel, measurement of magnetic properties, and punchability evaluation test. The inclusion composition was analyzed by the energy dispersive X-ray analysis method, and the magnetic properties were measured based on the Epstein test method specified in JIS-C-2550, and the iron loss (W 15/50 ) and magnetic flux density (B 50 ) Was asked. Regarding punchability, the corner R part with clearances of 5%, 8% and 10%.
Using an SKD-11 mold capable of punching 3 types of 12 mm 20 mm square blanks at the same time, punching was performed 200 times / min with emulsion lubrication, and judgment was made by relative evaluation of burr generation.

【0045】表2にこれらの結果を併せて示す。また、
これらの鋼の酸化物系介在物の組成比を図3内に記載し
た。
Table 2 also shows these results. Also,
The composition ratio of oxide inclusions in these steels is shown in FIG.

【0046】[0046]

【表2】 [Table 2]

【0047】溶鋼の真空処理により、tot.Oが0.02%を
十分下回るようにした後にAlを添加し、かつ化学組
成、および酸化物系の介在物組成が本発明の定める範囲
に入る鋼A〜Fは、すぐれた磁気特性および打抜き性を
示している。
Steel A to which Al is added after the tot.O is sufficiently lower than 0.02% by vacuum treatment of molten steel and the chemical composition and oxide-based inclusion composition fall within the range defined by the present invention F shows excellent magnetic properties and punchability.

【0048】これに対し、真空処理前にSiまたはAl
を添加した鋼G、HおよびIは、介在物中のSiO2
たはAl2 3 の比率が本発明で定める範囲を外れ、打
抜き性が劣る結果となっている。鋼JおよびKは、真空
処理中の溶鋼中のC量がやや高くtot.Oが本発明で定め
る範囲を下回り、介在物中のMnO比率も高すぎ、磁気
特性が劣る結果となった。これは微細な酸化物系介在物
が増加したためと考えられる。鋼Lは溶鋼の昇熱にもA
lを添加したこともあってsol.AlおよびAl2 3
比率が高くなり、磁気特性ばかりでなく打抜き性も劣っ
た結果になっている。鋼M〜PはそれぞれSi、Mn、
P、S等が本発明で定める範囲を外れており、磁気特性
または打抜き性が向上しない結果となっている。
On the other hand, before vacuum treatment, Si or Al
In the steels G, H and I added with, the ratio of SiO 2 or Al 2 O 3 in the inclusions is out of the range defined by the present invention, resulting in poor punchability. In Steels J and K, the amount of C in the molten steel during vacuum treatment was slightly high, tot.O was below the range defined by the present invention, and the MnO ratio in the inclusions was too high, resulting in poor magnetic properties. It is considered that this is because the number of fine oxide inclusions increased. Steel L is also for heating the molten steel A
The addition of 1 also increased the ratio of sol.Al and Al 2 O 3 , resulting in not only poor magnetic properties but also poor punchability. Steels M to P are Si, Mn, and
P, S, etc. are out of the ranges defined in the present invention, and the magnetic properties or punchability are not improved.

【0049】[0049]

【発明の効果】本発明は、鋼中の酸化物系介在物の組成
を制御することにより、高価な合金元素や特殊な製造工
程を用いることなく、低鉄損で高磁束密度の磁気特性に
すぐれた低Si系の無方向性電磁鋼板を提供するもので
あり、実用上きわめて有意義である。
INDUSTRIAL APPLICABILITY According to the present invention, by controlling the composition of oxide inclusions in steel, magnetic properties of low iron loss and high magnetic flux density can be obtained without using expensive alloying elements or special manufacturing processes. It provides an excellent low-Si non-oriented electrical steel sheet, which is extremely significant in practical use.

【図面の簡単な説明】[Brief description of drawings]

【図1】鋼中の全酸素(tot.O)量と、鋼板の鉄損(W
15/50 )との関係を示す図である。
[Figure 1] Total oxygen (tot.O) content in steel and iron loss (W
It is a figure which shows the relationship with 15/50 ).

【図2】鋼中の酸化物系介在物のMnO/SiO2 と、
鋼板の鉄損(W15/50 )との関係を示す図である。
FIG. 2 shows oxide inclusions MnO / SiO 2 in steel,
It is a figure which shows the relationship with the iron loss ( W15 / 50 ) of a steel plate.

