JPH1088297A - Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing - Google Patents

Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing

Info

Publication number
JPH1088297A
JPH1088297A JP8236861A JP23686196A JPH1088297A JP H1088297 A JPH1088297 A JP H1088297A JP 8236861 A JP8236861 A JP 8236861A JP 23686196 A JP23686196 A JP 23686196A JP H1088297 A JPH1088297 A JP H1088297A
Authority
JP
Japan
Prior art keywords
iron loss
steel sheet
less
annealing
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8236861A
Other languages
Japanese (ja)
Inventor
Yoshihiko Oda
善彦 尾田
Akira Hiura
昭 日裏
Hideki Matsuoka
秀樹 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP8236861A priority Critical patent/JPH1088297A/en
Publication of JPH1088297A publication Critical patent/JPH1088297A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets

Abstract

PROBLEM TO BE SOLVED: To provide a nonoriented silicon steel sheet capable of manufacture without increasing costs and sufficiently reduced in iron loss after magnetic annealing. SOLUTION: This nonoriented silicon steel sheet has a composition consisting of, by weight, <=0.005% C, <=0.2% P, <=1.5% Si, 0.2-0.8% Mn, <=0.004% (including 0%) Al, <=0.005% (including 0%) N, <=0.001% (including 0%) S, <=0.005% (including 0%) Ti, and the balance essentially Fe.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁性焼鈍後に低い
鉄損が得られる無方向性電磁鋼板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-oriented electrical steel sheet capable of obtaining a low iron loss after magnetic annealing.

【0002】[0002]

【従来の技術】無方向性電磁鋼板は、その製造方法によ
りフルプロセス材とセミプロセス材に分けられる。この
うち、フルプロセス材は鉄鋼メーカー側の仕上焼鈍によ
り所定の磁気特性を得るものである。一方、セミプロセ
ス材は、需要家において打抜き加工後に歪取り焼鈍を行
うことにより所定の磁気特性を得るものである。セミプ
ロセス材においては、歪取り焼鈍時に、加工歪みの除去
と同時に結晶粒も成長することから、より一層の鉄損低
減が可能となる。このため歪取り焼鈍は「磁性焼鈍」と
も呼ばれている。
2. Description of the Related Art Non-oriented electrical steel sheets are classified into full-process materials and semi-process materials according to their manufacturing methods. Among them, the full process material obtains predetermined magnetic characteristics by finish annealing on the steel maker side. On the other hand, the semi-process material obtains predetermined magnetic properties by performing strain relief annealing after punching in a customer. In the case of the semi-process material, the crystal grains grow simultaneously with the removal of the processing strain during the strain relief annealing, so that the iron loss can be further reduced. For this reason, the strain relief annealing is also called “magnetic annealing”.

【0003】従来、この磁性焼鈍時の粒成長性を良好に
するために、介在物、析出物の無害化が行われている。
Conventionally, inclusions and precipitates have been rendered harmless in order to improve the grain growth during magnetic annealing.

【0004】例えば、特開昭63ー195217号公報
には、Si=0.1〜1.0%、sol.Al=0.0
01〜0.005%の鋼板において、鋼中のSiO2
MnO、Al2 3 の3種の介在物の総重量に対するM
nOの重量割合を15%以下とすることにより介在物の
形態を制御し、磁性焼鈍時の粒成長性を良好にする技術
が開示されている。
For example, JP-A-63-195217 discloses that Si = 0.1 to 1.0%, sol. Al = 0.0
In a steel sheet of 0.01 to 0.005%, SiO 2 in steel,
M based on the total weight of the three types of inclusions, MnO and Al 2 O 3
A technique has been disclosed in which the morphology of inclusions is controlled by setting the weight ratio of nO to 15% or less to improve the grain growth during magnetic annealing.

【0005】また、特開平8ー3699号公報には、S
i=1.0%以下、Al=0.2〜1.5%においてR
EMを2〜80ppm添加することにより磁性焼鈍時の
粒成長性を向上させる技術が開示されている。
Japanese Patent Laid-Open Publication No. Hei 8-3699 discloses S
When i = 1.0% or less and Al = 0.2 to 1.5%, R
A technique for improving grain growth during magnetic annealing by adding 2 to 80 ppm of EM is disclosed.

【0006】さらに、特開平5ー234736号公報に
は、Si=0.1〜2.0%、Al=0.1〜1.0
%、S<0.003%、Sn=0.01〜0.03%の
鋼板において鋼中のSiO2 、MnO、Al2 3 の3
種の介在物の総重量に対するMnOの重量割合を10%
以下とすることにより介在物の形態を制御し、熱延加熱
温度を900〜1100℃、熱延後のバッチ焼鈍を70
0〜900℃で実施することにより粒成長性を良好にす
る技術が開示されている。
Further, Japanese Patent Application Laid-Open No. 5-234736 discloses that Si = 0.1 to 2.0% and Al = 0.1 to 1.0%.
%, S <0.003%, and Sn = 0.01 to 0.03% in steel sheets, SiO 2 , MnO, and Al 2 O 3 .
10% by weight of MnO to the total weight of the inclusions
The form of the inclusions is controlled by the following, the hot rolling heating temperature is 900 to 1100 ° C., and the batch annealing after the hot rolling is performed at 70 ° C.
There is disclosed a technique for improving the grain growth by performing the process at 0 to 900 ° C.

【0007】[0007]

【発明が解決しようとする課題】しかし、特開昭63ー
195217号公報に記載される技術においては、磁性
焼鈍後の鋼板の鉄損は4.44〜4.75W/Kgであり
満足できるものではない。特開平8ー3699号公報に
記載される技術においては、REMを使用するためコス
トアップとなる。特開平5ー234736号公報に記載
される技術においては、Sn添加が必須であり、また、
バッチ焼鈍が必要となるためコストアップとなることは
避けられない。
However, in the technology described in Japanese Patent Application Laid-Open No. 63-195217, the iron loss of the steel sheet after magnetic annealing is 4.44 to 4.75 W / Kg, which is satisfactory. is not. In the technique described in JP-A-8-3699, the cost increases because REM is used. In the technology described in JP-A-5-234736, Sn addition is essential,
Since batch annealing is required, an increase in cost cannot be avoided.

【0008】本発明はこのような従来技術の持つ問題点
を解決するためになされたものであり、コストアップを
伴うことなく製造可能な、磁性焼鈍後の鉄損が充分に低
い無方向性電磁鋼板を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art, and is a non-directional electromagnetic device which can be manufactured without increasing the cost and has sufficiently low iron loss after magnetic annealing. The purpose is to provide steel sheets.

【0009】[0009]

【課題を解決するための手段】上記課題は、重量%で、
C:0.005%以下、P:0.2%以下、Si:1.
5%以下、Mn:0.2〜0.8%を含み、Al:0.
004%以下(0を含む)、N:0.005%以下(0
を含む)、S:0.001%以下(0を含む)、Ti:
0.005%以下(0を含む)であり、残部が実質的に
Feである無方向性電磁鋼板により解決される。ここ
に、「残部が実質的にFeである」とは、不可避不純物
や、その他、本発明の技術的思想と関係の無い微量の添
加物を含み得る趣旨である。
Means for Solving the Problems The above-mentioned problems are expressed in terms of% by weight,
C: 0.005% or less, P: 0.2% or less, Si: 1.
5% or less, Mn: 0.2 to 0.8%, Al: 0.
004% or less (including 0), N: 0.005% or less (0
), S: 0.001% or less (including 0), Ti:
The problem is solved by a non-oriented electrical steel sheet whose content is 0.005% or less (including 0) and the balance is substantially Fe. Here, "the balance is substantially Fe" means that unavoidable impurities and other trace amounts of additives not related to the technical idea of the present invention may be contained.

【0010】即ち、本発明の要旨は、S含有量を10p
pm以下(0を含む)、Ti含有量を50ppm以下
(0を含む)の極微量に制御することにより磁性焼鈍後
の鉄損を画期的に低減させることにある。
That is, the gist of the present invention is that the S content is 10 p
pm or less (including 0) and the Ti content is controlled to a very small amount of 50 ppm or less (including 0) to significantly reduce iron loss after magnetic annealing.

【0011】以下に、本発明を実験結果に基づいて詳細
に説明する。 〔S含有量の限定理由〕最初に、鉄損に及ぼすS含有量
の影響を調査するため、C:0.0026%、Si:
0.35%、Mn:0.55%、P:0.05%、t
r.Al%、Ti=0.0020%、N=0.0020
%としS含有量を種々変えた鋼をラボ溶解し、熱延後、
酸洗を行った。引き続きこの熱延板を板厚0.5mmまで
冷間圧延し、750℃×1min 間の仕上焼鈍を施し、さ
らに750℃×2hrの磁性焼鈍を行った。
Hereinafter, the present invention will be described in detail based on experimental results. [Reason for limiting S content] First, in order to investigate the effect of S content on iron loss, C: 0.0026%, Si:
0.35%, Mn: 0.55%, P: 0.05%, t
r. Al%, Ti = 0.0020%, N = 0.0020
%, And steel with various S contents was melted in a laboratory and hot rolled.
Pickling was performed. Subsequently, the hot-rolled sheet was cold-rolled to a thickness of 0.5 mm, subjected to finish annealing at 750 ° C. × 1 min, and further subjected to magnetic annealing at 750 ° C. × 2 hours.

【0012】図1はこのようにして得られたサンプルの
S含有量と磁性焼鈍後の鉄損W15/5 0 の関係を示したも
のである。ここで、磁気測定は25cmエプスタイン試験
片を用いて行った。図1より、S≦10ppmとなった
場合に鉄損W15/50 は4.0W/kg以下となり、鉄損が
大幅に低下することがわかる。
[0012] Figure 1 shows the iron loss W 15/5 0 relationship after the S content and the magnetic annealing of samples obtained in this way. Here, the magnetic measurement was performed using a 25 cm Epstein test piece. FIG. 1 shows that when S ≦ 10 ppm, the iron loss W 15/50 is 4.0 W / kg or less, and the iron loss is significantly reduced.

【0013】以上のことよりS含有量は10ppm以下
とし、より好ましくは5ppm以下とする。
From the above, the S content is set to 10 ppm or less, more preferably, 5 ppm or less.

【0014】〔Ti含有量の限定理由〕次に、本鋼種の
製造安定性を調査するため、C:0.0030%、S
i:0.35%、Mn:0.50%、P:0.100
%、tr.Al、N=0.0025%、S=0.000
4%の鋼を10チャージ溶製し、熱延後、酸洗を行っ
た。引き続きこの熱延板を板厚0.5mmまで冷間圧延
し、750℃×1min 間の仕上焼鈍を施し、さらに75
0℃×2hrの磁性焼鈍を行った。その結果、鉄損は3.
90〜4.50W/kgと大きくばらつくことが判明し
た。
[Reason for Limiting Ti Content] Next, in order to investigate the production stability of this steel type, C: 0.0030%, S
i: 0.35%, Mn: 0.50%, P: 0.100
%, Tr. Al, N = 0.0025%, S = 0.000
10 charge of 4% steel was melted, hot rolled, and then pickled. Subsequently, the hot-rolled sheet is cold-rolled to a sheet thickness of 0.5 mm, subjected to finish annealing at 750 ° C. × 1 min, and
Magnetic annealing was performed at 0 ° C for 2 hours. As a result, iron loss is 3.
It was found to vary greatly from 90 to 4.50 W / kg.

【0015】この原因を調査するため、磁性焼鈍後のサ
ンプルより薄膜を作製しTEM観察を行った。その結
果、鉄損の低いサンプルにおいては、微細な析出物は認
められないが、鉄損の高いサンプルにおいては、50nm
程度のTiNが観察された。このことより、鉄損ばらつ
きの原因は、微細TiNの析出によるものであることが
明らかとなった。
In order to investigate the cause, a thin film was prepared from a sample after magnetic annealing and observed by TEM. As a result, in the sample with low iron loss, fine precipitates were not observed, but in the sample with high iron loss, 50 nm
Some TiN was observed. From this, it became clear that the cause of the iron loss variation was due to the precipitation of fine TiN.

【0016】そこで、Tiが粒成長性に及ぼす影響を調
査するため、C:0.0020%、Si:0.35%、
Mn:0.50%、P:0.050%、tr.Al、N
=0.0020%、S=0.0002%としTi含有量
を種々変えた鋼をラボ溶解し、熱延後、酸洗を行った。
引き続きこの熱延板を板厚0.5mmまで冷間圧延し、7
50℃×1min 間の仕上焼鈍を施し、さらに750℃×
2hrの磁性焼鈍を行った。
Therefore, in order to investigate the effect of Ti on grain growth, C: 0.0020%, Si: 0.35%,
Mn: 0.50%, P: 0.050%, tr. Al, N
= 0.0020%, S = 0.002%, and variously changed steel contents were melted in a laboratory, hot rolled, and then pickled.
Subsequently, the hot-rolled sheet was cold-rolled to a thickness of 0.5 mm,
Finish annealing at 50 ° C x 1 min.
Magnetic annealing was performed for 2 hours.

【0017】図2はこのようにして得られたサンプルの
Ti含有量と磁性焼鈍後の鉄損W15 /50 の関係を示した
ものである。図2より、Ti≦50ppmとなった場合
に鉄損W15/50 は4.0W/kg以下となり、安定して低
鉄損を得ることが可能となることがわかる。
[0017] FIG. 2 shows the iron loss W 15/50 relationship after the Ti content and the magnetic annealing of samples obtained in this way. From FIG. 2, it can be seen that when Ti ≦ 50 ppm, the iron loss W 15/50 becomes 4.0 W / kg or less, and a low iron loss can be stably obtained.

【0018】以上のことよりTiは50ppm以下と
し、より好ましくは20ppm以下とする。
From the above, Ti is set to 50 ppm or less, more preferably 20 ppm or less.

【0019】〔その他の成分の限定理由〕次に、その他
の成分の限定理由について説明する。
[Reasons for Limiting Other Components] Next, reasons for limiting other components will be described.

【0020】Siは鋼板の固有抵抗を上げるために有効
な元素であるが、1.5%を超えると飽和磁束密度の低
下に伴い磁束密度が低下するため上限を1.5%とし
た。
Although Si is an effective element for increasing the specific resistance of the steel sheet, if the content exceeds 1.5%, the magnetic flux density decreases with a decrease in the saturation magnetic flux density. Therefore, the upper limit is set to 1.5%.

【0021】AlはAlNを形成し、粒成長性を低下さ
せるため、0.004%以下とする。
Since Al forms AlN and lowers the grain growth, the content of Al is set to 0.004% or less.

【0022】Cは磁気時効の問題があるため0.005
%以下とした。
C is 0.005% due to the problem of magnetic aging.
% Or less.

【0023】Mnは熱間圧延時の赤熱脆性を防止するた
めに、0.2%以上必要であるが、0.8%以上になる
と磁束密度を低下させるので0.2〜0.8%とした。
Mn is required to be at least 0.2% in order to prevent red hot brittleness during hot rolling, but when it exceeds 0.8%, the magnetic flux density is reduced. did.

【0024】Pは鋼板の打ち抜き性を改善するために必
要な元素であるが、0.2%を超えて添加すると鋼板が
脆化するため0.2%以下とした。
P is an element necessary for improving the punching property of the steel sheet, but if added in excess of 0.2%, the steel sheet becomes brittle.

【0025】Nは、含有量が多い場合にはAlNの析出
量が多くなり、AlNが粗大となった場合においても粒
成長性が低下し鉄損を増大させるため0.005%以下
とした。
[0025] N is set to 0.005% or less because the precipitation amount of AlN increases when the N content is large, and the grain growth decreases and the iron loss increases even when the AlN becomes coarse.

【0026】〔製造方法〕本発明においては、S、Ti
含有量が所定の範囲内であれば、製造方法は通常の方法
でかまわない。すなわち、転炉で吹練した溶鋼を脱ガス
処理し所定の成分に調整し、引き続き鋳造、熱間圧延を
行う。熱間圧延時の仕上焼鈍温度、巻取り温度は特に規
定する必要はなく、通常でかまわない。また、熱延後の
熱延板焼鈍は行っても良いが必須ではない。次いで一回
の冷間圧延、もしくは中間焼鈍をはさんだ2回以上の冷
間圧延により所定の板厚とした後に、最終焼鈍を行う。
[Manufacturing method] In the present invention, S, Ti
If the content is within a predetermined range, the production method may be an ordinary method. That is, the molten steel blown in the converter is degassed and adjusted to a predetermined component, and subsequently casting and hot rolling are performed. The finish annealing temperature and the winding temperature during hot rolling do not need to be particularly specified, and may be normal. In addition, hot-rolled sheet annealing after hot-rolling may be performed, but is not essential. Next, final cold-rolling or cold-rolling two or more times with intermediate annealing to obtain a predetermined sheet thickness is performed, followed by final annealing.

【0027】[0027]

【実施例】表1に示す鋼を用い、転炉で吹練した後に脱
ガス処理を行うことにより所定の成分に調整後鋳造し、
スラブ加熱温度1200℃で1hr加熱した後、板厚
2.0mmまで熱間圧延を行った。熱延仕上温度は、80
0℃とした。巻取温度はNo.1〜No13及びNo.15 、16の鋼
板については650℃とし、No.14 の鋼板については5
50℃とした。また、No.14 の鋼板については、800
℃で3hrの熱延板焼鈍を行った。次にこの熱延板を酸
洗し、その後、板厚0.5mmまで冷間圧延を行い、表1
に示す仕上焼鈍条件で焼鈍を行い、さらに750℃×2
hrの磁性焼鈍を行った。
EXAMPLES The steels shown in Table 1 were cast into a given component after being degassed after being blown in a converter,
After heating for 1 hour at a slab heating temperature of 1200 ° C., hot rolling was performed to a sheet thickness of 2.0 mm. Hot rolling finish temperature is 80
0 ° C. The winding temperature is 650 ° C for the steel sheets No. 1 to No. 13, No. 15 and No. 16, and 5 for the steel sheet No.
50 ° C. For No. 14 steel plate, 800
The hot rolled sheet was annealed at 3 ° C. for 3 hours. Next, this hot-rolled sheet was pickled, and then cold-rolled to a sheet thickness of 0.5 mm.
Annealing was performed under the finish annealing conditions shown in
hr magnetic annealing was performed.

【0028】磁気特性は25cmエプスタイン試験片を用
いて行った。各鋼板の磁気特性を表1に併せて示す。
The magnetic properties were measured using a 25 cm Epstein test piece. Table 1 also shows the magnetic properties of each steel sheet.

【0029】[0029]

【表1】 [Table 1]

【0030】表1において、No.1〜No.11 の鋼板は、S
iの含有量が0.35%のレベルであり、仕上焼鈍温度
は750℃である。これらうち、S含有量とTi含有量
が本発明の範囲にあるNo.1〜No.4のものは、S又はTi
含有量が本発明の範囲を超えているNo.5〜No.7のものよ
りもW15/50 が低くなっている。No. 8の鋼板は、Al
含有量が本発明の範囲を超えているので、W15/50 が高
くなっている。No.9の鋼板はCが、No.10 の鋼板はMn
が、No.11 の鋼板はNが、それぞれ本発明の範囲を超え
ているので、W15/50 が高くなっている。また、Mnが
本発明の範囲を超えているNo.10 の鋼板では、磁束密度
50が低下している。
In Table 1, the steel sheets No. 1 to No. 11 are S
The content of i is at the level of 0.35%, and the finish annealing temperature is 750 ° C. Among them, those having No. 1 to No. 4 in which the S content and the Ti content are within the scope of the present invention are S or Ti.
W15 / 50 is lower than those of Nos. 5 to 7 whose contents exceed the range of the present invention. No. 8 steel plate is Al
Since the content exceeds the range of the present invention, W 15/50 is high. No. 9 steel sheet is C, No. 10 steel sheet is Mn
However, the steel sheet No. 11 has a high W 15/50 because N exceeds the range of the present invention. Further, in the steel sheet No. 10 in which Mn exceeds the range of the present invention, the magnetic flux density B50 is reduced.

【0031】No.12 〜No.15 の鋼板は、Siの含有量が
0.7%のレベルであり、仕上焼鈍温度は800℃であ
る。これらにおいても、S含有量とTi含有量が本発明
の範囲にあるNo.12 〜No.14 のものは、Ti含有量が本
発明の範囲を超えているNo.15 のものよりもW15/50
低くなっている。
The steel sheets No. 12 to No. 15 have a Si content of 0.7% and a finish annealing temperature of 800 ° C. Also in these, those of No. 12 to No. 14 in which the S content and the Ti content are within the range of the present invention are more W 15 than those of No. 15 in which the Ti content exceeds the range of the present invention. / 50 is low.

【0032】No.16 の鋼板においては、Si含有量が本
発明の範囲を超えているため、W15 /50 は低いがB50
低くなっている。
[0032] In steel sheet No.16, because the Si content exceeds the range of the present invention, W 15/50 is low but B 50 also becomes lower.

【0033】鉄損W15/50 の値は、Si含有量と仕上焼
鈍温度の影響を受けるが、これらを同じにした場合、本
発明の範囲にある鋼板は、低い鉄損W15/50 を有してい
ることがわかる。
The value of the iron loss W 15/50 is influenced by the Si content and the finish annealing temperature. When these values are the same, the steel sheet within the scope of the present invention has a low iron loss W 15/50 . It turns out that it has.

【0034】[0034]

【発明の効果】以上述べたように、本発明においては、
Sを10ppm以下(0を含む)、Tiを50ppm以
下(0を含む)の極微量に制御しているので、磁性焼鈍
後の鉄損が低い無方向性電磁鋼板を安価に製造すること
ができる。
As described above, in the present invention,
Since S is controlled to a very small amount of 10 ppm or less (including 0) and Ti is controlled to a very small amount of 50 ppm or less (including 0), a non-oriented electrical steel sheet having low iron loss after magnetic annealing can be manufactured at low cost. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】 S含有量と磁性焼鈍後の鉄損との関係を示す
図である。
FIG. 1 is a graph showing the relationship between the S content and iron loss after magnetic annealing.

【図2】 Ti量と磁性焼鈍後の鉄損との関係を示す図
である。
FIG. 2 is a graph showing the relationship between the amount of Ti and iron loss after magnetic annealing.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.005%以下、P:
0.2%以下、Si:1.5%以下、Mn:0.2〜
0.8%を含み、Al:0.004%以下(0を含
む)、N:0.005%以下(0を含む)、S:0.0
01%以下(0を含む)、Ti:0.005%以下(0
を含む)であり、残部が実質的にFeであることを特徴
とする磁性焼鈍後の鉄損の低い無方向性電磁鋼板。
(1) In weight%, C: 0.005% or less, P:
0.2% or less, Si: 1.5% or less, Mn: 0.2 to
0.8%, Al: 0.004% or less (including 0), N: 0.005% or less (including 0), S: 0.0
01% or less (including 0), Ti: 0.005% or less (0
And a balance substantially consisting of Fe, wherein the non-oriented electrical steel sheet has low iron loss after magnetic annealing.
JP8236861A 1996-09-06 1996-09-06 Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing Pending JPH1088297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8236861A JPH1088297A (en) 1996-09-06 1996-09-06 Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8236861A JPH1088297A (en) 1996-09-06 1996-09-06 Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing

Publications (1)

Publication Number Publication Date
JPH1088297A true JPH1088297A (en) 1998-04-07

Family

ID=17006893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8236861A Pending JPH1088297A (en) 1996-09-06 1996-09-06 Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing

Country Status (1)

Country Link
JP (1) JPH1088297A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013227649A (en) * 2012-03-30 2013-11-07 Nisshin Steel Co Ltd Steel plate for high output reluctance motor iron core, method of manufacturing the steel plate, rotor for reluctance motor and stator using the steel plate as raw material, and reluctance motor
WO2016024511A1 (en) * 2014-08-14 2016-02-18 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet having excellent magnetic characteristics
JP2016138316A (en) * 2015-01-28 2016-08-04 Jfeスチール株式会社 Nonoriented magnetic steel sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013227649A (en) * 2012-03-30 2013-11-07 Nisshin Steel Co Ltd Steel plate for high output reluctance motor iron core, method of manufacturing the steel plate, rotor for reluctance motor and stator using the steel plate as raw material, and reluctance motor
WO2016024511A1 (en) * 2014-08-14 2016-02-18 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet having excellent magnetic characteristics
JP2016041832A (en) * 2014-08-14 2016-03-31 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet having excellent magnetic properties
EP3181712A4 (en) * 2014-08-14 2018-01-03 JFE Steel Corporation Non-oriented electromagnetic steel sheet having excellent magnetic characteristics
JP2016138316A (en) * 2015-01-28 2016-08-04 Jfeスチール株式会社 Nonoriented magnetic steel sheet

Similar Documents

Publication Publication Date Title
JP2000129410A (en) Nonoriented silicon steel sheet high in magnetic flux density
JP4207231B2 (en) Method for producing non-oriented electrical steel sheet
JPH1088297A (en) Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing
JPH1046296A (en) Nonriented magnetic steel sheet with low iron loss after magnetic annealing
JP2888226B2 (en) Non-oriented electrical steel sheet with low iron loss
JPH1046245A (en) Manufacture of nonoriented magnetic steel sheet reduced in iron loss after magnetic annealing
JP2701349B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties and method for producing the same
JP3766745B2 (en) Non-oriented electrical steel sheet with low iron loss after magnetic annealing
JP3424178B2 (en) Non-oriented electrical steel sheet with low iron loss
JP2718403B2 (en) Non-oriented electrical steel sheet with low iron loss after magnetic annealing
JP2720871B2 (en) Non-oriented electrical steel sheet with low iron loss after magnetic annealing
JPH10237606A (en) Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing
JPH07216516A (en) Nonoriented silicon steel sheet excellent in magnetic property and its production
JPH1112701A (en) Nonoriented silicon steel sheet with low iron loss
JPH11131196A (en) Nonoriented silicon steel sheet minimal in iron loss
JPH1161260A (en) Manufacture of nonoriented silicon steel sheet with low iron loss
JPH11315327A (en) Manufacture of non-oriented silicon steel sheet with low iron loss, and non-oriented silicon steel sheet with low iron loss
JPH1171650A (en) Nonoriented silicon steel sheet low in core loss
JPH10204593A (en) Nonoriented magnetic steel sheet reduced in iron loss after magnetic annealing
KR970007162B1 (en) Making method of oriented electrical steel sheet having excellent from loss properties
JPH1112700A (en) Non-oriented electrical sheet having low iron loss
JPH11302741A (en) Production of nonoriented silicon steel sheet low in core loss and nonoriented silicon steel sheet low in core loss
JP2021080496A (en) Method for producing non-oriented magnetic steel sheet
JPH1192890A (en) Nonoriented silicon steel sheet low in core loss and its production
JPH11124626A (en) Production of nonoriented silicon steel sheet reduced in iron loss