JPH1161260A - Manufacture of nonoriented silicon steel sheet with low iron loss - Google Patents

Manufacture of nonoriented silicon steel sheet with low iron loss

Info

Publication number
JPH1161260A
JPH1161260A JP23548097A JP23548097A JPH1161260A JP H1161260 A JPH1161260 A JP H1161260A JP 23548097 A JP23548097 A JP 23548097A JP 23548097 A JP23548097 A JP 23548097A JP H1161260 A JPH1161260 A JP H1161260A
Authority
JP
Japan
Prior art keywords
iron loss
less
hot
annealing
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23548097A
Other languages
Japanese (ja)
Inventor
Nobuo Yamagami
伸夫 山上
Yoshihiko Oda
善彦 尾田
Akira Hiura
昭 日裏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP23548097A priority Critical patent/JPH1161260A/en
Publication of JPH1161260A publication Critical patent/JPH1161260A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacture of a nonoriented silicon steel sheet reduced in iron loss at a low cost. SOLUTION: A steel, having a composition consisting of, by weight, <=0.005% C, <=4.0% Si, 0.05-1.0% Mn, <=0.1% P, <=0.005% (including 0%) N, <=0.001% (including 0%) S, <=1.0% Al, and the balance essentially Fe, is hot-rolled, pickled, subjected to hot rolled plate annealing in an atmosphere having >=20% partial pressure of nitrogen and -20 to 10 deg.C dew point, successively cold-rolled to prescribed sheet thickness, and then finish-annealed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気機器等に使用
される鉄損の低い無方向性電磁鋼板の製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-oriented electrical steel sheet having a low iron loss and used for electric equipment and the like.

【0002】[0002]

【従来の技術】近年、電気機器の省エネルギーや小型化
といった観点より、磁束密度が高く鉄損の低い電磁鋼板
が求められている。電磁鋼板は積層して用いられるた
め、その表面性状の管理が重要であり、このような観点
から、 Si+Al量が1〜3%程度の中・高級グレードの無
方向性電磁鋼板においては、窒素を含む非酸化雰囲気中
で熱延板焼鈍を施すことが一般的となっている。
2. Description of the Related Art In recent years, electromagnetic steel sheets having high magnetic flux density and low iron loss have been demanded from the viewpoint of energy saving and miniaturization of electric equipment. Since magnetic steel sheets are used in layers, it is important to control their surface properties. From this viewpoint, medium- and high-grade non-oriented magnetic steel sheets with a Si + Al content of about 1-3% It is common to perform hot-rolled sheet annealing in a non-oxidizing atmosphere containing nitrogen.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな熱延板焼鈍を施した中・高級グレード材において
は、仕上げ焼鈍板において表層細粒の形成が認められ、
このために、充分な低鉄損化が図られていないのが現状
である。
However, in the middle and high grade materials subjected to such hot-rolled sheet annealing, the formation of surface layer fine grains is observed in the finish-annealed sheet.
For this reason, it is the present situation that the iron loss is not sufficiently reduced.

【0004】本発明はこのような問題点を解決するため
になされたものであり、鉄損の低い電磁鋼板を低コスト
で製造する方法を提供することを課題とする。
The present invention has been made to solve such a problem, and an object of the present invention is to provide a method of manufacturing an electromagnetic steel sheet having low iron loss at low cost.

【0005】[0005]

【課題を解決するための手段】本発明の骨子は、鋼中の
S含有量を所定値以下にすると共に、熱延板焼鈍の雰囲
気を所定の範囲として熱延板焼鈍時に発生する鋼板表層
部の窒化を抑制し、これにより、鉄損を低減させること
である。
The gist of the present invention is to reduce the S content in steel to a predetermined value or less and to set the atmosphere of the hot-rolled sheet annealing in a predetermined range so that the surface layer portion of the steel sheet generated during hot-rolled sheet annealing is formed. Is to suppress nitriding of the steel, thereby reducing iron loss.

【0006】すなわち、前記課題は、重量%で、C:0.
005%以下、Si:4.0%以下、Mn:0.05〜1.0%、P:0.1
%以下、N:0.005%以下(0を含む)、S:0.001%以
下(0を含む)、Al:1.0%以下を含有し、残部が実質
的にFeよりなる鋼を、熱間圧延を施して酸洗した後、窒
素分圧が20%以上、かつ露点が−20℃以上10℃以下の雰
囲気中で熱延板焼鈍を施し、引き続き所定の板厚まで冷
間圧延した後、仕上焼鈍を施すことを特徴とする鉄損の
低い無方向電磁鋼板の製造方法により解決される。
[0006] That is, the above-mentioned problem is expressed by:
005% or less, Si: 4.0% or less, Mn: 0.05 to 1.0%, P: 0.1
%, N: 0.005% or less (including 0), S: 0.001% or less (including 0), Al: 1.0% or less, and the balance substantially consisting of Fe is subjected to hot rolling. After pickling, hot-rolled sheet annealing is performed in an atmosphere with a nitrogen partial pressure of 20% or more and a dew point of -20 ° C or more and 10 ° C or less, and subsequently cold-rolled to a predetermined sheet thickness, followed by finish annealing. The problem is solved by a method for producing a non-oriented electrical steel sheet having a low iron loss, which is characterized by being applied.

【0007】ここに、「残部が実質的にFeである」と
は、本発明の特徴を妨げない範囲で他の微量元素を含む
ものが権利範囲に入ることを意味する。なお、以下の説
明において、鋼の組成を示す%は全て重量%を意味し、
ppmも重量ppmを意味する。
[0007] Here, "the balance is substantially Fe" means that those containing other trace elements fall within the scope of the right within a range not to impair the features of the present invention. In the following description, all percentages indicating the composition of steel mean weight%,
ppm also means ppm by weight.

【0008】(発明に至る経緯とS含有量、熱延板焼鈍
雰囲気の限定理由)本発明者らは、仕上げ焼鈍時に表層
に認められる微細な窒化物が形成される要因を詳細に調
査した。その結果、熱延板焼鈍時に鋼板表層部に顕著な
窒化の進展が生じ、この窒化層が仕上げ焼鈍時まで継承
されて表層細粒を形成し、鉄損低減を阻害していること
が明らかとなった。
(History leading to the invention, S content, and reasons for limiting the atmosphere of hot-rolled sheet annealing) The present inventors have investigated in detail the factors that form fine nitrides observed on the surface layer during the finish annealing. As a result, it is evident that significant nitriding progresses in the surface layer of the steel sheet during hot-rolled sheet annealing, and this nitrided layer is inherited until the time of finish annealing to form fine-grained surface layers, impeding the reduction of iron loss. became.

【0009】そこで、本発明者らが、窒化を抑制する手
法を鋭意検討した結果、熱延板焼鈍時に、20%以上の窒
素を含む雰囲気で露点を−20℃以上10℃以下に制御する
ことによって、窒化が抑制され仕上げ焼鈍後の鉄損が大
幅に低下することを見いだした。
Accordingly, the present inventors have conducted intensive studies on a technique for suppressing nitriding. As a result, it has been found that the dew point is controlled to -20 ° C to 10 ° C in an atmosphere containing 20% or more of nitrogen during hot-rolled sheet annealing. It was found that nitriding was suppressed by this and iron loss after finish annealing was greatly reduced.

【0010】最初に、鉄損に及ぼす表層細粒の影響を調
査するため、C:0.0025%、Si:2.85%、Mn:0.20%、
S:1〜16ppm、P:0.01%、Al:0.31%、N:0.0021%
を含有する鋼をラボ溶解し、熱延後、酸洗を行った。引
き続きこの熱延板に露点−30℃、25%N2−75%H2, 50
%H2−50%N2および90%N2−10%H2雰囲気中で830
℃×3hrの熱延板焼鈍を施した。その後、板厚0.5mmま
で冷間圧延し、25%H2−75%N2雰囲気中で850℃〜110
0℃×1min間の仕上焼鈍を行った。
First, in order to investigate the effect of surface fine particles on iron loss, C: 0.0025%, Si: 2.85%, Mn: 0.20%,
S: 1 to 16 ppm, P: 0.01%, Al: 0.31%, N: 0.0021%
Was melted in a laboratory, hot-rolled, and then pickled. Subsequently, the hot rolled sheet was subjected to a dew point of −30 ° C., 25% N 2 −75% H 2 , 50
% H 2 -50% N 2 and 830 in 90% N 2 -10% H 2 atmosphere
The sheet was annealed at 300C for 3 hours. Thereafter, the sheet is cold-rolled to a sheet thickness of 0.5 mm, and 850 ° C. to 110% in a 25% H 2 -75% N 2 atmosphere.
Finish annealing was performed at 0 ° C. × 1 min.

【0011】図1に、このようにして得られたサンプル
の鉄損W15/50の関係を示す。ここで、磁気測定は25cm
エプスタイン法により行った。
FIG. 1 shows the relationship between the iron loss W 15/50 of the sample thus obtained. Where the magnetic measurement is 25cm
This was performed by the Epstein method.

【0012】図1より、いずれの窒素分圧でもSを10pp
m以下とした場合に大幅な鉄損低減が達成されることが
わかる。これは、S量低減により粒成長性が向上したた
めである。以上のことより、本発明においては、Sは10
ppm以下とし、より望ましくは5ppm以下とする。
From FIG. 1, S is 10 pp at any nitrogen partial pressure.
It can be seen that a significant reduction in iron loss is achieved when the distance is set to m or less. This is because grain growth was improved by reducing the amount of S. From the above, in the present invention, S is 10
ppm or less, more preferably 5 ppm or less.

【0013】しかしながら、Sを10ppm以下とすると、
鉄損の低減はゆるやかとなり、Sをtrとしても鉄損を2.
4W/Kg以下にすることができない。
However, if S is set to 10 ppm or less,
Reduction of iron loss is gradual, and iron loss is 2.
It cannot be less than 4W / Kg.

【0014】一方、窒素分圧が高まると、鉄損の到達レ
ベルは高鉄損側にシフトする。鉄損の劣化の割合は、S
>10ppmでは窒素分圧を25%から90%まで高めても、約
3.1W/Kgから3.3W/Kgまでと約0.2W/Kg程度である
が、S≦10ppmの領域では、約2.4W/Kgから2.8W/Kgま
でと0.4W/Kgもの大幅なものとなる。
On the other hand, when the nitrogen partial pressure increases, the attained level of iron loss shifts to a higher iron loss side. The rate of iron loss degradation is S
> 10 ppm, even if the nitrogen partial pressure is increased from 25% to 90%,
From about 3.1 W / Kg to about 3.3 W / Kg, which is about 0.2 W / Kg. In the range of S ≦ 10 ppm, from about 2.4 W / Kg to about 2.8 W / Kg, which is as large as 0.4 W / Kg. .

【0015】本発明者らは、Sが10ppm以下の極低S材
において鉄損の低減が阻害されるのは、MnS以外の未知
の要因によるものでないかと考え、仕上げ焼鈍後のサン
プルについて光学顕微鏡にて組織観察を行った。その結
果、S>10ppmの領域では窒化層は軽微であるのに対
し、S≦10ppmの領域では顕著な窒化層が認められた。
また、S>10ppmの領域では、雰囲気ガス中の窒素分圧
を25%から75%まで変えても、窒化の程度に顕著な違い
が認められなかった。これに対し、S≦10ppmでは、雰
囲気ガス中の窒素分圧を25%から75%まで変えると、窒
素分圧の増加に応じて表層に著しい窒化層が形成され
た。
The present inventors consider that the reason why the reduction of iron loss is inhibited by the extremely low S material having S of 10 ppm or less may be due to unknown factors other than MnS. Was used to observe the structure. As a result, in the region of S> 10 ppm, the nitrided layer was slight, while in the region of S ≦ 10 ppm, a remarkable nitrided layer was recognized.
In the region of S> 10 ppm, no significant difference was observed in the degree of nitriding even when the partial pressure of nitrogen in the atmosphere gas was changed from 25% to 75%. On the other hand, when S ≦ 10 ppm, when the nitrogen partial pressure in the atmosphere gas was changed from 25% to 75%, a remarkable nitride layer was formed on the surface layer in accordance with the increase in the nitrogen partial pressure.

【0016】このような、鋼中S量と表層窒化の関係、
さらにはこれらの関係におよぼす雰囲気窒素分圧の影響
について、本発明者らは以下のように考えている。すな
わち、Sは表面および粒界に濃化しやすく、その拡散速
度が比較的早いことから、熱延板焼鈍の初期過程で表面
に偏析する。その結果、熱延板焼鈍の窒素分圧が高い場
合も、表面に偏析したSが窒素吸着反応のバリヤーにな
る。窒素吸着反応のバリヤーになるためのSの下限値
は、原理的には表面を被覆することができるだけの極め
て微少な量で充分であり、実験的に見出された、S>10
ppmの領域がこれに対応する。一方、S≦10ppmの領域で
はSによる窒素吸着の抑制効果が低下し、S>10ppmの
領域に比べて窒化が生じやすいものと考えられる。
As described above, the relationship between the amount of S in steel and the surface nitriding,
The present inventors further consider the influence of the atmospheric nitrogen partial pressure on these relationships as follows. That is, S is easily concentrated on the surface and the grain boundaries, and its diffusion rate is relatively high. Therefore, S segregates on the surface in the initial process of hot-rolled sheet annealing. As a result, even when the nitrogen partial pressure in hot-rolled sheet annealing is high, S segregated on the surface serves as a barrier for the nitrogen adsorption reaction. The lower limit value of S to be a barrier for the nitrogen adsorption reaction is in principle an extremely small amount sufficient to cover the surface, and S> 10 found experimentally.
The ppm range corresponds to this. On the other hand, in the region where S ≦ 10 ppm, the effect of suppressing nitrogen adsorption by S is reduced, and it is considered that nitriding is more likely to occur than in the region where S> 10 ppm.

【0017】また、このような窒化の程度は、雰囲気ガ
ス中の窒素分圧と強い関係があり、窒素分圧が高まるに
つれて、窒化反応に寄与する窒素量が増加する。その結
果、特に吸着のバリアのないS≦10ppmの領域で窒素分
圧に対応した窒化層が形成されるのである。
The degree of such nitriding has a strong relationship with the partial pressure of nitrogen in the atmosphere gas. As the partial pressure of nitrogen increases, the amount of nitrogen contributing to the nitriding reaction increases. As a result, a nitride layer corresponding to the nitrogen partial pressure is formed in a region of S ≦ 10 ppm, particularly without an adsorption barrier.

【0018】本発明者らは、この表層部の窒化層は、主
として熱延板焼鈍時に形成され、仕上げ焼鈍時に結晶粒
の成長を妨げ鉄損低下を抑制するのではないかと考え
た。この対策としては、理想的には、熱延板焼鈍を真空
焼鈍することや窒素を含まない非酸化雰囲気(100%水
素雰囲気、100%Ar雰囲気など)中で焼鈍することが望
ましいものの、コストの問題から現実的とはいえない。
よって、発明者らは、一般的な焼鈍雰囲気である窒素−
水素混合ガス中で焼鈍する際に、窒化を防止する対策を
とることにした。
The present inventors have thought that the nitrided layer at the surface portion is formed mainly during hot-rolled sheet annealing and may hinder the growth of crystal grains at the time of finish annealing to suppress a reduction in iron loss. As a countermeasure, ideally, it is desirable to perform vacuum annealing of hot-rolled sheet annealing or annealing in a non-oxidizing atmosphere (100% hydrogen atmosphere, 100% Ar atmosphere, etc.) that does not contain nitrogen. It is not realistic due to problems.
Therefore, the inventors have found that the general annealing atmosphere of nitrogen-
When annealing in a hydrogen mixed gas, measures were taken to prevent nitriding.

【0019】そこで、Sにかわる表層窒化の手法を詳細
に検討した結果、窒化層が形成される前に酸化膜を形成
させれば、酸化被膜がそのバリアになるのではないかと
考え、熱延板焼鈍時に積極的に酸化膜を形成させるよう
な高露点で焼鈍を行うことを検討した。
Then, as a result of a detailed study of the surface nitridation method in place of S, it was concluded that if an oxide film was formed before the nitride layer was formed, the oxide film would serve as a barrier. It was studied to perform annealing at a high dew point such that an oxide film was positively formed during sheet annealing.

【0020】C:0.0026%、Si:2.70%、Mn:0.20%、
P:0.020%、Al:0.30%、S:0.0004%、N:0.0020
%を含有する鋼をラボ溶解し、熱延後、酸洗を行った。
引き続きこの熱延板に、露点−30℃および−5℃で、窒
素分圧を0−100%(残部水素)とした雰囲気中で、830℃
×3hrの熱延板焼鈍を施した。その後、板厚0.5mmまで
冷間圧延し、25%H2-75%N2雰囲気で900℃×1min間
の仕上焼鈍を行った。
C: 0.0026%, Si: 2.70%, Mn: 0.20%,
P: 0.020%, Al: 0.30%, S: 0.0004%, N: 0.0020
% Was melted in a laboratory, hot rolled, and then pickled.
Subsequently, the hot-rolled sheet was placed at 830 ° C. in an atmosphere with a dew point of −30 ° C. and −5 ° C. and a nitrogen partial pressure of 0 to 100% (the remaining hydrogen).
The sheet was subjected to hot rolled sheet annealing for 3 hours. Thereafter, the sheet was cold-rolled to a sheet thickness of 0.5 mm and subjected to finish annealing at 900 ° C. for 1 minute in a 25% H 2 -75% N 2 atmosphere.

【0021】その結果、図2に示すように、露点を−5
℃とすると、従来の方法である露点が−30℃の場合と比
べて、雰囲気ガス中の窒素分圧を20%以上とした場合に
鉄損が改善され、特に40%以上の窒素分圧雰囲気中では
その改善の効果が顕著であった。
As a result, as shown in FIG.
℃, compared with the conventional method when the dew point is -30 ℃, the iron loss is improved when the nitrogen partial pressure in the atmosphere gas is 20% or more, especially the nitrogen partial pressure atmosphere of 40% or more. Among them, the effect of the improvement was remarkable.

【0022】この際の熱延板焼鈍後の組織を詳細に観察
すると、露点−30℃で焼鈍を施した場合は、熱延板焼鈍
後のサンプル表層に窒化層が形成されており、窒素分圧
を高めることによってその窒化の程度が激しくなってい
た。しかし、露点−5℃で焼鈍を施した場合は、表層窒
化層の程度が軽減され、特に40%以上の高窒素分圧雰囲
気中での激しい窒化が抑制される傾向にあった。従っ
て、露点−5℃、窒素分圧20%以上で仕上げ焼鈍時の鉄
損劣化が抑制されるのは、以上説明した窒化抑制効果に
よるものと考えられる。
When the structure after annealing of the hot-rolled sheet was observed in detail, when the annealing was performed at a dew point of −30 ° C., a nitride layer was formed on the surface of the sample after the annealing of the hot-rolled sheet, and the nitrogen content was low. Increasing the pressure increased the degree of nitridation. However, when annealing was performed at a dew point of −5 ° C., the degree of the surface nitride layer was reduced, and in particular, intense nitriding in a high nitrogen partial pressure atmosphere of 40% or more tended to be suppressed. Therefore, it is considered that the reason why the iron loss deterioration during the finish annealing is suppressed at the dew point of -5 ° C and the nitrogen partial pressure of 20% or more is due to the nitridation suppression effect described above.

【0023】一方、窒素分圧が20%未満では、露点を高
めたことによっても鉄損の改善は認められなかった。こ
れについては、表層の酸化層が窒化物よりはその鉄損を
劣化する割合が小さいものの、その影響が無視できない
ことによるものと考えられる。すなわち、窒素分圧が低
く、窒化が比較的緩やかな雰囲気では窒化による鉄損劣
化がない分、酸化による鉄損が無視できなくなり、結果
的に露点が−30℃の場合と同等の鉄損レベルとなったも
のと考えられる。
On the other hand, when the nitrogen partial pressure was less than 20%, improvement in iron loss was not recognized even when the dew point was increased. This is presumably due to the fact that, although the rate of deterioration of iron loss in the surface oxide layer is smaller than that of nitride, the effect cannot be ignored. In other words, in an atmosphere where the nitrogen partial pressure is low and nitriding is relatively gentle, there is no iron loss deterioration due to nitriding, so that iron loss due to oxidation cannot be ignored, and as a result, the iron loss level is the same as when the dew point is -30 ° C. It is thought that it became.

【0024】以上の結果より、窒素分圧が20%以上の雰
囲気では、露点を高めることによって窒化を防止できる
ことが明らかになった。さらに露点の適性範囲を検討す
るため、上記の供試鋼を用いて、露点を−40℃から+10
℃まで、窒素分圧を0−100%(残部水素)まで変化させ
て熱延板焼鈍を行った後、板厚0.5mmまで冷間圧延し、2
5%H2−75%N2雰囲気で900℃×1min間の仕上焼鈍を
行い、鉄損の評価を行った。
From the above results, it has been clarified that in an atmosphere where the nitrogen partial pressure is 20% or more, nitriding can be prevented by increasing the dew point. In order to further examine the appropriate range of the dew point, the dew point was raised from -40 ° C to +10
C., hot-rolled sheet annealing was performed while changing the nitrogen partial pressure to 0-100% (remainder hydrogen), and then cold-rolled to a sheet thickness of 0.5 mm.
Finish annealing was performed at 900 ° C. for 1 minute in an atmosphere of 5% H 2 -75% N 2 to evaluate iron loss.

【0025】その結果を図3に示す。図3において○中
の数字は、仕上焼鈍後の鉄損値(W15/50)を示す。図
3から分かるように、露点が−20℃以上であれば、雰囲
気ガス中の窒素分圧を20%以上とした場合に鉄損が改善
され、特に40%以上の窒素分圧ではその改善の効果が顕
著であった。
FIG. 3 shows the results. In FIG. 3, the numbers in the circles indicate the iron loss value (W 15/50 ) after the finish annealing. As can be seen from FIG. 3, when the dew point is −20 ° C. or higher, the iron loss is improved when the nitrogen partial pressure in the atmosphere gas is set to 20% or higher, and especially when the nitrogen partial pressure is 40% or higher. The effect was significant.

【0026】ただし、露点が+10℃をこえると、磁気特
性上は問題がないものの、鋼板表面に酸化物が多く形成
され、ピックアップとよばれる表面性状の不良の要因と
なり易いため、本発明においては、熱延板焼鈍時のガス
雰囲気は、窒素分圧20%以上で露点が−20℃以上10℃以
下とする。
However, when the dew point exceeds + 10 ° C., although there is no problem in the magnetic properties, a large amount of oxide is formed on the surface of the steel sheet, which is liable to cause a surface property defect called a pickup. The gas atmosphere during hot-rolled sheet annealing should have a nitrogen partial pressure of 20% or more and a dew point of -20 ° C to 10 ° C.

【0027】(その他の成分の限定理由)次に、成分の
限定理由について説明する。 C: Cは磁気時効の問題があるため0.005%以下とす
る。 Mn: Mnは熱間圧延時の赤熱脆性を防止するために、0.
05%以上必要であるが、1.0%以上になると磁束密度を
低下させるので0.05〜1.0%とする。 Si: Siは鋼板の固有抵抗を上げるために有効な元素で
あるが、4.0%を超えると飽和磁束密度の低下に伴い磁
束密度が低下するため上限を4.0%とする。 P: Pは鋼板の打ち抜き性を改善するために必要な元
素であるが、0.1%を超えて含有させると鋼板が脆化す
るため0.1%以下とする。 N: Nは、含有量が多い場合にはAlNの析出量が多く
なり、AlNが粗大となった場合においても粒成長性が低
下し鉄損を増大させるため0.005%以下とする。 Al: Alは微量に添加すると微細なAlNを生成し磁気特
性を劣化させるものの、1.0%以上になると磁束密度を
低下させるため上限は1.0%以下とする。
(Other Reasons for Limiting Components) Next, the reasons for limiting the components will be described. C: C is 0.005% or less because of the problem of magnetic aging. Mn: Mn is 0.1% to prevent red hot brittleness during hot rolling.
It is required to be not less than 05%, but if it is not less than 1.0%, the magnetic flux density is reduced. Si: Si is an effective element for increasing the specific resistance of the steel sheet. However, if it exceeds 4.0%, the magnetic flux density decreases with a decrease in the saturation magnetic flux density, so the upper limit is set to 4.0%. P: P is an element necessary for improving the punching property of the steel sheet. However, if the content exceeds 0.1%, the steel sheet becomes brittle, so that the content is set to 0.1% or less. N: N is set to 0.005% or less because when N content is large, the precipitation amount of AlN increases, and even when AlN becomes coarse, the grain growth decreases and the iron loss increases. Al: When Al is added in a small amount, it generates fine AlN and deteriorates the magnetic properties. However, if it is 1.0% or more, the magnetic flux density is reduced, so the upper limit is 1.0% or less.

【0028】(製造方法)本発明においては、熱延板焼
鈍以外の製造プロセスは通常の無方向性電磁鋼板を製造
する方法でかまわない。すなわち、転炉で吹練した溶鋼
を脱ガス処理し所定の成分に調整し、引き続き鋳造、熱
間圧延を行う。熱間圧延時の仕上焼鈍温度、巻取り温度
は特に規定する必要はなく、通常の範囲でかまわない。
また、熱延後の熱延板焼鈍後、1回の冷間圧延、もしく
は中間焼鈍をはさんだ2回以上の冷間圧延により所定の
板厚とした後に、最終焼鈍を行う。
(Production Method) In the present invention, the production process other than the hot-rolled sheet annealing may be a method for producing a normal non-oriented electrical steel sheet. That is, the molten steel blown in the converter is degassed and adjusted to a predetermined component, and subsequently casting and hot rolling are performed. The finish annealing temperature and the winding temperature at the time of hot rolling do not need to be particularly specified, and may be in a normal range.
After hot-rolled sheet annealing after hot-rolling, final annealing is performed after a predetermined thickness is obtained by one cold rolling or two or more cold rolling steps including intermediate annealing.

【0029】[0029]

【実施例】表1に示す鋼を用い、転炉で吹練した後に脱
ガス処理を行うことにより所定の成分に調整後鋳造し、
スラブを1160℃で1hr加熱した後、板厚2.0mmまで熱間
圧延を行った。熱延仕上げ温度は800℃、巻取り温度は6
10℃とし、表1に示す条件で熱延板焼鈍を施した。次に
この熱延板を酸洗し、その後、板厚0.5mmまで冷間圧延
を行い、表1に示す仕上焼鈍条件で焼鈍を行った。磁気
測定は25cmエプスタイン試験片を用いて行った。各鋼板
の磁気特性を表1に併せて示す。
EXAMPLES The steels shown in Table 1 were cast into a given component after being degassed after being blown in a converter,
After the slab was heated at 1160 ° C. for 1 hour, hot rolling was performed to a thickness of 2.0 mm. Hot rolling finishing temperature is 800 ℃, winding temperature is 6
The temperature was set to 10 ° C., and hot-rolled sheet annealing was performed under the conditions shown in Table 1. Next, the hot-rolled sheet was pickled, cold-rolled to a sheet thickness of 0.5 mm, and then annealed under the finish annealing conditions shown in Table 1. Magnetic measurements were performed using 25 cm Epstein specimens. Table 1 also shows the magnetic properties of each steel sheet.

【0030】[0030]

【表1】 [Table 1]

【0031】これより、熱延板焼鈍の雰囲気を所定の範
囲に制御した場合に、仕上焼鈍後の鉄損の低い鋼板が得
られることがわかる。
From this, it can be seen that when the atmosphere of the hot-rolled sheet annealing is controlled within a predetermined range, a steel sheet with low iron loss after finish annealing can be obtained.

【0032】No.9、No.10の鋼板とNo.25、No.26の鋼板
は、窒素分圧が、本発明で対象としている範囲より低い
ものであり、低鉄損が得られている。
The steel sheets No. 9 and No. 10 and the steel sheets No. 25 and No. 26 have lower nitrogen partial pressures than the range targeted in the present invention, and have low iron loss. .

【0033】No.11の鋼板と、No.22、No.23、No.24の鋼
板は、露点が本発明の範囲を外れているため、本発明に
よって製造した鋼板に比して鉄損が大きくなっている。
The steel sheets of No. 11 and the steel sheets of No. 22, No. 23 and No. 24 have a dew point outside the range of the present invention, and thus have a lower iron loss than the steel sheets manufactured according to the present invention. It is getting bigger.

【0034】No.12の鋼板とNo.27の鋼板は、S含有量が
本発明の範囲を外れているため、本発明によって製造し
た鋼板に比して鉄損が大きくなっている。
[0034] The No. 12 steel plate and the No. 27 steel plate have an S content outside the range of the present invention, and thus have a higher iron loss than the steel plate manufactured by the present invention.

【0035】[0035]

【発明の効果】以上説明したように、本発明において
は、重量%で、C:0.005%以下、Si:4.0%以下、Mn:
0.05〜1.0%、P:0.1%以下、N:0.005%以下(0を
含む)、S:0.001%以下(0を含む)、Al:1.0%以下
を含有し、残部が実質的にFeよりなる鋼を、熱間圧延を
施して酸洗した後、窒素分圧が20%以上、かつ露点が−
20℃以上10℃以下の雰囲気中で熱延板焼鈍を施し、引き
続き所定の板厚まで冷間圧延した後、仕上焼鈍を施して
いるので、鉄損の低い電磁鋼板を低コストで製造するこ
とができる。
As described above, in the present invention, C: 0.005% or less, Si: 4.0% or less, Mn:
0.05 to 1.0%, P: 0.1% or less, N: 0.005% or less (including 0), S: 0.001% or less (including 0), Al: 1.0% or less, with the balance being substantially Fe After hot rolling and pickling steel, the nitrogen partial pressure is more than 20% and the dew point is-
Since hot-rolled sheet annealing is performed in an atmosphere of 20 ° C or more and 10 ° C or less, and then cold-rolled to a predetermined thickness, and then finish-annealed, magnetic steel sheets with low iron loss can be manufactured at low cost. Can be.

【0036】この鋼板は、電気材料等の鉄損の低い性質
が要求される用途に広く使用するのに好適である。
This steel sheet is suitable for being widely used for applications requiring low iron loss such as electric materials.

【図面の簡単な説明】[Brief description of the drawings]

【図1】鋼中S量と鉄損との関係を示す図である。FIG. 1 is a diagram showing the relationship between the amount of S in steel and iron loss.

【図2】熱延板焼鈍雰囲気と仕上焼鈍後の鉄損の関係を
示す図である。
FIG. 2 is a view showing a relationship between a hot-rolled sheet annealing atmosphere and iron loss after finish annealing.

【図3】 熱延板焼鈍時の露点および窒素分圧と仕上焼
鈍後の鉄損の関係を示す図である。
FIG. 3 is a diagram showing the relationship between the dew point and the nitrogen partial pressure during hot-rolled sheet annealing and iron loss after finish annealing.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.005%以下、Si:4.0%
以下、Mn:0.05〜1.0%、P:0.1%以下、N:0.005%
以下(0を含む)、S:0.001%以下(0を含む)、Al:
1.0%以下を含有し、残部が実質的にFeよりなる鋼を、
熱間圧延を施して酸洗した後、窒素分圧が20%以上、か
つ露点が−20℃以上10℃以下の雰囲気中で熱延板焼鈍を
施し、引き続き所定の板厚まで冷間圧延した後、仕上焼
鈍を施すことを特徴とする鉄損の低い無方向電磁鋼板の
製造方法。
1. C: 0.005% or less, Si: 4.0% by weight%
Mn: 0.05 to 1.0%, P: 0.1% or less, N: 0.005%
Or less (including 0), S: 0.001% or less (including 0), Al:
Steel containing 1.0% or less, with the balance being substantially Fe,
After hot rolling and pickling, hot rolled sheet annealing was performed in an atmosphere having a nitrogen partial pressure of 20% or more and a dew point of -20 ° C or more and 10 ° C or less, and then cold-rolled to a predetermined sheet thickness. A method for producing a non-oriented electrical steel sheet having a low iron loss, which is followed by finish annealing.
JP23548097A 1997-08-18 1997-08-18 Manufacture of nonoriented silicon steel sheet with low iron loss Pending JPH1161260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23548097A JPH1161260A (en) 1997-08-18 1997-08-18 Manufacture of nonoriented silicon steel sheet with low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23548097A JPH1161260A (en) 1997-08-18 1997-08-18 Manufacture of nonoriented silicon steel sheet with low iron loss

Publications (1)

Publication Number Publication Date
JPH1161260A true JPH1161260A (en) 1999-03-05

Family

ID=16986697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23548097A Pending JPH1161260A (en) 1997-08-18 1997-08-18 Manufacture of nonoriented silicon steel sheet with low iron loss

Country Status (1)

Country Link
JP (1) JPH1161260A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010020127A1 (en) * 2008-08-20 2010-02-25 宝山钢铁股份有限公司 Coated semi-processed unoriented electric steel plate and manufacturing method thereof
KR101051747B1 (en) 2008-11-26 2011-07-25 주식회사 포스코 Method for manufacturing non-oriented electrical steel sheet having excellent magnetic properties
WO2014024222A1 (en) * 2012-08-08 2014-02-13 Jfeスチール株式会社 High-strength electromagnetic steel sheet and method for producing same
EP2826882A4 (en) * 2012-03-15 2015-11-18 Baoshan Iron & Steel Non-oriented electrical steel plate and manufacturing process therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010020127A1 (en) * 2008-08-20 2010-02-25 宝山钢铁股份有限公司 Coated semi-processed unoriented electric steel plate and manufacturing method thereof
KR101051747B1 (en) 2008-11-26 2011-07-25 주식회사 포스코 Method for manufacturing non-oriented electrical steel sheet having excellent magnetic properties
EP2826882A4 (en) * 2012-03-15 2015-11-18 Baoshan Iron & Steel Non-oriented electrical steel plate and manufacturing process therefor
US10096415B2 (en) 2012-03-15 2018-10-09 Baoshan Iron & Steel Co., Ltd Non-oriented electrical steel plate and manufacturing process therefor
WO2014024222A1 (en) * 2012-08-08 2014-02-13 Jfeスチール株式会社 High-strength electromagnetic steel sheet and method for producing same
US10242782B2 (en) 2012-08-08 2019-03-26 Jfe Steel Corporation High-strength electrical steel sheet and method of producing the same

Similar Documents

Publication Publication Date Title
KR100655678B1 (en) Method for producing grain oriented magnetic steel sheet and grain oriented magnetic steel sheet
KR20030013258A (en) Method of manufacturing grain-oriented electrical steel sheet
KR940008933B1 (en) Method of producing non-oriented electromagnetic steel strip having superior magnetic properties and appearance
JP2000256751A (en) Production of non-oriented silicon steel sheet low in core loss
JPH1161260A (en) Manufacture of nonoriented silicon steel sheet with low iron loss
KR102171694B1 (en) Grain oriented electrical steel sheet and manufacturing method of the same
JP2560579B2 (en) Method for manufacturing high silicon steel sheet having high magnetic permeability
JP2000273549A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JP2888226B2 (en) Non-oriented electrical steel sheet with low iron loss
KR102493775B1 (en) Grain oriented electrical steel sheet and manufacturing method of the same
KR20190077964A (en) Oriented electrical steel sheet and manufacturing method of the same
JP2888229B2 (en) Non-oriented electrical steel sheet for high frequency
JP3463417B2 (en) Method for producing grain-oriented silicon steel sheet stably obtaining excellent magnetic properties
JPH11131196A (en) Nonoriented silicon steel sheet minimal in iron loss
JP2888227B2 (en) Magnetic steel sheet for high frequency motor
JP2001131642A (en) Method for producing non-oriented silicon steel sheet excellent in magnetic property and non-oriented silicon steel sheet excellent in magnetic property
JPH1171650A (en) Nonoriented silicon steel sheet low in core loss
JPH1112701A (en) Nonoriented silicon steel sheet with low iron loss
KR970007162B1 (en) Making method of oriented electrical steel sheet having excellent from loss properties
JPH11315327A (en) Manufacture of non-oriented silicon steel sheet with low iron loss, and non-oriented silicon steel sheet with low iron loss
JPH11302741A (en) Production of nonoriented silicon steel sheet low in core loss and nonoriented silicon steel sheet low in core loss
KR101510271B1 (en) Method for manufacturing the grain-oriented electrical steel sheets with excellent magnetic properties
CN118632943A (en) Improved method for producing chromium-containing high permeability grain oriented electrical steel
JPH1088297A (en) Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing
CN114867882A (en) Oriented electrical steel sheet and method for manufacturing the same