【図3】鋼中の酸化物系介在物の組成比率について、本
発明範囲および実施例1の鋼の場合の例を示す図であ
る。
FIG. 3 is a diagram showing an example of the composition ratio of oxide-based inclusions in steel in the case of the steel of the present invention range and Example 1.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C:≦0.01%、Si:0.01〜
1.0%、Mn:0.01〜 1.0%、P:≦0.15%、S:≦ 0.
035%、tot.O(鋼中の全酸素): 0.008〜0.02%、so
l.Al:< 0.002%で、かつMn/S≧10であって、さ
らに鋼中に存在するMnO、SiO2 およびAl2 3
の3種の酸化物系介在物の組成重量比が MnO/SiO2 ≦0.43 ・・・・・・・・・・・・・・・・・・ 0.1≦Al2 3 /SiO2 ≦ 1.0 ・・・・・・・・・・・・・ SiO2 /(SiO2 +MnO+Al2 3 )<0.75 ・・・・・ であり、残部はFeおよび不可避的不純物であることを
特徴とする磁気特性にすぐれた無方向性電磁鋼板。
1. By weight%, C: ≦ 0.01%, Si: 0.01-
1.0%, Mn: 0.01 to 1.0%, P: ≤ 0.15%, S: ≤ 0.
035%, tot.O (total oxygen in steel): 0.008-0.02%, so
l.Al: <0.002% and Mn / S ≧ 10, and MnO, SiO 2 and Al 2 O 3 which are present in the steel.
The composition weight ratio of the three oxide inclusions of MnO / SiO 2 ≦ 0.43 ····· 0.1 ≦ Al 2 O 3 / SiO 2 ≦ 1.0 · ············ SiO 2 / (SiO 2 + MnO + Al 2 O 3) < 0.75 ..., the balance in the magnetic properties, which is a Fe and unavoidable impurities Excellent non-oriented electrical steel sheet.
【請求項2】真空処理により重量%で溶鋼中のCを0.01
%以下、O(酸素)を0.02%以下に調整した後、sol.A
lが 0.002%未満となる範囲にてAlを添加して脱酸
し、次いでSiおよびMnを添加することにより、鋼の
化学組成および鋼中の酸化物系介在物を制御することを
特徴とする請求項1の無方向性電磁鋼板の製造方法。
2. C content in molten steel is 0.01% by weight by vacuum treatment.
% Or less and O (oxygen) to 0.02% or less, then sol.
It is characterized in that the chemical composition of the steel and the oxide-based inclusions in the steel are controlled by adding Al and deoxidizing it in the range where l is less than 0.002%, and then adding Si and Mn. The method for manufacturing a non-oriented electrical steel sheet according to claim 1.
JP3586496A 1996-02-23 1996-02-23 Non-oriented electrical steel sheet with excellent magnetic properties and method for producing the same Expired - Fee Related JP3252692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3586496A JP3252692B2 (en) 1996-02-23 1996-02-23 Non-oriented electrical steel sheet with excellent magnetic properties and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3586496A JP3252692B2 (en) 1996-02-23 1996-02-23 Non-oriented electrical steel sheet with excellent magnetic properties and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09228006A true JPH09228006A (en) 1997-09-02
JP3252692B2 JP3252692B2 (en) 2002-02-04

Family

ID=12453863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3586496A Expired - Fee Related JP3252692B2 (en) 1996-02-23 1996-02-23 Non-oriented electrical steel sheet with excellent magnetic properties and method for producing the same

Country Status (1)

Country Link
JP (1) JP3252692B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009102739A (en) * 2008-12-12 2009-05-14 Sumitomo Metal Ind Ltd Method for producing non-oriented magnetic steel sheet
WO2013143022A1 (en) * 2012-03-26 2013-10-03 宝山钢铁股份有限公司 Unoriented silicon steel and method for manufacturing same
JP2013227649A (en) * 2012-03-30 2013-11-07 Nisshin Steel Co Ltd Steel plate for high output reluctance motor iron core, method of manufacturing the steel plate, rotor for reluctance motor and stator using the steel plate as raw material, and reluctance motor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008183050A (en) * 2007-01-26 2008-08-14 Sanyo Electric Co Ltd Display part for washing machine and washing machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009102739A (en) * 2008-12-12 2009-05-14 Sumitomo Metal Ind Ltd Method for producing non-oriented magnetic steel sheet
WO2013143022A1 (en) * 2012-03-26 2013-10-03 宝山钢铁股份有限公司 Unoriented silicon steel and method for manufacturing same
JP2015518086A (en) * 2012-03-26 2015-06-25 バオシャン アイアン アンド スティール カンパニー リミテッド Non-oriented silicon steel and method for producing the same
US10385414B2 (en) 2012-03-26 2019-08-20 Baoshan Iron & Steel Co., Ltd. Non-oriented silicon steel and its manufacturing method
JP2013227649A (en) * 2012-03-30 2013-11-07 Nisshin Steel Co Ltd Steel plate for high output reluctance motor iron core, method of manufacturing the steel plate, rotor for reluctance motor and stator using the steel plate as raw material, and reluctance motor

Also Published As

Publication number Publication date
JP3252692B2 (en) 2002-02-04

Similar Documents

Publication Publication Date Title
EP3404124B1 (en) Non-oriented electrical steel sheet and production method thereof
JP2007516345A (en) Improved manufacturing method for non-oriented electrical steel strip
JP6738056B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
JP6436316B2 (en) Method for producing grain-oriented electrical steel sheet
JP2000129410A (en) Nonoriented silicon steel sheet high in magnetic flux density
JP2861787B2 (en) Non-oriented electrical steel sheet with low iron loss and method of manufacturing the same
JP3252692B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties and method for producing the same
JPH059666A (en) Grain oriented electrical steel sheet and its manufacture
JP3931842B2 (en) Method for producing non-oriented electrical steel sheet
JPH1060532A (en) Production of nonoriented silicon steel sheet excellent in magnetic property and surface property
JP4568999B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JPH09263908A (en) Nonoriented silicon steel sheet and its production
JP2000017330A (en) Production of nonoriented silicon steel sheet low in iron loss
CN113166871A (en) Non-oriented electrical steel sheet and method for manufacturing the same
JP2560579B2 (en) Method for manufacturing high silicon steel sheet having high magnetic permeability
JPH10102219A (en) Nonoriented silicon steel sheet excellent in magnetic property, and its production
JP3937685B2 (en) Electrical steel sheet with excellent high-frequency magnetic properties and method for producing the same
TWI718670B (en) Non-directional electromagnetic steel sheet and method for manufacturing slab cast piece as its raw material
JPH05186828A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
WO2022113264A1 (en) Non-oriented electromagnetic steel sheet, method for producing same, and hot-rolled steel sheet
JP2712913B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP3362077B2 (en) Smelting method of molten steel for non-oriented electrical steel sheets with low iron loss
JP2666626B2 (en) Low iron loss non-oriented electrical steel sheet and its manufacturing method
JPH10237545A (en) Manufacture of low grade silicon steel sheet minimal in magnetic anisotropy, and low grade silicon steel sheet minimal in magnetic anisotropy
JPH0860247A (en) Production of nonoriented silicon steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees